linux-zen-server/drivers/i2c/busses/i2c-meson.c

583 lines
14 KiB
C
Raw Normal View History

2023-08-30 17:53:23 +02:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* I2C bus driver for Amlogic Meson SoCs
*
* Copyright (C) 2014 Beniamino Galvani <b.galvani@gmail.com>
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/types.h>
/* Meson I2C register map */
#define REG_CTRL 0x00
#define REG_SLAVE_ADDR 0x04
#define REG_TOK_LIST0 0x08
#define REG_TOK_LIST1 0x0c
#define REG_TOK_WDATA0 0x10
#define REG_TOK_WDATA1 0x14
#define REG_TOK_RDATA0 0x18
#define REG_TOK_RDATA1 0x1c
/* Control register fields */
#define REG_CTRL_START BIT(0)
#define REG_CTRL_ACK_IGNORE BIT(1)
#define REG_CTRL_STATUS BIT(2)
#define REG_CTRL_ERROR BIT(3)
#define REG_CTRL_CLKDIV_SHIFT 12
#define REG_CTRL_CLKDIV_MASK GENMASK(21, REG_CTRL_CLKDIV_SHIFT)
#define REG_CTRL_CLKDIVEXT_SHIFT 28
#define REG_CTRL_CLKDIVEXT_MASK GENMASK(29, REG_CTRL_CLKDIVEXT_SHIFT)
#define REG_SLV_ADDR_MASK GENMASK(7, 0)
#define REG_SLV_SDA_FILTER_MASK GENMASK(10, 8)
#define REG_SLV_SCL_FILTER_MASK GENMASK(13, 11)
#define REG_SLV_SCL_LOW_SHIFT 16
#define REG_SLV_SCL_LOW_MASK GENMASK(27, REG_SLV_SCL_LOW_SHIFT)
#define REG_SLV_SCL_LOW_EN BIT(28)
#define I2C_TIMEOUT_MS 500
#define FILTER_DELAY 15
enum {
TOKEN_END = 0,
TOKEN_START,
TOKEN_SLAVE_ADDR_WRITE,
TOKEN_SLAVE_ADDR_READ,
TOKEN_DATA,
TOKEN_DATA_LAST,
TOKEN_STOP,
};
enum {
STATE_IDLE,
STATE_READ,
STATE_WRITE,
};
/**
* struct meson_i2c - Meson I2C device private data
*
* @adap: I2C adapter instance
* @dev: Pointer to device structure
* @regs: Base address of the device memory mapped registers
* @clk: Pointer to clock structure
* @msg: Pointer to the current I2C message
* @state: Current state in the driver state machine
* @last: Flag set for the last message in the transfer
* @count: Number of bytes to be sent/received in current transfer
* @pos: Current position in the send/receive buffer
* @error: Flag set when an error is received
* @lock: To avoid race conditions between irq handler and xfer code
* @done: Completion used to wait for transfer termination
* @tokens: Sequence of tokens to be written to the device
* @num_tokens: Number of tokens
* @data: Pointer to the controller's platform data
*/
struct meson_i2c {
struct i2c_adapter adap;
struct device *dev;
void __iomem *regs;
struct clk *clk;
struct i2c_msg *msg;
int state;
bool last;
int count;
int pos;
int error;
spinlock_t lock;
struct completion done;
u32 tokens[2];
int num_tokens;
const struct meson_i2c_data *data;
};
struct meson_i2c_data {
void (*set_clk_div)(struct meson_i2c *i2c, unsigned int freq);
};
static void meson_i2c_set_mask(struct meson_i2c *i2c, int reg, u32 mask,
u32 val)
{
u32 data;
data = readl(i2c->regs + reg);
data &= ~mask;
data |= val & mask;
writel(data, i2c->regs + reg);
}
static void meson_i2c_reset_tokens(struct meson_i2c *i2c)
{
i2c->tokens[0] = 0;
i2c->tokens[1] = 0;
i2c->num_tokens = 0;
}
static void meson_i2c_add_token(struct meson_i2c *i2c, int token)
{
if (i2c->num_tokens < 8)
i2c->tokens[0] |= (token & 0xf) << (i2c->num_tokens * 4);
else
i2c->tokens[1] |= (token & 0xf) << ((i2c->num_tokens % 8) * 4);
i2c->num_tokens++;
}
static void meson_gxbb_axg_i2c_set_clk_div(struct meson_i2c *i2c, unsigned int freq)
{
unsigned long clk_rate = clk_get_rate(i2c->clk);
unsigned int div_h, div_l;
/* According to I2C-BUS Spec 2.1, in FAST-MODE, the minimum LOW period is 1.3uS, and
* minimum HIGH is least 0.6us.
* For 400000 freq, the period is 2.5us. To keep within the specs, give 40% of period to
* HIGH and 60% to LOW. This means HIGH at 1.0us and LOW 1.5us.
* The same applies for Fast-mode plus, where LOW is 0.5us and HIGH is 0.26us.
* Duty = H/(H + L) = 2/5
*/
if (freq <= I2C_MAX_STANDARD_MODE_FREQ) {
div_h = DIV_ROUND_UP(clk_rate, freq);
div_l = DIV_ROUND_UP(div_h, 4);
div_h = DIV_ROUND_UP(div_h, 2) - FILTER_DELAY;
} else {
div_h = DIV_ROUND_UP(clk_rate * 2, freq * 5) - FILTER_DELAY;
div_l = DIV_ROUND_UP(clk_rate * 3, freq * 5 * 2);
}
/* clock divider has 12 bits */
if (div_h > GENMASK(11, 0)) {
dev_err(i2c->dev, "requested bus frequency too low\n");
div_h = GENMASK(11, 0);
}
if (div_l > GENMASK(11, 0)) {
dev_err(i2c->dev, "requested bus frequency too low\n");
div_l = GENMASK(11, 0);
}
meson_i2c_set_mask(i2c, REG_CTRL, REG_CTRL_CLKDIV_MASK,
FIELD_PREP(REG_CTRL_CLKDIV_MASK, div_h & GENMASK(9, 0)));
meson_i2c_set_mask(i2c, REG_CTRL, REG_CTRL_CLKDIVEXT_MASK,
FIELD_PREP(REG_CTRL_CLKDIVEXT_MASK, div_h >> 10));
/* set SCL low delay */
meson_i2c_set_mask(i2c, REG_SLAVE_ADDR, REG_SLV_SCL_LOW_MASK,
FIELD_PREP(REG_SLV_SCL_LOW_MASK, div_l));
/* Enable HIGH/LOW mode */
meson_i2c_set_mask(i2c, REG_SLAVE_ADDR, REG_SLV_SCL_LOW_EN, REG_SLV_SCL_LOW_EN);
dev_dbg(i2c->dev, "%s: clk %lu, freq %u, divh %u, divl %u\n", __func__,
clk_rate, freq, div_h, div_l);
}
static void meson6_i2c_set_clk_div(struct meson_i2c *i2c, unsigned int freq)
{
unsigned long clk_rate = clk_get_rate(i2c->clk);
unsigned int div;
div = DIV_ROUND_UP(clk_rate, freq);
div -= FILTER_DELAY;
div = DIV_ROUND_UP(div, 4);
/* clock divider has 12 bits */
if (div > GENMASK(11, 0)) {
dev_err(i2c->dev, "requested bus frequency too low\n");
div = GENMASK(11, 0);
}
meson_i2c_set_mask(i2c, REG_CTRL, REG_CTRL_CLKDIV_MASK,
FIELD_PREP(REG_CTRL_CLKDIV_MASK, div & GENMASK(9, 0)));
meson_i2c_set_mask(i2c, REG_CTRL, REG_CTRL_CLKDIVEXT_MASK,
FIELD_PREP(REG_CTRL_CLKDIVEXT_MASK, div >> 10));
/* Disable HIGH/LOW mode */
meson_i2c_set_mask(i2c, REG_SLAVE_ADDR, REG_SLV_SCL_LOW_EN, 0);
dev_dbg(i2c->dev, "%s: clk %lu, freq %u, div %u\n", __func__,
clk_rate, freq, div);
}
static void meson_i2c_get_data(struct meson_i2c *i2c, char *buf, int len)
{
u32 rdata0, rdata1;
int i;
rdata0 = readl(i2c->regs + REG_TOK_RDATA0);
rdata1 = readl(i2c->regs + REG_TOK_RDATA1);
dev_dbg(i2c->dev, "%s: data %08x %08x len %d\n", __func__,
rdata0, rdata1, len);
for (i = 0; i < min(4, len); i++)
*buf++ = (rdata0 >> i * 8) & 0xff;
for (i = 4; i < min(8, len); i++)
*buf++ = (rdata1 >> (i - 4) * 8) & 0xff;
}
static void meson_i2c_put_data(struct meson_i2c *i2c, char *buf, int len)
{
u32 wdata0 = 0, wdata1 = 0;
int i;
for (i = 0; i < min(4, len); i++)
wdata0 |= *buf++ << (i * 8);
for (i = 4; i < min(8, len); i++)
wdata1 |= *buf++ << ((i - 4) * 8);
writel(wdata0, i2c->regs + REG_TOK_WDATA0);
writel(wdata1, i2c->regs + REG_TOK_WDATA1);
dev_dbg(i2c->dev, "%s: data %08x %08x len %d\n", __func__,
wdata0, wdata1, len);
}
static void meson_i2c_prepare_xfer(struct meson_i2c *i2c)
{
bool write = !(i2c->msg->flags & I2C_M_RD);
int i;
i2c->count = min(i2c->msg->len - i2c->pos, 8);
for (i = 0; i < i2c->count - 1; i++)
meson_i2c_add_token(i2c, TOKEN_DATA);
if (i2c->count) {
if (write || i2c->pos + i2c->count < i2c->msg->len)
meson_i2c_add_token(i2c, TOKEN_DATA);
else
meson_i2c_add_token(i2c, TOKEN_DATA_LAST);
}
if (write)
meson_i2c_put_data(i2c, i2c->msg->buf + i2c->pos, i2c->count);
if (i2c->last && i2c->pos + i2c->count >= i2c->msg->len)
meson_i2c_add_token(i2c, TOKEN_STOP);
writel(i2c->tokens[0], i2c->regs + REG_TOK_LIST0);
writel(i2c->tokens[1], i2c->regs + REG_TOK_LIST1);
}
static void meson_i2c_transfer_complete(struct meson_i2c *i2c, u32 ctrl)
{
if (ctrl & REG_CTRL_ERROR) {
/*
* The bit is set when the IGNORE_NAK bit is cleared
* and the device didn't respond. In this case, the
* I2C controller automatically generates a STOP
* condition.
*/
dev_dbg(i2c->dev, "error bit set\n");
i2c->error = -ENXIO;
i2c->state = STATE_IDLE;
} else {
if (i2c->state == STATE_READ && i2c->count)
meson_i2c_get_data(i2c, i2c->msg->buf + i2c->pos,
i2c->count);
i2c->pos += i2c->count;
if (i2c->pos >= i2c->msg->len)
i2c->state = STATE_IDLE;
}
}
static irqreturn_t meson_i2c_irq(int irqno, void *dev_id)
{
struct meson_i2c *i2c = dev_id;
unsigned int ctrl;
spin_lock(&i2c->lock);
meson_i2c_reset_tokens(i2c);
meson_i2c_set_mask(i2c, REG_CTRL, REG_CTRL_START, 0);
ctrl = readl(i2c->regs + REG_CTRL);
dev_dbg(i2c->dev, "irq: state %d, pos %d, count %d, ctrl %08x\n",
i2c->state, i2c->pos, i2c->count, ctrl);
if (i2c->state == STATE_IDLE) {
spin_unlock(&i2c->lock);
return IRQ_NONE;
}
meson_i2c_transfer_complete(i2c, ctrl);
if (i2c->state == STATE_IDLE) {
complete(&i2c->done);
goto out;
}
/* Restart the processing */
meson_i2c_prepare_xfer(i2c);
meson_i2c_set_mask(i2c, REG_CTRL, REG_CTRL_START, REG_CTRL_START);
out:
spin_unlock(&i2c->lock);
return IRQ_HANDLED;
}
static void meson_i2c_do_start(struct meson_i2c *i2c, struct i2c_msg *msg)
{
int token;
token = (msg->flags & I2C_M_RD) ? TOKEN_SLAVE_ADDR_READ :
TOKEN_SLAVE_ADDR_WRITE;
meson_i2c_set_mask(i2c, REG_SLAVE_ADDR, REG_SLV_ADDR_MASK,
FIELD_PREP(REG_SLV_ADDR_MASK, msg->addr << 1));
meson_i2c_add_token(i2c, TOKEN_START);
meson_i2c_add_token(i2c, token);
}
static int meson_i2c_xfer_msg(struct meson_i2c *i2c, struct i2c_msg *msg,
int last, bool atomic)
{
unsigned long time_left, flags;
int ret = 0;
u32 ctrl;
i2c->msg = msg;
i2c->last = last;
i2c->pos = 0;
i2c->count = 0;
i2c->error = 0;
meson_i2c_reset_tokens(i2c);
flags = (msg->flags & I2C_M_IGNORE_NAK) ? REG_CTRL_ACK_IGNORE : 0;
meson_i2c_set_mask(i2c, REG_CTRL, REG_CTRL_ACK_IGNORE, flags);
if (!(msg->flags & I2C_M_NOSTART))
meson_i2c_do_start(i2c, msg);
i2c->state = (msg->flags & I2C_M_RD) ? STATE_READ : STATE_WRITE;
meson_i2c_prepare_xfer(i2c);
if (!atomic)
reinit_completion(&i2c->done);
/* Start the transfer */
meson_i2c_set_mask(i2c, REG_CTRL, REG_CTRL_START, REG_CTRL_START);
if (atomic) {
ret = readl_poll_timeout_atomic(i2c->regs + REG_CTRL, ctrl,
!(ctrl & REG_CTRL_STATUS),
10, I2C_TIMEOUT_MS * 1000);
} else {
time_left = msecs_to_jiffies(I2C_TIMEOUT_MS);
time_left = wait_for_completion_timeout(&i2c->done, time_left);
if (!time_left)
ret = -ETIMEDOUT;
}
/*
* Protect access to i2c struct and registers from interrupt
* handlers triggered by a transfer terminated after the
* timeout period
*/
spin_lock_irqsave(&i2c->lock, flags);
if (atomic && !ret)
meson_i2c_transfer_complete(i2c, ctrl);
/* Abort any active operation */
meson_i2c_set_mask(i2c, REG_CTRL, REG_CTRL_START, 0);
if (ret)
i2c->state = STATE_IDLE;
if (i2c->error)
ret = i2c->error;
spin_unlock_irqrestore(&i2c->lock, flags);
return ret;
}
static int meson_i2c_xfer_messages(struct i2c_adapter *adap,
struct i2c_msg *msgs, int num, bool atomic)
{
struct meson_i2c *i2c = adap->algo_data;
int i, ret = 0;
for (i = 0; i < num; i++) {
ret = meson_i2c_xfer_msg(i2c, msgs + i, i == num - 1, atomic);
if (ret)
break;
}
return ret ?: i;
}
static int meson_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
int num)
{
return meson_i2c_xfer_messages(adap, msgs, num, false);
}
static int meson_i2c_xfer_atomic(struct i2c_adapter *adap,
struct i2c_msg *msgs, int num)
{
return meson_i2c_xfer_messages(adap, msgs, num, true);
}
static u32 meson_i2c_func(struct i2c_adapter *adap)
{
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}
static const struct i2c_algorithm meson_i2c_algorithm = {
.master_xfer = meson_i2c_xfer,
.master_xfer_atomic = meson_i2c_xfer_atomic,
.functionality = meson_i2c_func,
};
static int meson_i2c_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct meson_i2c *i2c;
struct i2c_timings timings;
int irq, ret = 0;
i2c = devm_kzalloc(&pdev->dev, sizeof(struct meson_i2c), GFP_KERNEL);
if (!i2c)
return -ENOMEM;
i2c_parse_fw_timings(&pdev->dev, &timings, true);
i2c->dev = &pdev->dev;
platform_set_drvdata(pdev, i2c);
spin_lock_init(&i2c->lock);
init_completion(&i2c->done);
i2c->data = (const struct meson_i2c_data *)
of_device_get_match_data(&pdev->dev);
i2c->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(i2c->clk)) {
dev_err(&pdev->dev, "can't get device clock\n");
return PTR_ERR(i2c->clk);
}
i2c->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(i2c->regs))
return PTR_ERR(i2c->regs);
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
ret = devm_request_irq(&pdev->dev, irq, meson_i2c_irq, 0, NULL, i2c);
if (ret < 0) {
dev_err(&pdev->dev, "can't request IRQ\n");
return ret;
}
ret = clk_prepare_enable(i2c->clk);
if (ret < 0) {
dev_err(&pdev->dev, "can't prepare clock\n");
return ret;
}
strscpy(i2c->adap.name, "Meson I2C adapter",
sizeof(i2c->adap.name));
i2c->adap.owner = THIS_MODULE;
i2c->adap.algo = &meson_i2c_algorithm;
i2c->adap.dev.parent = &pdev->dev;
i2c->adap.dev.of_node = np;
i2c->adap.algo_data = i2c;
/*
* A transfer is triggered when START bit changes from 0 to 1.
* Ensure that the bit is set to 0 after probe
*/
meson_i2c_set_mask(i2c, REG_CTRL, REG_CTRL_START, 0);
/* Disable filtering */
meson_i2c_set_mask(i2c, REG_SLAVE_ADDR,
REG_SLV_SDA_FILTER_MASK | REG_SLV_SCL_FILTER_MASK, 0);
if (!i2c->data->set_clk_div) {
clk_disable_unprepare(i2c->clk);
return -EINVAL;
}
i2c->data->set_clk_div(i2c, timings.bus_freq_hz);
ret = i2c_add_adapter(&i2c->adap);
if (ret < 0) {
clk_disable_unprepare(i2c->clk);
return ret;
}
return 0;
}
static int meson_i2c_remove(struct platform_device *pdev)
{
struct meson_i2c *i2c = platform_get_drvdata(pdev);
i2c_del_adapter(&i2c->adap);
clk_disable_unprepare(i2c->clk);
return 0;
}
static const struct meson_i2c_data i2c_meson6_data = {
.set_clk_div = meson6_i2c_set_clk_div,
};
static const struct meson_i2c_data i2c_gxbb_data = {
.set_clk_div = meson_gxbb_axg_i2c_set_clk_div,
};
static const struct meson_i2c_data i2c_axg_data = {
.set_clk_div = meson_gxbb_axg_i2c_set_clk_div,
};
static const struct of_device_id meson_i2c_match[] = {
{ .compatible = "amlogic,meson6-i2c", .data = &i2c_meson6_data },
{ .compatible = "amlogic,meson-gxbb-i2c", .data = &i2c_gxbb_data },
{ .compatible = "amlogic,meson-axg-i2c", .data = &i2c_axg_data },
{},
};
MODULE_DEVICE_TABLE(of, meson_i2c_match);
static struct platform_driver meson_i2c_driver = {
.probe = meson_i2c_probe,
.remove = meson_i2c_remove,
.driver = {
.name = "meson-i2c",
.of_match_table = meson_i2c_match,
},
};
module_platform_driver(meson_i2c_driver);
MODULE_DESCRIPTION("Amlogic Meson I2C Bus driver");
MODULE_AUTHOR("Beniamino Galvani <b.galvani@gmail.com>");
MODULE_LICENSE("GPL v2");