linux-zen-server/drivers/iio/adc/xilinx-ams.c

1438 lines
38 KiB
C
Raw Normal View History

2023-08-30 17:53:23 +02:00
// SPDX-License-Identifier: GPL-2.0
/*
* Xilinx AMS driver
*
* Copyright (C) 2021 Xilinx, Inc.
*
* Manish Narani <mnarani@xilinx.com>
* Rajnikant Bhojani <rajnikant.bhojani@xilinx.com>
*/
#include <linux/bits.h>
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/devm-helpers.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/overflow.h>
#include <linux/platform_device.h>
#include <linux/property.h>
#include <linux/slab.h>
#include <linux/iio/events.h>
#include <linux/iio/iio.h>
/* AMS registers definitions */
#define AMS_ISR_0 0x010
#define AMS_ISR_1 0x014
#define AMS_IER_0 0x020
#define AMS_IER_1 0x024
#define AMS_IDR_0 0x028
#define AMS_IDR_1 0x02C
#define AMS_PS_CSTS 0x040
#define AMS_PL_CSTS 0x044
#define AMS_VCC_PSPLL0 0x060
#define AMS_VCC_PSPLL3 0x06C
#define AMS_VCCINT 0x078
#define AMS_VCCBRAM 0x07C
#define AMS_VCCAUX 0x080
#define AMS_PSDDRPLL 0x084
#define AMS_PSINTFPDDR 0x09C
#define AMS_VCC_PSPLL0_CH 48
#define AMS_VCC_PSPLL3_CH 51
#define AMS_VCCINT_CH 54
#define AMS_VCCBRAM_CH 55
#define AMS_VCCAUX_CH 56
#define AMS_PSDDRPLL_CH 57
#define AMS_PSINTFPDDR_CH 63
#define AMS_REG_CONFIG0 0x100
#define AMS_REG_CONFIG1 0x104
#define AMS_REG_CONFIG3 0x10C
#define AMS_REG_CONFIG4 0x110
#define AMS_REG_SEQ_CH0 0x120
#define AMS_REG_SEQ_CH1 0x124
#define AMS_REG_SEQ_CH2 0x118
#define AMS_VUSER0_MASK BIT(0)
#define AMS_VUSER1_MASK BIT(1)
#define AMS_VUSER2_MASK BIT(2)
#define AMS_VUSER3_MASK BIT(3)
#define AMS_TEMP 0x000
#define AMS_SUPPLY1 0x004
#define AMS_SUPPLY2 0x008
#define AMS_VP_VN 0x00C
#define AMS_VREFP 0x010
#define AMS_VREFN 0x014
#define AMS_SUPPLY3 0x018
#define AMS_SUPPLY4 0x034
#define AMS_SUPPLY5 0x038
#define AMS_SUPPLY6 0x03C
#define AMS_SUPPLY7 0x200
#define AMS_SUPPLY8 0x204
#define AMS_SUPPLY9 0x208
#define AMS_SUPPLY10 0x20C
#define AMS_VCCAMS 0x210
#define AMS_TEMP_REMOTE 0x214
#define AMS_REG_VAUX(x) (0x40 + 4 * (x))
#define AMS_PS_RESET_VALUE 0xFFFF
#define AMS_PL_RESET_VALUE 0xFFFF
#define AMS_CONF0_CHANNEL_NUM_MASK GENMASK(6, 0)
#define AMS_CONF1_SEQ_MASK GENMASK(15, 12)
#define AMS_CONF1_SEQ_DEFAULT FIELD_PREP(AMS_CONF1_SEQ_MASK, 0)
#define AMS_CONF1_SEQ_CONTINUOUS FIELD_PREP(AMS_CONF1_SEQ_MASK, 2)
#define AMS_CONF1_SEQ_SINGLE_CHANNEL FIELD_PREP(AMS_CONF1_SEQ_MASK, 3)
#define AMS_REG_SEQ0_MASK GENMASK(15, 0)
#define AMS_REG_SEQ2_MASK GENMASK(21, 16)
#define AMS_REG_SEQ1_MASK GENMASK_ULL(37, 22)
#define AMS_PS_SEQ_MASK GENMASK(21, 0)
#define AMS_PL_SEQ_MASK GENMASK_ULL(59, 22)
#define AMS_ALARM_TEMP 0x140
#define AMS_ALARM_SUPPLY1 0x144
#define AMS_ALARM_SUPPLY2 0x148
#define AMS_ALARM_SUPPLY3 0x160
#define AMS_ALARM_SUPPLY4 0x164
#define AMS_ALARM_SUPPLY5 0x168
#define AMS_ALARM_SUPPLY6 0x16C
#define AMS_ALARM_SUPPLY7 0x180
#define AMS_ALARM_SUPPLY8 0x184
#define AMS_ALARM_SUPPLY9 0x188
#define AMS_ALARM_SUPPLY10 0x18C
#define AMS_ALARM_VCCAMS 0x190
#define AMS_ALARM_TEMP_REMOTE 0x194
#define AMS_ALARM_THRESHOLD_OFF_10 0x10
#define AMS_ALARM_THRESHOLD_OFF_20 0x20
#define AMS_ALARM_THR_DIRECT_MASK BIT(1)
#define AMS_ALARM_THR_MIN 0x0000
#define AMS_ALARM_THR_MAX (BIT(16) - 1)
#define AMS_ALARM_MASK GENMASK_ULL(63, 0)
#define AMS_NO_OF_ALARMS 32
#define AMS_PL_ALARM_START 16
#define AMS_PL_ALARM_MASK GENMASK(31, 16)
#define AMS_ISR0_ALARM_MASK GENMASK(31, 0)
#define AMS_ISR1_ALARM_MASK (GENMASK(31, 29) | GENMASK(4, 0))
#define AMS_ISR1_EOC_MASK BIT(3)
#define AMS_ISR1_INTR_MASK GENMASK_ULL(63, 32)
#define AMS_ISR0_ALARM_2_TO_0_MASK GENMASK(2, 0)
#define AMS_ISR0_ALARM_6_TO_3_MASK GENMASK(6, 3)
#define AMS_ISR0_ALARM_12_TO_7_MASK GENMASK(13, 8)
#define AMS_CONF1_ALARM_2_TO_0_MASK GENMASK(3, 1)
#define AMS_CONF1_ALARM_6_TO_3_MASK GENMASK(11, 8)
#define AMS_CONF1_ALARM_12_TO_7_MASK GENMASK(5, 0)
#define AMS_REGCFG1_ALARM_MASK \
(AMS_CONF1_ALARM_2_TO_0_MASK | AMS_CONF1_ALARM_6_TO_3_MASK | BIT(0))
#define AMS_REGCFG3_ALARM_MASK AMS_CONF1_ALARM_12_TO_7_MASK
#define AMS_PS_CSTS_PS_READY (BIT(27) | BIT(16))
#define AMS_PL_CSTS_ACCESS_MASK BIT(1)
#define AMS_PL_MAX_FIXED_CHANNEL 10
#define AMS_PL_MAX_EXT_CHANNEL 20
#define AMS_INIT_POLL_TIME_US 200
#define AMS_INIT_TIMEOUT_US 10000
#define AMS_UNMASK_TIMEOUT_MS 500
/*
* Following scale and offset value is derived from
* UG580 (v1.7) December 20, 2016
*/
#define AMS_SUPPLY_SCALE_1VOLT_mV 1000
#define AMS_SUPPLY_SCALE_3VOLT_mV 3000
#define AMS_SUPPLY_SCALE_6VOLT_mV 6000
#define AMS_SUPPLY_SCALE_DIV_BIT 16
#define AMS_TEMP_SCALE 509314
#define AMS_TEMP_SCALE_DIV_BIT 16
#define AMS_TEMP_OFFSET -((280230LL << 16) / 509314)
enum ams_alarm_bit {
AMS_ALARM_BIT_TEMP = 0,
AMS_ALARM_BIT_SUPPLY1 = 1,
AMS_ALARM_BIT_SUPPLY2 = 2,
AMS_ALARM_BIT_SUPPLY3 = 3,
AMS_ALARM_BIT_SUPPLY4 = 4,
AMS_ALARM_BIT_SUPPLY5 = 5,
AMS_ALARM_BIT_SUPPLY6 = 6,
AMS_ALARM_BIT_RESERVED = 7,
AMS_ALARM_BIT_SUPPLY7 = 8,
AMS_ALARM_BIT_SUPPLY8 = 9,
AMS_ALARM_BIT_SUPPLY9 = 10,
AMS_ALARM_BIT_SUPPLY10 = 11,
AMS_ALARM_BIT_VCCAMS = 12,
AMS_ALARM_BIT_TEMP_REMOTE = 13,
};
enum ams_seq {
AMS_SEQ_VCC_PSPLL = 0,
AMS_SEQ_VCC_PSBATT = 1,
AMS_SEQ_VCCINT = 2,
AMS_SEQ_VCCBRAM = 3,
AMS_SEQ_VCCAUX = 4,
AMS_SEQ_PSDDRPLL = 5,
AMS_SEQ_INTDDR = 6,
};
enum ams_ps_pl_seq {
AMS_SEQ_CALIB = 0,
AMS_SEQ_RSVD_1 = 1,
AMS_SEQ_RSVD_2 = 2,
AMS_SEQ_TEST = 3,
AMS_SEQ_RSVD_4 = 4,
AMS_SEQ_SUPPLY4 = 5,
AMS_SEQ_SUPPLY5 = 6,
AMS_SEQ_SUPPLY6 = 7,
AMS_SEQ_TEMP = 8,
AMS_SEQ_SUPPLY2 = 9,
AMS_SEQ_SUPPLY1 = 10,
AMS_SEQ_VP_VN = 11,
AMS_SEQ_VREFP = 12,
AMS_SEQ_VREFN = 13,
AMS_SEQ_SUPPLY3 = 14,
AMS_SEQ_CURRENT_MON = 15,
AMS_SEQ_SUPPLY7 = 16,
AMS_SEQ_SUPPLY8 = 17,
AMS_SEQ_SUPPLY9 = 18,
AMS_SEQ_SUPPLY10 = 19,
AMS_SEQ_VCCAMS = 20,
AMS_SEQ_TEMP_REMOTE = 21,
AMS_SEQ_MAX = 22
};
#define AMS_PS_SEQ_MAX AMS_SEQ_MAX
#define AMS_SEQ(x) (AMS_SEQ_MAX + (x))
#define PS_SEQ(x) (x)
#define PL_SEQ(x) (AMS_PS_SEQ_MAX + (x))
#define AMS_CTRL_SEQ_BASE (AMS_PS_SEQ_MAX * 3)
#define AMS_CHAN_TEMP(_scan_index, _addr) { \
.type = IIO_TEMP, \
.indexed = 1, \
.address = (_addr), \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_OFFSET), \
.event_spec = ams_temp_events, \
.scan_index = _scan_index, \
.num_event_specs = ARRAY_SIZE(ams_temp_events), \
}
#define AMS_CHAN_VOLTAGE(_scan_index, _addr, _alarm) { \
.type = IIO_VOLTAGE, \
.indexed = 1, \
.address = (_addr), \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
BIT(IIO_CHAN_INFO_SCALE), \
.event_spec = (_alarm) ? ams_voltage_events : NULL, \
.scan_index = _scan_index, \
.num_event_specs = (_alarm) ? ARRAY_SIZE(ams_voltage_events) : 0, \
}
#define AMS_PS_CHAN_TEMP(_scan_index, _addr) \
AMS_CHAN_TEMP(PS_SEQ(_scan_index), _addr)
#define AMS_PS_CHAN_VOLTAGE(_scan_index, _addr) \
AMS_CHAN_VOLTAGE(PS_SEQ(_scan_index), _addr, true)
#define AMS_PL_CHAN_TEMP(_scan_index, _addr) \
AMS_CHAN_TEMP(PL_SEQ(_scan_index), _addr)
#define AMS_PL_CHAN_VOLTAGE(_scan_index, _addr, _alarm) \
AMS_CHAN_VOLTAGE(PL_SEQ(_scan_index), _addr, _alarm)
#define AMS_PL_AUX_CHAN_VOLTAGE(_auxno) \
AMS_CHAN_VOLTAGE(PL_SEQ(AMS_SEQ(_auxno)), AMS_REG_VAUX(_auxno), false)
#define AMS_CTRL_CHAN_VOLTAGE(_scan_index, _addr) \
AMS_CHAN_VOLTAGE(PL_SEQ(AMS_SEQ(AMS_SEQ(_scan_index))), _addr, false)
/**
* struct ams - This structure contains necessary state for xilinx-ams to operate
* @base: physical base address of device
* @ps_base: physical base address of PS device
* @pl_base: physical base address of PL device
* @clk: clocks associated with the device
* @dev: pointer to device struct
* @lock: to handle multiple user interaction
* @intr_lock: to protect interrupt mask values
* @alarm_mask: alarm configuration
* @current_masked_alarm: currently masked due to alarm
* @intr_mask: interrupt configuration
* @ams_unmask_work: re-enables event once the event condition disappears
*
*/
struct ams {
void __iomem *base;
void __iomem *ps_base;
void __iomem *pl_base;
struct clk *clk;
struct device *dev;
struct mutex lock;
spinlock_t intr_lock;
unsigned int alarm_mask;
unsigned int current_masked_alarm;
u64 intr_mask;
struct delayed_work ams_unmask_work;
};
static inline void ams_ps_update_reg(struct ams *ams, unsigned int offset,
u32 mask, u32 data)
{
u32 val, regval;
val = readl(ams->ps_base + offset);
regval = (val & ~mask) | (data & mask);
writel(regval, ams->ps_base + offset);
}
static inline void ams_pl_update_reg(struct ams *ams, unsigned int offset,
u32 mask, u32 data)
{
u32 val, regval;
val = readl(ams->pl_base + offset);
regval = (val & ~mask) | (data & mask);
writel(regval, ams->pl_base + offset);
}
static void ams_update_intrmask(struct ams *ams, u64 mask, u64 val)
{
u32 regval;
ams->intr_mask = (ams->intr_mask & ~mask) | (val & mask);
regval = ~(ams->intr_mask | ams->current_masked_alarm);
writel(regval, ams->base + AMS_IER_0);
regval = ~(FIELD_GET(AMS_ISR1_INTR_MASK, ams->intr_mask));
writel(regval, ams->base + AMS_IER_1);
regval = ams->intr_mask | ams->current_masked_alarm;
writel(regval, ams->base + AMS_IDR_0);
regval = FIELD_GET(AMS_ISR1_INTR_MASK, ams->intr_mask);
writel(regval, ams->base + AMS_IDR_1);
}
static void ams_disable_all_alarms(struct ams *ams)
{
/* disable PS module alarm */
if (ams->ps_base) {
ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK,
AMS_REGCFG1_ALARM_MASK);
ams_ps_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK,
AMS_REGCFG3_ALARM_MASK);
}
/* disable PL module alarm */
if (ams->pl_base) {
ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK,
AMS_REGCFG1_ALARM_MASK);
ams_pl_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK,
AMS_REGCFG3_ALARM_MASK);
}
}
static void ams_update_ps_alarm(struct ams *ams, unsigned long alarm_mask)
{
u32 cfg;
u32 val;
val = FIELD_GET(AMS_ISR0_ALARM_2_TO_0_MASK, alarm_mask);
cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_2_TO_0_MASK, val));
val = FIELD_GET(AMS_ISR0_ALARM_6_TO_3_MASK, alarm_mask);
cfg &= ~(FIELD_PREP(AMS_CONF1_ALARM_6_TO_3_MASK, val));
ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK, cfg);
val = FIELD_GET(AMS_ISR0_ALARM_12_TO_7_MASK, alarm_mask);
cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_12_TO_7_MASK, val));
ams_ps_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK, cfg);
}
static void ams_update_pl_alarm(struct ams *ams, unsigned long alarm_mask)
{
unsigned long pl_alarm_mask;
u32 cfg;
u32 val;
pl_alarm_mask = FIELD_GET(AMS_PL_ALARM_MASK, alarm_mask);
val = FIELD_GET(AMS_ISR0_ALARM_2_TO_0_MASK, pl_alarm_mask);
cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_2_TO_0_MASK, val));
val = FIELD_GET(AMS_ISR0_ALARM_6_TO_3_MASK, pl_alarm_mask);
cfg &= ~(FIELD_PREP(AMS_CONF1_ALARM_6_TO_3_MASK, val));
ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK, cfg);
val = FIELD_GET(AMS_ISR0_ALARM_12_TO_7_MASK, pl_alarm_mask);
cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_12_TO_7_MASK, val));
ams_pl_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK, cfg);
}
static void ams_update_alarm(struct ams *ams, unsigned long alarm_mask)
{
unsigned long flags;
if (ams->ps_base)
ams_update_ps_alarm(ams, alarm_mask);
if (ams->pl_base)
ams_update_pl_alarm(ams, alarm_mask);
spin_lock_irqsave(&ams->intr_lock, flags);
ams_update_intrmask(ams, AMS_ISR0_ALARM_MASK, ~alarm_mask);
spin_unlock_irqrestore(&ams->intr_lock, flags);
}
static void ams_enable_channel_sequence(struct iio_dev *indio_dev)
{
struct ams *ams = iio_priv(indio_dev);
unsigned long long scan_mask;
int i;
u32 regval;
/*
* Enable channel sequence. First 22 bits of scan_mask represent
* PS channels, and next remaining bits represent PL channels.
*/
/* Run calibration of PS & PL as part of the sequence */
scan_mask = BIT(0) | BIT(AMS_PS_SEQ_MAX);
for (i = 0; i < indio_dev->num_channels; i++)
scan_mask |= BIT_ULL(indio_dev->channels[i].scan_index);
if (ams->ps_base) {
/* put sysmon in a soft reset to change the sequence */
ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
AMS_CONF1_SEQ_DEFAULT);
/* configure basic channels */
regval = FIELD_GET(AMS_REG_SEQ0_MASK, scan_mask);
writel(regval, ams->ps_base + AMS_REG_SEQ_CH0);
regval = FIELD_GET(AMS_REG_SEQ2_MASK, scan_mask);
writel(regval, ams->ps_base + AMS_REG_SEQ_CH2);
/* set continuous sequence mode */
ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
AMS_CONF1_SEQ_CONTINUOUS);
}
if (ams->pl_base) {
/* put sysmon in a soft reset to change the sequence */
ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
AMS_CONF1_SEQ_DEFAULT);
/* configure basic channels */
scan_mask = FIELD_GET(AMS_PL_SEQ_MASK, scan_mask);
regval = FIELD_GET(AMS_REG_SEQ0_MASK, scan_mask);
writel(regval, ams->pl_base + AMS_REG_SEQ_CH0);
regval = FIELD_GET(AMS_REG_SEQ1_MASK, scan_mask);
writel(regval, ams->pl_base + AMS_REG_SEQ_CH1);
regval = FIELD_GET(AMS_REG_SEQ2_MASK, scan_mask);
writel(regval, ams->pl_base + AMS_REG_SEQ_CH2);
/* set continuous sequence mode */
ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
AMS_CONF1_SEQ_CONTINUOUS);
}
}
static int ams_init_device(struct ams *ams)
{
u32 expect = AMS_PS_CSTS_PS_READY;
u32 reg, value;
int ret;
/* reset AMS */
if (ams->ps_base) {
writel(AMS_PS_RESET_VALUE, ams->ps_base + AMS_VP_VN);
ret = readl_poll_timeout(ams->base + AMS_PS_CSTS, reg, (reg & expect),
AMS_INIT_POLL_TIME_US, AMS_INIT_TIMEOUT_US);
if (ret)
return ret;
/* put sysmon in a default state */
ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
AMS_CONF1_SEQ_DEFAULT);
}
if (ams->pl_base) {
value = readl(ams->base + AMS_PL_CSTS);
if (value == 0)
return 0;
writel(AMS_PL_RESET_VALUE, ams->pl_base + AMS_VP_VN);
/* put sysmon in a default state */
ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
AMS_CONF1_SEQ_DEFAULT);
}
ams_disable_all_alarms(ams);
/* Disable interrupt */
ams_update_intrmask(ams, AMS_ALARM_MASK, AMS_ALARM_MASK);
/* Clear any pending interrupt */
writel(AMS_ISR0_ALARM_MASK, ams->base + AMS_ISR_0);
writel(AMS_ISR1_ALARM_MASK, ams->base + AMS_ISR_1);
return 0;
}
static int ams_enable_single_channel(struct ams *ams, unsigned int offset)
{
u8 channel_num;
switch (offset) {
case AMS_VCC_PSPLL0:
channel_num = AMS_VCC_PSPLL0_CH;
break;
case AMS_VCC_PSPLL3:
channel_num = AMS_VCC_PSPLL3_CH;
break;
case AMS_VCCINT:
channel_num = AMS_VCCINT_CH;
break;
case AMS_VCCBRAM:
channel_num = AMS_VCCBRAM_CH;
break;
case AMS_VCCAUX:
channel_num = AMS_VCCAUX_CH;
break;
case AMS_PSDDRPLL:
channel_num = AMS_PSDDRPLL_CH;
break;
case AMS_PSINTFPDDR:
channel_num = AMS_PSINTFPDDR_CH;
break;
default:
return -EINVAL;
}
/* put sysmon in a soft reset to change the sequence */
ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
AMS_CONF1_SEQ_DEFAULT);
/* write the channel number */
ams_ps_update_reg(ams, AMS_REG_CONFIG0, AMS_CONF0_CHANNEL_NUM_MASK,
channel_num);
/* set single channel, sequencer off mode */
ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
AMS_CONF1_SEQ_SINGLE_CHANNEL);
return 0;
}
static int ams_read_vcc_reg(struct ams *ams, unsigned int offset, u32 *data)
{
u32 expect = AMS_ISR1_EOC_MASK;
u32 reg;
int ret;
ret = ams_enable_single_channel(ams, offset);
if (ret)
return ret;
/* clear end-of-conversion flag, wait for next conversion to complete */
writel(expect, ams->base + AMS_ISR_1);
ret = readl_poll_timeout(ams->base + AMS_ISR_1, reg, (reg & expect),
AMS_INIT_POLL_TIME_US, AMS_INIT_TIMEOUT_US);
if (ret)
return ret;
*data = readl(ams->base + offset);
return 0;
}
static int ams_get_ps_scale(int address)
{
int val;
switch (address) {
case AMS_SUPPLY1:
case AMS_SUPPLY2:
case AMS_SUPPLY3:
case AMS_SUPPLY4:
case AMS_SUPPLY9:
case AMS_SUPPLY10:
case AMS_VCCAMS:
val = AMS_SUPPLY_SCALE_3VOLT_mV;
break;
case AMS_SUPPLY5:
case AMS_SUPPLY6:
case AMS_SUPPLY7:
case AMS_SUPPLY8:
val = AMS_SUPPLY_SCALE_6VOLT_mV;
break;
default:
val = AMS_SUPPLY_SCALE_1VOLT_mV;
break;
}
return val;
}
static int ams_get_pl_scale(struct ams *ams, int address)
{
int val, regval;
switch (address) {
case AMS_SUPPLY1:
case AMS_SUPPLY2:
case AMS_SUPPLY3:
case AMS_SUPPLY4:
case AMS_SUPPLY5:
case AMS_SUPPLY6:
case AMS_VCCAMS:
case AMS_VREFP:
case AMS_VREFN:
val = AMS_SUPPLY_SCALE_3VOLT_mV;
break;
case AMS_SUPPLY7:
regval = readl(ams->pl_base + AMS_REG_CONFIG4);
if (FIELD_GET(AMS_VUSER0_MASK, regval))
val = AMS_SUPPLY_SCALE_6VOLT_mV;
else
val = AMS_SUPPLY_SCALE_3VOLT_mV;
break;
case AMS_SUPPLY8:
regval = readl(ams->pl_base + AMS_REG_CONFIG4);
if (FIELD_GET(AMS_VUSER1_MASK, regval))
val = AMS_SUPPLY_SCALE_6VOLT_mV;
else
val = AMS_SUPPLY_SCALE_3VOLT_mV;
break;
case AMS_SUPPLY9:
regval = readl(ams->pl_base + AMS_REG_CONFIG4);
if (FIELD_GET(AMS_VUSER2_MASK, regval))
val = AMS_SUPPLY_SCALE_6VOLT_mV;
else
val = AMS_SUPPLY_SCALE_3VOLT_mV;
break;
case AMS_SUPPLY10:
regval = readl(ams->pl_base + AMS_REG_CONFIG4);
if (FIELD_GET(AMS_VUSER3_MASK, regval))
val = AMS_SUPPLY_SCALE_6VOLT_mV;
else
val = AMS_SUPPLY_SCALE_3VOLT_mV;
break;
case AMS_VP_VN:
case AMS_REG_VAUX(0) ... AMS_REG_VAUX(15):
val = AMS_SUPPLY_SCALE_1VOLT_mV;
break;
default:
val = AMS_SUPPLY_SCALE_1VOLT_mV;
break;
}
return val;
}
static int ams_get_ctrl_scale(int address)
{
int val;
switch (address) {
case AMS_VCC_PSPLL0:
case AMS_VCC_PSPLL3:
case AMS_VCCINT:
case AMS_VCCBRAM:
case AMS_VCCAUX:
case AMS_PSDDRPLL:
case AMS_PSINTFPDDR:
val = AMS_SUPPLY_SCALE_3VOLT_mV;
break;
default:
val = AMS_SUPPLY_SCALE_1VOLT_mV;
break;
}
return val;
}
static int ams_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct ams *ams = iio_priv(indio_dev);
int ret;
switch (mask) {
case IIO_CHAN_INFO_RAW:
mutex_lock(&ams->lock);
if (chan->scan_index >= AMS_CTRL_SEQ_BASE) {
ret = ams_read_vcc_reg(ams, chan->address, val);
if (ret)
goto unlock_mutex;
ams_enable_channel_sequence(indio_dev);
} else if (chan->scan_index >= AMS_PS_SEQ_MAX)
*val = readl(ams->pl_base + chan->address);
else
*val = readl(ams->ps_base + chan->address);
ret = IIO_VAL_INT;
unlock_mutex:
mutex_unlock(&ams->lock);
return ret;
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_VOLTAGE:
if (chan->scan_index < AMS_PS_SEQ_MAX)
*val = ams_get_ps_scale(chan->address);
else if (chan->scan_index >= AMS_PS_SEQ_MAX &&
chan->scan_index < AMS_CTRL_SEQ_BASE)
*val = ams_get_pl_scale(ams, chan->address);
else
*val = ams_get_ctrl_scale(chan->address);
*val2 = AMS_SUPPLY_SCALE_DIV_BIT;
return IIO_VAL_FRACTIONAL_LOG2;
case IIO_TEMP:
*val = AMS_TEMP_SCALE;
*val2 = AMS_TEMP_SCALE_DIV_BIT;
return IIO_VAL_FRACTIONAL_LOG2;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_OFFSET:
/* Only the temperature channel has an offset */
*val = AMS_TEMP_OFFSET;
return IIO_VAL_INT;
default:
return -EINVAL;
}
}
static int ams_get_alarm_offset(int scan_index, enum iio_event_direction dir)
{
int offset;
if (scan_index >= AMS_PS_SEQ_MAX)
scan_index -= AMS_PS_SEQ_MAX;
if (dir == IIO_EV_DIR_FALLING) {
if (scan_index < AMS_SEQ_SUPPLY7)
offset = AMS_ALARM_THRESHOLD_OFF_10;
else
offset = AMS_ALARM_THRESHOLD_OFF_20;
} else {
offset = 0;
}
switch (scan_index) {
case AMS_SEQ_TEMP:
return AMS_ALARM_TEMP + offset;
case AMS_SEQ_SUPPLY1:
return AMS_ALARM_SUPPLY1 + offset;
case AMS_SEQ_SUPPLY2:
return AMS_ALARM_SUPPLY2 + offset;
case AMS_SEQ_SUPPLY3:
return AMS_ALARM_SUPPLY3 + offset;
case AMS_SEQ_SUPPLY4:
return AMS_ALARM_SUPPLY4 + offset;
case AMS_SEQ_SUPPLY5:
return AMS_ALARM_SUPPLY5 + offset;
case AMS_SEQ_SUPPLY6:
return AMS_ALARM_SUPPLY6 + offset;
case AMS_SEQ_SUPPLY7:
return AMS_ALARM_SUPPLY7 + offset;
case AMS_SEQ_SUPPLY8:
return AMS_ALARM_SUPPLY8 + offset;
case AMS_SEQ_SUPPLY9:
return AMS_ALARM_SUPPLY9 + offset;
case AMS_SEQ_SUPPLY10:
return AMS_ALARM_SUPPLY10 + offset;
case AMS_SEQ_VCCAMS:
return AMS_ALARM_VCCAMS + offset;
case AMS_SEQ_TEMP_REMOTE:
return AMS_ALARM_TEMP_REMOTE + offset;
default:
return 0;
}
}
static const struct iio_chan_spec *ams_event_to_channel(struct iio_dev *dev,
u32 event)
{
int scan_index = 0, i;
if (event >= AMS_PL_ALARM_START) {
event -= AMS_PL_ALARM_START;
scan_index = AMS_PS_SEQ_MAX;
}
switch (event) {
case AMS_ALARM_BIT_TEMP:
scan_index += AMS_SEQ_TEMP;
break;
case AMS_ALARM_BIT_SUPPLY1:
scan_index += AMS_SEQ_SUPPLY1;
break;
case AMS_ALARM_BIT_SUPPLY2:
scan_index += AMS_SEQ_SUPPLY2;
break;
case AMS_ALARM_BIT_SUPPLY3:
scan_index += AMS_SEQ_SUPPLY3;
break;
case AMS_ALARM_BIT_SUPPLY4:
scan_index += AMS_SEQ_SUPPLY4;
break;
case AMS_ALARM_BIT_SUPPLY5:
scan_index += AMS_SEQ_SUPPLY5;
break;
case AMS_ALARM_BIT_SUPPLY6:
scan_index += AMS_SEQ_SUPPLY6;
break;
case AMS_ALARM_BIT_SUPPLY7:
scan_index += AMS_SEQ_SUPPLY7;
break;
case AMS_ALARM_BIT_SUPPLY8:
scan_index += AMS_SEQ_SUPPLY8;
break;
case AMS_ALARM_BIT_SUPPLY9:
scan_index += AMS_SEQ_SUPPLY9;
break;
case AMS_ALARM_BIT_SUPPLY10:
scan_index += AMS_SEQ_SUPPLY10;
break;
case AMS_ALARM_BIT_VCCAMS:
scan_index += AMS_SEQ_VCCAMS;
break;
case AMS_ALARM_BIT_TEMP_REMOTE:
scan_index += AMS_SEQ_TEMP_REMOTE;
break;
default:
break;
}
for (i = 0; i < dev->num_channels; i++)
if (dev->channels[i].scan_index == scan_index)
break;
return &dev->channels[i];
}
static int ams_get_alarm_mask(int scan_index)
{
int bit = 0;
if (scan_index >= AMS_PS_SEQ_MAX) {
bit = AMS_PL_ALARM_START;
scan_index -= AMS_PS_SEQ_MAX;
}
switch (scan_index) {
case AMS_SEQ_TEMP:
return BIT(AMS_ALARM_BIT_TEMP + bit);
case AMS_SEQ_SUPPLY1:
return BIT(AMS_ALARM_BIT_SUPPLY1 + bit);
case AMS_SEQ_SUPPLY2:
return BIT(AMS_ALARM_BIT_SUPPLY2 + bit);
case AMS_SEQ_SUPPLY3:
return BIT(AMS_ALARM_BIT_SUPPLY3 + bit);
case AMS_SEQ_SUPPLY4:
return BIT(AMS_ALARM_BIT_SUPPLY4 + bit);
case AMS_SEQ_SUPPLY5:
return BIT(AMS_ALARM_BIT_SUPPLY5 + bit);
case AMS_SEQ_SUPPLY6:
return BIT(AMS_ALARM_BIT_SUPPLY6 + bit);
case AMS_SEQ_SUPPLY7:
return BIT(AMS_ALARM_BIT_SUPPLY7 + bit);
case AMS_SEQ_SUPPLY8:
return BIT(AMS_ALARM_BIT_SUPPLY8 + bit);
case AMS_SEQ_SUPPLY9:
return BIT(AMS_ALARM_BIT_SUPPLY9 + bit);
case AMS_SEQ_SUPPLY10:
return BIT(AMS_ALARM_BIT_SUPPLY10 + bit);
case AMS_SEQ_VCCAMS:
return BIT(AMS_ALARM_BIT_VCCAMS + bit);
case AMS_SEQ_TEMP_REMOTE:
return BIT(AMS_ALARM_BIT_TEMP_REMOTE + bit);
default:
return 0;
}
}
static int ams_read_event_config(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir)
{
struct ams *ams = iio_priv(indio_dev);
return !!(ams->alarm_mask & ams_get_alarm_mask(chan->scan_index));
}
static int ams_write_event_config(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
int state)
{
struct ams *ams = iio_priv(indio_dev);
unsigned int alarm;
alarm = ams_get_alarm_mask(chan->scan_index);
mutex_lock(&ams->lock);
if (state)
ams->alarm_mask |= alarm;
else
ams->alarm_mask &= ~alarm;
ams_update_alarm(ams, ams->alarm_mask);
mutex_unlock(&ams->lock);
return 0;
}
static int ams_read_event_value(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info, int *val, int *val2)
{
struct ams *ams = iio_priv(indio_dev);
unsigned int offset = ams_get_alarm_offset(chan->scan_index, dir);
mutex_lock(&ams->lock);
if (chan->scan_index >= AMS_PS_SEQ_MAX)
*val = readl(ams->pl_base + offset);
else
*val = readl(ams->ps_base + offset);
mutex_unlock(&ams->lock);
return IIO_VAL_INT;
}
static int ams_write_event_value(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info, int val, int val2)
{
struct ams *ams = iio_priv(indio_dev);
unsigned int offset;
mutex_lock(&ams->lock);
/* Set temperature channel threshold to direct threshold */
if (chan->type == IIO_TEMP) {
offset = ams_get_alarm_offset(chan->scan_index, IIO_EV_DIR_FALLING);
if (chan->scan_index >= AMS_PS_SEQ_MAX)
ams_pl_update_reg(ams, offset,
AMS_ALARM_THR_DIRECT_MASK,
AMS_ALARM_THR_DIRECT_MASK);
else
ams_ps_update_reg(ams, offset,
AMS_ALARM_THR_DIRECT_MASK,
AMS_ALARM_THR_DIRECT_MASK);
}
offset = ams_get_alarm_offset(chan->scan_index, dir);
if (chan->scan_index >= AMS_PS_SEQ_MAX)
writel(val, ams->pl_base + offset);
else
writel(val, ams->ps_base + offset);
mutex_unlock(&ams->lock);
return 0;
}
static void ams_handle_event(struct iio_dev *indio_dev, u32 event)
{
const struct iio_chan_spec *chan;
chan = ams_event_to_channel(indio_dev, event);
if (chan->type == IIO_TEMP) {
/*
* The temperature channel only supports over-temperature
* events.
*/
iio_push_event(indio_dev,
IIO_UNMOD_EVENT_CODE(chan->type, chan->channel,
IIO_EV_TYPE_THRESH,
IIO_EV_DIR_RISING),
iio_get_time_ns(indio_dev));
} else {
/*
* For other channels we don't know whether it is a upper or
* lower threshold event. Userspace will have to check the
* channel value if it wants to know.
*/
iio_push_event(indio_dev,
IIO_UNMOD_EVENT_CODE(chan->type, chan->channel,
IIO_EV_TYPE_THRESH,
IIO_EV_DIR_EITHER),
iio_get_time_ns(indio_dev));
}
}
static void ams_handle_events(struct iio_dev *indio_dev, unsigned long events)
{
unsigned int bit;
for_each_set_bit(bit, &events, AMS_NO_OF_ALARMS)
ams_handle_event(indio_dev, bit);
}
/**
* ams_unmask_worker - ams alarm interrupt unmask worker
* @work: work to be done
*
* The ZynqMP threshold interrupts are level sensitive. Since we can't make the
* threshold condition go way from within the interrupt handler, this means as
* soon as a threshold condition is present we would enter the interrupt handler
* again and again. To work around this we mask all active threshold interrupts
* in the interrupt handler and start a timer. In this timer we poll the
* interrupt status and only if the interrupt is inactive we unmask it again.
*/
static void ams_unmask_worker(struct work_struct *work)
{
struct ams *ams = container_of(work, struct ams, ams_unmask_work.work);
unsigned int status, unmask;
spin_lock_irq(&ams->intr_lock);
status = readl(ams->base + AMS_ISR_0);
/* Clear those bits which are not active anymore */
unmask = (ams->current_masked_alarm ^ status) & ams->current_masked_alarm;
/* Clear status of disabled alarm */
unmask |= ams->intr_mask;
ams->current_masked_alarm &= status;
/* Also clear those which are masked out anyway */
ams->current_masked_alarm &= ~ams->intr_mask;
/* Clear the interrupts before we unmask them */
writel(unmask, ams->base + AMS_ISR_0);
ams_update_intrmask(ams, ~AMS_ALARM_MASK, ~AMS_ALARM_MASK);
spin_unlock_irq(&ams->intr_lock);
/* If still pending some alarm re-trigger the timer */
if (ams->current_masked_alarm)
schedule_delayed_work(&ams->ams_unmask_work,
msecs_to_jiffies(AMS_UNMASK_TIMEOUT_MS));
}
static irqreturn_t ams_irq(int irq, void *data)
{
struct iio_dev *indio_dev = data;
struct ams *ams = iio_priv(indio_dev);
u32 isr0;
spin_lock(&ams->intr_lock);
isr0 = readl(ams->base + AMS_ISR_0);
/* Only process alarms that are not masked */
isr0 &= ~((ams->intr_mask & AMS_ISR0_ALARM_MASK) | ams->current_masked_alarm);
if (!isr0) {
spin_unlock(&ams->intr_lock);
return IRQ_NONE;
}
/* Clear interrupt */
writel(isr0, ams->base + AMS_ISR_0);
/* Mask the alarm interrupts until cleared */
ams->current_masked_alarm |= isr0;
ams_update_intrmask(ams, ~AMS_ALARM_MASK, ~AMS_ALARM_MASK);
ams_handle_events(indio_dev, isr0);
schedule_delayed_work(&ams->ams_unmask_work,
msecs_to_jiffies(AMS_UNMASK_TIMEOUT_MS));
spin_unlock(&ams->intr_lock);
return IRQ_HANDLED;
}
static const struct iio_event_spec ams_temp_events[] = {
{
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_RISING,
.mask_separate = BIT(IIO_EV_INFO_ENABLE) | BIT(IIO_EV_INFO_VALUE),
},
};
static const struct iio_event_spec ams_voltage_events[] = {
{
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_RISING,
.mask_separate = BIT(IIO_EV_INFO_VALUE),
},
{
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_FALLING,
.mask_separate = BIT(IIO_EV_INFO_VALUE),
},
{
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_EITHER,
.mask_separate = BIT(IIO_EV_INFO_ENABLE),
},
};
static const struct iio_chan_spec ams_ps_channels[] = {
AMS_PS_CHAN_TEMP(AMS_SEQ_TEMP, AMS_TEMP),
AMS_PS_CHAN_TEMP(AMS_SEQ_TEMP_REMOTE, AMS_TEMP_REMOTE),
AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY1, AMS_SUPPLY1),
AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY2, AMS_SUPPLY2),
AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY3, AMS_SUPPLY3),
AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY4, AMS_SUPPLY4),
AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY5, AMS_SUPPLY5),
AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY6, AMS_SUPPLY6),
AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY7, AMS_SUPPLY7),
AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY8, AMS_SUPPLY8),
AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY9, AMS_SUPPLY9),
AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY10, AMS_SUPPLY10),
AMS_PS_CHAN_VOLTAGE(AMS_SEQ_VCCAMS, AMS_VCCAMS),
};
static const struct iio_chan_spec ams_pl_channels[] = {
AMS_PL_CHAN_TEMP(AMS_SEQ_TEMP, AMS_TEMP),
AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY1, AMS_SUPPLY1, true),
AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY2, AMS_SUPPLY2, true),
AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VREFP, AMS_VREFP, false),
AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VREFN, AMS_VREFN, false),
AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY3, AMS_SUPPLY3, true),
AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY4, AMS_SUPPLY4, true),
AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY5, AMS_SUPPLY5, true),
AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY6, AMS_SUPPLY6, true),
AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VCCAMS, AMS_VCCAMS, true),
AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VP_VN, AMS_VP_VN, false),
AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY7, AMS_SUPPLY7, true),
AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY8, AMS_SUPPLY8, true),
AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY9, AMS_SUPPLY9, true),
AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY10, AMS_SUPPLY10, true),
AMS_PL_AUX_CHAN_VOLTAGE(0),
AMS_PL_AUX_CHAN_VOLTAGE(1),
AMS_PL_AUX_CHAN_VOLTAGE(2),
AMS_PL_AUX_CHAN_VOLTAGE(3),
AMS_PL_AUX_CHAN_VOLTAGE(4),
AMS_PL_AUX_CHAN_VOLTAGE(5),
AMS_PL_AUX_CHAN_VOLTAGE(6),
AMS_PL_AUX_CHAN_VOLTAGE(7),
AMS_PL_AUX_CHAN_VOLTAGE(8),
AMS_PL_AUX_CHAN_VOLTAGE(9),
AMS_PL_AUX_CHAN_VOLTAGE(10),
AMS_PL_AUX_CHAN_VOLTAGE(11),
AMS_PL_AUX_CHAN_VOLTAGE(12),
AMS_PL_AUX_CHAN_VOLTAGE(13),
AMS_PL_AUX_CHAN_VOLTAGE(14),
AMS_PL_AUX_CHAN_VOLTAGE(15),
};
static const struct iio_chan_spec ams_ctrl_channels[] = {
AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCC_PSPLL, AMS_VCC_PSPLL0),
AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCC_PSBATT, AMS_VCC_PSPLL3),
AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCCINT, AMS_VCCINT),
AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCCBRAM, AMS_VCCBRAM),
AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCCAUX, AMS_VCCAUX),
AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_PSDDRPLL, AMS_PSDDRPLL),
AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_INTDDR, AMS_PSINTFPDDR),
};
static int ams_get_ext_chan(struct fwnode_handle *chan_node,
struct iio_chan_spec *channels, int num_channels)
{
struct iio_chan_spec *chan;
struct fwnode_handle *child;
unsigned int reg, ext_chan;
int ret;
fwnode_for_each_child_node(chan_node, child) {
ret = fwnode_property_read_u32(child, "reg", &reg);
if (ret || reg > AMS_PL_MAX_EXT_CHANNEL + 30)
continue;
chan = &channels[num_channels];
ext_chan = reg + AMS_PL_MAX_FIXED_CHANNEL - 30;
memcpy(chan, &ams_pl_channels[ext_chan], sizeof(*channels));
if (fwnode_property_read_bool(child, "xlnx,bipolar"))
chan->scan_type.sign = 's';
num_channels++;
}
return num_channels;
}
static void ams_iounmap_ps(void *data)
{
struct ams *ams = data;
iounmap(ams->ps_base);
}
static void ams_iounmap_pl(void *data)
{
struct ams *ams = data;
iounmap(ams->pl_base);
}
static int ams_init_module(struct iio_dev *indio_dev,
struct fwnode_handle *fwnode,
struct iio_chan_spec *channels)
{
struct device *dev = indio_dev->dev.parent;
struct ams *ams = iio_priv(indio_dev);
int num_channels = 0;
int ret;
if (fwnode_device_is_compatible(fwnode, "xlnx,zynqmp-ams-ps")) {
ams->ps_base = fwnode_iomap(fwnode, 0);
if (!ams->ps_base)
return -ENXIO;
ret = devm_add_action_or_reset(dev, ams_iounmap_ps, ams);
if (ret < 0)
return ret;
/* add PS channels to iio device channels */
memcpy(channels, ams_ps_channels, sizeof(ams_ps_channels));
num_channels = ARRAY_SIZE(ams_ps_channels);
} else if (fwnode_device_is_compatible(fwnode, "xlnx,zynqmp-ams-pl")) {
ams->pl_base = fwnode_iomap(fwnode, 0);
if (!ams->pl_base)
return -ENXIO;
ret = devm_add_action_or_reset(dev, ams_iounmap_pl, ams);
if (ret < 0)
return ret;
/* Copy only first 10 fix channels */
memcpy(channels, ams_pl_channels, AMS_PL_MAX_FIXED_CHANNEL * sizeof(*channels));
num_channels += AMS_PL_MAX_FIXED_CHANNEL;
num_channels = ams_get_ext_chan(fwnode, channels,
num_channels);
} else if (fwnode_device_is_compatible(fwnode, "xlnx,zynqmp-ams")) {
/* add AMS channels to iio device channels */
memcpy(channels, ams_ctrl_channels, sizeof(ams_ctrl_channels));
num_channels += ARRAY_SIZE(ams_ctrl_channels);
} else {
return -EINVAL;
}
return num_channels;
}
static int ams_parse_firmware(struct iio_dev *indio_dev)
{
struct ams *ams = iio_priv(indio_dev);
struct iio_chan_spec *ams_channels, *dev_channels;
struct device *dev = indio_dev->dev.parent;
struct fwnode_handle *child = NULL;
struct fwnode_handle *fwnode = dev_fwnode(dev);
size_t ams_size, dev_size;
int ret, ch_cnt = 0, i, rising_off, falling_off;
unsigned int num_channels = 0;
ams_size = ARRAY_SIZE(ams_ps_channels) + ARRAY_SIZE(ams_pl_channels) +
ARRAY_SIZE(ams_ctrl_channels);
/* Initialize buffer for channel specification */
ams_channels = devm_kcalloc(dev, ams_size, sizeof(*ams_channels), GFP_KERNEL);
if (!ams_channels)
return -ENOMEM;
if (fwnode_device_is_available(fwnode)) {
ret = ams_init_module(indio_dev, fwnode, ams_channels);
if (ret < 0)
return ret;
num_channels += ret;
}
fwnode_for_each_child_node(fwnode, child) {
if (fwnode_device_is_available(child)) {
ret = ams_init_module(indio_dev, child, ams_channels + num_channels);
if (ret < 0) {
fwnode_handle_put(child);
return ret;
}
num_channels += ret;
}
}
for (i = 0; i < num_channels; i++) {
ams_channels[i].channel = ch_cnt++;
if (ams_channels[i].scan_index < AMS_CTRL_SEQ_BASE) {
/* set threshold to max and min for each channel */
falling_off =
ams_get_alarm_offset(ams_channels[i].scan_index,
IIO_EV_DIR_FALLING);
rising_off =
ams_get_alarm_offset(ams_channels[i].scan_index,
IIO_EV_DIR_RISING);
if (ams_channels[i].scan_index >= AMS_PS_SEQ_MAX) {
writel(AMS_ALARM_THR_MIN,
ams->pl_base + falling_off);
writel(AMS_ALARM_THR_MAX,
ams->pl_base + rising_off);
} else {
writel(AMS_ALARM_THR_MIN,
ams->ps_base + falling_off);
writel(AMS_ALARM_THR_MAX,
ams->ps_base + rising_off);
}
}
}
dev_size = array_size(sizeof(*dev_channels), num_channels);
if (dev_size == SIZE_MAX)
return -ENOMEM;
dev_channels = devm_krealloc(dev, ams_channels, dev_size, GFP_KERNEL);
if (!dev_channels)
return -ENOMEM;
indio_dev->channels = dev_channels;
indio_dev->num_channels = num_channels;
return 0;
}
static const struct iio_info iio_ams_info = {
.read_raw = &ams_read_raw,
.read_event_config = &ams_read_event_config,
.write_event_config = &ams_write_event_config,
.read_event_value = &ams_read_event_value,
.write_event_value = &ams_write_event_value,
};
static const struct of_device_id ams_of_match_table[] = {
{ .compatible = "xlnx,zynqmp-ams" },
{ }
};
MODULE_DEVICE_TABLE(of, ams_of_match_table);
static int ams_probe(struct platform_device *pdev)
{
struct iio_dev *indio_dev;
struct ams *ams;
int ret;
int irq;
indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*ams));
if (!indio_dev)
return -ENOMEM;
ams = iio_priv(indio_dev);
mutex_init(&ams->lock);
spin_lock_init(&ams->intr_lock);
indio_dev->name = "xilinx-ams";
indio_dev->info = &iio_ams_info;
indio_dev->modes = INDIO_DIRECT_MODE;
ams->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(ams->base))
return PTR_ERR(ams->base);
ams->clk = devm_clk_get_enabled(&pdev->dev, NULL);
if (IS_ERR(ams->clk))
return PTR_ERR(ams->clk);
ret = devm_delayed_work_autocancel(&pdev->dev, &ams->ams_unmask_work,
ams_unmask_worker);
if (ret < 0)
return ret;
ret = ams_parse_firmware(indio_dev);
if (ret)
return dev_err_probe(&pdev->dev, ret, "failure in parsing DT\n");
ret = ams_init_device(ams);
if (ret)
return dev_err_probe(&pdev->dev, ret, "failed to initialize AMS\n");
ams_enable_channel_sequence(indio_dev);
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
ret = devm_request_irq(&pdev->dev, irq, &ams_irq, 0, "ams-irq",
indio_dev);
if (ret < 0)
return dev_err_probe(&pdev->dev, ret, "failed to register interrupt\n");
platform_set_drvdata(pdev, indio_dev);
return devm_iio_device_register(&pdev->dev, indio_dev);
}
static int ams_suspend(struct device *dev)
{
struct ams *ams = iio_priv(dev_get_drvdata(dev));
clk_disable_unprepare(ams->clk);
return 0;
}
static int ams_resume(struct device *dev)
{
struct ams *ams = iio_priv(dev_get_drvdata(dev));
return clk_prepare_enable(ams->clk);
}
static DEFINE_SIMPLE_DEV_PM_OPS(ams_pm_ops, ams_suspend, ams_resume);
static struct platform_driver ams_driver = {
.probe = ams_probe,
.driver = {
.name = "xilinx-ams",
.pm = pm_sleep_ptr(&ams_pm_ops),
.of_match_table = ams_of_match_table,
},
};
module_platform_driver(ams_driver);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Xilinx, Inc.");