linux-zen-server/drivers/iommu/rockchip-iommu.c

1410 lines
37 KiB
C
Raw Normal View History

2023-08-30 17:53:23 +02:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* IOMMU API for Rockchip
*
* Module Authors: Simon Xue <xxm@rock-chips.com>
* Daniel Kurtz <djkurtz@chromium.org>
*/
#include <linux/clk.h>
#include <linux/compiler.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iommu.h>
#include <linux/iopoll.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
/** MMU register offsets */
#define RK_MMU_DTE_ADDR 0x00 /* Directory table address */
#define RK_MMU_STATUS 0x04
#define RK_MMU_COMMAND 0x08
#define RK_MMU_PAGE_FAULT_ADDR 0x0C /* IOVA of last page fault */
#define RK_MMU_ZAP_ONE_LINE 0x10 /* Shootdown one IOTLB entry */
#define RK_MMU_INT_RAWSTAT 0x14 /* IRQ status ignoring mask */
#define RK_MMU_INT_CLEAR 0x18 /* Acknowledge and re-arm irq */
#define RK_MMU_INT_MASK 0x1C /* IRQ enable */
#define RK_MMU_INT_STATUS 0x20 /* IRQ status after masking */
#define RK_MMU_AUTO_GATING 0x24
#define DTE_ADDR_DUMMY 0xCAFEBABE
#define RK_MMU_POLL_PERIOD_US 100
#define RK_MMU_FORCE_RESET_TIMEOUT_US 100000
#define RK_MMU_POLL_TIMEOUT_US 1000
/* RK_MMU_STATUS fields */
#define RK_MMU_STATUS_PAGING_ENABLED BIT(0)
#define RK_MMU_STATUS_PAGE_FAULT_ACTIVE BIT(1)
#define RK_MMU_STATUS_STALL_ACTIVE BIT(2)
#define RK_MMU_STATUS_IDLE BIT(3)
#define RK_MMU_STATUS_REPLAY_BUFFER_EMPTY BIT(4)
#define RK_MMU_STATUS_PAGE_FAULT_IS_WRITE BIT(5)
#define RK_MMU_STATUS_STALL_NOT_ACTIVE BIT(31)
/* RK_MMU_COMMAND command values */
#define RK_MMU_CMD_ENABLE_PAGING 0 /* Enable memory translation */
#define RK_MMU_CMD_DISABLE_PAGING 1 /* Disable memory translation */
#define RK_MMU_CMD_ENABLE_STALL 2 /* Stall paging to allow other cmds */
#define RK_MMU_CMD_DISABLE_STALL 3 /* Stop stall re-enables paging */
#define RK_MMU_CMD_ZAP_CACHE 4 /* Shoot down entire IOTLB */
#define RK_MMU_CMD_PAGE_FAULT_DONE 5 /* Clear page fault */
#define RK_MMU_CMD_FORCE_RESET 6 /* Reset all registers */
/* RK_MMU_INT_* register fields */
#define RK_MMU_IRQ_PAGE_FAULT 0x01 /* page fault */
#define RK_MMU_IRQ_BUS_ERROR 0x02 /* bus read error */
#define RK_MMU_IRQ_MASK (RK_MMU_IRQ_PAGE_FAULT | RK_MMU_IRQ_BUS_ERROR)
#define NUM_DT_ENTRIES 1024
#define NUM_PT_ENTRIES 1024
#define SPAGE_ORDER 12
#define SPAGE_SIZE (1 << SPAGE_ORDER)
/*
* Support mapping any size that fits in one page table:
* 4 KiB to 4 MiB
*/
#define RK_IOMMU_PGSIZE_BITMAP 0x007ff000
struct rk_iommu_domain {
struct list_head iommus;
u32 *dt; /* page directory table */
dma_addr_t dt_dma;
spinlock_t iommus_lock; /* lock for iommus list */
spinlock_t dt_lock; /* lock for modifying page directory table */
struct iommu_domain domain;
};
/* list of clocks required by IOMMU */
static const char * const rk_iommu_clocks[] = {
"aclk", "iface",
};
struct rk_iommu_ops {
phys_addr_t (*pt_address)(u32 dte);
u32 (*mk_dtentries)(dma_addr_t pt_dma);
u32 (*mk_ptentries)(phys_addr_t page, int prot);
phys_addr_t (*dte_addr_phys)(u32 addr);
u32 (*dma_addr_dte)(dma_addr_t dt_dma);
u64 dma_bit_mask;
};
struct rk_iommu {
struct device *dev;
void __iomem **bases;
int num_mmu;
int num_irq;
struct clk_bulk_data *clocks;
int num_clocks;
bool reset_disabled;
struct iommu_device iommu;
struct list_head node; /* entry in rk_iommu_domain.iommus */
struct iommu_domain *domain; /* domain to which iommu is attached */
struct iommu_group *group;
};
struct rk_iommudata {
struct device_link *link; /* runtime PM link from IOMMU to master */
struct rk_iommu *iommu;
};
static struct device *dma_dev;
static const struct rk_iommu_ops *rk_ops;
static inline void rk_table_flush(struct rk_iommu_domain *dom, dma_addr_t dma,
unsigned int count)
{
size_t size = count * sizeof(u32); /* count of u32 entry */
dma_sync_single_for_device(dma_dev, dma, size, DMA_TO_DEVICE);
}
static struct rk_iommu_domain *to_rk_domain(struct iommu_domain *dom)
{
return container_of(dom, struct rk_iommu_domain, domain);
}
/*
* The Rockchip rk3288 iommu uses a 2-level page table.
* The first level is the "Directory Table" (DT).
* The DT consists of 1024 4-byte Directory Table Entries (DTEs), each pointing
* to a "Page Table".
* The second level is the 1024 Page Tables (PT).
* Each PT consists of 1024 4-byte Page Table Entries (PTEs), each pointing to
* a 4 KB page of physical memory.
*
* The DT and each PT fits in a single 4 KB page (4-bytes * 1024 entries).
* Each iommu device has a MMU_DTE_ADDR register that contains the physical
* address of the start of the DT page.
*
* The structure of the page table is as follows:
*
* DT
* MMU_DTE_ADDR -> +-----+
* | |
* +-----+ PT
* | DTE | -> +-----+
* +-----+ | | Memory
* | | +-----+ Page
* | | | PTE | -> +-----+
* +-----+ +-----+ | |
* | | | |
* | | | |
* +-----+ | |
* | |
* | |
* +-----+
*/
/*
* Each DTE has a PT address and a valid bit:
* +---------------------+-----------+-+
* | PT address | Reserved |V|
* +---------------------+-----------+-+
* 31:12 - PT address (PTs always starts on a 4 KB boundary)
* 11: 1 - Reserved
* 0 - 1 if PT @ PT address is valid
*/
#define RK_DTE_PT_ADDRESS_MASK 0xfffff000
#define RK_DTE_PT_VALID BIT(0)
static inline phys_addr_t rk_dte_pt_address(u32 dte)
{
return (phys_addr_t)dte & RK_DTE_PT_ADDRESS_MASK;
}
/*
* In v2:
* 31:12 - PT address bit 31:0
* 11: 8 - PT address bit 35:32
* 7: 4 - PT address bit 39:36
* 3: 1 - Reserved
* 0 - 1 if PT @ PT address is valid
*/
#define RK_DTE_PT_ADDRESS_MASK_V2 GENMASK_ULL(31, 4)
#define DTE_HI_MASK1 GENMASK(11, 8)
#define DTE_HI_MASK2 GENMASK(7, 4)
#define DTE_HI_SHIFT1 24 /* shift bit 8 to bit 32 */
#define DTE_HI_SHIFT2 32 /* shift bit 4 to bit 36 */
#define PAGE_DESC_HI_MASK1 GENMASK_ULL(35, 32)
#define PAGE_DESC_HI_MASK2 GENMASK_ULL(39, 36)
static inline phys_addr_t rk_dte_pt_address_v2(u32 dte)
{
u64 dte_v2 = dte;
dte_v2 = ((dte_v2 & DTE_HI_MASK2) << DTE_HI_SHIFT2) |
((dte_v2 & DTE_HI_MASK1) << DTE_HI_SHIFT1) |
(dte_v2 & RK_DTE_PT_ADDRESS_MASK);
return (phys_addr_t)dte_v2;
}
static inline bool rk_dte_is_pt_valid(u32 dte)
{
return dte & RK_DTE_PT_VALID;
}
static inline u32 rk_mk_dte(dma_addr_t pt_dma)
{
return (pt_dma & RK_DTE_PT_ADDRESS_MASK) | RK_DTE_PT_VALID;
}
static inline u32 rk_mk_dte_v2(dma_addr_t pt_dma)
{
pt_dma = (pt_dma & RK_DTE_PT_ADDRESS_MASK) |
((pt_dma & PAGE_DESC_HI_MASK1) >> DTE_HI_SHIFT1) |
(pt_dma & PAGE_DESC_HI_MASK2) >> DTE_HI_SHIFT2;
return (pt_dma & RK_DTE_PT_ADDRESS_MASK_V2) | RK_DTE_PT_VALID;
}
/*
* Each PTE has a Page address, some flags and a valid bit:
* +---------------------+---+-------+-+
* | Page address |Rsv| Flags |V|
* +---------------------+---+-------+-+
* 31:12 - Page address (Pages always start on a 4 KB boundary)
* 11: 9 - Reserved
* 8: 1 - Flags
* 8 - Read allocate - allocate cache space on read misses
* 7 - Read cache - enable cache & prefetch of data
* 6 - Write buffer - enable delaying writes on their way to memory
* 5 - Write allocate - allocate cache space on write misses
* 4 - Write cache - different writes can be merged together
* 3 - Override cache attributes
* if 1, bits 4-8 control cache attributes
* if 0, the system bus defaults are used
* 2 - Writable
* 1 - Readable
* 0 - 1 if Page @ Page address is valid
*/
#define RK_PTE_PAGE_ADDRESS_MASK 0xfffff000
#define RK_PTE_PAGE_FLAGS_MASK 0x000001fe
#define RK_PTE_PAGE_WRITABLE BIT(2)
#define RK_PTE_PAGE_READABLE BIT(1)
#define RK_PTE_PAGE_VALID BIT(0)
static inline bool rk_pte_is_page_valid(u32 pte)
{
return pte & RK_PTE_PAGE_VALID;
}
/* TODO: set cache flags per prot IOMMU_CACHE */
static u32 rk_mk_pte(phys_addr_t page, int prot)
{
u32 flags = 0;
flags |= (prot & IOMMU_READ) ? RK_PTE_PAGE_READABLE : 0;
flags |= (prot & IOMMU_WRITE) ? RK_PTE_PAGE_WRITABLE : 0;
page &= RK_PTE_PAGE_ADDRESS_MASK;
return page | flags | RK_PTE_PAGE_VALID;
}
/*
* In v2:
* 31:12 - Page address bit 31:0
* 11:9 - Page address bit 34:32
* 8:4 - Page address bit 39:35
* 3 - Security
* 2 - Writable
* 1 - Readable
* 0 - 1 if Page @ Page address is valid
*/
static u32 rk_mk_pte_v2(phys_addr_t page, int prot)
{
u32 flags = 0;
flags |= (prot & IOMMU_READ) ? RK_PTE_PAGE_READABLE : 0;
flags |= (prot & IOMMU_WRITE) ? RK_PTE_PAGE_WRITABLE : 0;
return rk_mk_dte_v2(page) | flags;
}
static u32 rk_mk_pte_invalid(u32 pte)
{
return pte & ~RK_PTE_PAGE_VALID;
}
/*
* rk3288 iova (IOMMU Virtual Address) format
* 31 22.21 12.11 0
* +-----------+-----------+-------------+
* | DTE index | PTE index | Page offset |
* +-----------+-----------+-------------+
* 31:22 - DTE index - index of DTE in DT
* 21:12 - PTE index - index of PTE in PT @ DTE.pt_address
* 11: 0 - Page offset - offset into page @ PTE.page_address
*/
#define RK_IOVA_DTE_MASK 0xffc00000
#define RK_IOVA_DTE_SHIFT 22
#define RK_IOVA_PTE_MASK 0x003ff000
#define RK_IOVA_PTE_SHIFT 12
#define RK_IOVA_PAGE_MASK 0x00000fff
#define RK_IOVA_PAGE_SHIFT 0
static u32 rk_iova_dte_index(dma_addr_t iova)
{
return (u32)(iova & RK_IOVA_DTE_MASK) >> RK_IOVA_DTE_SHIFT;
}
static u32 rk_iova_pte_index(dma_addr_t iova)
{
return (u32)(iova & RK_IOVA_PTE_MASK) >> RK_IOVA_PTE_SHIFT;
}
static u32 rk_iova_page_offset(dma_addr_t iova)
{
return (u32)(iova & RK_IOVA_PAGE_MASK) >> RK_IOVA_PAGE_SHIFT;
}
static u32 rk_iommu_read(void __iomem *base, u32 offset)
{
return readl(base + offset);
}
static void rk_iommu_write(void __iomem *base, u32 offset, u32 value)
{
writel(value, base + offset);
}
static void rk_iommu_command(struct rk_iommu *iommu, u32 command)
{
int i;
for (i = 0; i < iommu->num_mmu; i++)
writel(command, iommu->bases[i] + RK_MMU_COMMAND);
}
static void rk_iommu_base_command(void __iomem *base, u32 command)
{
writel(command, base + RK_MMU_COMMAND);
}
static void rk_iommu_zap_lines(struct rk_iommu *iommu, dma_addr_t iova_start,
size_t size)
{
int i;
dma_addr_t iova_end = iova_start + size;
/*
* TODO(djkurtz): Figure out when it is more efficient to shootdown the
* entire iotlb rather than iterate over individual iovas.
*/
for (i = 0; i < iommu->num_mmu; i++) {
dma_addr_t iova;
for (iova = iova_start; iova < iova_end; iova += SPAGE_SIZE)
rk_iommu_write(iommu->bases[i], RK_MMU_ZAP_ONE_LINE, iova);
}
}
static bool rk_iommu_is_stall_active(struct rk_iommu *iommu)
{
bool active = true;
int i;
for (i = 0; i < iommu->num_mmu; i++)
active &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) &
RK_MMU_STATUS_STALL_ACTIVE);
return active;
}
static bool rk_iommu_is_paging_enabled(struct rk_iommu *iommu)
{
bool enable = true;
int i;
for (i = 0; i < iommu->num_mmu; i++)
enable &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) &
RK_MMU_STATUS_PAGING_ENABLED);
return enable;
}
static bool rk_iommu_is_reset_done(struct rk_iommu *iommu)
{
bool done = true;
int i;
for (i = 0; i < iommu->num_mmu; i++)
done &= rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR) == 0;
return done;
}
static int rk_iommu_enable_stall(struct rk_iommu *iommu)
{
int ret, i;
bool val;
if (rk_iommu_is_stall_active(iommu))
return 0;
/* Stall can only be enabled if paging is enabled */
if (!rk_iommu_is_paging_enabled(iommu))
return 0;
rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_STALL);
ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val,
val, RK_MMU_POLL_PERIOD_US,
RK_MMU_POLL_TIMEOUT_US);
if (ret)
for (i = 0; i < iommu->num_mmu; i++)
dev_err(iommu->dev, "Enable stall request timed out, status: %#08x\n",
rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
return ret;
}
static int rk_iommu_disable_stall(struct rk_iommu *iommu)
{
int ret, i;
bool val;
if (!rk_iommu_is_stall_active(iommu))
return 0;
rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_STALL);
ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val,
!val, RK_MMU_POLL_PERIOD_US,
RK_MMU_POLL_TIMEOUT_US);
if (ret)
for (i = 0; i < iommu->num_mmu; i++)
dev_err(iommu->dev, "Disable stall request timed out, status: %#08x\n",
rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
return ret;
}
static int rk_iommu_enable_paging(struct rk_iommu *iommu)
{
int ret, i;
bool val;
if (rk_iommu_is_paging_enabled(iommu))
return 0;
rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_PAGING);
ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val,
val, RK_MMU_POLL_PERIOD_US,
RK_MMU_POLL_TIMEOUT_US);
if (ret)
for (i = 0; i < iommu->num_mmu; i++)
dev_err(iommu->dev, "Enable paging request timed out, status: %#08x\n",
rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
return ret;
}
static int rk_iommu_disable_paging(struct rk_iommu *iommu)
{
int ret, i;
bool val;
if (!rk_iommu_is_paging_enabled(iommu))
return 0;
rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_PAGING);
ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val,
!val, RK_MMU_POLL_PERIOD_US,
RK_MMU_POLL_TIMEOUT_US);
if (ret)
for (i = 0; i < iommu->num_mmu; i++)
dev_err(iommu->dev, "Disable paging request timed out, status: %#08x\n",
rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
return ret;
}
static int rk_iommu_force_reset(struct rk_iommu *iommu)
{
int ret, i;
u32 dte_addr;
bool val;
if (iommu->reset_disabled)
return 0;
/*
* Check if register DTE_ADDR is working by writing DTE_ADDR_DUMMY
* and verifying that upper 5 nybbles are read back.
*/
for (i = 0; i < iommu->num_mmu; i++) {
dte_addr = rk_ops->pt_address(DTE_ADDR_DUMMY);
rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, dte_addr);
if (dte_addr != rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR)) {
dev_err(iommu->dev, "Error during raw reset. MMU_DTE_ADDR is not functioning\n");
return -EFAULT;
}
}
rk_iommu_command(iommu, RK_MMU_CMD_FORCE_RESET);
ret = readx_poll_timeout(rk_iommu_is_reset_done, iommu, val,
val, RK_MMU_FORCE_RESET_TIMEOUT_US,
RK_MMU_POLL_TIMEOUT_US);
if (ret) {
dev_err(iommu->dev, "FORCE_RESET command timed out\n");
return ret;
}
return 0;
}
static inline phys_addr_t rk_dte_addr_phys(u32 addr)
{
return (phys_addr_t)addr;
}
static inline u32 rk_dma_addr_dte(dma_addr_t dt_dma)
{
return dt_dma;
}
#define DT_HI_MASK GENMASK_ULL(39, 32)
#define DTE_BASE_HI_MASK GENMASK(11, 4)
#define DT_SHIFT 28
static inline phys_addr_t rk_dte_addr_phys_v2(u32 addr)
{
u64 addr64 = addr;
return (phys_addr_t)(addr64 & RK_DTE_PT_ADDRESS_MASK) |
((addr64 & DTE_BASE_HI_MASK) << DT_SHIFT);
}
static inline u32 rk_dma_addr_dte_v2(dma_addr_t dt_dma)
{
return (dt_dma & RK_DTE_PT_ADDRESS_MASK) |
((dt_dma & DT_HI_MASK) >> DT_SHIFT);
}
static void log_iova(struct rk_iommu *iommu, int index, dma_addr_t iova)
{
void __iomem *base = iommu->bases[index];
u32 dte_index, pte_index, page_offset;
u32 mmu_dte_addr;
phys_addr_t mmu_dte_addr_phys, dte_addr_phys;
u32 *dte_addr;
u32 dte;
phys_addr_t pte_addr_phys = 0;
u32 *pte_addr = NULL;
u32 pte = 0;
phys_addr_t page_addr_phys = 0;
u32 page_flags = 0;
dte_index = rk_iova_dte_index(iova);
pte_index = rk_iova_pte_index(iova);
page_offset = rk_iova_page_offset(iova);
mmu_dte_addr = rk_iommu_read(base, RK_MMU_DTE_ADDR);
mmu_dte_addr_phys = rk_ops->dte_addr_phys(mmu_dte_addr);
dte_addr_phys = mmu_dte_addr_phys + (4 * dte_index);
dte_addr = phys_to_virt(dte_addr_phys);
dte = *dte_addr;
if (!rk_dte_is_pt_valid(dte))
goto print_it;
pte_addr_phys = rk_ops->pt_address(dte) + (pte_index * 4);
pte_addr = phys_to_virt(pte_addr_phys);
pte = *pte_addr;
if (!rk_pte_is_page_valid(pte))
goto print_it;
page_addr_phys = rk_ops->pt_address(pte) + page_offset;
page_flags = pte & RK_PTE_PAGE_FLAGS_MASK;
print_it:
dev_err(iommu->dev, "iova = %pad: dte_index: %#03x pte_index: %#03x page_offset: %#03x\n",
&iova, dte_index, pte_index, page_offset);
dev_err(iommu->dev, "mmu_dte_addr: %pa dte@%pa: %#08x valid: %u pte@%pa: %#08x valid: %u page@%pa flags: %#03x\n",
&mmu_dte_addr_phys, &dte_addr_phys, dte,
rk_dte_is_pt_valid(dte), &pte_addr_phys, pte,
rk_pte_is_page_valid(pte), &page_addr_phys, page_flags);
}
static irqreturn_t rk_iommu_irq(int irq, void *dev_id)
{
struct rk_iommu *iommu = dev_id;
u32 status;
u32 int_status;
dma_addr_t iova;
irqreturn_t ret = IRQ_NONE;
int i, err;
err = pm_runtime_get_if_in_use(iommu->dev);
if (!err || WARN_ON_ONCE(err < 0))
return ret;
if (WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks)))
goto out;
for (i = 0; i < iommu->num_mmu; i++) {
int_status = rk_iommu_read(iommu->bases[i], RK_MMU_INT_STATUS);
if (int_status == 0)
continue;
ret = IRQ_HANDLED;
iova = rk_iommu_read(iommu->bases[i], RK_MMU_PAGE_FAULT_ADDR);
if (int_status & RK_MMU_IRQ_PAGE_FAULT) {
int flags;
status = rk_iommu_read(iommu->bases[i], RK_MMU_STATUS);
flags = (status & RK_MMU_STATUS_PAGE_FAULT_IS_WRITE) ?
IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
dev_err(iommu->dev, "Page fault at %pad of type %s\n",
&iova,
(flags == IOMMU_FAULT_WRITE) ? "write" : "read");
log_iova(iommu, i, iova);
/*
* Report page fault to any installed handlers.
* Ignore the return code, though, since we always zap cache
* and clear the page fault anyway.
*/
if (iommu->domain)
report_iommu_fault(iommu->domain, iommu->dev, iova,
flags);
else
dev_err(iommu->dev, "Page fault while iommu not attached to domain?\n");
rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE);
rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_PAGE_FAULT_DONE);
}
if (int_status & RK_MMU_IRQ_BUS_ERROR)
dev_err(iommu->dev, "BUS_ERROR occurred at %pad\n", &iova);
if (int_status & ~RK_MMU_IRQ_MASK)
dev_err(iommu->dev, "unexpected int_status: %#08x\n",
int_status);
rk_iommu_write(iommu->bases[i], RK_MMU_INT_CLEAR, int_status);
}
clk_bulk_disable(iommu->num_clocks, iommu->clocks);
out:
pm_runtime_put(iommu->dev);
return ret;
}
static phys_addr_t rk_iommu_iova_to_phys(struct iommu_domain *domain,
dma_addr_t iova)
{
struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
unsigned long flags;
phys_addr_t pt_phys, phys = 0;
u32 dte, pte;
u32 *page_table;
spin_lock_irqsave(&rk_domain->dt_lock, flags);
dte = rk_domain->dt[rk_iova_dte_index(iova)];
if (!rk_dte_is_pt_valid(dte))
goto out;
pt_phys = rk_ops->pt_address(dte);
page_table = (u32 *)phys_to_virt(pt_phys);
pte = page_table[rk_iova_pte_index(iova)];
if (!rk_pte_is_page_valid(pte))
goto out;
phys = rk_ops->pt_address(pte) + rk_iova_page_offset(iova);
out:
spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
return phys;
}
static void rk_iommu_zap_iova(struct rk_iommu_domain *rk_domain,
dma_addr_t iova, size_t size)
{
struct list_head *pos;
unsigned long flags;
/* shootdown these iova from all iommus using this domain */
spin_lock_irqsave(&rk_domain->iommus_lock, flags);
list_for_each(pos, &rk_domain->iommus) {
struct rk_iommu *iommu;
int ret;
iommu = list_entry(pos, struct rk_iommu, node);
/* Only zap TLBs of IOMMUs that are powered on. */
ret = pm_runtime_get_if_in_use(iommu->dev);
if (WARN_ON_ONCE(ret < 0))
continue;
if (ret) {
WARN_ON(clk_bulk_enable(iommu->num_clocks,
iommu->clocks));
rk_iommu_zap_lines(iommu, iova, size);
clk_bulk_disable(iommu->num_clocks, iommu->clocks);
pm_runtime_put(iommu->dev);
}
}
spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
}
static void rk_iommu_zap_iova_first_last(struct rk_iommu_domain *rk_domain,
dma_addr_t iova, size_t size)
{
rk_iommu_zap_iova(rk_domain, iova, SPAGE_SIZE);
if (size > SPAGE_SIZE)
rk_iommu_zap_iova(rk_domain, iova + size - SPAGE_SIZE,
SPAGE_SIZE);
}
static u32 *rk_dte_get_page_table(struct rk_iommu_domain *rk_domain,
dma_addr_t iova)
{
u32 *page_table, *dte_addr;
u32 dte_index, dte;
phys_addr_t pt_phys;
dma_addr_t pt_dma;
assert_spin_locked(&rk_domain->dt_lock);
dte_index = rk_iova_dte_index(iova);
dte_addr = &rk_domain->dt[dte_index];
dte = *dte_addr;
if (rk_dte_is_pt_valid(dte))
goto done;
page_table = (u32 *)get_zeroed_page(GFP_ATOMIC | GFP_DMA32);
if (!page_table)
return ERR_PTR(-ENOMEM);
pt_dma = dma_map_single(dma_dev, page_table, SPAGE_SIZE, DMA_TO_DEVICE);
if (dma_mapping_error(dma_dev, pt_dma)) {
dev_err(dma_dev, "DMA mapping error while allocating page table\n");
free_page((unsigned long)page_table);
return ERR_PTR(-ENOMEM);
}
dte = rk_ops->mk_dtentries(pt_dma);
*dte_addr = dte;
rk_table_flush(rk_domain,
rk_domain->dt_dma + dte_index * sizeof(u32), 1);
done:
pt_phys = rk_ops->pt_address(dte);
return (u32 *)phys_to_virt(pt_phys);
}
static size_t rk_iommu_unmap_iova(struct rk_iommu_domain *rk_domain,
u32 *pte_addr, dma_addr_t pte_dma,
size_t size)
{
unsigned int pte_count;
unsigned int pte_total = size / SPAGE_SIZE;
assert_spin_locked(&rk_domain->dt_lock);
for (pte_count = 0; pte_count < pte_total; pte_count++) {
u32 pte = pte_addr[pte_count];
if (!rk_pte_is_page_valid(pte))
break;
pte_addr[pte_count] = rk_mk_pte_invalid(pte);
}
rk_table_flush(rk_domain, pte_dma, pte_count);
return pte_count * SPAGE_SIZE;
}
static int rk_iommu_map_iova(struct rk_iommu_domain *rk_domain, u32 *pte_addr,
dma_addr_t pte_dma, dma_addr_t iova,
phys_addr_t paddr, size_t size, int prot)
{
unsigned int pte_count;
unsigned int pte_total = size / SPAGE_SIZE;
phys_addr_t page_phys;
assert_spin_locked(&rk_domain->dt_lock);
for (pte_count = 0; pte_count < pte_total; pte_count++) {
u32 pte = pte_addr[pte_count];
if (rk_pte_is_page_valid(pte))
goto unwind;
pte_addr[pte_count] = rk_ops->mk_ptentries(paddr, prot);
paddr += SPAGE_SIZE;
}
rk_table_flush(rk_domain, pte_dma, pte_total);
/*
* Zap the first and last iova to evict from iotlb any previously
* mapped cachelines holding stale values for its dte and pte.
* We only zap the first and last iova, since only they could have
* dte or pte shared with an existing mapping.
*/
rk_iommu_zap_iova_first_last(rk_domain, iova, size);
return 0;
unwind:
/* Unmap the range of iovas that we just mapped */
rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma,
pte_count * SPAGE_SIZE);
iova += pte_count * SPAGE_SIZE;
page_phys = rk_ops->pt_address(pte_addr[pte_count]);
pr_err("iova: %pad already mapped to %pa cannot remap to phys: %pa prot: %#x\n",
&iova, &page_phys, &paddr, prot);
return -EADDRINUSE;
}
static int rk_iommu_map(struct iommu_domain *domain, unsigned long _iova,
phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
{
struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
unsigned long flags;
dma_addr_t pte_dma, iova = (dma_addr_t)_iova;
u32 *page_table, *pte_addr;
u32 dte_index, pte_index;
int ret;
spin_lock_irqsave(&rk_domain->dt_lock, flags);
/*
* pgsize_bitmap specifies iova sizes that fit in one page table
* (1024 4-KiB pages = 4 MiB).
* So, size will always be 4096 <= size <= 4194304.
* Since iommu_map() guarantees that both iova and size will be
* aligned, we will always only be mapping from a single dte here.
*/
page_table = rk_dte_get_page_table(rk_domain, iova);
if (IS_ERR(page_table)) {
spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
return PTR_ERR(page_table);
}
dte_index = rk_domain->dt[rk_iova_dte_index(iova)];
pte_index = rk_iova_pte_index(iova);
pte_addr = &page_table[pte_index];
pte_dma = rk_ops->pt_address(dte_index) + pte_index * sizeof(u32);
ret = rk_iommu_map_iova(rk_domain, pte_addr, pte_dma, iova,
paddr, size, prot);
spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
return ret;
}
static size_t rk_iommu_unmap(struct iommu_domain *domain, unsigned long _iova,
size_t size, struct iommu_iotlb_gather *gather)
{
struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
unsigned long flags;
dma_addr_t pte_dma, iova = (dma_addr_t)_iova;
phys_addr_t pt_phys;
u32 dte;
u32 *pte_addr;
size_t unmap_size;
spin_lock_irqsave(&rk_domain->dt_lock, flags);
/*
* pgsize_bitmap specifies iova sizes that fit in one page table
* (1024 4-KiB pages = 4 MiB).
* So, size will always be 4096 <= size <= 4194304.
* Since iommu_unmap() guarantees that both iova and size will be
* aligned, we will always only be unmapping from a single dte here.
*/
dte = rk_domain->dt[rk_iova_dte_index(iova)];
/* Just return 0 if iova is unmapped */
if (!rk_dte_is_pt_valid(dte)) {
spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
return 0;
}
pt_phys = rk_ops->pt_address(dte);
pte_addr = (u32 *)phys_to_virt(pt_phys) + rk_iova_pte_index(iova);
pte_dma = pt_phys + rk_iova_pte_index(iova) * sizeof(u32);
unmap_size = rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma, size);
spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
/* Shootdown iotlb entries for iova range that was just unmapped */
rk_iommu_zap_iova(rk_domain, iova, unmap_size);
return unmap_size;
}
static struct rk_iommu *rk_iommu_from_dev(struct device *dev)
{
struct rk_iommudata *data = dev_iommu_priv_get(dev);
return data ? data->iommu : NULL;
}
/* Must be called with iommu powered on and attached */
static void rk_iommu_disable(struct rk_iommu *iommu)
{
int i;
/* Ignore error while disabling, just keep going */
WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks));
rk_iommu_enable_stall(iommu);
rk_iommu_disable_paging(iommu);
for (i = 0; i < iommu->num_mmu; i++) {
rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, 0);
rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, 0);
}
rk_iommu_disable_stall(iommu);
clk_bulk_disable(iommu->num_clocks, iommu->clocks);
}
/* Must be called with iommu powered on and attached */
static int rk_iommu_enable(struct rk_iommu *iommu)
{
struct iommu_domain *domain = iommu->domain;
struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
int ret, i;
ret = clk_bulk_enable(iommu->num_clocks, iommu->clocks);
if (ret)
return ret;
ret = rk_iommu_enable_stall(iommu);
if (ret)
goto out_disable_clocks;
ret = rk_iommu_force_reset(iommu);
if (ret)
goto out_disable_stall;
for (i = 0; i < iommu->num_mmu; i++) {
rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR,
rk_ops->dma_addr_dte(rk_domain->dt_dma));
rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE);
rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, RK_MMU_IRQ_MASK);
}
ret = rk_iommu_enable_paging(iommu);
out_disable_stall:
rk_iommu_disable_stall(iommu);
out_disable_clocks:
clk_bulk_disable(iommu->num_clocks, iommu->clocks);
return ret;
}
static void rk_iommu_detach_device(struct iommu_domain *domain,
struct device *dev)
{
struct rk_iommu *iommu;
struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
unsigned long flags;
int ret;
/* Allow 'virtual devices' (eg drm) to detach from domain */
iommu = rk_iommu_from_dev(dev);
if (!iommu)
return;
dev_dbg(dev, "Detaching from iommu domain\n");
/* iommu already detached */
if (iommu->domain != domain)
return;
iommu->domain = NULL;
spin_lock_irqsave(&rk_domain->iommus_lock, flags);
list_del_init(&iommu->node);
spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
ret = pm_runtime_get_if_in_use(iommu->dev);
WARN_ON_ONCE(ret < 0);
if (ret > 0) {
rk_iommu_disable(iommu);
pm_runtime_put(iommu->dev);
}
}
static int rk_iommu_attach_device(struct iommu_domain *domain,
struct device *dev)
{
struct rk_iommu *iommu;
struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
unsigned long flags;
int ret;
/*
* Allow 'virtual devices' (e.g., drm) to attach to domain.
* Such a device does not belong to an iommu group.
*/
iommu = rk_iommu_from_dev(dev);
if (!iommu)
return 0;
dev_dbg(dev, "Attaching to iommu domain\n");
/* iommu already attached */
if (iommu->domain == domain)
return 0;
if (iommu->domain)
rk_iommu_detach_device(iommu->domain, dev);
iommu->domain = domain;
spin_lock_irqsave(&rk_domain->iommus_lock, flags);
list_add_tail(&iommu->node, &rk_domain->iommus);
spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
ret = pm_runtime_get_if_in_use(iommu->dev);
if (!ret || WARN_ON_ONCE(ret < 0))
return 0;
ret = rk_iommu_enable(iommu);
if (ret)
rk_iommu_detach_device(iommu->domain, dev);
pm_runtime_put(iommu->dev);
return ret;
}
static struct iommu_domain *rk_iommu_domain_alloc(unsigned type)
{
struct rk_iommu_domain *rk_domain;
if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
return NULL;
if (!dma_dev)
return NULL;
rk_domain = kzalloc(sizeof(*rk_domain), GFP_KERNEL);
if (!rk_domain)
return NULL;
/*
* rk32xx iommus use a 2 level pagetable.
* Each level1 (dt) and level2 (pt) table has 1024 4-byte entries.
* Allocate one 4 KiB page for each table.
*/
rk_domain->dt = (u32 *)get_zeroed_page(GFP_KERNEL | GFP_DMA32);
if (!rk_domain->dt)
goto err_free_domain;
rk_domain->dt_dma = dma_map_single(dma_dev, rk_domain->dt,
SPAGE_SIZE, DMA_TO_DEVICE);
if (dma_mapping_error(dma_dev, rk_domain->dt_dma)) {
dev_err(dma_dev, "DMA map error for DT\n");
goto err_free_dt;
}
spin_lock_init(&rk_domain->iommus_lock);
spin_lock_init(&rk_domain->dt_lock);
INIT_LIST_HEAD(&rk_domain->iommus);
rk_domain->domain.geometry.aperture_start = 0;
rk_domain->domain.geometry.aperture_end = DMA_BIT_MASK(32);
rk_domain->domain.geometry.force_aperture = true;
return &rk_domain->domain;
err_free_dt:
free_page((unsigned long)rk_domain->dt);
err_free_domain:
kfree(rk_domain);
return NULL;
}
static void rk_iommu_domain_free(struct iommu_domain *domain)
{
struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
int i;
WARN_ON(!list_empty(&rk_domain->iommus));
for (i = 0; i < NUM_DT_ENTRIES; i++) {
u32 dte = rk_domain->dt[i];
if (rk_dte_is_pt_valid(dte)) {
phys_addr_t pt_phys = rk_ops->pt_address(dte);
u32 *page_table = phys_to_virt(pt_phys);
dma_unmap_single(dma_dev, pt_phys,
SPAGE_SIZE, DMA_TO_DEVICE);
free_page((unsigned long)page_table);
}
}
dma_unmap_single(dma_dev, rk_domain->dt_dma,
SPAGE_SIZE, DMA_TO_DEVICE);
free_page((unsigned long)rk_domain->dt);
kfree(rk_domain);
}
static struct iommu_device *rk_iommu_probe_device(struct device *dev)
{
struct rk_iommudata *data;
struct rk_iommu *iommu;
data = dev_iommu_priv_get(dev);
if (!data)
return ERR_PTR(-ENODEV);
iommu = rk_iommu_from_dev(dev);
data->link = device_link_add(dev, iommu->dev,
DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME);
return &iommu->iommu;
}
static void rk_iommu_release_device(struct device *dev)
{
struct rk_iommudata *data = dev_iommu_priv_get(dev);
device_link_del(data->link);
}
static struct iommu_group *rk_iommu_device_group(struct device *dev)
{
struct rk_iommu *iommu;
iommu = rk_iommu_from_dev(dev);
return iommu_group_ref_get(iommu->group);
}
static int rk_iommu_of_xlate(struct device *dev,
struct of_phandle_args *args)
{
struct platform_device *iommu_dev;
struct rk_iommudata *data;
data = devm_kzalloc(dma_dev, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
iommu_dev = of_find_device_by_node(args->np);
data->iommu = platform_get_drvdata(iommu_dev);
dev_iommu_priv_set(dev, data);
platform_device_put(iommu_dev);
return 0;
}
static const struct iommu_ops rk_iommu_ops = {
.domain_alloc = rk_iommu_domain_alloc,
.probe_device = rk_iommu_probe_device,
.release_device = rk_iommu_release_device,
.device_group = rk_iommu_device_group,
.pgsize_bitmap = RK_IOMMU_PGSIZE_BITMAP,
.of_xlate = rk_iommu_of_xlate,
.default_domain_ops = &(const struct iommu_domain_ops) {
.attach_dev = rk_iommu_attach_device,
.map = rk_iommu_map,
.unmap = rk_iommu_unmap,
.iova_to_phys = rk_iommu_iova_to_phys,
.free = rk_iommu_domain_free,
}
};
static int rk_iommu_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct rk_iommu *iommu;
struct resource *res;
const struct rk_iommu_ops *ops;
int num_res = pdev->num_resources;
int err, i;
iommu = devm_kzalloc(dev, sizeof(*iommu), GFP_KERNEL);
if (!iommu)
return -ENOMEM;
platform_set_drvdata(pdev, iommu);
iommu->dev = dev;
iommu->num_mmu = 0;
ops = of_device_get_match_data(dev);
if (!rk_ops)
rk_ops = ops;
/*
* That should not happen unless different versions of the
* hardware block are embedded the same SoC
*/
if (WARN_ON(rk_ops != ops))
return -EINVAL;
iommu->bases = devm_kcalloc(dev, num_res, sizeof(*iommu->bases),
GFP_KERNEL);
if (!iommu->bases)
return -ENOMEM;
for (i = 0; i < num_res; i++) {
res = platform_get_resource(pdev, IORESOURCE_MEM, i);
if (!res)
continue;
iommu->bases[i] = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(iommu->bases[i]))
continue;
iommu->num_mmu++;
}
if (iommu->num_mmu == 0)
return PTR_ERR(iommu->bases[0]);
iommu->num_irq = platform_irq_count(pdev);
if (iommu->num_irq < 0)
return iommu->num_irq;
iommu->reset_disabled = device_property_read_bool(dev,
"rockchip,disable-mmu-reset");
iommu->num_clocks = ARRAY_SIZE(rk_iommu_clocks);
iommu->clocks = devm_kcalloc(iommu->dev, iommu->num_clocks,
sizeof(*iommu->clocks), GFP_KERNEL);
if (!iommu->clocks)
return -ENOMEM;
for (i = 0; i < iommu->num_clocks; ++i)
iommu->clocks[i].id = rk_iommu_clocks[i];
/*
* iommu clocks should be present for all new devices and devicetrees
* but there are older devicetrees without clocks out in the wild.
* So clocks as optional for the time being.
*/
err = devm_clk_bulk_get(iommu->dev, iommu->num_clocks, iommu->clocks);
if (err == -ENOENT)
iommu->num_clocks = 0;
else if (err)
return err;
err = clk_bulk_prepare(iommu->num_clocks, iommu->clocks);
if (err)
return err;
iommu->group = iommu_group_alloc();
if (IS_ERR(iommu->group)) {
err = PTR_ERR(iommu->group);
goto err_unprepare_clocks;
}
err = iommu_device_sysfs_add(&iommu->iommu, dev, NULL, dev_name(dev));
if (err)
goto err_put_group;
err = iommu_device_register(&iommu->iommu, &rk_iommu_ops, dev);
if (err)
goto err_remove_sysfs;
/*
* Use the first registered IOMMU device for domain to use with DMA
* API, since a domain might not physically correspond to a single
* IOMMU device..
*/
if (!dma_dev)
dma_dev = &pdev->dev;
pm_runtime_enable(dev);
for (i = 0; i < iommu->num_irq; i++) {
int irq = platform_get_irq(pdev, i);
if (irq < 0) {
err = irq;
goto err_pm_disable;
}
err = devm_request_irq(iommu->dev, irq, rk_iommu_irq,
IRQF_SHARED, dev_name(dev), iommu);
if (err)
goto err_pm_disable;
}
dma_set_mask_and_coherent(dev, rk_ops->dma_bit_mask);
return 0;
err_pm_disable:
pm_runtime_disable(dev);
err_remove_sysfs:
iommu_device_sysfs_remove(&iommu->iommu);
err_put_group:
iommu_group_put(iommu->group);
err_unprepare_clocks:
clk_bulk_unprepare(iommu->num_clocks, iommu->clocks);
return err;
}
static void rk_iommu_shutdown(struct platform_device *pdev)
{
struct rk_iommu *iommu = platform_get_drvdata(pdev);
int i;
for (i = 0; i < iommu->num_irq; i++) {
int irq = platform_get_irq(pdev, i);
devm_free_irq(iommu->dev, irq, iommu);
}
pm_runtime_force_suspend(&pdev->dev);
}
static int __maybe_unused rk_iommu_suspend(struct device *dev)
{
struct rk_iommu *iommu = dev_get_drvdata(dev);
if (!iommu->domain)
return 0;
rk_iommu_disable(iommu);
return 0;
}
static int __maybe_unused rk_iommu_resume(struct device *dev)
{
struct rk_iommu *iommu = dev_get_drvdata(dev);
if (!iommu->domain)
return 0;
return rk_iommu_enable(iommu);
}
static const struct dev_pm_ops rk_iommu_pm_ops = {
SET_RUNTIME_PM_OPS(rk_iommu_suspend, rk_iommu_resume, NULL)
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
};
static struct rk_iommu_ops iommu_data_ops_v1 = {
.pt_address = &rk_dte_pt_address,
.mk_dtentries = &rk_mk_dte,
.mk_ptentries = &rk_mk_pte,
.dte_addr_phys = &rk_dte_addr_phys,
.dma_addr_dte = &rk_dma_addr_dte,
.dma_bit_mask = DMA_BIT_MASK(32),
};
static struct rk_iommu_ops iommu_data_ops_v2 = {
.pt_address = &rk_dte_pt_address_v2,
.mk_dtentries = &rk_mk_dte_v2,
.mk_ptentries = &rk_mk_pte_v2,
.dte_addr_phys = &rk_dte_addr_phys_v2,
.dma_addr_dte = &rk_dma_addr_dte_v2,
.dma_bit_mask = DMA_BIT_MASK(40),
};
static const struct of_device_id rk_iommu_dt_ids[] = {
{ .compatible = "rockchip,iommu",
.data = &iommu_data_ops_v1,
},
{ .compatible = "rockchip,rk3568-iommu",
.data = &iommu_data_ops_v2,
},
{ /* sentinel */ }
};
static struct platform_driver rk_iommu_driver = {
.probe = rk_iommu_probe,
.shutdown = rk_iommu_shutdown,
.driver = {
.name = "rk_iommu",
.of_match_table = rk_iommu_dt_ids,
.pm = &rk_iommu_pm_ops,
.suppress_bind_attrs = true,
},
};
builtin_platform_driver(rk_iommu_driver);