linux-zen-server/drivers/net/ethernet/amd/au1000_eth.c

1377 lines
34 KiB
C
Raw Normal View History

2023-08-30 17:53:23 +02:00
// SPDX-License-Identifier: GPL-2.0-only
/*
*
* Alchemy Au1x00 ethernet driver
*
* Copyright 2001-2003, 2006 MontaVista Software Inc.
* Copyright 2002 TimeSys Corp.
* Added ethtool/mii-tool support,
* Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
* Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de
* or riemer@riemer-nt.de: fixed the link beat detection with
* ioctls (SIOCGMIIPHY)
* Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org>
* converted to use linux-2.6.x's PHY framework
*
* Author: MontaVista Software, Inc.
* ppopov@mvista.com or source@mvista.com
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/capability.h>
#include <linux/dma-mapping.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/ioport.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <linux/skbuff.h>
#include <linux/delay.h>
#include <linux/crc32.h>
#include <linux/phy.h>
#include <linux/platform_device.h>
#include <linux/cpu.h>
#include <linux/io.h>
#include <asm/mipsregs.h>
#include <asm/irq.h>
#include <asm/processor.h>
#include <au1000.h>
#include <au1xxx_eth.h>
#include <prom.h>
#include "au1000_eth.h"
#ifdef AU1000_ETH_DEBUG
static int au1000_debug = 5;
#else
static int au1000_debug = 3;
#endif
#define AU1000_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
NETIF_MSG_PROBE | \
NETIF_MSG_LINK)
#define DRV_NAME "au1000_eth"
#define DRV_AUTHOR "Pete Popov <ppopov@embeddedalley.com>"
#define DRV_DESC "Au1xxx on-chip Ethernet driver"
MODULE_AUTHOR(DRV_AUTHOR);
MODULE_DESCRIPTION(DRV_DESC);
MODULE_LICENSE("GPL");
/* AU1000 MAC registers and bits */
#define MAC_CONTROL 0x0
# define MAC_RX_ENABLE (1 << 2)
# define MAC_TX_ENABLE (1 << 3)
# define MAC_DEF_CHECK (1 << 5)
# define MAC_SET_BL(X) (((X) & 0x3) << 6)
# define MAC_AUTO_PAD (1 << 8)
# define MAC_DISABLE_RETRY (1 << 10)
# define MAC_DISABLE_BCAST (1 << 11)
# define MAC_LATE_COL (1 << 12)
# define MAC_HASH_MODE (1 << 13)
# define MAC_HASH_ONLY (1 << 15)
# define MAC_PASS_ALL (1 << 16)
# define MAC_INVERSE_FILTER (1 << 17)
# define MAC_PROMISCUOUS (1 << 18)
# define MAC_PASS_ALL_MULTI (1 << 19)
# define MAC_FULL_DUPLEX (1 << 20)
# define MAC_NORMAL_MODE 0
# define MAC_INT_LOOPBACK (1 << 21)
# define MAC_EXT_LOOPBACK (1 << 22)
# define MAC_DISABLE_RX_OWN (1 << 23)
# define MAC_BIG_ENDIAN (1 << 30)
# define MAC_RX_ALL (1 << 31)
#define MAC_ADDRESS_HIGH 0x4
#define MAC_ADDRESS_LOW 0x8
#define MAC_MCAST_HIGH 0xC
#define MAC_MCAST_LOW 0x10
#define MAC_MII_CNTRL 0x14
# define MAC_MII_BUSY (1 << 0)
# define MAC_MII_READ 0
# define MAC_MII_WRITE (1 << 1)
# define MAC_SET_MII_SELECT_REG(X) (((X) & 0x1f) << 6)
# define MAC_SET_MII_SELECT_PHY(X) (((X) & 0x1f) << 11)
#define MAC_MII_DATA 0x18
#define MAC_FLOW_CNTRL 0x1C
# define MAC_FLOW_CNTRL_BUSY (1 << 0)
# define MAC_FLOW_CNTRL_ENABLE (1 << 1)
# define MAC_PASS_CONTROL (1 << 2)
# define MAC_SET_PAUSE(X) (((X) & 0xffff) << 16)
#define MAC_VLAN1_TAG 0x20
#define MAC_VLAN2_TAG 0x24
/* Ethernet Controller Enable */
# define MAC_EN_CLOCK_ENABLE (1 << 0)
# define MAC_EN_RESET0 (1 << 1)
# define MAC_EN_TOSS (0 << 2)
# define MAC_EN_CACHEABLE (1 << 3)
# define MAC_EN_RESET1 (1 << 4)
# define MAC_EN_RESET2 (1 << 5)
# define MAC_DMA_RESET (1 << 6)
/* Ethernet Controller DMA Channels */
/* offsets from MAC_TX_RING_ADDR address */
#define MAC_TX_BUFF0_STATUS 0x0
# define TX_FRAME_ABORTED (1 << 0)
# define TX_JAB_TIMEOUT (1 << 1)
# define TX_NO_CARRIER (1 << 2)
# define TX_LOSS_CARRIER (1 << 3)
# define TX_EXC_DEF (1 << 4)
# define TX_LATE_COLL_ABORT (1 << 5)
# define TX_EXC_COLL (1 << 6)
# define TX_UNDERRUN (1 << 7)
# define TX_DEFERRED (1 << 8)
# define TX_LATE_COLL (1 << 9)
# define TX_COLL_CNT_MASK (0xF << 10)
# define TX_PKT_RETRY (1 << 31)
#define MAC_TX_BUFF0_ADDR 0x4
# define TX_DMA_ENABLE (1 << 0)
# define TX_T_DONE (1 << 1)
# define TX_GET_DMA_BUFFER(X) (((X) >> 2) & 0x3)
#define MAC_TX_BUFF0_LEN 0x8
#define MAC_TX_BUFF1_STATUS 0x10
#define MAC_TX_BUFF1_ADDR 0x14
#define MAC_TX_BUFF1_LEN 0x18
#define MAC_TX_BUFF2_STATUS 0x20
#define MAC_TX_BUFF2_ADDR 0x24
#define MAC_TX_BUFF2_LEN 0x28
#define MAC_TX_BUFF3_STATUS 0x30
#define MAC_TX_BUFF3_ADDR 0x34
#define MAC_TX_BUFF3_LEN 0x38
/* offsets from MAC_RX_RING_ADDR */
#define MAC_RX_BUFF0_STATUS 0x0
# define RX_FRAME_LEN_MASK 0x3fff
# define RX_WDOG_TIMER (1 << 14)
# define RX_RUNT (1 << 15)
# define RX_OVERLEN (1 << 16)
# define RX_COLL (1 << 17)
# define RX_ETHER (1 << 18)
# define RX_MII_ERROR (1 << 19)
# define RX_DRIBBLING (1 << 20)
# define RX_CRC_ERROR (1 << 21)
# define RX_VLAN1 (1 << 22)
# define RX_VLAN2 (1 << 23)
# define RX_LEN_ERROR (1 << 24)
# define RX_CNTRL_FRAME (1 << 25)
# define RX_U_CNTRL_FRAME (1 << 26)
# define RX_MCAST_FRAME (1 << 27)
# define RX_BCAST_FRAME (1 << 28)
# define RX_FILTER_FAIL (1 << 29)
# define RX_PACKET_FILTER (1 << 30)
# define RX_MISSED_FRAME (1 << 31)
# define RX_ERROR (RX_WDOG_TIMER | RX_RUNT | RX_OVERLEN | \
RX_COLL | RX_MII_ERROR | RX_CRC_ERROR | \
RX_LEN_ERROR | RX_U_CNTRL_FRAME | RX_MISSED_FRAME)
#define MAC_RX_BUFF0_ADDR 0x4
# define RX_DMA_ENABLE (1 << 0)
# define RX_T_DONE (1 << 1)
# define RX_GET_DMA_BUFFER(X) (((X) >> 2) & 0x3)
# define RX_SET_BUFF_ADDR(X) ((X) & 0xffffffc0)
#define MAC_RX_BUFF1_STATUS 0x10
#define MAC_RX_BUFF1_ADDR 0x14
#define MAC_RX_BUFF2_STATUS 0x20
#define MAC_RX_BUFF2_ADDR 0x24
#define MAC_RX_BUFF3_STATUS 0x30
#define MAC_RX_BUFF3_ADDR 0x34
/*
* Theory of operation
*
* The Au1000 MACs use a simple rx and tx descriptor ring scheme.
* There are four receive and four transmit descriptors. These
* descriptors are not in memory; rather, they are just a set of
* hardware registers.
*
* Since the Au1000 has a coherent data cache, the receive and
* transmit buffers are allocated from the KSEG0 segment. The
* hardware registers, however, are still mapped at KSEG1 to
* make sure there's no out-of-order writes, and that all writes
* complete immediately.
*/
/*
* board-specific configurations
*
* PHY detection algorithm
*
* If phy_static_config is undefined, the PHY setup is
* autodetected:
*
* mii_probe() first searches the current MAC's MII bus for a PHY,
* selecting the first (or last, if phy_search_highest_addr is
* defined) PHY address not already claimed by another netdev.
*
* If nothing was found that way when searching for the 2nd ethernet
* controller's PHY and phy1_search_mac0 is defined, then
* the first MII bus is searched as well for an unclaimed PHY; this is
* needed in case of a dual-PHY accessible only through the MAC0's MII
* bus.
*
* Finally, if no PHY is found, then the corresponding ethernet
* controller is not registered to the network subsystem.
*/
/* autodetection defaults: phy1_search_mac0 */
/* static PHY setup
*
* most boards PHY setup should be detectable properly with the
* autodetection algorithm in mii_probe(), but in some cases (e.g. if
* you have a switch attached, or want to use the PHY's interrupt
* notification capabilities) you can provide a static PHY
* configuration here
*
* IRQs may only be set, if a PHY address was configured
* If a PHY address is given, also a bus id is required to be set
*
* ps: make sure the used irqs are configured properly in the board
* specific irq-map
*/
static void au1000_enable_mac(struct net_device *dev, int force_reset)
{
unsigned long flags;
struct au1000_private *aup = netdev_priv(dev);
spin_lock_irqsave(&aup->lock, flags);
if (force_reset || (!aup->mac_enabled)) {
writel(MAC_EN_CLOCK_ENABLE, aup->enable);
wmb(); /* drain writebuffer */
mdelay(2);
writel((MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2
| MAC_EN_CLOCK_ENABLE), aup->enable);
wmb(); /* drain writebuffer */
mdelay(2);
aup->mac_enabled = 1;
}
spin_unlock_irqrestore(&aup->lock, flags);
}
/*
* MII operations
*/
static int au1000_mdio_read(struct net_device *dev, int phy_addr, int reg)
{
struct au1000_private *aup = netdev_priv(dev);
u32 *const mii_control_reg = &aup->mac->mii_control;
u32 *const mii_data_reg = &aup->mac->mii_data;
u32 timedout = 20;
u32 mii_control;
while (readl(mii_control_reg) & MAC_MII_BUSY) {
mdelay(1);
if (--timedout == 0) {
netdev_err(dev, "read_MII busy timeout!!\n");
return -1;
}
}
mii_control = MAC_SET_MII_SELECT_REG(reg) |
MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ;
writel(mii_control, mii_control_reg);
timedout = 20;
while (readl(mii_control_reg) & MAC_MII_BUSY) {
mdelay(1);
if (--timedout == 0) {
netdev_err(dev, "mdio_read busy timeout!!\n");
return -1;
}
}
return readl(mii_data_reg);
}
static void au1000_mdio_write(struct net_device *dev, int phy_addr,
int reg, u16 value)
{
struct au1000_private *aup = netdev_priv(dev);
u32 *const mii_control_reg = &aup->mac->mii_control;
u32 *const mii_data_reg = &aup->mac->mii_data;
u32 timedout = 20;
u32 mii_control;
while (readl(mii_control_reg) & MAC_MII_BUSY) {
mdelay(1);
if (--timedout == 0) {
netdev_err(dev, "mdio_write busy timeout!!\n");
return;
}
}
mii_control = MAC_SET_MII_SELECT_REG(reg) |
MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE;
writel(value, mii_data_reg);
writel(mii_control, mii_control_reg);
}
static int au1000_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
{
struct net_device *const dev = bus->priv;
/* make sure the MAC associated with this
* mii_bus is enabled
*/
au1000_enable_mac(dev, 0);
return au1000_mdio_read(dev, phy_addr, regnum);
}
static int au1000_mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum,
u16 value)
{
struct net_device *const dev = bus->priv;
/* make sure the MAC associated with this
* mii_bus is enabled
*/
au1000_enable_mac(dev, 0);
au1000_mdio_write(dev, phy_addr, regnum, value);
return 0;
}
static int au1000_mdiobus_reset(struct mii_bus *bus)
{
struct net_device *const dev = bus->priv;
/* make sure the MAC associated with this
* mii_bus is enabled
*/
au1000_enable_mac(dev, 0);
return 0;
}
static void au1000_hard_stop(struct net_device *dev)
{
struct au1000_private *aup = netdev_priv(dev);
u32 reg;
netif_dbg(aup, drv, dev, "hard stop\n");
reg = readl(&aup->mac->control);
reg &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE);
writel(reg, &aup->mac->control);
wmb(); /* drain writebuffer */
mdelay(10);
}
static void au1000_enable_rx_tx(struct net_device *dev)
{
struct au1000_private *aup = netdev_priv(dev);
u32 reg;
netif_dbg(aup, hw, dev, "enable_rx_tx\n");
reg = readl(&aup->mac->control);
reg |= (MAC_RX_ENABLE | MAC_TX_ENABLE);
writel(reg, &aup->mac->control);
wmb(); /* drain writebuffer */
mdelay(10);
}
static void
au1000_adjust_link(struct net_device *dev)
{
struct au1000_private *aup = netdev_priv(dev);
struct phy_device *phydev = dev->phydev;
unsigned long flags;
u32 reg;
int status_change = 0;
BUG_ON(!phydev);
spin_lock_irqsave(&aup->lock, flags);
if (phydev->link && (aup->old_speed != phydev->speed)) {
/* speed changed */
switch (phydev->speed) {
case SPEED_10:
case SPEED_100:
break;
default:
netdev_warn(dev, "Speed (%d) is not 10/100 ???\n",
phydev->speed);
break;
}
aup->old_speed = phydev->speed;
status_change = 1;
}
if (phydev->link && (aup->old_duplex != phydev->duplex)) {
/* duplex mode changed */
/* switching duplex mode requires to disable rx and tx! */
au1000_hard_stop(dev);
reg = readl(&aup->mac->control);
if (DUPLEX_FULL == phydev->duplex) {
reg |= MAC_FULL_DUPLEX;
reg &= ~MAC_DISABLE_RX_OWN;
} else {
reg &= ~MAC_FULL_DUPLEX;
reg |= MAC_DISABLE_RX_OWN;
}
writel(reg, &aup->mac->control);
wmb(); /* drain writebuffer */
mdelay(1);
au1000_enable_rx_tx(dev);
aup->old_duplex = phydev->duplex;
status_change = 1;
}
if (phydev->link != aup->old_link) {
/* link state changed */
if (!phydev->link) {
/* link went down */
aup->old_speed = 0;
aup->old_duplex = -1;
}
aup->old_link = phydev->link;
status_change = 1;
}
spin_unlock_irqrestore(&aup->lock, flags);
if (status_change) {
if (phydev->link)
netdev_info(dev, "link up (%d/%s)\n",
phydev->speed,
DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
else
netdev_info(dev, "link down\n");
}
}
static int au1000_mii_probe(struct net_device *dev)
{
struct au1000_private *const aup = netdev_priv(dev);
struct phy_device *phydev = NULL;
int phy_addr;
if (aup->phy_static_config) {
BUG_ON(aup->mac_id < 0 || aup->mac_id > 1);
if (aup->phy_addr)
phydev = mdiobus_get_phy(aup->mii_bus, aup->phy_addr);
else
netdev_info(dev, "using PHY-less setup\n");
return 0;
}
/* find the first (lowest address) PHY
* on the current MAC's MII bus
*/
for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++)
if (mdiobus_get_phy(aup->mii_bus, phy_addr)) {
phydev = mdiobus_get_phy(aup->mii_bus, phy_addr);
if (!aup->phy_search_highest_addr)
/* break out with first one found */
break;
}
if (aup->phy1_search_mac0) {
/* try harder to find a PHY */
if (!phydev && (aup->mac_id == 1)) {
/* no PHY found, maybe we have a dual PHY? */
dev_info(&dev->dev, ": no PHY found on MAC1, "
"let's see if it's attached to MAC0...\n");
/* find the first (lowest address) non-attached
* PHY on the MAC0 MII bus
*/
for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
struct phy_device *const tmp_phydev =
mdiobus_get_phy(aup->mii_bus,
phy_addr);
if (aup->mac_id == 1)
break;
/* no PHY here... */
if (!tmp_phydev)
continue;
/* already claimed by MAC0 */
if (tmp_phydev->attached_dev)
continue;
phydev = tmp_phydev;
break; /* found it */
}
}
}
if (!phydev) {
netdev_err(dev, "no PHY found\n");
return -1;
}
/* now we are supposed to have a proper phydev, to attach to... */
BUG_ON(phydev->attached_dev);
phydev = phy_connect(dev, phydev_name(phydev),
&au1000_adjust_link, PHY_INTERFACE_MODE_MII);
if (IS_ERR(phydev)) {
netdev_err(dev, "Could not attach to PHY\n");
return PTR_ERR(phydev);
}
phy_set_max_speed(phydev, SPEED_100);
aup->old_link = 0;
aup->old_speed = 0;
aup->old_duplex = -1;
phy_attached_info(phydev);
return 0;
}
/*
* Buffer allocation/deallocation routines. The buffer descriptor returned
* has the virtual and dma address of a buffer suitable for
* both, receive and transmit operations.
*/
static struct db_dest *au1000_GetFreeDB(struct au1000_private *aup)
{
struct db_dest *pDB;
pDB = aup->pDBfree;
if (pDB)
aup->pDBfree = pDB->pnext;
return pDB;
}
void au1000_ReleaseDB(struct au1000_private *aup, struct db_dest *pDB)
{
struct db_dest *pDBfree = aup->pDBfree;
if (pDBfree)
pDBfree->pnext = pDB;
aup->pDBfree = pDB;
}
static void au1000_reset_mac_unlocked(struct net_device *dev)
{
struct au1000_private *const aup = netdev_priv(dev);
int i;
au1000_hard_stop(dev);
writel(MAC_EN_CLOCK_ENABLE, aup->enable);
wmb(); /* drain writebuffer */
mdelay(2);
writel(0, aup->enable);
wmb(); /* drain writebuffer */
mdelay(2);
aup->tx_full = 0;
for (i = 0; i < NUM_RX_DMA; i++) {
/* reset control bits */
aup->rx_dma_ring[i]->buff_stat &= ~0xf;
}
for (i = 0; i < NUM_TX_DMA; i++) {
/* reset control bits */
aup->tx_dma_ring[i]->buff_stat &= ~0xf;
}
aup->mac_enabled = 0;
}
static void au1000_reset_mac(struct net_device *dev)
{
struct au1000_private *const aup = netdev_priv(dev);
unsigned long flags;
netif_dbg(aup, hw, dev, "reset mac, aup %x\n",
(unsigned)aup);
spin_lock_irqsave(&aup->lock, flags);
au1000_reset_mac_unlocked(dev);
spin_unlock_irqrestore(&aup->lock, flags);
}
/*
* Setup the receive and transmit "rings". These pointers are the addresses
* of the rx and tx MAC DMA registers so they are fixed by the hardware --
* these are not descriptors sitting in memory.
*/
static void
au1000_setup_hw_rings(struct au1000_private *aup, void __iomem *tx_base)
{
int i;
for (i = 0; i < NUM_RX_DMA; i++) {
aup->rx_dma_ring[i] = (struct rx_dma *)
(tx_base + 0x100 + sizeof(struct rx_dma) * i);
}
for (i = 0; i < NUM_TX_DMA; i++) {
aup->tx_dma_ring[i] = (struct tx_dma *)
(tx_base + sizeof(struct tx_dma) * i);
}
}
/*
* ethtool operations
*/
static void
au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
struct au1000_private *aup = netdev_priv(dev);
strscpy(info->driver, DRV_NAME, sizeof(info->driver));
snprintf(info->bus_info, sizeof(info->bus_info), "%s %d", DRV_NAME,
aup->mac_id);
}
static void au1000_set_msglevel(struct net_device *dev, u32 value)
{
struct au1000_private *aup = netdev_priv(dev);
aup->msg_enable = value;
}
static u32 au1000_get_msglevel(struct net_device *dev)
{
struct au1000_private *aup = netdev_priv(dev);
return aup->msg_enable;
}
static const struct ethtool_ops au1000_ethtool_ops = {
.get_drvinfo = au1000_get_drvinfo,
.get_link = ethtool_op_get_link,
.get_msglevel = au1000_get_msglevel,
.set_msglevel = au1000_set_msglevel,
.get_link_ksettings = phy_ethtool_get_link_ksettings,
.set_link_ksettings = phy_ethtool_set_link_ksettings,
};
/*
* Initialize the interface.
*
* When the device powers up, the clocks are disabled and the
* mac is in reset state. When the interface is closed, we
* do the same -- reset the device and disable the clocks to
* conserve power. Thus, whenever au1000_init() is called,
* the device should already be in reset state.
*/
static int au1000_init(struct net_device *dev)
{
struct au1000_private *aup = netdev_priv(dev);
unsigned long flags;
int i;
u32 control;
netif_dbg(aup, hw, dev, "au1000_init\n");
/* bring the device out of reset */
au1000_enable_mac(dev, 1);
spin_lock_irqsave(&aup->lock, flags);
writel(0, &aup->mac->control);
aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2;
aup->tx_tail = aup->tx_head;
aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2;
writel(dev->dev_addr[5]<<8 | dev->dev_addr[4],
&aup->mac->mac_addr_high);
writel(dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 |
dev->dev_addr[1]<<8 | dev->dev_addr[0],
&aup->mac->mac_addr_low);
for (i = 0; i < NUM_RX_DMA; i++)
aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE;
wmb(); /* drain writebuffer */
control = MAC_RX_ENABLE | MAC_TX_ENABLE;
#ifndef CONFIG_CPU_LITTLE_ENDIAN
control |= MAC_BIG_ENDIAN;
#endif
if (dev->phydev) {
if (dev->phydev->link && (DUPLEX_FULL == dev->phydev->duplex))
control |= MAC_FULL_DUPLEX;
else
control |= MAC_DISABLE_RX_OWN;
} else { /* PHY-less op, assume full-duplex */
control |= MAC_FULL_DUPLEX;
}
writel(control, &aup->mac->control);
writel(0x8100, &aup->mac->vlan1_tag); /* activate vlan support */
wmb(); /* drain writebuffer */
spin_unlock_irqrestore(&aup->lock, flags);
return 0;
}
static inline void au1000_update_rx_stats(struct net_device *dev, u32 status)
{
struct net_device_stats *ps = &dev->stats;
ps->rx_packets++;
if (status & RX_MCAST_FRAME)
ps->multicast++;
if (status & RX_ERROR) {
ps->rx_errors++;
if (status & RX_MISSED_FRAME)
ps->rx_missed_errors++;
if (status & (RX_OVERLEN | RX_RUNT | RX_LEN_ERROR))
ps->rx_length_errors++;
if (status & RX_CRC_ERROR)
ps->rx_crc_errors++;
if (status & RX_COLL)
ps->collisions++;
} else
ps->rx_bytes += status & RX_FRAME_LEN_MASK;
}
/*
* Au1000 receive routine.
*/
static int au1000_rx(struct net_device *dev)
{
struct au1000_private *aup = netdev_priv(dev);
struct sk_buff *skb;
struct rx_dma *prxd;
u32 buff_stat, status;
struct db_dest *pDB;
u32 frmlen;
netif_dbg(aup, rx_status, dev, "au1000_rx head %d\n", aup->rx_head);
prxd = aup->rx_dma_ring[aup->rx_head];
buff_stat = prxd->buff_stat;
while (buff_stat & RX_T_DONE) {
status = prxd->status;
pDB = aup->rx_db_inuse[aup->rx_head];
au1000_update_rx_stats(dev, status);
if (!(status & RX_ERROR)) {
/* good frame */
frmlen = (status & RX_FRAME_LEN_MASK);
frmlen -= 4; /* Remove FCS */
skb = netdev_alloc_skb(dev, frmlen + 2);
if (!skb) {
dev->stats.rx_dropped++;
continue;
}
skb_reserve(skb, 2); /* 16 byte IP header align */
skb_copy_to_linear_data(skb,
(unsigned char *)pDB->vaddr, frmlen);
skb_put(skb, frmlen);
skb->protocol = eth_type_trans(skb, dev);
netif_rx(skb); /* pass the packet to upper layers */
} else {
if (au1000_debug > 4) {
pr_err("rx_error(s):");
if (status & RX_MISSED_FRAME)
pr_cont(" miss");
if (status & RX_WDOG_TIMER)
pr_cont(" wdog");
if (status & RX_RUNT)
pr_cont(" runt");
if (status & RX_OVERLEN)
pr_cont(" overlen");
if (status & RX_COLL)
pr_cont(" coll");
if (status & RX_MII_ERROR)
pr_cont(" mii error");
if (status & RX_CRC_ERROR)
pr_cont(" crc error");
if (status & RX_LEN_ERROR)
pr_cont(" len error");
if (status & RX_U_CNTRL_FRAME)
pr_cont(" u control frame");
pr_cont("\n");
}
}
prxd->buff_stat = lower_32_bits(pDB->dma_addr) | RX_DMA_ENABLE;
aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1);
wmb(); /* drain writebuffer */
/* next descriptor */
prxd = aup->rx_dma_ring[aup->rx_head];
buff_stat = prxd->buff_stat;
}
return 0;
}
static void au1000_update_tx_stats(struct net_device *dev, u32 status)
{
struct net_device_stats *ps = &dev->stats;
if (status & TX_FRAME_ABORTED) {
if (!dev->phydev || (DUPLEX_FULL == dev->phydev->duplex)) {
if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) {
/* any other tx errors are only valid
* in half duplex mode
*/
ps->tx_errors++;
ps->tx_aborted_errors++;
}
} else {
ps->tx_errors++;
ps->tx_aborted_errors++;
if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER))
ps->tx_carrier_errors++;
}
}
}
/*
* Called from the interrupt service routine to acknowledge
* the TX DONE bits. This is a must if the irq is setup as
* edge triggered.
*/
static void au1000_tx_ack(struct net_device *dev)
{
struct au1000_private *aup = netdev_priv(dev);
struct tx_dma *ptxd;
ptxd = aup->tx_dma_ring[aup->tx_tail];
while (ptxd->buff_stat & TX_T_DONE) {
au1000_update_tx_stats(dev, ptxd->status);
ptxd->buff_stat &= ~TX_T_DONE;
ptxd->len = 0;
wmb(); /* drain writebuffer */
aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1);
ptxd = aup->tx_dma_ring[aup->tx_tail];
if (aup->tx_full) {
aup->tx_full = 0;
netif_wake_queue(dev);
}
}
}
/*
* Au1000 interrupt service routine.
*/
static irqreturn_t au1000_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
/* Handle RX interrupts first to minimize chance of overrun */
au1000_rx(dev);
au1000_tx_ack(dev);
return IRQ_RETVAL(1);
}
static int au1000_open(struct net_device *dev)
{
int retval;
struct au1000_private *aup = netdev_priv(dev);
netif_dbg(aup, drv, dev, "open: dev=%p\n", dev);
retval = request_irq(dev->irq, au1000_interrupt, 0,
dev->name, dev);
if (retval) {
netdev_err(dev, "unable to get IRQ %d\n", dev->irq);
return retval;
}
retval = au1000_init(dev);
if (retval) {
netdev_err(dev, "error in au1000_init\n");
free_irq(dev->irq, dev);
return retval;
}
if (dev->phydev)
phy_start(dev->phydev);
netif_start_queue(dev);
netif_dbg(aup, drv, dev, "open: Initialization done.\n");
return 0;
}
static int au1000_close(struct net_device *dev)
{
unsigned long flags;
struct au1000_private *const aup = netdev_priv(dev);
netif_dbg(aup, drv, dev, "close: dev=%p\n", dev);
if (dev->phydev)
phy_stop(dev->phydev);
spin_lock_irqsave(&aup->lock, flags);
au1000_reset_mac_unlocked(dev);
/* stop the device */
netif_stop_queue(dev);
/* disable the interrupt */
free_irq(dev->irq, dev);
spin_unlock_irqrestore(&aup->lock, flags);
return 0;
}
/*
* Au1000 transmit routine.
*/
static netdev_tx_t au1000_tx(struct sk_buff *skb, struct net_device *dev)
{
struct au1000_private *aup = netdev_priv(dev);
struct net_device_stats *ps = &dev->stats;
struct tx_dma *ptxd;
u32 buff_stat;
struct db_dest *pDB;
int i;
netif_dbg(aup, tx_queued, dev, "tx: aup %x len=%d, data=%p, head %d\n",
(unsigned)aup, skb->len,
skb->data, aup->tx_head);
ptxd = aup->tx_dma_ring[aup->tx_head];
buff_stat = ptxd->buff_stat;
if (buff_stat & TX_DMA_ENABLE) {
/* We've wrapped around and the transmitter is still busy */
netif_stop_queue(dev);
aup->tx_full = 1;
return NETDEV_TX_BUSY;
} else if (buff_stat & TX_T_DONE) {
au1000_update_tx_stats(dev, ptxd->status);
ptxd->len = 0;
}
if (aup->tx_full) {
aup->tx_full = 0;
netif_wake_queue(dev);
}
pDB = aup->tx_db_inuse[aup->tx_head];
skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len);
if (skb->len < ETH_ZLEN) {
for (i = skb->len; i < ETH_ZLEN; i++)
((char *)pDB->vaddr)[i] = 0;
ptxd->len = ETH_ZLEN;
} else
ptxd->len = skb->len;
ps->tx_packets++;
ps->tx_bytes += ptxd->len;
ptxd->buff_stat = lower_32_bits(pDB->dma_addr) | TX_DMA_ENABLE;
wmb(); /* drain writebuffer */
dev_kfree_skb(skb);
aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1);
return NETDEV_TX_OK;
}
/*
* The Tx ring has been full longer than the watchdog timeout
* value. The transmitter must be hung?
*/
static void au1000_tx_timeout(struct net_device *dev, unsigned int txqueue)
{
netdev_err(dev, "au1000_tx_timeout: dev=%p\n", dev);
au1000_reset_mac(dev);
au1000_init(dev);
netif_trans_update(dev); /* prevent tx timeout */
netif_wake_queue(dev);
}
static void au1000_multicast_list(struct net_device *dev)
{
struct au1000_private *aup = netdev_priv(dev);
u32 reg;
netif_dbg(aup, drv, dev, "%s: flags=%x\n", __func__, dev->flags);
reg = readl(&aup->mac->control);
if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
reg |= MAC_PROMISCUOUS;
} else if ((dev->flags & IFF_ALLMULTI) ||
netdev_mc_count(dev) > MULTICAST_FILTER_LIMIT) {
reg |= MAC_PASS_ALL_MULTI;
reg &= ~MAC_PROMISCUOUS;
netdev_info(dev, "Pass all multicast\n");
} else {
struct netdev_hw_addr *ha;
u32 mc_filter[2]; /* Multicast hash filter */
mc_filter[1] = mc_filter[0] = 0;
netdev_for_each_mc_addr(ha, dev)
set_bit(ether_crc(ETH_ALEN, ha->addr)>>26,
(long *)mc_filter);
writel(mc_filter[1], &aup->mac->multi_hash_high);
writel(mc_filter[0], &aup->mac->multi_hash_low);
reg &= ~MAC_PROMISCUOUS;
reg |= MAC_HASH_MODE;
}
writel(reg, &aup->mac->control);
}
static const struct net_device_ops au1000_netdev_ops = {
.ndo_open = au1000_open,
.ndo_stop = au1000_close,
.ndo_start_xmit = au1000_tx,
.ndo_set_rx_mode = au1000_multicast_list,
.ndo_eth_ioctl = phy_do_ioctl_running,
.ndo_tx_timeout = au1000_tx_timeout,
.ndo_set_mac_address = eth_mac_addr,
.ndo_validate_addr = eth_validate_addr,
};
static int au1000_probe(struct platform_device *pdev)
{
struct au1000_private *aup = NULL;
struct au1000_eth_platform_data *pd;
struct net_device *dev = NULL;
struct db_dest *pDB, *pDBfree;
int irq, i, err = 0;
struct resource *base, *macen, *macdma;
base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!base) {
dev_err(&pdev->dev, "failed to retrieve base register\n");
err = -ENODEV;
goto out;
}
macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
if (!macen) {
dev_err(&pdev->dev, "failed to retrieve MAC Enable register\n");
err = -ENODEV;
goto out;
}
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
err = -ENODEV;
goto out;
}
macdma = platform_get_resource(pdev, IORESOURCE_MEM, 2);
if (!macdma) {
dev_err(&pdev->dev, "failed to retrieve MACDMA registers\n");
err = -ENODEV;
goto out;
}
if (!request_mem_region(base->start, resource_size(base),
pdev->name)) {
dev_err(&pdev->dev, "failed to request memory region for base registers\n");
err = -ENXIO;
goto out;
}
if (!request_mem_region(macen->start, resource_size(macen),
pdev->name)) {
dev_err(&pdev->dev, "failed to request memory region for MAC enable register\n");
err = -ENXIO;
goto err_request;
}
if (!request_mem_region(macdma->start, resource_size(macdma),
pdev->name)) {
dev_err(&pdev->dev, "failed to request MACDMA memory region\n");
err = -ENXIO;
goto err_macdma;
}
dev = alloc_etherdev(sizeof(struct au1000_private));
if (!dev) {
err = -ENOMEM;
goto err_alloc;
}
SET_NETDEV_DEV(dev, &pdev->dev);
platform_set_drvdata(pdev, dev);
aup = netdev_priv(dev);
spin_lock_init(&aup->lock);
aup->msg_enable = (au1000_debug < 4 ?
AU1000_DEF_MSG_ENABLE : au1000_debug);
/* Allocate the data buffers
* Snooping works fine with eth on all au1xxx
*/
aup->vaddr = dma_alloc_coherent(&pdev->dev, MAX_BUF_SIZE *
(NUM_TX_BUFFS + NUM_RX_BUFFS),
&aup->dma_addr, 0);
if (!aup->vaddr) {
dev_err(&pdev->dev, "failed to allocate data buffers\n");
err = -ENOMEM;
goto err_vaddr;
}
/* aup->mac is the base address of the MAC's registers */
aup->mac = (struct mac_reg *)
ioremap(base->start, resource_size(base));
if (!aup->mac) {
dev_err(&pdev->dev, "failed to ioremap MAC registers\n");
err = -ENXIO;
goto err_remap1;
}
/* Setup some variables for quick register address access */
aup->enable = (u32 *)ioremap(macen->start,
resource_size(macen));
if (!aup->enable) {
dev_err(&pdev->dev, "failed to ioremap MAC enable register\n");
err = -ENXIO;
goto err_remap2;
}
aup->mac_id = pdev->id;
aup->macdma = ioremap(macdma->start, resource_size(macdma));
if (!aup->macdma) {
dev_err(&pdev->dev, "failed to ioremap MACDMA registers\n");
err = -ENXIO;
goto err_remap3;
}
au1000_setup_hw_rings(aup, aup->macdma);
writel(0, aup->enable);
aup->mac_enabled = 0;
pd = dev_get_platdata(&pdev->dev);
if (!pd) {
dev_info(&pdev->dev, "no platform_data passed,"
" PHY search on MAC0\n");
aup->phy1_search_mac0 = 1;
} else {
if (is_valid_ether_addr(pd->mac)) {
eth_hw_addr_set(dev, pd->mac);
} else {
/* Set a random MAC since no valid provided by platform_data. */
eth_hw_addr_random(dev);
}
aup->phy_static_config = pd->phy_static_config;
aup->phy_search_highest_addr = pd->phy_search_highest_addr;
aup->phy1_search_mac0 = pd->phy1_search_mac0;
aup->phy_addr = pd->phy_addr;
aup->phy_busid = pd->phy_busid;
aup->phy_irq = pd->phy_irq;
}
if (aup->phy_busid > 0) {
dev_err(&pdev->dev, "MAC0-associated PHY attached 2nd MACs MII bus not supported yet\n");
err = -ENODEV;
goto err_mdiobus_alloc;
}
aup->mii_bus = mdiobus_alloc();
if (!aup->mii_bus) {
dev_err(&pdev->dev, "failed to allocate mdiobus structure\n");
err = -ENOMEM;
goto err_mdiobus_alloc;
}
aup->mii_bus->priv = dev;
aup->mii_bus->read = au1000_mdiobus_read;
aup->mii_bus->write = au1000_mdiobus_write;
aup->mii_bus->reset = au1000_mdiobus_reset;
aup->mii_bus->name = "au1000_eth_mii";
snprintf(aup->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
pdev->name, aup->mac_id);
/* if known, set corresponding PHY IRQs */
if (aup->phy_static_config)
if (aup->phy_irq && aup->phy_busid == aup->mac_id)
aup->mii_bus->irq[aup->phy_addr] = aup->phy_irq;
err = mdiobus_register(aup->mii_bus);
if (err) {
dev_err(&pdev->dev, "failed to register MDIO bus\n");
goto err_mdiobus_reg;
}
err = au1000_mii_probe(dev);
if (err != 0)
goto err_out;
pDBfree = NULL;
/* setup the data buffer descriptors and attach a buffer to each one */
pDB = aup->db;
for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) {
pDB->pnext = pDBfree;
pDBfree = pDB;
pDB->vaddr = aup->vaddr + MAX_BUF_SIZE * i;
pDB->dma_addr = aup->dma_addr + MAX_BUF_SIZE * i;
pDB++;
}
aup->pDBfree = pDBfree;
err = -ENODEV;
for (i = 0; i < NUM_RX_DMA; i++) {
pDB = au1000_GetFreeDB(aup);
if (!pDB)
goto err_out;
aup->rx_dma_ring[i]->buff_stat = lower_32_bits(pDB->dma_addr);
aup->rx_db_inuse[i] = pDB;
}
for (i = 0; i < NUM_TX_DMA; i++) {
pDB = au1000_GetFreeDB(aup);
if (!pDB)
goto err_out;
aup->tx_dma_ring[i]->buff_stat = lower_32_bits(pDB->dma_addr);
aup->tx_dma_ring[i]->len = 0;
aup->tx_db_inuse[i] = pDB;
}
dev->base_addr = base->start;
dev->irq = irq;
dev->netdev_ops = &au1000_netdev_ops;
dev->ethtool_ops = &au1000_ethtool_ops;
dev->watchdog_timeo = ETH_TX_TIMEOUT;
/*
* The boot code uses the ethernet controller, so reset it to start
* fresh. au1000_init() expects that the device is in reset state.
*/
au1000_reset_mac(dev);
err = register_netdev(dev);
if (err) {
netdev_err(dev, "Cannot register net device, aborting.\n");
goto err_out;
}
netdev_info(dev, "Au1xx0 Ethernet found at 0x%lx, irq %d\n",
(unsigned long)base->start, irq);
return 0;
err_out:
if (aup->mii_bus)
mdiobus_unregister(aup->mii_bus);
/* here we should have a valid dev plus aup-> register addresses
* so we can reset the mac properly.
*/
au1000_reset_mac(dev);
for (i = 0; i < NUM_RX_DMA; i++) {
if (aup->rx_db_inuse[i])
au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
}
for (i = 0; i < NUM_TX_DMA; i++) {
if (aup->tx_db_inuse[i])
au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
}
err_mdiobus_reg:
mdiobus_free(aup->mii_bus);
err_mdiobus_alloc:
iounmap(aup->macdma);
err_remap3:
iounmap(aup->enable);
err_remap2:
iounmap(aup->mac);
err_remap1:
dma_free_coherent(&pdev->dev, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
aup->vaddr, aup->dma_addr);
err_vaddr:
free_netdev(dev);
err_alloc:
release_mem_region(macdma->start, resource_size(macdma));
err_macdma:
release_mem_region(macen->start, resource_size(macen));
err_request:
release_mem_region(base->start, resource_size(base));
out:
return err;
}
static int au1000_remove(struct platform_device *pdev)
{
struct net_device *dev = platform_get_drvdata(pdev);
struct au1000_private *aup = netdev_priv(dev);
int i;
struct resource *base, *macen;
unregister_netdev(dev);
mdiobus_unregister(aup->mii_bus);
mdiobus_free(aup->mii_bus);
for (i = 0; i < NUM_RX_DMA; i++)
if (aup->rx_db_inuse[i])
au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
for (i = 0; i < NUM_TX_DMA; i++)
if (aup->tx_db_inuse[i])
au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
dma_free_coherent(&pdev->dev, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
aup->vaddr, aup->dma_addr);
iounmap(aup->macdma);
iounmap(aup->mac);
iounmap(aup->enable);
base = platform_get_resource(pdev, IORESOURCE_MEM, 2);
release_mem_region(base->start, resource_size(base));
base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
release_mem_region(base->start, resource_size(base));
macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
release_mem_region(macen->start, resource_size(macen));
free_netdev(dev);
return 0;
}
static struct platform_driver au1000_eth_driver = {
.probe = au1000_probe,
.remove = au1000_remove,
.driver = {
.name = "au1000-eth",
},
};
module_platform_driver(au1000_eth_driver);
MODULE_ALIAS("platform:au1000-eth");