7979 lines
225 KiB
C
7979 lines
225 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
/* Copyright(c) 1999 - 2018 Intel Corporation. */
|
||
|
|
||
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
||
|
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/pci.h>
|
||
|
#include <linux/vmalloc.h>
|
||
|
#include <linux/pagemap.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/netdevice.h>
|
||
|
#include <linux/interrupt.h>
|
||
|
#include <linux/tcp.h>
|
||
|
#include <linux/ipv6.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <net/checksum.h>
|
||
|
#include <net/ip6_checksum.h>
|
||
|
#include <linux/ethtool.h>
|
||
|
#include <linux/if_vlan.h>
|
||
|
#include <linux/cpu.h>
|
||
|
#include <linux/smp.h>
|
||
|
#include <linux/pm_qos.h>
|
||
|
#include <linux/pm_runtime.h>
|
||
|
#include <linux/aer.h>
|
||
|
#include <linux/prefetch.h>
|
||
|
#include <linux/suspend.h>
|
||
|
|
||
|
#include "e1000.h"
|
||
|
#define CREATE_TRACE_POINTS
|
||
|
#include "e1000e_trace.h"
|
||
|
|
||
|
char e1000e_driver_name[] = "e1000e";
|
||
|
|
||
|
#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
|
||
|
static int debug = -1;
|
||
|
module_param(debug, int, 0);
|
||
|
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
|
||
|
|
||
|
static const struct e1000_info *e1000_info_tbl[] = {
|
||
|
[board_82571] = &e1000_82571_info,
|
||
|
[board_82572] = &e1000_82572_info,
|
||
|
[board_82573] = &e1000_82573_info,
|
||
|
[board_82574] = &e1000_82574_info,
|
||
|
[board_82583] = &e1000_82583_info,
|
||
|
[board_80003es2lan] = &e1000_es2_info,
|
||
|
[board_ich8lan] = &e1000_ich8_info,
|
||
|
[board_ich9lan] = &e1000_ich9_info,
|
||
|
[board_ich10lan] = &e1000_ich10_info,
|
||
|
[board_pchlan] = &e1000_pch_info,
|
||
|
[board_pch2lan] = &e1000_pch2_info,
|
||
|
[board_pch_lpt] = &e1000_pch_lpt_info,
|
||
|
[board_pch_spt] = &e1000_pch_spt_info,
|
||
|
[board_pch_cnp] = &e1000_pch_cnp_info,
|
||
|
[board_pch_tgp] = &e1000_pch_tgp_info,
|
||
|
[board_pch_adp] = &e1000_pch_adp_info,
|
||
|
[board_pch_mtp] = &e1000_pch_mtp_info,
|
||
|
};
|
||
|
|
||
|
struct e1000_reg_info {
|
||
|
u32 ofs;
|
||
|
char *name;
|
||
|
};
|
||
|
|
||
|
static const struct e1000_reg_info e1000_reg_info_tbl[] = {
|
||
|
/* General Registers */
|
||
|
{E1000_CTRL, "CTRL"},
|
||
|
{E1000_STATUS, "STATUS"},
|
||
|
{E1000_CTRL_EXT, "CTRL_EXT"},
|
||
|
|
||
|
/* Interrupt Registers */
|
||
|
{E1000_ICR, "ICR"},
|
||
|
|
||
|
/* Rx Registers */
|
||
|
{E1000_RCTL, "RCTL"},
|
||
|
{E1000_RDLEN(0), "RDLEN"},
|
||
|
{E1000_RDH(0), "RDH"},
|
||
|
{E1000_RDT(0), "RDT"},
|
||
|
{E1000_RDTR, "RDTR"},
|
||
|
{E1000_RXDCTL(0), "RXDCTL"},
|
||
|
{E1000_ERT, "ERT"},
|
||
|
{E1000_RDBAL(0), "RDBAL"},
|
||
|
{E1000_RDBAH(0), "RDBAH"},
|
||
|
{E1000_RDFH, "RDFH"},
|
||
|
{E1000_RDFT, "RDFT"},
|
||
|
{E1000_RDFHS, "RDFHS"},
|
||
|
{E1000_RDFTS, "RDFTS"},
|
||
|
{E1000_RDFPC, "RDFPC"},
|
||
|
|
||
|
/* Tx Registers */
|
||
|
{E1000_TCTL, "TCTL"},
|
||
|
{E1000_TDBAL(0), "TDBAL"},
|
||
|
{E1000_TDBAH(0), "TDBAH"},
|
||
|
{E1000_TDLEN(0), "TDLEN"},
|
||
|
{E1000_TDH(0), "TDH"},
|
||
|
{E1000_TDT(0), "TDT"},
|
||
|
{E1000_TIDV, "TIDV"},
|
||
|
{E1000_TXDCTL(0), "TXDCTL"},
|
||
|
{E1000_TADV, "TADV"},
|
||
|
{E1000_TARC(0), "TARC"},
|
||
|
{E1000_TDFH, "TDFH"},
|
||
|
{E1000_TDFT, "TDFT"},
|
||
|
{E1000_TDFHS, "TDFHS"},
|
||
|
{E1000_TDFTS, "TDFTS"},
|
||
|
{E1000_TDFPC, "TDFPC"},
|
||
|
|
||
|
/* List Terminator */
|
||
|
{0, NULL}
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* __ew32_prepare - prepare to write to MAC CSR register on certain parts
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* When updating the MAC CSR registers, the Manageability Engine (ME) could
|
||
|
* be accessing the registers at the same time. Normally, this is handled in
|
||
|
* h/w by an arbiter but on some parts there is a bug that acknowledges Host
|
||
|
* accesses later than it should which could result in the register to have
|
||
|
* an incorrect value. Workaround this by checking the FWSM register which
|
||
|
* has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
|
||
|
* and try again a number of times.
|
||
|
**/
|
||
|
static void __ew32_prepare(struct e1000_hw *hw)
|
||
|
{
|
||
|
s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
|
||
|
|
||
|
while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
|
||
|
udelay(50);
|
||
|
}
|
||
|
|
||
|
void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
|
||
|
{
|
||
|
if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
|
||
|
__ew32_prepare(hw);
|
||
|
|
||
|
writel(val, hw->hw_addr + reg);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_regdump - register printout routine
|
||
|
* @hw: pointer to the HW structure
|
||
|
* @reginfo: pointer to the register info table
|
||
|
**/
|
||
|
static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
|
||
|
{
|
||
|
int n = 0;
|
||
|
char rname[16];
|
||
|
u32 regs[8];
|
||
|
|
||
|
switch (reginfo->ofs) {
|
||
|
case E1000_RXDCTL(0):
|
||
|
for (n = 0; n < 2; n++)
|
||
|
regs[n] = __er32(hw, E1000_RXDCTL(n));
|
||
|
break;
|
||
|
case E1000_TXDCTL(0):
|
||
|
for (n = 0; n < 2; n++)
|
||
|
regs[n] = __er32(hw, E1000_TXDCTL(n));
|
||
|
break;
|
||
|
case E1000_TARC(0):
|
||
|
for (n = 0; n < 2; n++)
|
||
|
regs[n] = __er32(hw, E1000_TARC(n));
|
||
|
break;
|
||
|
default:
|
||
|
pr_info("%-15s %08x\n",
|
||
|
reginfo->name, __er32(hw, reginfo->ofs));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
|
||
|
pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
|
||
|
}
|
||
|
|
||
|
static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
|
||
|
struct e1000_buffer *bi)
|
||
|
{
|
||
|
int i;
|
||
|
struct e1000_ps_page *ps_page;
|
||
|
|
||
|
for (i = 0; i < adapter->rx_ps_pages; i++) {
|
||
|
ps_page = &bi->ps_pages[i];
|
||
|
|
||
|
if (ps_page->page) {
|
||
|
pr_info("packet dump for ps_page %d:\n", i);
|
||
|
print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
|
||
|
16, 1, page_address(ps_page->page),
|
||
|
PAGE_SIZE, true);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_dump - Print registers, Tx-ring and Rx-ring
|
||
|
* @adapter: board private structure
|
||
|
**/
|
||
|
static void e1000e_dump(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
struct net_device *netdev = adapter->netdev;
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
struct e1000_reg_info *reginfo;
|
||
|
struct e1000_ring *tx_ring = adapter->tx_ring;
|
||
|
struct e1000_tx_desc *tx_desc;
|
||
|
struct my_u0 {
|
||
|
__le64 a;
|
||
|
__le64 b;
|
||
|
} *u0;
|
||
|
struct e1000_buffer *buffer_info;
|
||
|
struct e1000_ring *rx_ring = adapter->rx_ring;
|
||
|
union e1000_rx_desc_packet_split *rx_desc_ps;
|
||
|
union e1000_rx_desc_extended *rx_desc;
|
||
|
struct my_u1 {
|
||
|
__le64 a;
|
||
|
__le64 b;
|
||
|
__le64 c;
|
||
|
__le64 d;
|
||
|
} *u1;
|
||
|
u32 staterr;
|
||
|
int i = 0;
|
||
|
|
||
|
if (!netif_msg_hw(adapter))
|
||
|
return;
|
||
|
|
||
|
/* Print netdevice Info */
|
||
|
if (netdev) {
|
||
|
dev_info(&adapter->pdev->dev, "Net device Info\n");
|
||
|
pr_info("Device Name state trans_start\n");
|
||
|
pr_info("%-15s %016lX %016lX\n", netdev->name,
|
||
|
netdev->state, dev_trans_start(netdev));
|
||
|
}
|
||
|
|
||
|
/* Print Registers */
|
||
|
dev_info(&adapter->pdev->dev, "Register Dump\n");
|
||
|
pr_info(" Register Name Value\n");
|
||
|
for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
|
||
|
reginfo->name; reginfo++) {
|
||
|
e1000_regdump(hw, reginfo);
|
||
|
}
|
||
|
|
||
|
/* Print Tx Ring Summary */
|
||
|
if (!netdev || !netif_running(netdev))
|
||
|
return;
|
||
|
|
||
|
dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
|
||
|
pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
|
||
|
buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
|
||
|
pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
|
||
|
0, tx_ring->next_to_use, tx_ring->next_to_clean,
|
||
|
(unsigned long long)buffer_info->dma,
|
||
|
buffer_info->length,
|
||
|
buffer_info->next_to_watch,
|
||
|
(unsigned long long)buffer_info->time_stamp);
|
||
|
|
||
|
/* Print Tx Ring */
|
||
|
if (!netif_msg_tx_done(adapter))
|
||
|
goto rx_ring_summary;
|
||
|
|
||
|
dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
|
||
|
|
||
|
/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
|
||
|
*
|
||
|
* Legacy Transmit Descriptor
|
||
|
* +--------------------------------------------------------------+
|
||
|
* 0 | Buffer Address [63:0] (Reserved on Write Back) |
|
||
|
* +--------------------------------------------------------------+
|
||
|
* 8 | Special | CSS | Status | CMD | CSO | Length |
|
||
|
* +--------------------------------------------------------------+
|
||
|
* 63 48 47 36 35 32 31 24 23 16 15 0
|
||
|
*
|
||
|
* Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
|
||
|
* 63 48 47 40 39 32 31 16 15 8 7 0
|
||
|
* +----------------------------------------------------------------+
|
||
|
* 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
|
||
|
* +----------------------------------------------------------------+
|
||
|
* 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
|
||
|
* +----------------------------------------------------------------+
|
||
|
* 63 48 47 40 39 36 35 32 31 24 23 20 19 0
|
||
|
*
|
||
|
* Extended Data Descriptor (DTYP=0x1)
|
||
|
* +----------------------------------------------------------------+
|
||
|
* 0 | Buffer Address [63:0] |
|
||
|
* +----------------------------------------------------------------+
|
||
|
* 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
|
||
|
* +----------------------------------------------------------------+
|
||
|
* 63 48 47 40 39 36 35 32 31 24 23 20 19 0
|
||
|
*/
|
||
|
pr_info("Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n");
|
||
|
pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n");
|
||
|
pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n");
|
||
|
for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
|
||
|
const char *next_desc;
|
||
|
tx_desc = E1000_TX_DESC(*tx_ring, i);
|
||
|
buffer_info = &tx_ring->buffer_info[i];
|
||
|
u0 = (struct my_u0 *)tx_desc;
|
||
|
if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
|
||
|
next_desc = " NTC/U";
|
||
|
else if (i == tx_ring->next_to_use)
|
||
|
next_desc = " NTU";
|
||
|
else if (i == tx_ring->next_to_clean)
|
||
|
next_desc = " NTC";
|
||
|
else
|
||
|
next_desc = "";
|
||
|
pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n",
|
||
|
(!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
|
||
|
((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
|
||
|
i,
|
||
|
(unsigned long long)le64_to_cpu(u0->a),
|
||
|
(unsigned long long)le64_to_cpu(u0->b),
|
||
|
(unsigned long long)buffer_info->dma,
|
||
|
buffer_info->length, buffer_info->next_to_watch,
|
||
|
(unsigned long long)buffer_info->time_stamp,
|
||
|
buffer_info->skb, next_desc);
|
||
|
|
||
|
if (netif_msg_pktdata(adapter) && buffer_info->skb)
|
||
|
print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
|
||
|
16, 1, buffer_info->skb->data,
|
||
|
buffer_info->skb->len, true);
|
||
|
}
|
||
|
|
||
|
/* Print Rx Ring Summary */
|
||
|
rx_ring_summary:
|
||
|
dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
|
||
|
pr_info("Queue [NTU] [NTC]\n");
|
||
|
pr_info(" %5d %5X %5X\n",
|
||
|
0, rx_ring->next_to_use, rx_ring->next_to_clean);
|
||
|
|
||
|
/* Print Rx Ring */
|
||
|
if (!netif_msg_rx_status(adapter))
|
||
|
return;
|
||
|
|
||
|
dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
|
||
|
switch (adapter->rx_ps_pages) {
|
||
|
case 1:
|
||
|
case 2:
|
||
|
case 3:
|
||
|
/* [Extended] Packet Split Receive Descriptor Format
|
||
|
*
|
||
|
* +-----------------------------------------------------+
|
||
|
* 0 | Buffer Address 0 [63:0] |
|
||
|
* +-----------------------------------------------------+
|
||
|
* 8 | Buffer Address 1 [63:0] |
|
||
|
* +-----------------------------------------------------+
|
||
|
* 16 | Buffer Address 2 [63:0] |
|
||
|
* +-----------------------------------------------------+
|
||
|
* 24 | Buffer Address 3 [63:0] |
|
||
|
* +-----------------------------------------------------+
|
||
|
*/
|
||
|
pr_info("R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n");
|
||
|
/* [Extended] Receive Descriptor (Write-Back) Format
|
||
|
*
|
||
|
* 63 48 47 32 31 13 12 8 7 4 3 0
|
||
|
* +------------------------------------------------------+
|
||
|
* 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
|
||
|
* | Checksum | Ident | | Queue | | Type |
|
||
|
* +------------------------------------------------------+
|
||
|
* 8 | VLAN Tag | Length | Extended Error | Extended Status |
|
||
|
* +------------------------------------------------------+
|
||
|
* 63 48 47 32 31 20 19 0
|
||
|
*/
|
||
|
pr_info("RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
|
||
|
for (i = 0; i < rx_ring->count; i++) {
|
||
|
const char *next_desc;
|
||
|
buffer_info = &rx_ring->buffer_info[i];
|
||
|
rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
|
||
|
u1 = (struct my_u1 *)rx_desc_ps;
|
||
|
staterr =
|
||
|
le32_to_cpu(rx_desc_ps->wb.middle.status_error);
|
||
|
|
||
|
if (i == rx_ring->next_to_use)
|
||
|
next_desc = " NTU";
|
||
|
else if (i == rx_ring->next_to_clean)
|
||
|
next_desc = " NTC";
|
||
|
else
|
||
|
next_desc = "";
|
||
|
|
||
|
if (staterr & E1000_RXD_STAT_DD) {
|
||
|
/* Descriptor Done */
|
||
|
pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n",
|
||
|
"RWB", i,
|
||
|
(unsigned long long)le64_to_cpu(u1->a),
|
||
|
(unsigned long long)le64_to_cpu(u1->b),
|
||
|
(unsigned long long)le64_to_cpu(u1->c),
|
||
|
(unsigned long long)le64_to_cpu(u1->d),
|
||
|
buffer_info->skb, next_desc);
|
||
|
} else {
|
||
|
pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n",
|
||
|
"R ", i,
|
||
|
(unsigned long long)le64_to_cpu(u1->a),
|
||
|
(unsigned long long)le64_to_cpu(u1->b),
|
||
|
(unsigned long long)le64_to_cpu(u1->c),
|
||
|
(unsigned long long)le64_to_cpu(u1->d),
|
||
|
(unsigned long long)buffer_info->dma,
|
||
|
buffer_info->skb, next_desc);
|
||
|
|
||
|
if (netif_msg_pktdata(adapter))
|
||
|
e1000e_dump_ps_pages(adapter,
|
||
|
buffer_info);
|
||
|
}
|
||
|
}
|
||
|
break;
|
||
|
default:
|
||
|
case 0:
|
||
|
/* Extended Receive Descriptor (Read) Format
|
||
|
*
|
||
|
* +-----------------------------------------------------+
|
||
|
* 0 | Buffer Address [63:0] |
|
||
|
* +-----------------------------------------------------+
|
||
|
* 8 | Reserved |
|
||
|
* +-----------------------------------------------------+
|
||
|
*/
|
||
|
pr_info("R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n");
|
||
|
/* Extended Receive Descriptor (Write-Back) Format
|
||
|
*
|
||
|
* 63 48 47 32 31 24 23 4 3 0
|
||
|
* +------------------------------------------------------+
|
||
|
* | RSS Hash | | | |
|
||
|
* 0 +-------------------+ Rsvd | Reserved | MRQ RSS |
|
||
|
* | Packet | IP | | | Type |
|
||
|
* | Checksum | Ident | | | |
|
||
|
* +------------------------------------------------------+
|
||
|
* 8 | VLAN Tag | Length | Extended Error | Extended Status |
|
||
|
* +------------------------------------------------------+
|
||
|
* 63 48 47 32 31 20 19 0
|
||
|
*/
|
||
|
pr_info("RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n");
|
||
|
|
||
|
for (i = 0; i < rx_ring->count; i++) {
|
||
|
const char *next_desc;
|
||
|
|
||
|
buffer_info = &rx_ring->buffer_info[i];
|
||
|
rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
|
||
|
u1 = (struct my_u1 *)rx_desc;
|
||
|
staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
|
||
|
|
||
|
if (i == rx_ring->next_to_use)
|
||
|
next_desc = " NTU";
|
||
|
else if (i == rx_ring->next_to_clean)
|
||
|
next_desc = " NTC";
|
||
|
else
|
||
|
next_desc = "";
|
||
|
|
||
|
if (staterr & E1000_RXD_STAT_DD) {
|
||
|
/* Descriptor Done */
|
||
|
pr_info("%s[0x%03X] %016llX %016llX ---------------- %p%s\n",
|
||
|
"RWB", i,
|
||
|
(unsigned long long)le64_to_cpu(u1->a),
|
||
|
(unsigned long long)le64_to_cpu(u1->b),
|
||
|
buffer_info->skb, next_desc);
|
||
|
} else {
|
||
|
pr_info("%s[0x%03X] %016llX %016llX %016llX %p%s\n",
|
||
|
"R ", i,
|
||
|
(unsigned long long)le64_to_cpu(u1->a),
|
||
|
(unsigned long long)le64_to_cpu(u1->b),
|
||
|
(unsigned long long)buffer_info->dma,
|
||
|
buffer_info->skb, next_desc);
|
||
|
|
||
|
if (netif_msg_pktdata(adapter) &&
|
||
|
buffer_info->skb)
|
||
|
print_hex_dump(KERN_INFO, "",
|
||
|
DUMP_PREFIX_ADDRESS, 16,
|
||
|
1,
|
||
|
buffer_info->skb->data,
|
||
|
adapter->rx_buffer_len,
|
||
|
true);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_desc_unused - calculate if we have unused descriptors
|
||
|
* @ring: pointer to ring struct to perform calculation on
|
||
|
**/
|
||
|
static int e1000_desc_unused(struct e1000_ring *ring)
|
||
|
{
|
||
|
if (ring->next_to_clean > ring->next_to_use)
|
||
|
return ring->next_to_clean - ring->next_to_use - 1;
|
||
|
|
||
|
return ring->count + ring->next_to_clean - ring->next_to_use - 1;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
|
||
|
* @adapter: board private structure
|
||
|
* @hwtstamps: time stamp structure to update
|
||
|
* @systim: unsigned 64bit system time value.
|
||
|
*
|
||
|
* Convert the system time value stored in the RX/TXSTMP registers into a
|
||
|
* hwtstamp which can be used by the upper level time stamping functions.
|
||
|
*
|
||
|
* The 'systim_lock' spinlock is used to protect the consistency of the
|
||
|
* system time value. This is needed because reading the 64 bit time
|
||
|
* value involves reading two 32 bit registers. The first read latches the
|
||
|
* value.
|
||
|
**/
|
||
|
static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
|
||
|
struct skb_shared_hwtstamps *hwtstamps,
|
||
|
u64 systim)
|
||
|
{
|
||
|
u64 ns;
|
||
|
unsigned long flags;
|
||
|
|
||
|
spin_lock_irqsave(&adapter->systim_lock, flags);
|
||
|
ns = timecounter_cyc2time(&adapter->tc, systim);
|
||
|
spin_unlock_irqrestore(&adapter->systim_lock, flags);
|
||
|
|
||
|
memset(hwtstamps, 0, sizeof(*hwtstamps));
|
||
|
hwtstamps->hwtstamp = ns_to_ktime(ns);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
|
||
|
* @adapter: board private structure
|
||
|
* @status: descriptor extended error and status field
|
||
|
* @skb: particular skb to include time stamp
|
||
|
*
|
||
|
* If the time stamp is valid, convert it into the timecounter ns value
|
||
|
* and store that result into the shhwtstamps structure which is passed
|
||
|
* up the network stack.
|
||
|
**/
|
||
|
static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
|
||
|
struct sk_buff *skb)
|
||
|
{
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
u64 rxstmp;
|
||
|
|
||
|
if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
|
||
|
!(status & E1000_RXDEXT_STATERR_TST) ||
|
||
|
!(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
|
||
|
return;
|
||
|
|
||
|
/* The Rx time stamp registers contain the time stamp. No other
|
||
|
* received packet will be time stamped until the Rx time stamp
|
||
|
* registers are read. Because only one packet can be time stamped
|
||
|
* at a time, the register values must belong to this packet and
|
||
|
* therefore none of the other additional attributes need to be
|
||
|
* compared.
|
||
|
*/
|
||
|
rxstmp = (u64)er32(RXSTMPL);
|
||
|
rxstmp |= (u64)er32(RXSTMPH) << 32;
|
||
|
e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
|
||
|
|
||
|
adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_receive_skb - helper function to handle Rx indications
|
||
|
* @adapter: board private structure
|
||
|
* @netdev: pointer to netdev struct
|
||
|
* @staterr: descriptor extended error and status field as written by hardware
|
||
|
* @vlan: descriptor vlan field as written by hardware (no le/be conversion)
|
||
|
* @skb: pointer to sk_buff to be indicated to stack
|
||
|
**/
|
||
|
static void e1000_receive_skb(struct e1000_adapter *adapter,
|
||
|
struct net_device *netdev, struct sk_buff *skb,
|
||
|
u32 staterr, __le16 vlan)
|
||
|
{
|
||
|
u16 tag = le16_to_cpu(vlan);
|
||
|
|
||
|
e1000e_rx_hwtstamp(adapter, staterr, skb);
|
||
|
|
||
|
skb->protocol = eth_type_trans(skb, netdev);
|
||
|
|
||
|
if (staterr & E1000_RXD_STAT_VP)
|
||
|
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
|
||
|
|
||
|
napi_gro_receive(&adapter->napi, skb);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_rx_checksum - Receive Checksum Offload
|
||
|
* @adapter: board private structure
|
||
|
* @status_err: receive descriptor status and error fields
|
||
|
* @skb: socket buffer with received data
|
||
|
**/
|
||
|
static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
|
||
|
struct sk_buff *skb)
|
||
|
{
|
||
|
u16 status = (u16)status_err;
|
||
|
u8 errors = (u8)(status_err >> 24);
|
||
|
|
||
|
skb_checksum_none_assert(skb);
|
||
|
|
||
|
/* Rx checksum disabled */
|
||
|
if (!(adapter->netdev->features & NETIF_F_RXCSUM))
|
||
|
return;
|
||
|
|
||
|
/* Ignore Checksum bit is set */
|
||
|
if (status & E1000_RXD_STAT_IXSM)
|
||
|
return;
|
||
|
|
||
|
/* TCP/UDP checksum error bit or IP checksum error bit is set */
|
||
|
if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
|
||
|
/* let the stack verify checksum errors */
|
||
|
adapter->hw_csum_err++;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* TCP/UDP Checksum has not been calculated */
|
||
|
if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
|
||
|
return;
|
||
|
|
||
|
/* It must be a TCP or UDP packet with a valid checksum */
|
||
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
||
|
adapter->hw_csum_good++;
|
||
|
}
|
||
|
|
||
|
static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = rx_ring->adapter;
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
|
||
|
__ew32_prepare(hw);
|
||
|
writel(i, rx_ring->tail);
|
||
|
|
||
|
if (unlikely(i != readl(rx_ring->tail))) {
|
||
|
u32 rctl = er32(RCTL);
|
||
|
|
||
|
ew32(RCTL, rctl & ~E1000_RCTL_EN);
|
||
|
e_err("ME firmware caused invalid RDT - resetting\n");
|
||
|
schedule_work(&adapter->reset_task);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = tx_ring->adapter;
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
|
||
|
__ew32_prepare(hw);
|
||
|
writel(i, tx_ring->tail);
|
||
|
|
||
|
if (unlikely(i != readl(tx_ring->tail))) {
|
||
|
u32 tctl = er32(TCTL);
|
||
|
|
||
|
ew32(TCTL, tctl & ~E1000_TCTL_EN);
|
||
|
e_err("ME firmware caused invalid TDT - resetting\n");
|
||
|
schedule_work(&adapter->reset_task);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_alloc_rx_buffers - Replace used receive buffers
|
||
|
* @rx_ring: Rx descriptor ring
|
||
|
* @cleaned_count: number to reallocate
|
||
|
* @gfp: flags for allocation
|
||
|
**/
|
||
|
static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
|
||
|
int cleaned_count, gfp_t gfp)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = rx_ring->adapter;
|
||
|
struct net_device *netdev = adapter->netdev;
|
||
|
struct pci_dev *pdev = adapter->pdev;
|
||
|
union e1000_rx_desc_extended *rx_desc;
|
||
|
struct e1000_buffer *buffer_info;
|
||
|
struct sk_buff *skb;
|
||
|
unsigned int i;
|
||
|
unsigned int bufsz = adapter->rx_buffer_len;
|
||
|
|
||
|
i = rx_ring->next_to_use;
|
||
|
buffer_info = &rx_ring->buffer_info[i];
|
||
|
|
||
|
while (cleaned_count--) {
|
||
|
skb = buffer_info->skb;
|
||
|
if (skb) {
|
||
|
skb_trim(skb, 0);
|
||
|
goto map_skb;
|
||
|
}
|
||
|
|
||
|
skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
|
||
|
if (!skb) {
|
||
|
/* Better luck next round */
|
||
|
adapter->alloc_rx_buff_failed++;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
buffer_info->skb = skb;
|
||
|
map_skb:
|
||
|
buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
|
||
|
adapter->rx_buffer_len,
|
||
|
DMA_FROM_DEVICE);
|
||
|
if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
|
||
|
dev_err(&pdev->dev, "Rx DMA map failed\n");
|
||
|
adapter->rx_dma_failed++;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
|
||
|
rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
|
||
|
|
||
|
if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
|
||
|
/* Force memory writes to complete before letting h/w
|
||
|
* know there are new descriptors to fetch. (Only
|
||
|
* applicable for weak-ordered memory model archs,
|
||
|
* such as IA-64).
|
||
|
*/
|
||
|
wmb();
|
||
|
if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
|
||
|
e1000e_update_rdt_wa(rx_ring, i);
|
||
|
else
|
||
|
writel(i, rx_ring->tail);
|
||
|
}
|
||
|
i++;
|
||
|
if (i == rx_ring->count)
|
||
|
i = 0;
|
||
|
buffer_info = &rx_ring->buffer_info[i];
|
||
|
}
|
||
|
|
||
|
rx_ring->next_to_use = i;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
|
||
|
* @rx_ring: Rx descriptor ring
|
||
|
* @cleaned_count: number to reallocate
|
||
|
* @gfp: flags for allocation
|
||
|
**/
|
||
|
static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
|
||
|
int cleaned_count, gfp_t gfp)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = rx_ring->adapter;
|
||
|
struct net_device *netdev = adapter->netdev;
|
||
|
struct pci_dev *pdev = adapter->pdev;
|
||
|
union e1000_rx_desc_packet_split *rx_desc;
|
||
|
struct e1000_buffer *buffer_info;
|
||
|
struct e1000_ps_page *ps_page;
|
||
|
struct sk_buff *skb;
|
||
|
unsigned int i, j;
|
||
|
|
||
|
i = rx_ring->next_to_use;
|
||
|
buffer_info = &rx_ring->buffer_info[i];
|
||
|
|
||
|
while (cleaned_count--) {
|
||
|
rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
|
||
|
|
||
|
for (j = 0; j < PS_PAGE_BUFFERS; j++) {
|
||
|
ps_page = &buffer_info->ps_pages[j];
|
||
|
if (j >= adapter->rx_ps_pages) {
|
||
|
/* all unused desc entries get hw null ptr */
|
||
|
rx_desc->read.buffer_addr[j + 1] =
|
||
|
~cpu_to_le64(0);
|
||
|
continue;
|
||
|
}
|
||
|
if (!ps_page->page) {
|
||
|
ps_page->page = alloc_page(gfp);
|
||
|
if (!ps_page->page) {
|
||
|
adapter->alloc_rx_buff_failed++;
|
||
|
goto no_buffers;
|
||
|
}
|
||
|
ps_page->dma = dma_map_page(&pdev->dev,
|
||
|
ps_page->page,
|
||
|
0, PAGE_SIZE,
|
||
|
DMA_FROM_DEVICE);
|
||
|
if (dma_mapping_error(&pdev->dev,
|
||
|
ps_page->dma)) {
|
||
|
dev_err(&adapter->pdev->dev,
|
||
|
"Rx DMA page map failed\n");
|
||
|
adapter->rx_dma_failed++;
|
||
|
goto no_buffers;
|
||
|
}
|
||
|
}
|
||
|
/* Refresh the desc even if buffer_addrs
|
||
|
* didn't change because each write-back
|
||
|
* erases this info.
|
||
|
*/
|
||
|
rx_desc->read.buffer_addr[j + 1] =
|
||
|
cpu_to_le64(ps_page->dma);
|
||
|
}
|
||
|
|
||
|
skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
|
||
|
gfp);
|
||
|
|
||
|
if (!skb) {
|
||
|
adapter->alloc_rx_buff_failed++;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
buffer_info->skb = skb;
|
||
|
buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
|
||
|
adapter->rx_ps_bsize0,
|
||
|
DMA_FROM_DEVICE);
|
||
|
if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
|
||
|
dev_err(&pdev->dev, "Rx DMA map failed\n");
|
||
|
adapter->rx_dma_failed++;
|
||
|
/* cleanup skb */
|
||
|
dev_kfree_skb_any(skb);
|
||
|
buffer_info->skb = NULL;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
|
||
|
|
||
|
if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
|
||
|
/* Force memory writes to complete before letting h/w
|
||
|
* know there are new descriptors to fetch. (Only
|
||
|
* applicable for weak-ordered memory model archs,
|
||
|
* such as IA-64).
|
||
|
*/
|
||
|
wmb();
|
||
|
if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
|
||
|
e1000e_update_rdt_wa(rx_ring, i << 1);
|
||
|
else
|
||
|
writel(i << 1, rx_ring->tail);
|
||
|
}
|
||
|
|
||
|
i++;
|
||
|
if (i == rx_ring->count)
|
||
|
i = 0;
|
||
|
buffer_info = &rx_ring->buffer_info[i];
|
||
|
}
|
||
|
|
||
|
no_buffers:
|
||
|
rx_ring->next_to_use = i;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
|
||
|
* @rx_ring: Rx descriptor ring
|
||
|
* @cleaned_count: number of buffers to allocate this pass
|
||
|
* @gfp: flags for allocation
|
||
|
**/
|
||
|
|
||
|
static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
|
||
|
int cleaned_count, gfp_t gfp)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = rx_ring->adapter;
|
||
|
struct net_device *netdev = adapter->netdev;
|
||
|
struct pci_dev *pdev = adapter->pdev;
|
||
|
union e1000_rx_desc_extended *rx_desc;
|
||
|
struct e1000_buffer *buffer_info;
|
||
|
struct sk_buff *skb;
|
||
|
unsigned int i;
|
||
|
unsigned int bufsz = 256 - 16; /* for skb_reserve */
|
||
|
|
||
|
i = rx_ring->next_to_use;
|
||
|
buffer_info = &rx_ring->buffer_info[i];
|
||
|
|
||
|
while (cleaned_count--) {
|
||
|
skb = buffer_info->skb;
|
||
|
if (skb) {
|
||
|
skb_trim(skb, 0);
|
||
|
goto check_page;
|
||
|
}
|
||
|
|
||
|
skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
|
||
|
if (unlikely(!skb)) {
|
||
|
/* Better luck next round */
|
||
|
adapter->alloc_rx_buff_failed++;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
buffer_info->skb = skb;
|
||
|
check_page:
|
||
|
/* allocate a new page if necessary */
|
||
|
if (!buffer_info->page) {
|
||
|
buffer_info->page = alloc_page(gfp);
|
||
|
if (unlikely(!buffer_info->page)) {
|
||
|
adapter->alloc_rx_buff_failed++;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!buffer_info->dma) {
|
||
|
buffer_info->dma = dma_map_page(&pdev->dev,
|
||
|
buffer_info->page, 0,
|
||
|
PAGE_SIZE,
|
||
|
DMA_FROM_DEVICE);
|
||
|
if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
|
||
|
adapter->alloc_rx_buff_failed++;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
|
||
|
rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
|
||
|
|
||
|
if (unlikely(++i == rx_ring->count))
|
||
|
i = 0;
|
||
|
buffer_info = &rx_ring->buffer_info[i];
|
||
|
}
|
||
|
|
||
|
if (likely(rx_ring->next_to_use != i)) {
|
||
|
rx_ring->next_to_use = i;
|
||
|
if (unlikely(i-- == 0))
|
||
|
i = (rx_ring->count - 1);
|
||
|
|
||
|
/* Force memory writes to complete before letting h/w
|
||
|
* know there are new descriptors to fetch. (Only
|
||
|
* applicable for weak-ordered memory model archs,
|
||
|
* such as IA-64).
|
||
|
*/
|
||
|
wmb();
|
||
|
if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
|
||
|
e1000e_update_rdt_wa(rx_ring, i);
|
||
|
else
|
||
|
writel(i, rx_ring->tail);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
|
||
|
struct sk_buff *skb)
|
||
|
{
|
||
|
if (netdev->features & NETIF_F_RXHASH)
|
||
|
skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_clean_rx_irq - Send received data up the network stack
|
||
|
* @rx_ring: Rx descriptor ring
|
||
|
* @work_done: output parameter for indicating completed work
|
||
|
* @work_to_do: how many packets we can clean
|
||
|
*
|
||
|
* the return value indicates whether actual cleaning was done, there
|
||
|
* is no guarantee that everything was cleaned
|
||
|
**/
|
||
|
static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
|
||
|
int work_to_do)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = rx_ring->adapter;
|
||
|
struct net_device *netdev = adapter->netdev;
|
||
|
struct pci_dev *pdev = adapter->pdev;
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
union e1000_rx_desc_extended *rx_desc, *next_rxd;
|
||
|
struct e1000_buffer *buffer_info, *next_buffer;
|
||
|
u32 length, staterr;
|
||
|
unsigned int i;
|
||
|
int cleaned_count = 0;
|
||
|
bool cleaned = false;
|
||
|
unsigned int total_rx_bytes = 0, total_rx_packets = 0;
|
||
|
|
||
|
i = rx_ring->next_to_clean;
|
||
|
rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
|
||
|
staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
|
||
|
buffer_info = &rx_ring->buffer_info[i];
|
||
|
|
||
|
while (staterr & E1000_RXD_STAT_DD) {
|
||
|
struct sk_buff *skb;
|
||
|
|
||
|
if (*work_done >= work_to_do)
|
||
|
break;
|
||
|
(*work_done)++;
|
||
|
dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
|
||
|
|
||
|
skb = buffer_info->skb;
|
||
|
buffer_info->skb = NULL;
|
||
|
|
||
|
prefetch(skb->data - NET_IP_ALIGN);
|
||
|
|
||
|
i++;
|
||
|
if (i == rx_ring->count)
|
||
|
i = 0;
|
||
|
next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
|
||
|
prefetch(next_rxd);
|
||
|
|
||
|
next_buffer = &rx_ring->buffer_info[i];
|
||
|
|
||
|
cleaned = true;
|
||
|
cleaned_count++;
|
||
|
dma_unmap_single(&pdev->dev, buffer_info->dma,
|
||
|
adapter->rx_buffer_len, DMA_FROM_DEVICE);
|
||
|
buffer_info->dma = 0;
|
||
|
|
||
|
length = le16_to_cpu(rx_desc->wb.upper.length);
|
||
|
|
||
|
/* !EOP means multiple descriptors were used to store a single
|
||
|
* packet, if that's the case we need to toss it. In fact, we
|
||
|
* need to toss every packet with the EOP bit clear and the
|
||
|
* next frame that _does_ have the EOP bit set, as it is by
|
||
|
* definition only a frame fragment
|
||
|
*/
|
||
|
if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
|
||
|
adapter->flags2 |= FLAG2_IS_DISCARDING;
|
||
|
|
||
|
if (adapter->flags2 & FLAG2_IS_DISCARDING) {
|
||
|
/* All receives must fit into a single buffer */
|
||
|
e_dbg("Receive packet consumed multiple buffers\n");
|
||
|
/* recycle */
|
||
|
buffer_info->skb = skb;
|
||
|
if (staterr & E1000_RXD_STAT_EOP)
|
||
|
adapter->flags2 &= ~FLAG2_IS_DISCARDING;
|
||
|
goto next_desc;
|
||
|
}
|
||
|
|
||
|
if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
|
||
|
!(netdev->features & NETIF_F_RXALL))) {
|
||
|
/* recycle */
|
||
|
buffer_info->skb = skb;
|
||
|
goto next_desc;
|
||
|
}
|
||
|
|
||
|
/* adjust length to remove Ethernet CRC */
|
||
|
if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
|
||
|
/* If configured to store CRC, don't subtract FCS,
|
||
|
* but keep the FCS bytes out of the total_rx_bytes
|
||
|
* counter
|
||
|
*/
|
||
|
if (netdev->features & NETIF_F_RXFCS)
|
||
|
total_rx_bytes -= 4;
|
||
|
else
|
||
|
length -= 4;
|
||
|
}
|
||
|
|
||
|
total_rx_bytes += length;
|
||
|
total_rx_packets++;
|
||
|
|
||
|
/* code added for copybreak, this should improve
|
||
|
* performance for small packets with large amounts
|
||
|
* of reassembly being done in the stack
|
||
|
*/
|
||
|
if (length < copybreak) {
|
||
|
struct sk_buff *new_skb =
|
||
|
napi_alloc_skb(&adapter->napi, length);
|
||
|
if (new_skb) {
|
||
|
skb_copy_to_linear_data_offset(new_skb,
|
||
|
-NET_IP_ALIGN,
|
||
|
(skb->data -
|
||
|
NET_IP_ALIGN),
|
||
|
(length +
|
||
|
NET_IP_ALIGN));
|
||
|
/* save the skb in buffer_info as good */
|
||
|
buffer_info->skb = skb;
|
||
|
skb = new_skb;
|
||
|
}
|
||
|
/* else just continue with the old one */
|
||
|
}
|
||
|
/* end copybreak code */
|
||
|
skb_put(skb, length);
|
||
|
|
||
|
/* Receive Checksum Offload */
|
||
|
e1000_rx_checksum(adapter, staterr, skb);
|
||
|
|
||
|
e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
|
||
|
|
||
|
e1000_receive_skb(adapter, netdev, skb, staterr,
|
||
|
rx_desc->wb.upper.vlan);
|
||
|
|
||
|
next_desc:
|
||
|
rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
|
||
|
|
||
|
/* return some buffers to hardware, one at a time is too slow */
|
||
|
if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
|
||
|
adapter->alloc_rx_buf(rx_ring, cleaned_count,
|
||
|
GFP_ATOMIC);
|
||
|
cleaned_count = 0;
|
||
|
}
|
||
|
|
||
|
/* use prefetched values */
|
||
|
rx_desc = next_rxd;
|
||
|
buffer_info = next_buffer;
|
||
|
|
||
|
staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
|
||
|
}
|
||
|
rx_ring->next_to_clean = i;
|
||
|
|
||
|
cleaned_count = e1000_desc_unused(rx_ring);
|
||
|
if (cleaned_count)
|
||
|
adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
|
||
|
|
||
|
adapter->total_rx_bytes += total_rx_bytes;
|
||
|
adapter->total_rx_packets += total_rx_packets;
|
||
|
return cleaned;
|
||
|
}
|
||
|
|
||
|
static void e1000_put_txbuf(struct e1000_ring *tx_ring,
|
||
|
struct e1000_buffer *buffer_info,
|
||
|
bool drop)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = tx_ring->adapter;
|
||
|
|
||
|
if (buffer_info->dma) {
|
||
|
if (buffer_info->mapped_as_page)
|
||
|
dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
|
||
|
buffer_info->length, DMA_TO_DEVICE);
|
||
|
else
|
||
|
dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
|
||
|
buffer_info->length, DMA_TO_DEVICE);
|
||
|
buffer_info->dma = 0;
|
||
|
}
|
||
|
if (buffer_info->skb) {
|
||
|
if (drop)
|
||
|
dev_kfree_skb_any(buffer_info->skb);
|
||
|
else
|
||
|
dev_consume_skb_any(buffer_info->skb);
|
||
|
buffer_info->skb = NULL;
|
||
|
}
|
||
|
buffer_info->time_stamp = 0;
|
||
|
}
|
||
|
|
||
|
static void e1000_print_hw_hang(struct work_struct *work)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = container_of(work,
|
||
|
struct e1000_adapter,
|
||
|
print_hang_task);
|
||
|
struct net_device *netdev = adapter->netdev;
|
||
|
struct e1000_ring *tx_ring = adapter->tx_ring;
|
||
|
unsigned int i = tx_ring->next_to_clean;
|
||
|
unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
|
||
|
struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
u16 phy_status, phy_1000t_status, phy_ext_status;
|
||
|
u16 pci_status;
|
||
|
|
||
|
if (test_bit(__E1000_DOWN, &adapter->state))
|
||
|
return;
|
||
|
|
||
|
if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
|
||
|
/* May be block on write-back, flush and detect again
|
||
|
* flush pending descriptor writebacks to memory
|
||
|
*/
|
||
|
ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
|
||
|
/* execute the writes immediately */
|
||
|
e1e_flush();
|
||
|
/* Due to rare timing issues, write to TIDV again to ensure
|
||
|
* the write is successful
|
||
|
*/
|
||
|
ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
|
||
|
/* execute the writes immediately */
|
||
|
e1e_flush();
|
||
|
adapter->tx_hang_recheck = true;
|
||
|
return;
|
||
|
}
|
||
|
adapter->tx_hang_recheck = false;
|
||
|
|
||
|
if (er32(TDH(0)) == er32(TDT(0))) {
|
||
|
e_dbg("false hang detected, ignoring\n");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* Real hang detected */
|
||
|
netif_stop_queue(netdev);
|
||
|
|
||
|
e1e_rphy(hw, MII_BMSR, &phy_status);
|
||
|
e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
|
||
|
e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
|
||
|
|
||
|
pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
|
||
|
|
||
|
/* detected Hardware unit hang */
|
||
|
e_err("Detected Hardware Unit Hang:\n"
|
||
|
" TDH <%x>\n"
|
||
|
" TDT <%x>\n"
|
||
|
" next_to_use <%x>\n"
|
||
|
" next_to_clean <%x>\n"
|
||
|
"buffer_info[next_to_clean]:\n"
|
||
|
" time_stamp <%lx>\n"
|
||
|
" next_to_watch <%x>\n"
|
||
|
" jiffies <%lx>\n"
|
||
|
" next_to_watch.status <%x>\n"
|
||
|
"MAC Status <%x>\n"
|
||
|
"PHY Status <%x>\n"
|
||
|
"PHY 1000BASE-T Status <%x>\n"
|
||
|
"PHY Extended Status <%x>\n"
|
||
|
"PCI Status <%x>\n",
|
||
|
readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
|
||
|
tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
|
||
|
eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
|
||
|
phy_status, phy_1000t_status, phy_ext_status, pci_status);
|
||
|
|
||
|
e1000e_dump(adapter);
|
||
|
|
||
|
/* Suggest workaround for known h/w issue */
|
||
|
if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
|
||
|
e_err("Try turning off Tx pause (flow control) via ethtool\n");
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_tx_hwtstamp_work - check for Tx time stamp
|
||
|
* @work: pointer to work struct
|
||
|
*
|
||
|
* This work function polls the TSYNCTXCTL valid bit to determine when a
|
||
|
* timestamp has been taken for the current stored skb. The timestamp must
|
||
|
* be for this skb because only one such packet is allowed in the queue.
|
||
|
*/
|
||
|
static void e1000e_tx_hwtstamp_work(struct work_struct *work)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
|
||
|
tx_hwtstamp_work);
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
|
||
|
if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
|
||
|
struct sk_buff *skb = adapter->tx_hwtstamp_skb;
|
||
|
struct skb_shared_hwtstamps shhwtstamps;
|
||
|
u64 txstmp;
|
||
|
|
||
|
txstmp = er32(TXSTMPL);
|
||
|
txstmp |= (u64)er32(TXSTMPH) << 32;
|
||
|
|
||
|
e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
|
||
|
|
||
|
/* Clear the global tx_hwtstamp_skb pointer and force writes
|
||
|
* prior to notifying the stack of a Tx timestamp.
|
||
|
*/
|
||
|
adapter->tx_hwtstamp_skb = NULL;
|
||
|
wmb(); /* force write prior to skb_tstamp_tx */
|
||
|
|
||
|
skb_tstamp_tx(skb, &shhwtstamps);
|
||
|
dev_consume_skb_any(skb);
|
||
|
} else if (time_after(jiffies, adapter->tx_hwtstamp_start
|
||
|
+ adapter->tx_timeout_factor * HZ)) {
|
||
|
dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
|
||
|
adapter->tx_hwtstamp_skb = NULL;
|
||
|
adapter->tx_hwtstamp_timeouts++;
|
||
|
e_warn("clearing Tx timestamp hang\n");
|
||
|
} else {
|
||
|
/* reschedule to check later */
|
||
|
schedule_work(&adapter->tx_hwtstamp_work);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_clean_tx_irq - Reclaim resources after transmit completes
|
||
|
* @tx_ring: Tx descriptor ring
|
||
|
*
|
||
|
* the return value indicates whether actual cleaning was done, there
|
||
|
* is no guarantee that everything was cleaned
|
||
|
**/
|
||
|
static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = tx_ring->adapter;
|
||
|
struct net_device *netdev = adapter->netdev;
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
struct e1000_tx_desc *tx_desc, *eop_desc;
|
||
|
struct e1000_buffer *buffer_info;
|
||
|
unsigned int i, eop;
|
||
|
unsigned int count = 0;
|
||
|
unsigned int total_tx_bytes = 0, total_tx_packets = 0;
|
||
|
unsigned int bytes_compl = 0, pkts_compl = 0;
|
||
|
|
||
|
i = tx_ring->next_to_clean;
|
||
|
eop = tx_ring->buffer_info[i].next_to_watch;
|
||
|
eop_desc = E1000_TX_DESC(*tx_ring, eop);
|
||
|
|
||
|
while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
|
||
|
(count < tx_ring->count)) {
|
||
|
bool cleaned = false;
|
||
|
|
||
|
dma_rmb(); /* read buffer_info after eop_desc */
|
||
|
for (; !cleaned; count++) {
|
||
|
tx_desc = E1000_TX_DESC(*tx_ring, i);
|
||
|
buffer_info = &tx_ring->buffer_info[i];
|
||
|
cleaned = (i == eop);
|
||
|
|
||
|
if (cleaned) {
|
||
|
total_tx_packets += buffer_info->segs;
|
||
|
total_tx_bytes += buffer_info->bytecount;
|
||
|
if (buffer_info->skb) {
|
||
|
bytes_compl += buffer_info->skb->len;
|
||
|
pkts_compl++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
e1000_put_txbuf(tx_ring, buffer_info, false);
|
||
|
tx_desc->upper.data = 0;
|
||
|
|
||
|
i++;
|
||
|
if (i == tx_ring->count)
|
||
|
i = 0;
|
||
|
}
|
||
|
|
||
|
if (i == tx_ring->next_to_use)
|
||
|
break;
|
||
|
eop = tx_ring->buffer_info[i].next_to_watch;
|
||
|
eop_desc = E1000_TX_DESC(*tx_ring, eop);
|
||
|
}
|
||
|
|
||
|
tx_ring->next_to_clean = i;
|
||
|
|
||
|
netdev_completed_queue(netdev, pkts_compl, bytes_compl);
|
||
|
|
||
|
#define TX_WAKE_THRESHOLD 32
|
||
|
if (count && netif_carrier_ok(netdev) &&
|
||
|
e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
|
||
|
/* Make sure that anybody stopping the queue after this
|
||
|
* sees the new next_to_clean.
|
||
|
*/
|
||
|
smp_mb();
|
||
|
|
||
|
if (netif_queue_stopped(netdev) &&
|
||
|
!(test_bit(__E1000_DOWN, &adapter->state))) {
|
||
|
netif_wake_queue(netdev);
|
||
|
++adapter->restart_queue;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (adapter->detect_tx_hung) {
|
||
|
/* Detect a transmit hang in hardware, this serializes the
|
||
|
* check with the clearing of time_stamp and movement of i
|
||
|
*/
|
||
|
adapter->detect_tx_hung = false;
|
||
|
if (tx_ring->buffer_info[i].time_stamp &&
|
||
|
time_after(jiffies, tx_ring->buffer_info[i].time_stamp
|
||
|
+ (adapter->tx_timeout_factor * HZ)) &&
|
||
|
!(er32(STATUS) & E1000_STATUS_TXOFF))
|
||
|
schedule_work(&adapter->print_hang_task);
|
||
|
else
|
||
|
adapter->tx_hang_recheck = false;
|
||
|
}
|
||
|
adapter->total_tx_bytes += total_tx_bytes;
|
||
|
adapter->total_tx_packets += total_tx_packets;
|
||
|
return count < tx_ring->count;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
|
||
|
* @rx_ring: Rx descriptor ring
|
||
|
* @work_done: output parameter for indicating completed work
|
||
|
* @work_to_do: how many packets we can clean
|
||
|
*
|
||
|
* the return value indicates whether actual cleaning was done, there
|
||
|
* is no guarantee that everything was cleaned
|
||
|
**/
|
||
|
static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
|
||
|
int work_to_do)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = rx_ring->adapter;
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
|
||
|
struct net_device *netdev = adapter->netdev;
|
||
|
struct pci_dev *pdev = adapter->pdev;
|
||
|
struct e1000_buffer *buffer_info, *next_buffer;
|
||
|
struct e1000_ps_page *ps_page;
|
||
|
struct sk_buff *skb;
|
||
|
unsigned int i, j;
|
||
|
u32 length, staterr;
|
||
|
int cleaned_count = 0;
|
||
|
bool cleaned = false;
|
||
|
unsigned int total_rx_bytes = 0, total_rx_packets = 0;
|
||
|
|
||
|
i = rx_ring->next_to_clean;
|
||
|
rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
|
||
|
staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
|
||
|
buffer_info = &rx_ring->buffer_info[i];
|
||
|
|
||
|
while (staterr & E1000_RXD_STAT_DD) {
|
||
|
if (*work_done >= work_to_do)
|
||
|
break;
|
||
|
(*work_done)++;
|
||
|
skb = buffer_info->skb;
|
||
|
dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
|
||
|
|
||
|
/* in the packet split case this is header only */
|
||
|
prefetch(skb->data - NET_IP_ALIGN);
|
||
|
|
||
|
i++;
|
||
|
if (i == rx_ring->count)
|
||
|
i = 0;
|
||
|
next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
|
||
|
prefetch(next_rxd);
|
||
|
|
||
|
next_buffer = &rx_ring->buffer_info[i];
|
||
|
|
||
|
cleaned = true;
|
||
|
cleaned_count++;
|
||
|
dma_unmap_single(&pdev->dev, buffer_info->dma,
|
||
|
adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
|
||
|
buffer_info->dma = 0;
|
||
|
|
||
|
/* see !EOP comment in other Rx routine */
|
||
|
if (!(staterr & E1000_RXD_STAT_EOP))
|
||
|
adapter->flags2 |= FLAG2_IS_DISCARDING;
|
||
|
|
||
|
if (adapter->flags2 & FLAG2_IS_DISCARDING) {
|
||
|
e_dbg("Packet Split buffers didn't pick up the full packet\n");
|
||
|
dev_kfree_skb_irq(skb);
|
||
|
if (staterr & E1000_RXD_STAT_EOP)
|
||
|
adapter->flags2 &= ~FLAG2_IS_DISCARDING;
|
||
|
goto next_desc;
|
||
|
}
|
||
|
|
||
|
if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
|
||
|
!(netdev->features & NETIF_F_RXALL))) {
|
||
|
dev_kfree_skb_irq(skb);
|
||
|
goto next_desc;
|
||
|
}
|
||
|
|
||
|
length = le16_to_cpu(rx_desc->wb.middle.length0);
|
||
|
|
||
|
if (!length) {
|
||
|
e_dbg("Last part of the packet spanning multiple descriptors\n");
|
||
|
dev_kfree_skb_irq(skb);
|
||
|
goto next_desc;
|
||
|
}
|
||
|
|
||
|
/* Good Receive */
|
||
|
skb_put(skb, length);
|
||
|
|
||
|
{
|
||
|
/* this looks ugly, but it seems compiler issues make
|
||
|
* it more efficient than reusing j
|
||
|
*/
|
||
|
int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
|
||
|
|
||
|
/* page alloc/put takes too long and effects small
|
||
|
* packet throughput, so unsplit small packets and
|
||
|
* save the alloc/put
|
||
|
*/
|
||
|
if (l1 && (l1 <= copybreak) &&
|
||
|
((length + l1) <= adapter->rx_ps_bsize0)) {
|
||
|
ps_page = &buffer_info->ps_pages[0];
|
||
|
|
||
|
dma_sync_single_for_cpu(&pdev->dev,
|
||
|
ps_page->dma,
|
||
|
PAGE_SIZE,
|
||
|
DMA_FROM_DEVICE);
|
||
|
memcpy(skb_tail_pointer(skb),
|
||
|
page_address(ps_page->page), l1);
|
||
|
dma_sync_single_for_device(&pdev->dev,
|
||
|
ps_page->dma,
|
||
|
PAGE_SIZE,
|
||
|
DMA_FROM_DEVICE);
|
||
|
|
||
|
/* remove the CRC */
|
||
|
if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
|
||
|
if (!(netdev->features & NETIF_F_RXFCS))
|
||
|
l1 -= 4;
|
||
|
}
|
||
|
|
||
|
skb_put(skb, l1);
|
||
|
goto copydone;
|
||
|
} /* if */
|
||
|
}
|
||
|
|
||
|
for (j = 0; j < PS_PAGE_BUFFERS; j++) {
|
||
|
length = le16_to_cpu(rx_desc->wb.upper.length[j]);
|
||
|
if (!length)
|
||
|
break;
|
||
|
|
||
|
ps_page = &buffer_info->ps_pages[j];
|
||
|
dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
|
||
|
DMA_FROM_DEVICE);
|
||
|
ps_page->dma = 0;
|
||
|
skb_fill_page_desc(skb, j, ps_page->page, 0, length);
|
||
|
ps_page->page = NULL;
|
||
|
skb->len += length;
|
||
|
skb->data_len += length;
|
||
|
skb->truesize += PAGE_SIZE;
|
||
|
}
|
||
|
|
||
|
/* strip the ethernet crc, problem is we're using pages now so
|
||
|
* this whole operation can get a little cpu intensive
|
||
|
*/
|
||
|
if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
|
||
|
if (!(netdev->features & NETIF_F_RXFCS))
|
||
|
pskb_trim(skb, skb->len - 4);
|
||
|
}
|
||
|
|
||
|
copydone:
|
||
|
total_rx_bytes += skb->len;
|
||
|
total_rx_packets++;
|
||
|
|
||
|
e1000_rx_checksum(adapter, staterr, skb);
|
||
|
|
||
|
e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
|
||
|
|
||
|
if (rx_desc->wb.upper.header_status &
|
||
|
cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
|
||
|
adapter->rx_hdr_split++;
|
||
|
|
||
|
e1000_receive_skb(adapter, netdev, skb, staterr,
|
||
|
rx_desc->wb.middle.vlan);
|
||
|
|
||
|
next_desc:
|
||
|
rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
|
||
|
buffer_info->skb = NULL;
|
||
|
|
||
|
/* return some buffers to hardware, one at a time is too slow */
|
||
|
if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
|
||
|
adapter->alloc_rx_buf(rx_ring, cleaned_count,
|
||
|
GFP_ATOMIC);
|
||
|
cleaned_count = 0;
|
||
|
}
|
||
|
|
||
|
/* use prefetched values */
|
||
|
rx_desc = next_rxd;
|
||
|
buffer_info = next_buffer;
|
||
|
|
||
|
staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
|
||
|
}
|
||
|
rx_ring->next_to_clean = i;
|
||
|
|
||
|
cleaned_count = e1000_desc_unused(rx_ring);
|
||
|
if (cleaned_count)
|
||
|
adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
|
||
|
|
||
|
adapter->total_rx_bytes += total_rx_bytes;
|
||
|
adapter->total_rx_packets += total_rx_packets;
|
||
|
return cleaned;
|
||
|
}
|
||
|
|
||
|
static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
|
||
|
u16 length)
|
||
|
{
|
||
|
bi->page = NULL;
|
||
|
skb->len += length;
|
||
|
skb->data_len += length;
|
||
|
skb->truesize += PAGE_SIZE;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
|
||
|
* @rx_ring: Rx descriptor ring
|
||
|
* @work_done: output parameter for indicating completed work
|
||
|
* @work_to_do: how many packets we can clean
|
||
|
*
|
||
|
* the return value indicates whether actual cleaning was done, there
|
||
|
* is no guarantee that everything was cleaned
|
||
|
**/
|
||
|
static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
|
||
|
int work_to_do)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = rx_ring->adapter;
|
||
|
struct net_device *netdev = adapter->netdev;
|
||
|
struct pci_dev *pdev = adapter->pdev;
|
||
|
union e1000_rx_desc_extended *rx_desc, *next_rxd;
|
||
|
struct e1000_buffer *buffer_info, *next_buffer;
|
||
|
u32 length, staterr;
|
||
|
unsigned int i;
|
||
|
int cleaned_count = 0;
|
||
|
bool cleaned = false;
|
||
|
unsigned int total_rx_bytes = 0, total_rx_packets = 0;
|
||
|
struct skb_shared_info *shinfo;
|
||
|
|
||
|
i = rx_ring->next_to_clean;
|
||
|
rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
|
||
|
staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
|
||
|
buffer_info = &rx_ring->buffer_info[i];
|
||
|
|
||
|
while (staterr & E1000_RXD_STAT_DD) {
|
||
|
struct sk_buff *skb;
|
||
|
|
||
|
if (*work_done >= work_to_do)
|
||
|
break;
|
||
|
(*work_done)++;
|
||
|
dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
|
||
|
|
||
|
skb = buffer_info->skb;
|
||
|
buffer_info->skb = NULL;
|
||
|
|
||
|
++i;
|
||
|
if (i == rx_ring->count)
|
||
|
i = 0;
|
||
|
next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
|
||
|
prefetch(next_rxd);
|
||
|
|
||
|
next_buffer = &rx_ring->buffer_info[i];
|
||
|
|
||
|
cleaned = true;
|
||
|
cleaned_count++;
|
||
|
dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
|
||
|
DMA_FROM_DEVICE);
|
||
|
buffer_info->dma = 0;
|
||
|
|
||
|
length = le16_to_cpu(rx_desc->wb.upper.length);
|
||
|
|
||
|
/* errors is only valid for DD + EOP descriptors */
|
||
|
if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
|
||
|
((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
|
||
|
!(netdev->features & NETIF_F_RXALL)))) {
|
||
|
/* recycle both page and skb */
|
||
|
buffer_info->skb = skb;
|
||
|
/* an error means any chain goes out the window too */
|
||
|
if (rx_ring->rx_skb_top)
|
||
|
dev_kfree_skb_irq(rx_ring->rx_skb_top);
|
||
|
rx_ring->rx_skb_top = NULL;
|
||
|
goto next_desc;
|
||
|
}
|
||
|
#define rxtop (rx_ring->rx_skb_top)
|
||
|
if (!(staterr & E1000_RXD_STAT_EOP)) {
|
||
|
/* this descriptor is only the beginning (or middle) */
|
||
|
if (!rxtop) {
|
||
|
/* this is the beginning of a chain */
|
||
|
rxtop = skb;
|
||
|
skb_fill_page_desc(rxtop, 0, buffer_info->page,
|
||
|
0, length);
|
||
|
} else {
|
||
|
/* this is the middle of a chain */
|
||
|
shinfo = skb_shinfo(rxtop);
|
||
|
skb_fill_page_desc(rxtop, shinfo->nr_frags,
|
||
|
buffer_info->page, 0,
|
||
|
length);
|
||
|
/* re-use the skb, only consumed the page */
|
||
|
buffer_info->skb = skb;
|
||
|
}
|
||
|
e1000_consume_page(buffer_info, rxtop, length);
|
||
|
goto next_desc;
|
||
|
} else {
|
||
|
if (rxtop) {
|
||
|
/* end of the chain */
|
||
|
shinfo = skb_shinfo(rxtop);
|
||
|
skb_fill_page_desc(rxtop, shinfo->nr_frags,
|
||
|
buffer_info->page, 0,
|
||
|
length);
|
||
|
/* re-use the current skb, we only consumed the
|
||
|
* page
|
||
|
*/
|
||
|
buffer_info->skb = skb;
|
||
|
skb = rxtop;
|
||
|
rxtop = NULL;
|
||
|
e1000_consume_page(buffer_info, skb, length);
|
||
|
} else {
|
||
|
/* no chain, got EOP, this buf is the packet
|
||
|
* copybreak to save the put_page/alloc_page
|
||
|
*/
|
||
|
if (length <= copybreak &&
|
||
|
skb_tailroom(skb) >= length) {
|
||
|
memcpy(skb_tail_pointer(skb),
|
||
|
page_address(buffer_info->page),
|
||
|
length);
|
||
|
/* re-use the page, so don't erase
|
||
|
* buffer_info->page
|
||
|
*/
|
||
|
skb_put(skb, length);
|
||
|
} else {
|
||
|
skb_fill_page_desc(skb, 0,
|
||
|
buffer_info->page, 0,
|
||
|
length);
|
||
|
e1000_consume_page(buffer_info, skb,
|
||
|
length);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Receive Checksum Offload */
|
||
|
e1000_rx_checksum(adapter, staterr, skb);
|
||
|
|
||
|
e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
|
||
|
|
||
|
/* probably a little skewed due to removing CRC */
|
||
|
total_rx_bytes += skb->len;
|
||
|
total_rx_packets++;
|
||
|
|
||
|
/* eth type trans needs skb->data to point to something */
|
||
|
if (!pskb_may_pull(skb, ETH_HLEN)) {
|
||
|
e_err("pskb_may_pull failed.\n");
|
||
|
dev_kfree_skb_irq(skb);
|
||
|
goto next_desc;
|
||
|
}
|
||
|
|
||
|
e1000_receive_skb(adapter, netdev, skb, staterr,
|
||
|
rx_desc->wb.upper.vlan);
|
||
|
|
||
|
next_desc:
|
||
|
rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
|
||
|
|
||
|
/* return some buffers to hardware, one at a time is too slow */
|
||
|
if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
|
||
|
adapter->alloc_rx_buf(rx_ring, cleaned_count,
|
||
|
GFP_ATOMIC);
|
||
|
cleaned_count = 0;
|
||
|
}
|
||
|
|
||
|
/* use prefetched values */
|
||
|
rx_desc = next_rxd;
|
||
|
buffer_info = next_buffer;
|
||
|
|
||
|
staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
|
||
|
}
|
||
|
rx_ring->next_to_clean = i;
|
||
|
|
||
|
cleaned_count = e1000_desc_unused(rx_ring);
|
||
|
if (cleaned_count)
|
||
|
adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
|
||
|
|
||
|
adapter->total_rx_bytes += total_rx_bytes;
|
||
|
adapter->total_rx_packets += total_rx_packets;
|
||
|
return cleaned;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_clean_rx_ring - Free Rx Buffers per Queue
|
||
|
* @rx_ring: Rx descriptor ring
|
||
|
**/
|
||
|
static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = rx_ring->adapter;
|
||
|
struct e1000_buffer *buffer_info;
|
||
|
struct e1000_ps_page *ps_page;
|
||
|
struct pci_dev *pdev = adapter->pdev;
|
||
|
unsigned int i, j;
|
||
|
|
||
|
/* Free all the Rx ring sk_buffs */
|
||
|
for (i = 0; i < rx_ring->count; i++) {
|
||
|
buffer_info = &rx_ring->buffer_info[i];
|
||
|
if (buffer_info->dma) {
|
||
|
if (adapter->clean_rx == e1000_clean_rx_irq)
|
||
|
dma_unmap_single(&pdev->dev, buffer_info->dma,
|
||
|
adapter->rx_buffer_len,
|
||
|
DMA_FROM_DEVICE);
|
||
|
else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
|
||
|
dma_unmap_page(&pdev->dev, buffer_info->dma,
|
||
|
PAGE_SIZE, DMA_FROM_DEVICE);
|
||
|
else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
|
||
|
dma_unmap_single(&pdev->dev, buffer_info->dma,
|
||
|
adapter->rx_ps_bsize0,
|
||
|
DMA_FROM_DEVICE);
|
||
|
buffer_info->dma = 0;
|
||
|
}
|
||
|
|
||
|
if (buffer_info->page) {
|
||
|
put_page(buffer_info->page);
|
||
|
buffer_info->page = NULL;
|
||
|
}
|
||
|
|
||
|
if (buffer_info->skb) {
|
||
|
dev_kfree_skb(buffer_info->skb);
|
||
|
buffer_info->skb = NULL;
|
||
|
}
|
||
|
|
||
|
for (j = 0; j < PS_PAGE_BUFFERS; j++) {
|
||
|
ps_page = &buffer_info->ps_pages[j];
|
||
|
if (!ps_page->page)
|
||
|
break;
|
||
|
dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
|
||
|
DMA_FROM_DEVICE);
|
||
|
ps_page->dma = 0;
|
||
|
put_page(ps_page->page);
|
||
|
ps_page->page = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* there also may be some cached data from a chained receive */
|
||
|
if (rx_ring->rx_skb_top) {
|
||
|
dev_kfree_skb(rx_ring->rx_skb_top);
|
||
|
rx_ring->rx_skb_top = NULL;
|
||
|
}
|
||
|
|
||
|
/* Zero out the descriptor ring */
|
||
|
memset(rx_ring->desc, 0, rx_ring->size);
|
||
|
|
||
|
rx_ring->next_to_clean = 0;
|
||
|
rx_ring->next_to_use = 0;
|
||
|
adapter->flags2 &= ~FLAG2_IS_DISCARDING;
|
||
|
}
|
||
|
|
||
|
static void e1000e_downshift_workaround(struct work_struct *work)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = container_of(work,
|
||
|
struct e1000_adapter,
|
||
|
downshift_task);
|
||
|
|
||
|
if (test_bit(__E1000_DOWN, &adapter->state))
|
||
|
return;
|
||
|
|
||
|
e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_intr_msi - Interrupt Handler
|
||
|
* @irq: interrupt number
|
||
|
* @data: pointer to a network interface device structure
|
||
|
**/
|
||
|
static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
|
||
|
{
|
||
|
struct net_device *netdev = data;
|
||
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
u32 icr = er32(ICR);
|
||
|
|
||
|
/* read ICR disables interrupts using IAM */
|
||
|
if (icr & E1000_ICR_LSC) {
|
||
|
hw->mac.get_link_status = true;
|
||
|
/* ICH8 workaround-- Call gig speed drop workaround on cable
|
||
|
* disconnect (LSC) before accessing any PHY registers
|
||
|
*/
|
||
|
if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
|
||
|
(!(er32(STATUS) & E1000_STATUS_LU)))
|
||
|
schedule_work(&adapter->downshift_task);
|
||
|
|
||
|
/* 80003ES2LAN workaround-- For packet buffer work-around on
|
||
|
* link down event; disable receives here in the ISR and reset
|
||
|
* adapter in watchdog
|
||
|
*/
|
||
|
if (netif_carrier_ok(netdev) &&
|
||
|
adapter->flags & FLAG_RX_NEEDS_RESTART) {
|
||
|
/* disable receives */
|
||
|
u32 rctl = er32(RCTL);
|
||
|
|
||
|
ew32(RCTL, rctl & ~E1000_RCTL_EN);
|
||
|
adapter->flags |= FLAG_RESTART_NOW;
|
||
|
}
|
||
|
/* guard against interrupt when we're going down */
|
||
|
if (!test_bit(__E1000_DOWN, &adapter->state))
|
||
|
mod_timer(&adapter->watchdog_timer, jiffies + 1);
|
||
|
}
|
||
|
|
||
|
/* Reset on uncorrectable ECC error */
|
||
|
if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
|
||
|
u32 pbeccsts = er32(PBECCSTS);
|
||
|
|
||
|
adapter->corr_errors +=
|
||
|
pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
|
||
|
adapter->uncorr_errors +=
|
||
|
(pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
|
||
|
E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
|
||
|
|
||
|
/* Do the reset outside of interrupt context */
|
||
|
schedule_work(&adapter->reset_task);
|
||
|
|
||
|
/* return immediately since reset is imminent */
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
if (napi_schedule_prep(&adapter->napi)) {
|
||
|
adapter->total_tx_bytes = 0;
|
||
|
adapter->total_tx_packets = 0;
|
||
|
adapter->total_rx_bytes = 0;
|
||
|
adapter->total_rx_packets = 0;
|
||
|
__napi_schedule(&adapter->napi);
|
||
|
}
|
||
|
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_intr - Interrupt Handler
|
||
|
* @irq: interrupt number
|
||
|
* @data: pointer to a network interface device structure
|
||
|
**/
|
||
|
static irqreturn_t e1000_intr(int __always_unused irq, void *data)
|
||
|
{
|
||
|
struct net_device *netdev = data;
|
||
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
u32 rctl, icr = er32(ICR);
|
||
|
|
||
|
if (!icr || test_bit(__E1000_DOWN, &adapter->state))
|
||
|
return IRQ_NONE; /* Not our interrupt */
|
||
|
|
||
|
/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
|
||
|
* not set, then the adapter didn't send an interrupt
|
||
|
*/
|
||
|
if (!(icr & E1000_ICR_INT_ASSERTED))
|
||
|
return IRQ_NONE;
|
||
|
|
||
|
/* Interrupt Auto-Mask...upon reading ICR,
|
||
|
* interrupts are masked. No need for the
|
||
|
* IMC write
|
||
|
*/
|
||
|
|
||
|
if (icr & E1000_ICR_LSC) {
|
||
|
hw->mac.get_link_status = true;
|
||
|
/* ICH8 workaround-- Call gig speed drop workaround on cable
|
||
|
* disconnect (LSC) before accessing any PHY registers
|
||
|
*/
|
||
|
if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
|
||
|
(!(er32(STATUS) & E1000_STATUS_LU)))
|
||
|
schedule_work(&adapter->downshift_task);
|
||
|
|
||
|
/* 80003ES2LAN workaround--
|
||
|
* For packet buffer work-around on link down event;
|
||
|
* disable receives here in the ISR and
|
||
|
* reset adapter in watchdog
|
||
|
*/
|
||
|
if (netif_carrier_ok(netdev) &&
|
||
|
(adapter->flags & FLAG_RX_NEEDS_RESTART)) {
|
||
|
/* disable receives */
|
||
|
rctl = er32(RCTL);
|
||
|
ew32(RCTL, rctl & ~E1000_RCTL_EN);
|
||
|
adapter->flags |= FLAG_RESTART_NOW;
|
||
|
}
|
||
|
/* guard against interrupt when we're going down */
|
||
|
if (!test_bit(__E1000_DOWN, &adapter->state))
|
||
|
mod_timer(&adapter->watchdog_timer, jiffies + 1);
|
||
|
}
|
||
|
|
||
|
/* Reset on uncorrectable ECC error */
|
||
|
if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
|
||
|
u32 pbeccsts = er32(PBECCSTS);
|
||
|
|
||
|
adapter->corr_errors +=
|
||
|
pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
|
||
|
adapter->uncorr_errors +=
|
||
|
(pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
|
||
|
E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
|
||
|
|
||
|
/* Do the reset outside of interrupt context */
|
||
|
schedule_work(&adapter->reset_task);
|
||
|
|
||
|
/* return immediately since reset is imminent */
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
if (napi_schedule_prep(&adapter->napi)) {
|
||
|
adapter->total_tx_bytes = 0;
|
||
|
adapter->total_tx_packets = 0;
|
||
|
adapter->total_rx_bytes = 0;
|
||
|
adapter->total_rx_packets = 0;
|
||
|
__napi_schedule(&adapter->napi);
|
||
|
}
|
||
|
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
|
||
|
{
|
||
|
struct net_device *netdev = data;
|
||
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
u32 icr = er32(ICR);
|
||
|
|
||
|
if (icr & adapter->eiac_mask)
|
||
|
ew32(ICS, (icr & adapter->eiac_mask));
|
||
|
|
||
|
if (icr & E1000_ICR_LSC) {
|
||
|
hw->mac.get_link_status = true;
|
||
|
/* guard against interrupt when we're going down */
|
||
|
if (!test_bit(__E1000_DOWN, &adapter->state))
|
||
|
mod_timer(&adapter->watchdog_timer, jiffies + 1);
|
||
|
}
|
||
|
|
||
|
if (!test_bit(__E1000_DOWN, &adapter->state))
|
||
|
ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
|
||
|
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
|
||
|
{
|
||
|
struct net_device *netdev = data;
|
||
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
struct e1000_ring *tx_ring = adapter->tx_ring;
|
||
|
|
||
|
adapter->total_tx_bytes = 0;
|
||
|
adapter->total_tx_packets = 0;
|
||
|
|
||
|
if (!e1000_clean_tx_irq(tx_ring))
|
||
|
/* Ring was not completely cleaned, so fire another interrupt */
|
||
|
ew32(ICS, tx_ring->ims_val);
|
||
|
|
||
|
if (!test_bit(__E1000_DOWN, &adapter->state))
|
||
|
ew32(IMS, adapter->tx_ring->ims_val);
|
||
|
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
|
||
|
{
|
||
|
struct net_device *netdev = data;
|
||
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
||
|
struct e1000_ring *rx_ring = adapter->rx_ring;
|
||
|
|
||
|
/* Write the ITR value calculated at the end of the
|
||
|
* previous interrupt.
|
||
|
*/
|
||
|
if (rx_ring->set_itr) {
|
||
|
u32 itr = rx_ring->itr_val ?
|
||
|
1000000000 / (rx_ring->itr_val * 256) : 0;
|
||
|
|
||
|
writel(itr, rx_ring->itr_register);
|
||
|
rx_ring->set_itr = 0;
|
||
|
}
|
||
|
|
||
|
if (napi_schedule_prep(&adapter->napi)) {
|
||
|
adapter->total_rx_bytes = 0;
|
||
|
adapter->total_rx_packets = 0;
|
||
|
__napi_schedule(&adapter->napi);
|
||
|
}
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_configure_msix - Configure MSI-X hardware
|
||
|
* @adapter: board private structure
|
||
|
*
|
||
|
* e1000_configure_msix sets up the hardware to properly
|
||
|
* generate MSI-X interrupts.
|
||
|
**/
|
||
|
static void e1000_configure_msix(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
struct e1000_ring *rx_ring = adapter->rx_ring;
|
||
|
struct e1000_ring *tx_ring = adapter->tx_ring;
|
||
|
int vector = 0;
|
||
|
u32 ctrl_ext, ivar = 0;
|
||
|
|
||
|
adapter->eiac_mask = 0;
|
||
|
|
||
|
/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
|
||
|
if (hw->mac.type == e1000_82574) {
|
||
|
u32 rfctl = er32(RFCTL);
|
||
|
|
||
|
rfctl |= E1000_RFCTL_ACK_DIS;
|
||
|
ew32(RFCTL, rfctl);
|
||
|
}
|
||
|
|
||
|
/* Configure Rx vector */
|
||
|
rx_ring->ims_val = E1000_IMS_RXQ0;
|
||
|
adapter->eiac_mask |= rx_ring->ims_val;
|
||
|
if (rx_ring->itr_val)
|
||
|
writel(1000000000 / (rx_ring->itr_val * 256),
|
||
|
rx_ring->itr_register);
|
||
|
else
|
||
|
writel(1, rx_ring->itr_register);
|
||
|
ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
|
||
|
|
||
|
/* Configure Tx vector */
|
||
|
tx_ring->ims_val = E1000_IMS_TXQ0;
|
||
|
vector++;
|
||
|
if (tx_ring->itr_val)
|
||
|
writel(1000000000 / (tx_ring->itr_val * 256),
|
||
|
tx_ring->itr_register);
|
||
|
else
|
||
|
writel(1, tx_ring->itr_register);
|
||
|
adapter->eiac_mask |= tx_ring->ims_val;
|
||
|
ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
|
||
|
|
||
|
/* set vector for Other Causes, e.g. link changes */
|
||
|
vector++;
|
||
|
ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
|
||
|
if (rx_ring->itr_val)
|
||
|
writel(1000000000 / (rx_ring->itr_val * 256),
|
||
|
hw->hw_addr + E1000_EITR_82574(vector));
|
||
|
else
|
||
|
writel(1, hw->hw_addr + E1000_EITR_82574(vector));
|
||
|
|
||
|
/* Cause Tx interrupts on every write back */
|
||
|
ivar |= BIT(31);
|
||
|
|
||
|
ew32(IVAR, ivar);
|
||
|
|
||
|
/* enable MSI-X PBA support */
|
||
|
ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
|
||
|
ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
|
||
|
ew32(CTRL_EXT, ctrl_ext);
|
||
|
e1e_flush();
|
||
|
}
|
||
|
|
||
|
void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
if (adapter->msix_entries) {
|
||
|
pci_disable_msix(adapter->pdev);
|
||
|
kfree(adapter->msix_entries);
|
||
|
adapter->msix_entries = NULL;
|
||
|
} else if (adapter->flags & FLAG_MSI_ENABLED) {
|
||
|
pci_disable_msi(adapter->pdev);
|
||
|
adapter->flags &= ~FLAG_MSI_ENABLED;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_set_interrupt_capability - set MSI or MSI-X if supported
|
||
|
* @adapter: board private structure
|
||
|
*
|
||
|
* Attempt to configure interrupts using the best available
|
||
|
* capabilities of the hardware and kernel.
|
||
|
**/
|
||
|
void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
int err;
|
||
|
int i;
|
||
|
|
||
|
switch (adapter->int_mode) {
|
||
|
case E1000E_INT_MODE_MSIX:
|
||
|
if (adapter->flags & FLAG_HAS_MSIX) {
|
||
|
adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
|
||
|
adapter->msix_entries = kcalloc(adapter->num_vectors,
|
||
|
sizeof(struct
|
||
|
msix_entry),
|
||
|
GFP_KERNEL);
|
||
|
if (adapter->msix_entries) {
|
||
|
struct e1000_adapter *a = adapter;
|
||
|
|
||
|
for (i = 0; i < adapter->num_vectors; i++)
|
||
|
adapter->msix_entries[i].entry = i;
|
||
|
|
||
|
err = pci_enable_msix_range(a->pdev,
|
||
|
a->msix_entries,
|
||
|
a->num_vectors,
|
||
|
a->num_vectors);
|
||
|
if (err > 0)
|
||
|
return;
|
||
|
}
|
||
|
/* MSI-X failed, so fall through and try MSI */
|
||
|
e_err("Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n");
|
||
|
e1000e_reset_interrupt_capability(adapter);
|
||
|
}
|
||
|
adapter->int_mode = E1000E_INT_MODE_MSI;
|
||
|
fallthrough;
|
||
|
case E1000E_INT_MODE_MSI:
|
||
|
if (!pci_enable_msi(adapter->pdev)) {
|
||
|
adapter->flags |= FLAG_MSI_ENABLED;
|
||
|
} else {
|
||
|
adapter->int_mode = E1000E_INT_MODE_LEGACY;
|
||
|
e_err("Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n");
|
||
|
}
|
||
|
fallthrough;
|
||
|
case E1000E_INT_MODE_LEGACY:
|
||
|
/* Don't do anything; this is the system default */
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* store the number of vectors being used */
|
||
|
adapter->num_vectors = 1;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_request_msix - Initialize MSI-X interrupts
|
||
|
* @adapter: board private structure
|
||
|
*
|
||
|
* e1000_request_msix allocates MSI-X vectors and requests interrupts from the
|
||
|
* kernel.
|
||
|
**/
|
||
|
static int e1000_request_msix(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
struct net_device *netdev = adapter->netdev;
|
||
|
int err = 0, vector = 0;
|
||
|
|
||
|
if (strlen(netdev->name) < (IFNAMSIZ - 5))
|
||
|
snprintf(adapter->rx_ring->name,
|
||
|
sizeof(adapter->rx_ring->name) - 1,
|
||
|
"%.14s-rx-0", netdev->name);
|
||
|
else
|
||
|
memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
|
||
|
err = request_irq(adapter->msix_entries[vector].vector,
|
||
|
e1000_intr_msix_rx, 0, adapter->rx_ring->name,
|
||
|
netdev);
|
||
|
if (err)
|
||
|
return err;
|
||
|
adapter->rx_ring->itr_register = adapter->hw.hw_addr +
|
||
|
E1000_EITR_82574(vector);
|
||
|
adapter->rx_ring->itr_val = adapter->itr;
|
||
|
vector++;
|
||
|
|
||
|
if (strlen(netdev->name) < (IFNAMSIZ - 5))
|
||
|
snprintf(adapter->tx_ring->name,
|
||
|
sizeof(adapter->tx_ring->name) - 1,
|
||
|
"%.14s-tx-0", netdev->name);
|
||
|
else
|
||
|
memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
|
||
|
err = request_irq(adapter->msix_entries[vector].vector,
|
||
|
e1000_intr_msix_tx, 0, adapter->tx_ring->name,
|
||
|
netdev);
|
||
|
if (err)
|
||
|
return err;
|
||
|
adapter->tx_ring->itr_register = adapter->hw.hw_addr +
|
||
|
E1000_EITR_82574(vector);
|
||
|
adapter->tx_ring->itr_val = adapter->itr;
|
||
|
vector++;
|
||
|
|
||
|
err = request_irq(adapter->msix_entries[vector].vector,
|
||
|
e1000_msix_other, 0, netdev->name, netdev);
|
||
|
if (err)
|
||
|
return err;
|
||
|
|
||
|
e1000_configure_msix(adapter);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_request_irq - initialize interrupts
|
||
|
* @adapter: board private structure
|
||
|
*
|
||
|
* Attempts to configure interrupts using the best available
|
||
|
* capabilities of the hardware and kernel.
|
||
|
**/
|
||
|
static int e1000_request_irq(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
struct net_device *netdev = adapter->netdev;
|
||
|
int err;
|
||
|
|
||
|
if (adapter->msix_entries) {
|
||
|
err = e1000_request_msix(adapter);
|
||
|
if (!err)
|
||
|
return err;
|
||
|
/* fall back to MSI */
|
||
|
e1000e_reset_interrupt_capability(adapter);
|
||
|
adapter->int_mode = E1000E_INT_MODE_MSI;
|
||
|
e1000e_set_interrupt_capability(adapter);
|
||
|
}
|
||
|
if (adapter->flags & FLAG_MSI_ENABLED) {
|
||
|
err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
|
||
|
netdev->name, netdev);
|
||
|
if (!err)
|
||
|
return err;
|
||
|
|
||
|
/* fall back to legacy interrupt */
|
||
|
e1000e_reset_interrupt_capability(adapter);
|
||
|
adapter->int_mode = E1000E_INT_MODE_LEGACY;
|
||
|
}
|
||
|
|
||
|
err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
|
||
|
netdev->name, netdev);
|
||
|
if (err)
|
||
|
e_err("Unable to allocate interrupt, Error: %d\n", err);
|
||
|
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
static void e1000_free_irq(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
struct net_device *netdev = adapter->netdev;
|
||
|
|
||
|
if (adapter->msix_entries) {
|
||
|
int vector = 0;
|
||
|
|
||
|
free_irq(adapter->msix_entries[vector].vector, netdev);
|
||
|
vector++;
|
||
|
|
||
|
free_irq(adapter->msix_entries[vector].vector, netdev);
|
||
|
vector++;
|
||
|
|
||
|
/* Other Causes interrupt vector */
|
||
|
free_irq(adapter->msix_entries[vector].vector, netdev);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
free_irq(adapter->pdev->irq, netdev);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_irq_disable - Mask off interrupt generation on the NIC
|
||
|
* @adapter: board private structure
|
||
|
**/
|
||
|
static void e1000_irq_disable(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
|
||
|
ew32(IMC, ~0);
|
||
|
if (adapter->msix_entries)
|
||
|
ew32(EIAC_82574, 0);
|
||
|
e1e_flush();
|
||
|
|
||
|
if (adapter->msix_entries) {
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < adapter->num_vectors; i++)
|
||
|
synchronize_irq(adapter->msix_entries[i].vector);
|
||
|
} else {
|
||
|
synchronize_irq(adapter->pdev->irq);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_irq_enable - Enable default interrupt generation settings
|
||
|
* @adapter: board private structure
|
||
|
**/
|
||
|
static void e1000_irq_enable(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
|
||
|
if (adapter->msix_entries) {
|
||
|
ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
|
||
|
ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
|
||
|
IMS_OTHER_MASK);
|
||
|
} else if (hw->mac.type >= e1000_pch_lpt) {
|
||
|
ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
|
||
|
} else {
|
||
|
ew32(IMS, IMS_ENABLE_MASK);
|
||
|
}
|
||
|
e1e_flush();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_get_hw_control - get control of the h/w from f/w
|
||
|
* @adapter: address of board private structure
|
||
|
*
|
||
|
* e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
|
||
|
* For ASF and Pass Through versions of f/w this means that
|
||
|
* the driver is loaded. For AMT version (only with 82573)
|
||
|
* of the f/w this means that the network i/f is open.
|
||
|
**/
|
||
|
void e1000e_get_hw_control(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
u32 ctrl_ext;
|
||
|
u32 swsm;
|
||
|
|
||
|
/* Let firmware know the driver has taken over */
|
||
|
if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
|
||
|
swsm = er32(SWSM);
|
||
|
ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
|
||
|
} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
|
||
|
ctrl_ext = er32(CTRL_EXT);
|
||
|
ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_release_hw_control - release control of the h/w to f/w
|
||
|
* @adapter: address of board private structure
|
||
|
*
|
||
|
* e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
|
||
|
* For ASF and Pass Through versions of f/w this means that the
|
||
|
* driver is no longer loaded. For AMT version (only with 82573) i
|
||
|
* of the f/w this means that the network i/f is closed.
|
||
|
*
|
||
|
**/
|
||
|
void e1000e_release_hw_control(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
u32 ctrl_ext;
|
||
|
u32 swsm;
|
||
|
|
||
|
/* Let firmware taken over control of h/w */
|
||
|
if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
|
||
|
swsm = er32(SWSM);
|
||
|
ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
|
||
|
} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
|
||
|
ctrl_ext = er32(CTRL_EXT);
|
||
|
ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_alloc_ring_dma - allocate memory for a ring structure
|
||
|
* @adapter: board private structure
|
||
|
* @ring: ring struct for which to allocate dma
|
||
|
**/
|
||
|
static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
|
||
|
struct e1000_ring *ring)
|
||
|
{
|
||
|
struct pci_dev *pdev = adapter->pdev;
|
||
|
|
||
|
ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
|
||
|
GFP_KERNEL);
|
||
|
if (!ring->desc)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
|
||
|
* @tx_ring: Tx descriptor ring
|
||
|
*
|
||
|
* Return 0 on success, negative on failure
|
||
|
**/
|
||
|
int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = tx_ring->adapter;
|
||
|
int err = -ENOMEM, size;
|
||
|
|
||
|
size = sizeof(struct e1000_buffer) * tx_ring->count;
|
||
|
tx_ring->buffer_info = vzalloc(size);
|
||
|
if (!tx_ring->buffer_info)
|
||
|
goto err;
|
||
|
|
||
|
/* round up to nearest 4K */
|
||
|
tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
|
||
|
tx_ring->size = ALIGN(tx_ring->size, 4096);
|
||
|
|
||
|
err = e1000_alloc_ring_dma(adapter, tx_ring);
|
||
|
if (err)
|
||
|
goto err;
|
||
|
|
||
|
tx_ring->next_to_use = 0;
|
||
|
tx_ring->next_to_clean = 0;
|
||
|
|
||
|
return 0;
|
||
|
err:
|
||
|
vfree(tx_ring->buffer_info);
|
||
|
e_err("Unable to allocate memory for the transmit descriptor ring\n");
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
|
||
|
* @rx_ring: Rx descriptor ring
|
||
|
*
|
||
|
* Returns 0 on success, negative on failure
|
||
|
**/
|
||
|
int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = rx_ring->adapter;
|
||
|
struct e1000_buffer *buffer_info;
|
||
|
int i, size, desc_len, err = -ENOMEM;
|
||
|
|
||
|
size = sizeof(struct e1000_buffer) * rx_ring->count;
|
||
|
rx_ring->buffer_info = vzalloc(size);
|
||
|
if (!rx_ring->buffer_info)
|
||
|
goto err;
|
||
|
|
||
|
for (i = 0; i < rx_ring->count; i++) {
|
||
|
buffer_info = &rx_ring->buffer_info[i];
|
||
|
buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
|
||
|
sizeof(struct e1000_ps_page),
|
||
|
GFP_KERNEL);
|
||
|
if (!buffer_info->ps_pages)
|
||
|
goto err_pages;
|
||
|
}
|
||
|
|
||
|
desc_len = sizeof(union e1000_rx_desc_packet_split);
|
||
|
|
||
|
/* Round up to nearest 4K */
|
||
|
rx_ring->size = rx_ring->count * desc_len;
|
||
|
rx_ring->size = ALIGN(rx_ring->size, 4096);
|
||
|
|
||
|
err = e1000_alloc_ring_dma(adapter, rx_ring);
|
||
|
if (err)
|
||
|
goto err_pages;
|
||
|
|
||
|
rx_ring->next_to_clean = 0;
|
||
|
rx_ring->next_to_use = 0;
|
||
|
rx_ring->rx_skb_top = NULL;
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
err_pages:
|
||
|
for (i = 0; i < rx_ring->count; i++) {
|
||
|
buffer_info = &rx_ring->buffer_info[i];
|
||
|
kfree(buffer_info->ps_pages);
|
||
|
}
|
||
|
err:
|
||
|
vfree(rx_ring->buffer_info);
|
||
|
e_err("Unable to allocate memory for the receive descriptor ring\n");
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_clean_tx_ring - Free Tx Buffers
|
||
|
* @tx_ring: Tx descriptor ring
|
||
|
**/
|
||
|
static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = tx_ring->adapter;
|
||
|
struct e1000_buffer *buffer_info;
|
||
|
unsigned long size;
|
||
|
unsigned int i;
|
||
|
|
||
|
for (i = 0; i < tx_ring->count; i++) {
|
||
|
buffer_info = &tx_ring->buffer_info[i];
|
||
|
e1000_put_txbuf(tx_ring, buffer_info, false);
|
||
|
}
|
||
|
|
||
|
netdev_reset_queue(adapter->netdev);
|
||
|
size = sizeof(struct e1000_buffer) * tx_ring->count;
|
||
|
memset(tx_ring->buffer_info, 0, size);
|
||
|
|
||
|
memset(tx_ring->desc, 0, tx_ring->size);
|
||
|
|
||
|
tx_ring->next_to_use = 0;
|
||
|
tx_ring->next_to_clean = 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_free_tx_resources - Free Tx Resources per Queue
|
||
|
* @tx_ring: Tx descriptor ring
|
||
|
*
|
||
|
* Free all transmit software resources
|
||
|
**/
|
||
|
void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = tx_ring->adapter;
|
||
|
struct pci_dev *pdev = adapter->pdev;
|
||
|
|
||
|
e1000_clean_tx_ring(tx_ring);
|
||
|
|
||
|
vfree(tx_ring->buffer_info);
|
||
|
tx_ring->buffer_info = NULL;
|
||
|
|
||
|
dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
|
||
|
tx_ring->dma);
|
||
|
tx_ring->desc = NULL;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_free_rx_resources - Free Rx Resources
|
||
|
* @rx_ring: Rx descriptor ring
|
||
|
*
|
||
|
* Free all receive software resources
|
||
|
**/
|
||
|
void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = rx_ring->adapter;
|
||
|
struct pci_dev *pdev = adapter->pdev;
|
||
|
int i;
|
||
|
|
||
|
e1000_clean_rx_ring(rx_ring);
|
||
|
|
||
|
for (i = 0; i < rx_ring->count; i++)
|
||
|
kfree(rx_ring->buffer_info[i].ps_pages);
|
||
|
|
||
|
vfree(rx_ring->buffer_info);
|
||
|
rx_ring->buffer_info = NULL;
|
||
|
|
||
|
dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
|
||
|
rx_ring->dma);
|
||
|
rx_ring->desc = NULL;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_update_itr - update the dynamic ITR value based on statistics
|
||
|
* @itr_setting: current adapter->itr
|
||
|
* @packets: the number of packets during this measurement interval
|
||
|
* @bytes: the number of bytes during this measurement interval
|
||
|
*
|
||
|
* Stores a new ITR value based on packets and byte
|
||
|
* counts during the last interrupt. The advantage of per interrupt
|
||
|
* computation is faster updates and more accurate ITR for the current
|
||
|
* traffic pattern. Constants in this function were computed
|
||
|
* based on theoretical maximum wire speed and thresholds were set based
|
||
|
* on testing data as well as attempting to minimize response time
|
||
|
* while increasing bulk throughput. This functionality is controlled
|
||
|
* by the InterruptThrottleRate module parameter.
|
||
|
**/
|
||
|
static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
|
||
|
{
|
||
|
unsigned int retval = itr_setting;
|
||
|
|
||
|
if (packets == 0)
|
||
|
return itr_setting;
|
||
|
|
||
|
switch (itr_setting) {
|
||
|
case lowest_latency:
|
||
|
/* handle TSO and jumbo frames */
|
||
|
if (bytes / packets > 8000)
|
||
|
retval = bulk_latency;
|
||
|
else if ((packets < 5) && (bytes > 512))
|
||
|
retval = low_latency;
|
||
|
break;
|
||
|
case low_latency: /* 50 usec aka 20000 ints/s */
|
||
|
if (bytes > 10000) {
|
||
|
/* this if handles the TSO accounting */
|
||
|
if (bytes / packets > 8000)
|
||
|
retval = bulk_latency;
|
||
|
else if ((packets < 10) || ((bytes / packets) > 1200))
|
||
|
retval = bulk_latency;
|
||
|
else if ((packets > 35))
|
||
|
retval = lowest_latency;
|
||
|
} else if (bytes / packets > 2000) {
|
||
|
retval = bulk_latency;
|
||
|
} else if (packets <= 2 && bytes < 512) {
|
||
|
retval = lowest_latency;
|
||
|
}
|
||
|
break;
|
||
|
case bulk_latency: /* 250 usec aka 4000 ints/s */
|
||
|
if (bytes > 25000) {
|
||
|
if (packets > 35)
|
||
|
retval = low_latency;
|
||
|
} else if (bytes < 6000) {
|
||
|
retval = low_latency;
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
static void e1000_set_itr(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
u16 current_itr;
|
||
|
u32 new_itr = adapter->itr;
|
||
|
|
||
|
/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
|
||
|
if (adapter->link_speed != SPEED_1000) {
|
||
|
new_itr = 4000;
|
||
|
goto set_itr_now;
|
||
|
}
|
||
|
|
||
|
if (adapter->flags2 & FLAG2_DISABLE_AIM) {
|
||
|
new_itr = 0;
|
||
|
goto set_itr_now;
|
||
|
}
|
||
|
|
||
|
adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
|
||
|
adapter->total_tx_packets,
|
||
|
adapter->total_tx_bytes);
|
||
|
/* conservative mode (itr 3) eliminates the lowest_latency setting */
|
||
|
if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
|
||
|
adapter->tx_itr = low_latency;
|
||
|
|
||
|
adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
|
||
|
adapter->total_rx_packets,
|
||
|
adapter->total_rx_bytes);
|
||
|
/* conservative mode (itr 3) eliminates the lowest_latency setting */
|
||
|
if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
|
||
|
adapter->rx_itr = low_latency;
|
||
|
|
||
|
current_itr = max(adapter->rx_itr, adapter->tx_itr);
|
||
|
|
||
|
/* counts and packets in update_itr are dependent on these numbers */
|
||
|
switch (current_itr) {
|
||
|
case lowest_latency:
|
||
|
new_itr = 70000;
|
||
|
break;
|
||
|
case low_latency:
|
||
|
new_itr = 20000; /* aka hwitr = ~200 */
|
||
|
break;
|
||
|
case bulk_latency:
|
||
|
new_itr = 4000;
|
||
|
break;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
set_itr_now:
|
||
|
if (new_itr != adapter->itr) {
|
||
|
/* this attempts to bias the interrupt rate towards Bulk
|
||
|
* by adding intermediate steps when interrupt rate is
|
||
|
* increasing
|
||
|
*/
|
||
|
new_itr = new_itr > adapter->itr ?
|
||
|
min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
|
||
|
adapter->itr = new_itr;
|
||
|
adapter->rx_ring->itr_val = new_itr;
|
||
|
if (adapter->msix_entries)
|
||
|
adapter->rx_ring->set_itr = 1;
|
||
|
else
|
||
|
e1000e_write_itr(adapter, new_itr);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_write_itr - write the ITR value to the appropriate registers
|
||
|
* @adapter: address of board private structure
|
||
|
* @itr: new ITR value to program
|
||
|
*
|
||
|
* e1000e_write_itr determines if the adapter is in MSI-X mode
|
||
|
* and, if so, writes the EITR registers with the ITR value.
|
||
|
* Otherwise, it writes the ITR value into the ITR register.
|
||
|
**/
|
||
|
void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
|
||
|
{
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
|
||
|
|
||
|
if (adapter->msix_entries) {
|
||
|
int vector;
|
||
|
|
||
|
for (vector = 0; vector < adapter->num_vectors; vector++)
|
||
|
writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
|
||
|
} else {
|
||
|
ew32(ITR, new_itr);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_alloc_queues - Allocate memory for all rings
|
||
|
* @adapter: board private structure to initialize
|
||
|
**/
|
||
|
static int e1000_alloc_queues(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
int size = sizeof(struct e1000_ring);
|
||
|
|
||
|
adapter->tx_ring = kzalloc(size, GFP_KERNEL);
|
||
|
if (!adapter->tx_ring)
|
||
|
goto err;
|
||
|
adapter->tx_ring->count = adapter->tx_ring_count;
|
||
|
adapter->tx_ring->adapter = adapter;
|
||
|
|
||
|
adapter->rx_ring = kzalloc(size, GFP_KERNEL);
|
||
|
if (!adapter->rx_ring)
|
||
|
goto err;
|
||
|
adapter->rx_ring->count = adapter->rx_ring_count;
|
||
|
adapter->rx_ring->adapter = adapter;
|
||
|
|
||
|
return 0;
|
||
|
err:
|
||
|
e_err("Unable to allocate memory for queues\n");
|
||
|
kfree(adapter->rx_ring);
|
||
|
kfree(adapter->tx_ring);
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_poll - NAPI Rx polling callback
|
||
|
* @napi: struct associated with this polling callback
|
||
|
* @budget: number of packets driver is allowed to process this poll
|
||
|
**/
|
||
|
static int e1000e_poll(struct napi_struct *napi, int budget)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
|
||
|
napi);
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
struct net_device *poll_dev = adapter->netdev;
|
||
|
int tx_cleaned = 1, work_done = 0;
|
||
|
|
||
|
adapter = netdev_priv(poll_dev);
|
||
|
|
||
|
if (!adapter->msix_entries ||
|
||
|
(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
|
||
|
tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
|
||
|
|
||
|
adapter->clean_rx(adapter->rx_ring, &work_done, budget);
|
||
|
|
||
|
if (!tx_cleaned || work_done == budget)
|
||
|
return budget;
|
||
|
|
||
|
/* Exit the polling mode, but don't re-enable interrupts if stack might
|
||
|
* poll us due to busy-polling
|
||
|
*/
|
||
|
if (likely(napi_complete_done(napi, work_done))) {
|
||
|
if (adapter->itr_setting & 3)
|
||
|
e1000_set_itr(adapter);
|
||
|
if (!test_bit(__E1000_DOWN, &adapter->state)) {
|
||
|
if (adapter->msix_entries)
|
||
|
ew32(IMS, adapter->rx_ring->ims_val);
|
||
|
else
|
||
|
e1000_irq_enable(adapter);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return work_done;
|
||
|
}
|
||
|
|
||
|
static int e1000_vlan_rx_add_vid(struct net_device *netdev,
|
||
|
__always_unused __be16 proto, u16 vid)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
u32 vfta, index;
|
||
|
|
||
|
/* don't update vlan cookie if already programmed */
|
||
|
if ((adapter->hw.mng_cookie.status &
|
||
|
E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
|
||
|
(vid == adapter->mng_vlan_id))
|
||
|
return 0;
|
||
|
|
||
|
/* add VID to filter table */
|
||
|
if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
|
||
|
index = (vid >> 5) & 0x7F;
|
||
|
vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
|
||
|
vfta |= BIT((vid & 0x1F));
|
||
|
hw->mac.ops.write_vfta(hw, index, vfta);
|
||
|
}
|
||
|
|
||
|
set_bit(vid, adapter->active_vlans);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
|
||
|
__always_unused __be16 proto, u16 vid)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
u32 vfta, index;
|
||
|
|
||
|
if ((adapter->hw.mng_cookie.status &
|
||
|
E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
|
||
|
(vid == adapter->mng_vlan_id)) {
|
||
|
/* release control to f/w */
|
||
|
e1000e_release_hw_control(adapter);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* remove VID from filter table */
|
||
|
if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
|
||
|
index = (vid >> 5) & 0x7F;
|
||
|
vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
|
||
|
vfta &= ~BIT((vid & 0x1F));
|
||
|
hw->mac.ops.write_vfta(hw, index, vfta);
|
||
|
}
|
||
|
|
||
|
clear_bit(vid, adapter->active_vlans);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
|
||
|
* @adapter: board private structure to initialize
|
||
|
**/
|
||
|
static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
struct net_device *netdev = adapter->netdev;
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
u32 rctl;
|
||
|
|
||
|
if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
|
||
|
/* disable VLAN receive filtering */
|
||
|
rctl = er32(RCTL);
|
||
|
rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
|
||
|
ew32(RCTL, rctl);
|
||
|
|
||
|
if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
|
||
|
e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
|
||
|
adapter->mng_vlan_id);
|
||
|
adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
|
||
|
* @adapter: board private structure to initialize
|
||
|
**/
|
||
|
static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
u32 rctl;
|
||
|
|
||
|
if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
|
||
|
/* enable VLAN receive filtering */
|
||
|
rctl = er32(RCTL);
|
||
|
rctl |= E1000_RCTL_VFE;
|
||
|
rctl &= ~E1000_RCTL_CFIEN;
|
||
|
ew32(RCTL, rctl);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
|
||
|
* @adapter: board private structure to initialize
|
||
|
**/
|
||
|
static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
u32 ctrl;
|
||
|
|
||
|
/* disable VLAN tag insert/strip */
|
||
|
ctrl = er32(CTRL);
|
||
|
ctrl &= ~E1000_CTRL_VME;
|
||
|
ew32(CTRL, ctrl);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
|
||
|
* @adapter: board private structure to initialize
|
||
|
**/
|
||
|
static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
u32 ctrl;
|
||
|
|
||
|
/* enable VLAN tag insert/strip */
|
||
|
ctrl = er32(CTRL);
|
||
|
ctrl |= E1000_CTRL_VME;
|
||
|
ew32(CTRL, ctrl);
|
||
|
}
|
||
|
|
||
|
static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
struct net_device *netdev = adapter->netdev;
|
||
|
u16 vid = adapter->hw.mng_cookie.vlan_id;
|
||
|
u16 old_vid = adapter->mng_vlan_id;
|
||
|
|
||
|
if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
|
||
|
e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
|
||
|
adapter->mng_vlan_id = vid;
|
||
|
}
|
||
|
|
||
|
if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
|
||
|
e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
|
||
|
}
|
||
|
|
||
|
static void e1000_restore_vlan(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
u16 vid;
|
||
|
|
||
|
e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
|
||
|
|
||
|
for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
|
||
|
e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
|
||
|
}
|
||
|
|
||
|
static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
u32 manc, manc2h, mdef, i, j;
|
||
|
|
||
|
if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
|
||
|
return;
|
||
|
|
||
|
manc = er32(MANC);
|
||
|
|
||
|
/* enable receiving management packets to the host. this will probably
|
||
|
* generate destination unreachable messages from the host OS, but
|
||
|
* the packets will be handled on SMBUS
|
||
|
*/
|
||
|
manc |= E1000_MANC_EN_MNG2HOST;
|
||
|
manc2h = er32(MANC2H);
|
||
|
|
||
|
switch (hw->mac.type) {
|
||
|
default:
|
||
|
manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
|
||
|
break;
|
||
|
case e1000_82574:
|
||
|
case e1000_82583:
|
||
|
/* Check if IPMI pass-through decision filter already exists;
|
||
|
* if so, enable it.
|
||
|
*/
|
||
|
for (i = 0, j = 0; i < 8; i++) {
|
||
|
mdef = er32(MDEF(i));
|
||
|
|
||
|
/* Ignore filters with anything other than IPMI ports */
|
||
|
if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
|
||
|
continue;
|
||
|
|
||
|
/* Enable this decision filter in MANC2H */
|
||
|
if (mdef)
|
||
|
manc2h |= BIT(i);
|
||
|
|
||
|
j |= mdef;
|
||
|
}
|
||
|
|
||
|
if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
|
||
|
break;
|
||
|
|
||
|
/* Create new decision filter in an empty filter */
|
||
|
for (i = 0, j = 0; i < 8; i++)
|
||
|
if (er32(MDEF(i)) == 0) {
|
||
|
ew32(MDEF(i), (E1000_MDEF_PORT_623 |
|
||
|
E1000_MDEF_PORT_664));
|
||
|
manc2h |= BIT(1);
|
||
|
j++;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (!j)
|
||
|
e_warn("Unable to create IPMI pass-through filter\n");
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
ew32(MANC2H, manc2h);
|
||
|
ew32(MANC, manc);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_configure_tx - Configure Transmit Unit after Reset
|
||
|
* @adapter: board private structure
|
||
|
*
|
||
|
* Configure the Tx unit of the MAC after a reset.
|
||
|
**/
|
||
|
static void e1000_configure_tx(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
struct e1000_ring *tx_ring = adapter->tx_ring;
|
||
|
u64 tdba;
|
||
|
u32 tdlen, tctl, tarc;
|
||
|
|
||
|
/* Setup the HW Tx Head and Tail descriptor pointers */
|
||
|
tdba = tx_ring->dma;
|
||
|
tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
|
||
|
ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
|
||
|
ew32(TDBAH(0), (tdba >> 32));
|
||
|
ew32(TDLEN(0), tdlen);
|
||
|
ew32(TDH(0), 0);
|
||
|
ew32(TDT(0), 0);
|
||
|
tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
|
||
|
tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
|
||
|
|
||
|
writel(0, tx_ring->head);
|
||
|
if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
|
||
|
e1000e_update_tdt_wa(tx_ring, 0);
|
||
|
else
|
||
|
writel(0, tx_ring->tail);
|
||
|
|
||
|
/* Set the Tx Interrupt Delay register */
|
||
|
ew32(TIDV, adapter->tx_int_delay);
|
||
|
/* Tx irq moderation */
|
||
|
ew32(TADV, adapter->tx_abs_int_delay);
|
||
|
|
||
|
if (adapter->flags2 & FLAG2_DMA_BURST) {
|
||
|
u32 txdctl = er32(TXDCTL(0));
|
||
|
|
||
|
txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
|
||
|
E1000_TXDCTL_WTHRESH);
|
||
|
/* set up some performance related parameters to encourage the
|
||
|
* hardware to use the bus more efficiently in bursts, depends
|
||
|
* on the tx_int_delay to be enabled,
|
||
|
* wthresh = 1 ==> burst write is disabled to avoid Tx stalls
|
||
|
* hthresh = 1 ==> prefetch when one or more available
|
||
|
* pthresh = 0x1f ==> prefetch if internal cache 31 or less
|
||
|
* BEWARE: this seems to work but should be considered first if
|
||
|
* there are Tx hangs or other Tx related bugs
|
||
|
*/
|
||
|
txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
|
||
|
ew32(TXDCTL(0), txdctl);
|
||
|
}
|
||
|
/* erratum work around: set txdctl the same for both queues */
|
||
|
ew32(TXDCTL(1), er32(TXDCTL(0)));
|
||
|
|
||
|
/* Program the Transmit Control Register */
|
||
|
tctl = er32(TCTL);
|
||
|
tctl &= ~E1000_TCTL_CT;
|
||
|
tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
|
||
|
(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
|
||
|
|
||
|
if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
|
||
|
tarc = er32(TARC(0));
|
||
|
/* set the speed mode bit, we'll clear it if we're not at
|
||
|
* gigabit link later
|
||
|
*/
|
||
|
#define SPEED_MODE_BIT BIT(21)
|
||
|
tarc |= SPEED_MODE_BIT;
|
||
|
ew32(TARC(0), tarc);
|
||
|
}
|
||
|
|
||
|
/* errata: program both queues to unweighted RR */
|
||
|
if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
|
||
|
tarc = er32(TARC(0));
|
||
|
tarc |= 1;
|
||
|
ew32(TARC(0), tarc);
|
||
|
tarc = er32(TARC(1));
|
||
|
tarc |= 1;
|
||
|
ew32(TARC(1), tarc);
|
||
|
}
|
||
|
|
||
|
/* Setup Transmit Descriptor Settings for eop descriptor */
|
||
|
adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
|
||
|
|
||
|
/* only set IDE if we are delaying interrupts using the timers */
|
||
|
if (adapter->tx_int_delay)
|
||
|
adapter->txd_cmd |= E1000_TXD_CMD_IDE;
|
||
|
|
||
|
/* enable Report Status bit */
|
||
|
adapter->txd_cmd |= E1000_TXD_CMD_RS;
|
||
|
|
||
|
ew32(TCTL, tctl);
|
||
|
|
||
|
hw->mac.ops.config_collision_dist(hw);
|
||
|
|
||
|
/* SPT and KBL Si errata workaround to avoid data corruption */
|
||
|
if (hw->mac.type == e1000_pch_spt) {
|
||
|
u32 reg_val;
|
||
|
|
||
|
reg_val = er32(IOSFPC);
|
||
|
reg_val |= E1000_RCTL_RDMTS_HEX;
|
||
|
ew32(IOSFPC, reg_val);
|
||
|
|
||
|
reg_val = er32(TARC(0));
|
||
|
/* SPT and KBL Si errata workaround to avoid Tx hang.
|
||
|
* Dropping the number of outstanding requests from
|
||
|
* 3 to 2 in order to avoid a buffer overrun.
|
||
|
*/
|
||
|
reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
|
||
|
reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
|
||
|
ew32(TARC(0), reg_val);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
|
||
|
(((S) & (PAGE_SIZE - 1)) ? 1 : 0))
|
||
|
|
||
|
/**
|
||
|
* e1000_setup_rctl - configure the receive control registers
|
||
|
* @adapter: Board private structure
|
||
|
**/
|
||
|
static void e1000_setup_rctl(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
u32 rctl, rfctl;
|
||
|
u32 pages = 0;
|
||
|
|
||
|
/* Workaround Si errata on PCHx - configure jumbo frame flow.
|
||
|
* If jumbo frames not set, program related MAC/PHY registers
|
||
|
* to h/w defaults
|
||
|
*/
|
||
|
if (hw->mac.type >= e1000_pch2lan) {
|
||
|
s32 ret_val;
|
||
|
|
||
|
if (adapter->netdev->mtu > ETH_DATA_LEN)
|
||
|
ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
|
||
|
else
|
||
|
ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
|
||
|
|
||
|
if (ret_val)
|
||
|
e_dbg("failed to enable|disable jumbo frame workaround mode\n");
|
||
|
}
|
||
|
|
||
|
/* Program MC offset vector base */
|
||
|
rctl = er32(RCTL);
|
||
|
rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
|
||
|
rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
|
||
|
E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
|
||
|
(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
|
||
|
|
||
|
/* Do not Store bad packets */
|
||
|
rctl &= ~E1000_RCTL_SBP;
|
||
|
|
||
|
/* Enable Long Packet receive */
|
||
|
if (adapter->netdev->mtu <= ETH_DATA_LEN)
|
||
|
rctl &= ~E1000_RCTL_LPE;
|
||
|
else
|
||
|
rctl |= E1000_RCTL_LPE;
|
||
|
|
||
|
/* Some systems expect that the CRC is included in SMBUS traffic. The
|
||
|
* hardware strips the CRC before sending to both SMBUS (BMC) and to
|
||
|
* host memory when this is enabled
|
||
|
*/
|
||
|
if (adapter->flags2 & FLAG2_CRC_STRIPPING)
|
||
|
rctl |= E1000_RCTL_SECRC;
|
||
|
|
||
|
/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
|
||
|
if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
|
||
|
u16 phy_data;
|
||
|
|
||
|
e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
|
||
|
phy_data &= 0xfff8;
|
||
|
phy_data |= BIT(2);
|
||
|
e1e_wphy(hw, PHY_REG(770, 26), phy_data);
|
||
|
|
||
|
e1e_rphy(hw, 22, &phy_data);
|
||
|
phy_data &= 0x0fff;
|
||
|
phy_data |= BIT(14);
|
||
|
e1e_wphy(hw, 0x10, 0x2823);
|
||
|
e1e_wphy(hw, 0x11, 0x0003);
|
||
|
e1e_wphy(hw, 22, phy_data);
|
||
|
}
|
||
|
|
||
|
/* Setup buffer sizes */
|
||
|
rctl &= ~E1000_RCTL_SZ_4096;
|
||
|
rctl |= E1000_RCTL_BSEX;
|
||
|
switch (adapter->rx_buffer_len) {
|
||
|
case 2048:
|
||
|
default:
|
||
|
rctl |= E1000_RCTL_SZ_2048;
|
||
|
rctl &= ~E1000_RCTL_BSEX;
|
||
|
break;
|
||
|
case 4096:
|
||
|
rctl |= E1000_RCTL_SZ_4096;
|
||
|
break;
|
||
|
case 8192:
|
||
|
rctl |= E1000_RCTL_SZ_8192;
|
||
|
break;
|
||
|
case 16384:
|
||
|
rctl |= E1000_RCTL_SZ_16384;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* Enable Extended Status in all Receive Descriptors */
|
||
|
rfctl = er32(RFCTL);
|
||
|
rfctl |= E1000_RFCTL_EXTEN;
|
||
|
ew32(RFCTL, rfctl);
|
||
|
|
||
|
/* 82571 and greater support packet-split where the protocol
|
||
|
* header is placed in skb->data and the packet data is
|
||
|
* placed in pages hanging off of skb_shinfo(skb)->nr_frags.
|
||
|
* In the case of a non-split, skb->data is linearly filled,
|
||
|
* followed by the page buffers. Therefore, skb->data is
|
||
|
* sized to hold the largest protocol header.
|
||
|
*
|
||
|
* allocations using alloc_page take too long for regular MTU
|
||
|
* so only enable packet split for jumbo frames
|
||
|
*
|
||
|
* Using pages when the page size is greater than 16k wastes
|
||
|
* a lot of memory, since we allocate 3 pages at all times
|
||
|
* per packet.
|
||
|
*/
|
||
|
pages = PAGE_USE_COUNT(adapter->netdev->mtu);
|
||
|
if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
|
||
|
adapter->rx_ps_pages = pages;
|
||
|
else
|
||
|
adapter->rx_ps_pages = 0;
|
||
|
|
||
|
if (adapter->rx_ps_pages) {
|
||
|
u32 psrctl = 0;
|
||
|
|
||
|
/* Enable Packet split descriptors */
|
||
|
rctl |= E1000_RCTL_DTYP_PS;
|
||
|
|
||
|
psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
|
||
|
|
||
|
switch (adapter->rx_ps_pages) {
|
||
|
case 3:
|
||
|
psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
|
||
|
fallthrough;
|
||
|
case 2:
|
||
|
psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
|
||
|
fallthrough;
|
||
|
case 1:
|
||
|
psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
ew32(PSRCTL, psrctl);
|
||
|
}
|
||
|
|
||
|
/* This is useful for sniffing bad packets. */
|
||
|
if (adapter->netdev->features & NETIF_F_RXALL) {
|
||
|
/* UPE and MPE will be handled by normal PROMISC logic
|
||
|
* in e1000e_set_rx_mode
|
||
|
*/
|
||
|
rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
|
||
|
E1000_RCTL_BAM | /* RX All Bcast Pkts */
|
||
|
E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
|
||
|
|
||
|
rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
|
||
|
E1000_RCTL_DPF | /* Allow filtered pause */
|
||
|
E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
|
||
|
/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
|
||
|
* and that breaks VLANs.
|
||
|
*/
|
||
|
}
|
||
|
|
||
|
ew32(RCTL, rctl);
|
||
|
/* just started the receive unit, no need to restart */
|
||
|
adapter->flags &= ~FLAG_RESTART_NOW;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_configure_rx - Configure Receive Unit after Reset
|
||
|
* @adapter: board private structure
|
||
|
*
|
||
|
* Configure the Rx unit of the MAC after a reset.
|
||
|
**/
|
||
|
static void e1000_configure_rx(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
struct e1000_ring *rx_ring = adapter->rx_ring;
|
||
|
u64 rdba;
|
||
|
u32 rdlen, rctl, rxcsum, ctrl_ext;
|
||
|
|
||
|
if (adapter->rx_ps_pages) {
|
||
|
/* this is a 32 byte descriptor */
|
||
|
rdlen = rx_ring->count *
|
||
|
sizeof(union e1000_rx_desc_packet_split);
|
||
|
adapter->clean_rx = e1000_clean_rx_irq_ps;
|
||
|
adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
|
||
|
} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
|
||
|
rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
|
||
|
adapter->clean_rx = e1000_clean_jumbo_rx_irq;
|
||
|
adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
|
||
|
} else {
|
||
|
rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
|
||
|
adapter->clean_rx = e1000_clean_rx_irq;
|
||
|
adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
|
||
|
}
|
||
|
|
||
|
/* disable receives while setting up the descriptors */
|
||
|
rctl = er32(RCTL);
|
||
|
if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
|
||
|
ew32(RCTL, rctl & ~E1000_RCTL_EN);
|
||
|
e1e_flush();
|
||
|
usleep_range(10000, 11000);
|
||
|
|
||
|
if (adapter->flags2 & FLAG2_DMA_BURST) {
|
||
|
/* set the writeback threshold (only takes effect if the RDTR
|
||
|
* is set). set GRAN=1 and write back up to 0x4 worth, and
|
||
|
* enable prefetching of 0x20 Rx descriptors
|
||
|
* granularity = 01
|
||
|
* wthresh = 04,
|
||
|
* hthresh = 04,
|
||
|
* pthresh = 0x20
|
||
|
*/
|
||
|
ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
|
||
|
ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
|
||
|
}
|
||
|
|
||
|
/* set the Receive Delay Timer Register */
|
||
|
ew32(RDTR, adapter->rx_int_delay);
|
||
|
|
||
|
/* irq moderation */
|
||
|
ew32(RADV, adapter->rx_abs_int_delay);
|
||
|
if ((adapter->itr_setting != 0) && (adapter->itr != 0))
|
||
|
e1000e_write_itr(adapter, adapter->itr);
|
||
|
|
||
|
ctrl_ext = er32(CTRL_EXT);
|
||
|
/* Auto-Mask interrupts upon ICR access */
|
||
|
ctrl_ext |= E1000_CTRL_EXT_IAME;
|
||
|
ew32(IAM, 0xffffffff);
|
||
|
ew32(CTRL_EXT, ctrl_ext);
|
||
|
e1e_flush();
|
||
|
|
||
|
/* Setup the HW Rx Head and Tail Descriptor Pointers and
|
||
|
* the Base and Length of the Rx Descriptor Ring
|
||
|
*/
|
||
|
rdba = rx_ring->dma;
|
||
|
ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
|
||
|
ew32(RDBAH(0), (rdba >> 32));
|
||
|
ew32(RDLEN(0), rdlen);
|
||
|
ew32(RDH(0), 0);
|
||
|
ew32(RDT(0), 0);
|
||
|
rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
|
||
|
rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
|
||
|
|
||
|
writel(0, rx_ring->head);
|
||
|
if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
|
||
|
e1000e_update_rdt_wa(rx_ring, 0);
|
||
|
else
|
||
|
writel(0, rx_ring->tail);
|
||
|
|
||
|
/* Enable Receive Checksum Offload for TCP and UDP */
|
||
|
rxcsum = er32(RXCSUM);
|
||
|
if (adapter->netdev->features & NETIF_F_RXCSUM)
|
||
|
rxcsum |= E1000_RXCSUM_TUOFL;
|
||
|
else
|
||
|
rxcsum &= ~E1000_RXCSUM_TUOFL;
|
||
|
ew32(RXCSUM, rxcsum);
|
||
|
|
||
|
/* With jumbo frames, excessive C-state transition latencies result
|
||
|
* in dropped transactions.
|
||
|
*/
|
||
|
if (adapter->netdev->mtu > ETH_DATA_LEN) {
|
||
|
u32 lat =
|
||
|
((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
|
||
|
adapter->max_frame_size) * 8 / 1000;
|
||
|
|
||
|
if (adapter->flags & FLAG_IS_ICH) {
|
||
|
u32 rxdctl = er32(RXDCTL(0));
|
||
|
|
||
|
ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
|
||
|
}
|
||
|
|
||
|
dev_info(&adapter->pdev->dev,
|
||
|
"Some CPU C-states have been disabled in order to enable jumbo frames\n");
|
||
|
cpu_latency_qos_update_request(&adapter->pm_qos_req, lat);
|
||
|
} else {
|
||
|
cpu_latency_qos_update_request(&adapter->pm_qos_req,
|
||
|
PM_QOS_DEFAULT_VALUE);
|
||
|
}
|
||
|
|
||
|
/* Enable Receives */
|
||
|
ew32(RCTL, rctl);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_write_mc_addr_list - write multicast addresses to MTA
|
||
|
* @netdev: network interface device structure
|
||
|
*
|
||
|
* Writes multicast address list to the MTA hash table.
|
||
|
* Returns: -ENOMEM on failure
|
||
|
* 0 on no addresses written
|
||
|
* X on writing X addresses to MTA
|
||
|
*/
|
||
|
static int e1000e_write_mc_addr_list(struct net_device *netdev)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
struct netdev_hw_addr *ha;
|
||
|
u8 *mta_list;
|
||
|
int i;
|
||
|
|
||
|
if (netdev_mc_empty(netdev)) {
|
||
|
/* nothing to program, so clear mc list */
|
||
|
hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC);
|
||
|
if (!mta_list)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
/* update_mc_addr_list expects a packed array of only addresses. */
|
||
|
i = 0;
|
||
|
netdev_for_each_mc_addr(ha, netdev)
|
||
|
memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
|
||
|
|
||
|
hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
|
||
|
kfree(mta_list);
|
||
|
|
||
|
return netdev_mc_count(netdev);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_write_uc_addr_list - write unicast addresses to RAR table
|
||
|
* @netdev: network interface device structure
|
||
|
*
|
||
|
* Writes unicast address list to the RAR table.
|
||
|
* Returns: -ENOMEM on failure/insufficient address space
|
||
|
* 0 on no addresses written
|
||
|
* X on writing X addresses to the RAR table
|
||
|
**/
|
||
|
static int e1000e_write_uc_addr_list(struct net_device *netdev)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
unsigned int rar_entries;
|
||
|
int count = 0;
|
||
|
|
||
|
rar_entries = hw->mac.ops.rar_get_count(hw);
|
||
|
|
||
|
/* save a rar entry for our hardware address */
|
||
|
rar_entries--;
|
||
|
|
||
|
/* save a rar entry for the LAA workaround */
|
||
|
if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
|
||
|
rar_entries--;
|
||
|
|
||
|
/* return ENOMEM indicating insufficient memory for addresses */
|
||
|
if (netdev_uc_count(netdev) > rar_entries)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
if (!netdev_uc_empty(netdev) && rar_entries) {
|
||
|
struct netdev_hw_addr *ha;
|
||
|
|
||
|
/* write the addresses in reverse order to avoid write
|
||
|
* combining
|
||
|
*/
|
||
|
netdev_for_each_uc_addr(ha, netdev) {
|
||
|
int ret_val;
|
||
|
|
||
|
if (!rar_entries)
|
||
|
break;
|
||
|
ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
|
||
|
if (ret_val < 0)
|
||
|
return -ENOMEM;
|
||
|
count++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* zero out the remaining RAR entries not used above */
|
||
|
for (; rar_entries > 0; rar_entries--) {
|
||
|
ew32(RAH(rar_entries), 0);
|
||
|
ew32(RAL(rar_entries), 0);
|
||
|
}
|
||
|
e1e_flush();
|
||
|
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
|
||
|
* @netdev: network interface device structure
|
||
|
*
|
||
|
* The ndo_set_rx_mode entry point is called whenever the unicast or multicast
|
||
|
* address list or the network interface flags are updated. This routine is
|
||
|
* responsible for configuring the hardware for proper unicast, multicast,
|
||
|
* promiscuous mode, and all-multi behavior.
|
||
|
**/
|
||
|
static void e1000e_set_rx_mode(struct net_device *netdev)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
u32 rctl;
|
||
|
|
||
|
if (pm_runtime_suspended(netdev->dev.parent))
|
||
|
return;
|
||
|
|
||
|
/* Check for Promiscuous and All Multicast modes */
|
||
|
rctl = er32(RCTL);
|
||
|
|
||
|
/* clear the affected bits */
|
||
|
rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
|
||
|
|
||
|
if (netdev->flags & IFF_PROMISC) {
|
||
|
rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
|
||
|
/* Do not hardware filter VLANs in promisc mode */
|
||
|
e1000e_vlan_filter_disable(adapter);
|
||
|
} else {
|
||
|
int count;
|
||
|
|
||
|
if (netdev->flags & IFF_ALLMULTI) {
|
||
|
rctl |= E1000_RCTL_MPE;
|
||
|
} else {
|
||
|
/* Write addresses to the MTA, if the attempt fails
|
||
|
* then we should just turn on promiscuous mode so
|
||
|
* that we can at least receive multicast traffic
|
||
|
*/
|
||
|
count = e1000e_write_mc_addr_list(netdev);
|
||
|
if (count < 0)
|
||
|
rctl |= E1000_RCTL_MPE;
|
||
|
}
|
||
|
e1000e_vlan_filter_enable(adapter);
|
||
|
/* Write addresses to available RAR registers, if there is not
|
||
|
* sufficient space to store all the addresses then enable
|
||
|
* unicast promiscuous mode
|
||
|
*/
|
||
|
count = e1000e_write_uc_addr_list(netdev);
|
||
|
if (count < 0)
|
||
|
rctl |= E1000_RCTL_UPE;
|
||
|
}
|
||
|
|
||
|
ew32(RCTL, rctl);
|
||
|
|
||
|
if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
|
||
|
e1000e_vlan_strip_enable(adapter);
|
||
|
else
|
||
|
e1000e_vlan_strip_disable(adapter);
|
||
|
}
|
||
|
|
||
|
static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
u32 mrqc, rxcsum;
|
||
|
u32 rss_key[10];
|
||
|
int i;
|
||
|
|
||
|
netdev_rss_key_fill(rss_key, sizeof(rss_key));
|
||
|
for (i = 0; i < 10; i++)
|
||
|
ew32(RSSRK(i), rss_key[i]);
|
||
|
|
||
|
/* Direct all traffic to queue 0 */
|
||
|
for (i = 0; i < 32; i++)
|
||
|
ew32(RETA(i), 0);
|
||
|
|
||
|
/* Disable raw packet checksumming so that RSS hash is placed in
|
||
|
* descriptor on writeback.
|
||
|
*/
|
||
|
rxcsum = er32(RXCSUM);
|
||
|
rxcsum |= E1000_RXCSUM_PCSD;
|
||
|
|
||
|
ew32(RXCSUM, rxcsum);
|
||
|
|
||
|
mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
|
||
|
E1000_MRQC_RSS_FIELD_IPV4_TCP |
|
||
|
E1000_MRQC_RSS_FIELD_IPV6 |
|
||
|
E1000_MRQC_RSS_FIELD_IPV6_TCP |
|
||
|
E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
|
||
|
|
||
|
ew32(MRQC, mrqc);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_get_base_timinca - get default SYSTIM time increment attributes
|
||
|
* @adapter: board private structure
|
||
|
* @timinca: pointer to returned time increment attributes
|
||
|
*
|
||
|
* Get attributes for incrementing the System Time Register SYSTIML/H at
|
||
|
* the default base frequency, and set the cyclecounter shift value.
|
||
|
**/
|
||
|
s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
|
||
|
{
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
u32 incvalue, incperiod, shift;
|
||
|
|
||
|
/* Make sure clock is enabled on I217/I218/I219 before checking
|
||
|
* the frequency
|
||
|
*/
|
||
|
if ((hw->mac.type >= e1000_pch_lpt) &&
|
||
|
!(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
|
||
|
!(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
|
||
|
u32 fextnvm7 = er32(FEXTNVM7);
|
||
|
|
||
|
if (!(fextnvm7 & BIT(0))) {
|
||
|
ew32(FEXTNVM7, fextnvm7 | BIT(0));
|
||
|
e1e_flush();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
switch (hw->mac.type) {
|
||
|
case e1000_pch2lan:
|
||
|
/* Stable 96MHz frequency */
|
||
|
incperiod = INCPERIOD_96MHZ;
|
||
|
incvalue = INCVALUE_96MHZ;
|
||
|
shift = INCVALUE_SHIFT_96MHZ;
|
||
|
adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
|
||
|
break;
|
||
|
case e1000_pch_lpt:
|
||
|
if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
|
||
|
/* Stable 96MHz frequency */
|
||
|
incperiod = INCPERIOD_96MHZ;
|
||
|
incvalue = INCVALUE_96MHZ;
|
||
|
shift = INCVALUE_SHIFT_96MHZ;
|
||
|
adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
|
||
|
} else {
|
||
|
/* Stable 25MHz frequency */
|
||
|
incperiod = INCPERIOD_25MHZ;
|
||
|
incvalue = INCVALUE_25MHZ;
|
||
|
shift = INCVALUE_SHIFT_25MHZ;
|
||
|
adapter->cc.shift = shift;
|
||
|
}
|
||
|
break;
|
||
|
case e1000_pch_spt:
|
||
|
/* Stable 24MHz frequency */
|
||
|
incperiod = INCPERIOD_24MHZ;
|
||
|
incvalue = INCVALUE_24MHZ;
|
||
|
shift = INCVALUE_SHIFT_24MHZ;
|
||
|
adapter->cc.shift = shift;
|
||
|
break;
|
||
|
case e1000_pch_cnp:
|
||
|
case e1000_pch_tgp:
|
||
|
case e1000_pch_adp:
|
||
|
case e1000_pch_mtp:
|
||
|
case e1000_pch_lnp:
|
||
|
case e1000_pch_ptp:
|
||
|
if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
|
||
|
/* Stable 24MHz frequency */
|
||
|
incperiod = INCPERIOD_24MHZ;
|
||
|
incvalue = INCVALUE_24MHZ;
|
||
|
shift = INCVALUE_SHIFT_24MHZ;
|
||
|
adapter->cc.shift = shift;
|
||
|
} else {
|
||
|
/* Stable 38400KHz frequency */
|
||
|
incperiod = INCPERIOD_38400KHZ;
|
||
|
incvalue = INCVALUE_38400KHZ;
|
||
|
shift = INCVALUE_SHIFT_38400KHZ;
|
||
|
adapter->cc.shift = shift;
|
||
|
}
|
||
|
break;
|
||
|
case e1000_82574:
|
||
|
case e1000_82583:
|
||
|
/* Stable 25MHz frequency */
|
||
|
incperiod = INCPERIOD_25MHZ;
|
||
|
incvalue = INCVALUE_25MHZ;
|
||
|
shift = INCVALUE_SHIFT_25MHZ;
|
||
|
adapter->cc.shift = shift;
|
||
|
break;
|
||
|
default:
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
*timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
|
||
|
((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
|
||
|
* @adapter: board private structure
|
||
|
* @config: timestamp configuration
|
||
|
*
|
||
|
* Outgoing time stamping can be enabled and disabled. Play nice and
|
||
|
* disable it when requested, although it shouldn't cause any overhead
|
||
|
* when no packet needs it. At most one packet in the queue may be
|
||
|
* marked for time stamping, otherwise it would be impossible to tell
|
||
|
* for sure to which packet the hardware time stamp belongs.
|
||
|
*
|
||
|
* Incoming time stamping has to be configured via the hardware filters.
|
||
|
* Not all combinations are supported, in particular event type has to be
|
||
|
* specified. Matching the kind of event packet is not supported, with the
|
||
|
* exception of "all V2 events regardless of level 2 or 4".
|
||
|
**/
|
||
|
static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
|
||
|
struct hwtstamp_config *config)
|
||
|
{
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
|
||
|
u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
|
||
|
u32 rxmtrl = 0;
|
||
|
u16 rxudp = 0;
|
||
|
bool is_l4 = false;
|
||
|
bool is_l2 = false;
|
||
|
u32 regval;
|
||
|
|
||
|
if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
|
||
|
return -EINVAL;
|
||
|
|
||
|
switch (config->tx_type) {
|
||
|
case HWTSTAMP_TX_OFF:
|
||
|
tsync_tx_ctl = 0;
|
||
|
break;
|
||
|
case HWTSTAMP_TX_ON:
|
||
|
break;
|
||
|
default:
|
||
|
return -ERANGE;
|
||
|
}
|
||
|
|
||
|
switch (config->rx_filter) {
|
||
|
case HWTSTAMP_FILTER_NONE:
|
||
|
tsync_rx_ctl = 0;
|
||
|
break;
|
||
|
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
|
||
|
tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
|
||
|
rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
|
||
|
is_l4 = true;
|
||
|
break;
|
||
|
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
|
||
|
tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
|
||
|
rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
|
||
|
is_l4 = true;
|
||
|
break;
|
||
|
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
|
||
|
/* Also time stamps V2 L2 Path Delay Request/Response */
|
||
|
tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
|
||
|
rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
|
||
|
is_l2 = true;
|
||
|
break;
|
||
|
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
|
||
|
/* Also time stamps V2 L2 Path Delay Request/Response. */
|
||
|
tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
|
||
|
rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
|
||
|
is_l2 = true;
|
||
|
break;
|
||
|
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
|
||
|
/* Hardware cannot filter just V2 L4 Sync messages */
|
||
|
fallthrough;
|
||
|
case HWTSTAMP_FILTER_PTP_V2_SYNC:
|
||
|
/* Also time stamps V2 Path Delay Request/Response. */
|
||
|
tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
|
||
|
rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
|
||
|
is_l2 = true;
|
||
|
is_l4 = true;
|
||
|
break;
|
||
|
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
|
||
|
/* Hardware cannot filter just V2 L4 Delay Request messages */
|
||
|
fallthrough;
|
||
|
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
|
||
|
/* Also time stamps V2 Path Delay Request/Response. */
|
||
|
tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
|
||
|
rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
|
||
|
is_l2 = true;
|
||
|
is_l4 = true;
|
||
|
break;
|
||
|
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
|
||
|
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
|
||
|
/* Hardware cannot filter just V2 L4 or L2 Event messages */
|
||
|
fallthrough;
|
||
|
case HWTSTAMP_FILTER_PTP_V2_EVENT:
|
||
|
tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
|
||
|
config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
|
||
|
is_l2 = true;
|
||
|
is_l4 = true;
|
||
|
break;
|
||
|
case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
|
||
|
/* For V1, the hardware can only filter Sync messages or
|
||
|
* Delay Request messages but not both so fall-through to
|
||
|
* time stamp all packets.
|
||
|
*/
|
||
|
fallthrough;
|
||
|
case HWTSTAMP_FILTER_NTP_ALL:
|
||
|
case HWTSTAMP_FILTER_ALL:
|
||
|
is_l2 = true;
|
||
|
is_l4 = true;
|
||
|
tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
|
||
|
config->rx_filter = HWTSTAMP_FILTER_ALL;
|
||
|
break;
|
||
|
default:
|
||
|
return -ERANGE;
|
||
|
}
|
||
|
|
||
|
adapter->hwtstamp_config = *config;
|
||
|
|
||
|
/* enable/disable Tx h/w time stamping */
|
||
|
regval = er32(TSYNCTXCTL);
|
||
|
regval &= ~E1000_TSYNCTXCTL_ENABLED;
|
||
|
regval |= tsync_tx_ctl;
|
||
|
ew32(TSYNCTXCTL, regval);
|
||
|
if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
|
||
|
(regval & E1000_TSYNCTXCTL_ENABLED)) {
|
||
|
e_err("Timesync Tx Control register not set as expected\n");
|
||
|
return -EAGAIN;
|
||
|
}
|
||
|
|
||
|
/* enable/disable Rx h/w time stamping */
|
||
|
regval = er32(TSYNCRXCTL);
|
||
|
regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
|
||
|
regval |= tsync_rx_ctl;
|
||
|
ew32(TSYNCRXCTL, regval);
|
||
|
if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
|
||
|
E1000_TSYNCRXCTL_TYPE_MASK)) !=
|
||
|
(regval & (E1000_TSYNCRXCTL_ENABLED |
|
||
|
E1000_TSYNCRXCTL_TYPE_MASK))) {
|
||
|
e_err("Timesync Rx Control register not set as expected\n");
|
||
|
return -EAGAIN;
|
||
|
}
|
||
|
|
||
|
/* L2: define ethertype filter for time stamped packets */
|
||
|
if (is_l2)
|
||
|
rxmtrl |= ETH_P_1588;
|
||
|
|
||
|
/* define which PTP packets get time stamped */
|
||
|
ew32(RXMTRL, rxmtrl);
|
||
|
|
||
|
/* Filter by destination port */
|
||
|
if (is_l4) {
|
||
|
rxudp = PTP_EV_PORT;
|
||
|
cpu_to_be16s(&rxudp);
|
||
|
}
|
||
|
ew32(RXUDP, rxudp);
|
||
|
|
||
|
e1e_flush();
|
||
|
|
||
|
/* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
|
||
|
er32(RXSTMPH);
|
||
|
er32(TXSTMPH);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_configure - configure the hardware for Rx and Tx
|
||
|
* @adapter: private board structure
|
||
|
**/
|
||
|
static void e1000_configure(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
struct e1000_ring *rx_ring = adapter->rx_ring;
|
||
|
|
||
|
e1000e_set_rx_mode(adapter->netdev);
|
||
|
|
||
|
e1000_restore_vlan(adapter);
|
||
|
e1000_init_manageability_pt(adapter);
|
||
|
|
||
|
e1000_configure_tx(adapter);
|
||
|
|
||
|
if (adapter->netdev->features & NETIF_F_RXHASH)
|
||
|
e1000e_setup_rss_hash(adapter);
|
||
|
e1000_setup_rctl(adapter);
|
||
|
e1000_configure_rx(adapter);
|
||
|
adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_power_up_phy - restore link in case the phy was powered down
|
||
|
* @adapter: address of board private structure
|
||
|
*
|
||
|
* The phy may be powered down to save power and turn off link when the
|
||
|
* driver is unloaded and wake on lan is not enabled (among others)
|
||
|
* *** this routine MUST be followed by a call to e1000e_reset ***
|
||
|
**/
|
||
|
void e1000e_power_up_phy(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
if (adapter->hw.phy.ops.power_up)
|
||
|
adapter->hw.phy.ops.power_up(&adapter->hw);
|
||
|
|
||
|
adapter->hw.mac.ops.setup_link(&adapter->hw);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_power_down_phy - Power down the PHY
|
||
|
* @adapter: board private structure
|
||
|
*
|
||
|
* Power down the PHY so no link is implied when interface is down.
|
||
|
* The PHY cannot be powered down if management or WoL is active.
|
||
|
*/
|
||
|
static void e1000_power_down_phy(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
if (adapter->hw.phy.ops.power_down)
|
||
|
adapter->hw.phy.ops.power_down(&adapter->hw);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_flush_tx_ring - remove all descriptors from the tx_ring
|
||
|
* @adapter: board private structure
|
||
|
*
|
||
|
* We want to clear all pending descriptors from the TX ring.
|
||
|
* zeroing happens when the HW reads the regs. We assign the ring itself as
|
||
|
* the data of the next descriptor. We don't care about the data we are about
|
||
|
* to reset the HW.
|
||
|
*/
|
||
|
static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
struct e1000_ring *tx_ring = adapter->tx_ring;
|
||
|
struct e1000_tx_desc *tx_desc = NULL;
|
||
|
u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
|
||
|
u16 size = 512;
|
||
|
|
||
|
tctl = er32(TCTL);
|
||
|
ew32(TCTL, tctl | E1000_TCTL_EN);
|
||
|
tdt = er32(TDT(0));
|
||
|
BUG_ON(tdt != tx_ring->next_to_use);
|
||
|
tx_desc = E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
|
||
|
tx_desc->buffer_addr = cpu_to_le64(tx_ring->dma);
|
||
|
|
||
|
tx_desc->lower.data = cpu_to_le32(txd_lower | size);
|
||
|
tx_desc->upper.data = 0;
|
||
|
/* flush descriptors to memory before notifying the HW */
|
||
|
wmb();
|
||
|
tx_ring->next_to_use++;
|
||
|
if (tx_ring->next_to_use == tx_ring->count)
|
||
|
tx_ring->next_to_use = 0;
|
||
|
ew32(TDT(0), tx_ring->next_to_use);
|
||
|
usleep_range(200, 250);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_flush_rx_ring - remove all descriptors from the rx_ring
|
||
|
* @adapter: board private structure
|
||
|
*
|
||
|
* Mark all descriptors in the RX ring as consumed and disable the rx ring
|
||
|
*/
|
||
|
static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
u32 rctl, rxdctl;
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
|
||
|
rctl = er32(RCTL);
|
||
|
ew32(RCTL, rctl & ~E1000_RCTL_EN);
|
||
|
e1e_flush();
|
||
|
usleep_range(100, 150);
|
||
|
|
||
|
rxdctl = er32(RXDCTL(0));
|
||
|
/* zero the lower 14 bits (prefetch and host thresholds) */
|
||
|
rxdctl &= 0xffffc000;
|
||
|
|
||
|
/* update thresholds: prefetch threshold to 31, host threshold to 1
|
||
|
* and make sure the granularity is "descriptors" and not "cache lines"
|
||
|
*/
|
||
|
rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
|
||
|
|
||
|
ew32(RXDCTL(0), rxdctl);
|
||
|
/* momentarily enable the RX ring for the changes to take effect */
|
||
|
ew32(RCTL, rctl | E1000_RCTL_EN);
|
||
|
e1e_flush();
|
||
|
usleep_range(100, 150);
|
||
|
ew32(RCTL, rctl & ~E1000_RCTL_EN);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_flush_desc_rings - remove all descriptors from the descriptor rings
|
||
|
* @adapter: board private structure
|
||
|
*
|
||
|
* In i219, the descriptor rings must be emptied before resetting the HW
|
||
|
* or before changing the device state to D3 during runtime (runtime PM).
|
||
|
*
|
||
|
* Failure to do this will cause the HW to enter a unit hang state which can
|
||
|
* only be released by PCI reset on the device
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
u16 hang_state;
|
||
|
u32 fext_nvm11, tdlen;
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
|
||
|
/* First, disable MULR fix in FEXTNVM11 */
|
||
|
fext_nvm11 = er32(FEXTNVM11);
|
||
|
fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
|
||
|
ew32(FEXTNVM11, fext_nvm11);
|
||
|
/* do nothing if we're not in faulty state, or if the queue is empty */
|
||
|
tdlen = er32(TDLEN(0));
|
||
|
pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
|
||
|
&hang_state);
|
||
|
if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
|
||
|
return;
|
||
|
e1000_flush_tx_ring(adapter);
|
||
|
/* recheck, maybe the fault is caused by the rx ring */
|
||
|
pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
|
||
|
&hang_state);
|
||
|
if (hang_state & FLUSH_DESC_REQUIRED)
|
||
|
e1000_flush_rx_ring(adapter);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_systim_reset - reset the timesync registers after a hardware reset
|
||
|
* @adapter: board private structure
|
||
|
*
|
||
|
* When the MAC is reset, all hardware bits for timesync will be reset to the
|
||
|
* default values. This function will restore the settings last in place.
|
||
|
* Since the clock SYSTIME registers are reset, we will simply restore the
|
||
|
* cyclecounter to the kernel real clock time.
|
||
|
**/
|
||
|
static void e1000e_systim_reset(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
struct ptp_clock_info *info = &adapter->ptp_clock_info;
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
unsigned long flags;
|
||
|
u32 timinca;
|
||
|
s32 ret_val;
|
||
|
|
||
|
if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
|
||
|
return;
|
||
|
|
||
|
if (info->adjfine) {
|
||
|
/* restore the previous ptp frequency delta */
|
||
|
ret_val = info->adjfine(info, adapter->ptp_delta);
|
||
|
} else {
|
||
|
/* set the default base frequency if no adjustment possible */
|
||
|
ret_val = e1000e_get_base_timinca(adapter, &timinca);
|
||
|
if (!ret_val)
|
||
|
ew32(TIMINCA, timinca);
|
||
|
}
|
||
|
|
||
|
if (ret_val) {
|
||
|
dev_warn(&adapter->pdev->dev,
|
||
|
"Failed to restore TIMINCA clock rate delta: %d\n",
|
||
|
ret_val);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* reset the systim ns time counter */
|
||
|
spin_lock_irqsave(&adapter->systim_lock, flags);
|
||
|
timecounter_init(&adapter->tc, &adapter->cc,
|
||
|
ktime_to_ns(ktime_get_real()));
|
||
|
spin_unlock_irqrestore(&adapter->systim_lock, flags);
|
||
|
|
||
|
/* restore the previous hwtstamp configuration settings */
|
||
|
e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_reset - bring the hardware into a known good state
|
||
|
* @adapter: board private structure
|
||
|
*
|
||
|
* This function boots the hardware and enables some settings that
|
||
|
* require a configuration cycle of the hardware - those cannot be
|
||
|
* set/changed during runtime. After reset the device needs to be
|
||
|
* properly configured for Rx, Tx etc.
|
||
|
*/
|
||
|
void e1000e_reset(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
struct e1000_mac_info *mac = &adapter->hw.mac;
|
||
|
struct e1000_fc_info *fc = &adapter->hw.fc;
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
u32 tx_space, min_tx_space, min_rx_space;
|
||
|
u32 pba = adapter->pba;
|
||
|
u16 hwm;
|
||
|
|
||
|
/* reset Packet Buffer Allocation to default */
|
||
|
ew32(PBA, pba);
|
||
|
|
||
|
if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
|
||
|
/* To maintain wire speed transmits, the Tx FIFO should be
|
||
|
* large enough to accommodate two full transmit packets,
|
||
|
* rounded up to the next 1KB and expressed in KB. Likewise,
|
||
|
* the Rx FIFO should be large enough to accommodate at least
|
||
|
* one full receive packet and is similarly rounded up and
|
||
|
* expressed in KB.
|
||
|
*/
|
||
|
pba = er32(PBA);
|
||
|
/* upper 16 bits has Tx packet buffer allocation size in KB */
|
||
|
tx_space = pba >> 16;
|
||
|
/* lower 16 bits has Rx packet buffer allocation size in KB */
|
||
|
pba &= 0xffff;
|
||
|
/* the Tx fifo also stores 16 bytes of information about the Tx
|
||
|
* but don't include ethernet FCS because hardware appends it
|
||
|
*/
|
||
|
min_tx_space = (adapter->max_frame_size +
|
||
|
sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
|
||
|
min_tx_space = ALIGN(min_tx_space, 1024);
|
||
|
min_tx_space >>= 10;
|
||
|
/* software strips receive CRC, so leave room for it */
|
||
|
min_rx_space = adapter->max_frame_size;
|
||
|
min_rx_space = ALIGN(min_rx_space, 1024);
|
||
|
min_rx_space >>= 10;
|
||
|
|
||
|
/* If current Tx allocation is less than the min Tx FIFO size,
|
||
|
* and the min Tx FIFO size is less than the current Rx FIFO
|
||
|
* allocation, take space away from current Rx allocation
|
||
|
*/
|
||
|
if ((tx_space < min_tx_space) &&
|
||
|
((min_tx_space - tx_space) < pba)) {
|
||
|
pba -= min_tx_space - tx_space;
|
||
|
|
||
|
/* if short on Rx space, Rx wins and must trump Tx
|
||
|
* adjustment
|
||
|
*/
|
||
|
if (pba < min_rx_space)
|
||
|
pba = min_rx_space;
|
||
|
}
|
||
|
|
||
|
ew32(PBA, pba);
|
||
|
}
|
||
|
|
||
|
/* flow control settings
|
||
|
*
|
||
|
* The high water mark must be low enough to fit one full frame
|
||
|
* (or the size used for early receive) above it in the Rx FIFO.
|
||
|
* Set it to the lower of:
|
||
|
* - 90% of the Rx FIFO size, and
|
||
|
* - the full Rx FIFO size minus one full frame
|
||
|
*/
|
||
|
if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
|
||
|
fc->pause_time = 0xFFFF;
|
||
|
else
|
||
|
fc->pause_time = E1000_FC_PAUSE_TIME;
|
||
|
fc->send_xon = true;
|
||
|
fc->current_mode = fc->requested_mode;
|
||
|
|
||
|
switch (hw->mac.type) {
|
||
|
case e1000_ich9lan:
|
||
|
case e1000_ich10lan:
|
||
|
if (adapter->netdev->mtu > ETH_DATA_LEN) {
|
||
|
pba = 14;
|
||
|
ew32(PBA, pba);
|
||
|
fc->high_water = 0x2800;
|
||
|
fc->low_water = fc->high_water - 8;
|
||
|
break;
|
||
|
}
|
||
|
fallthrough;
|
||
|
default:
|
||
|
hwm = min(((pba << 10) * 9 / 10),
|
||
|
((pba << 10) - adapter->max_frame_size));
|
||
|
|
||
|
fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
|
||
|
fc->low_water = fc->high_water - 8;
|
||
|
break;
|
||
|
case e1000_pchlan:
|
||
|
/* Workaround PCH LOM adapter hangs with certain network
|
||
|
* loads. If hangs persist, try disabling Tx flow control.
|
||
|
*/
|
||
|
if (adapter->netdev->mtu > ETH_DATA_LEN) {
|
||
|
fc->high_water = 0x3500;
|
||
|
fc->low_water = 0x1500;
|
||
|
} else {
|
||
|
fc->high_water = 0x5000;
|
||
|
fc->low_water = 0x3000;
|
||
|
}
|
||
|
fc->refresh_time = 0x1000;
|
||
|
break;
|
||
|
case e1000_pch2lan:
|
||
|
case e1000_pch_lpt:
|
||
|
case e1000_pch_spt:
|
||
|
case e1000_pch_cnp:
|
||
|
case e1000_pch_tgp:
|
||
|
case e1000_pch_adp:
|
||
|
case e1000_pch_mtp:
|
||
|
case e1000_pch_lnp:
|
||
|
case e1000_pch_ptp:
|
||
|
fc->refresh_time = 0xFFFF;
|
||
|
fc->pause_time = 0xFFFF;
|
||
|
|
||
|
if (adapter->netdev->mtu <= ETH_DATA_LEN) {
|
||
|
fc->high_water = 0x05C20;
|
||
|
fc->low_water = 0x05048;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
pba = 14;
|
||
|
ew32(PBA, pba);
|
||
|
fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
|
||
|
fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* Alignment of Tx data is on an arbitrary byte boundary with the
|
||
|
* maximum size per Tx descriptor limited only to the transmit
|
||
|
* allocation of the packet buffer minus 96 bytes with an upper
|
||
|
* limit of 24KB due to receive synchronization limitations.
|
||
|
*/
|
||
|
adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
|
||
|
24 << 10);
|
||
|
|
||
|
/* Disable Adaptive Interrupt Moderation if 2 full packets cannot
|
||
|
* fit in receive buffer.
|
||
|
*/
|
||
|
if (adapter->itr_setting & 0x3) {
|
||
|
if ((adapter->max_frame_size * 2) > (pba << 10)) {
|
||
|
if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
|
||
|
dev_info(&adapter->pdev->dev,
|
||
|
"Interrupt Throttle Rate off\n");
|
||
|
adapter->flags2 |= FLAG2_DISABLE_AIM;
|
||
|
e1000e_write_itr(adapter, 0);
|
||
|
}
|
||
|
} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
|
||
|
dev_info(&adapter->pdev->dev,
|
||
|
"Interrupt Throttle Rate on\n");
|
||
|
adapter->flags2 &= ~FLAG2_DISABLE_AIM;
|
||
|
adapter->itr = 20000;
|
||
|
e1000e_write_itr(adapter, adapter->itr);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (hw->mac.type >= e1000_pch_spt)
|
||
|
e1000_flush_desc_rings(adapter);
|
||
|
/* Allow time for pending master requests to run */
|
||
|
mac->ops.reset_hw(hw);
|
||
|
|
||
|
/* For parts with AMT enabled, let the firmware know
|
||
|
* that the network interface is in control
|
||
|
*/
|
||
|
if (adapter->flags & FLAG_HAS_AMT)
|
||
|
e1000e_get_hw_control(adapter);
|
||
|
|
||
|
ew32(WUC, 0);
|
||
|
|
||
|
if (mac->ops.init_hw(hw))
|
||
|
e_err("Hardware Error\n");
|
||
|
|
||
|
e1000_update_mng_vlan(adapter);
|
||
|
|
||
|
/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
|
||
|
ew32(VET, ETH_P_8021Q);
|
||
|
|
||
|
e1000e_reset_adaptive(hw);
|
||
|
|
||
|
/* restore systim and hwtstamp settings */
|
||
|
e1000e_systim_reset(adapter);
|
||
|
|
||
|
/* Set EEE advertisement as appropriate */
|
||
|
if (adapter->flags2 & FLAG2_HAS_EEE) {
|
||
|
s32 ret_val;
|
||
|
u16 adv_addr;
|
||
|
|
||
|
switch (hw->phy.type) {
|
||
|
case e1000_phy_82579:
|
||
|
adv_addr = I82579_EEE_ADVERTISEMENT;
|
||
|
break;
|
||
|
case e1000_phy_i217:
|
||
|
adv_addr = I217_EEE_ADVERTISEMENT;
|
||
|
break;
|
||
|
default:
|
||
|
dev_err(&adapter->pdev->dev,
|
||
|
"Invalid PHY type setting EEE advertisement\n");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
ret_val = hw->phy.ops.acquire(hw);
|
||
|
if (ret_val) {
|
||
|
dev_err(&adapter->pdev->dev,
|
||
|
"EEE advertisement - unable to acquire PHY\n");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
e1000_write_emi_reg_locked(hw, adv_addr,
|
||
|
hw->dev_spec.ich8lan.eee_disable ?
|
||
|
0 : adapter->eee_advert);
|
||
|
|
||
|
hw->phy.ops.release(hw);
|
||
|
}
|
||
|
|
||
|
if (!netif_running(adapter->netdev) &&
|
||
|
!test_bit(__E1000_TESTING, &adapter->state))
|
||
|
e1000_power_down_phy(adapter);
|
||
|
|
||
|
e1000_get_phy_info(hw);
|
||
|
|
||
|
if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
|
||
|
!(adapter->flags & FLAG_SMART_POWER_DOWN)) {
|
||
|
u16 phy_data = 0;
|
||
|
/* speed up time to link by disabling smart power down, ignore
|
||
|
* the return value of this function because there is nothing
|
||
|
* different we would do if it failed
|
||
|
*/
|
||
|
e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
|
||
|
phy_data &= ~IGP02E1000_PM_SPD;
|
||
|
e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
|
||
|
}
|
||
|
if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
|
||
|
u32 reg;
|
||
|
|
||
|
/* Fextnvm7 @ 0xe4[2] = 1 */
|
||
|
reg = er32(FEXTNVM7);
|
||
|
reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
|
||
|
ew32(FEXTNVM7, reg);
|
||
|
/* Fextnvm9 @ 0x5bb4[13:12] = 11 */
|
||
|
reg = er32(FEXTNVM9);
|
||
|
reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
|
||
|
E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
|
||
|
ew32(FEXTNVM9, reg);
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_trigger_lsc - trigger an LSC interrupt
|
||
|
* @adapter:
|
||
|
*
|
||
|
* Fire a link status change interrupt to start the watchdog.
|
||
|
**/
|
||
|
static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
|
||
|
if (adapter->msix_entries)
|
||
|
ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
|
||
|
else
|
||
|
ew32(ICS, E1000_ICS_LSC);
|
||
|
}
|
||
|
|
||
|
void e1000e_up(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
/* hardware has been reset, we need to reload some things */
|
||
|
e1000_configure(adapter);
|
||
|
|
||
|
clear_bit(__E1000_DOWN, &adapter->state);
|
||
|
|
||
|
if (adapter->msix_entries)
|
||
|
e1000_configure_msix(adapter);
|
||
|
e1000_irq_enable(adapter);
|
||
|
|
||
|
/* Tx queue started by watchdog timer when link is up */
|
||
|
|
||
|
e1000e_trigger_lsc(adapter);
|
||
|
}
|
||
|
|
||
|
static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
|
||
|
if (!(adapter->flags2 & FLAG2_DMA_BURST))
|
||
|
return;
|
||
|
|
||
|
/* flush pending descriptor writebacks to memory */
|
||
|
ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
|
||
|
ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
|
||
|
|
||
|
/* execute the writes immediately */
|
||
|
e1e_flush();
|
||
|
|
||
|
/* due to rare timing issues, write to TIDV/RDTR again to ensure the
|
||
|
* write is successful
|
||
|
*/
|
||
|
ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
|
||
|
ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
|
||
|
|
||
|
/* execute the writes immediately */
|
||
|
e1e_flush();
|
||
|
}
|
||
|
|
||
|
static void e1000e_update_stats(struct e1000_adapter *adapter);
|
||
|
|
||
|
/**
|
||
|
* e1000e_down - quiesce the device and optionally reset the hardware
|
||
|
* @adapter: board private structure
|
||
|
* @reset: boolean flag to reset the hardware or not
|
||
|
*/
|
||
|
void e1000e_down(struct e1000_adapter *adapter, bool reset)
|
||
|
{
|
||
|
struct net_device *netdev = adapter->netdev;
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
u32 tctl, rctl;
|
||
|
|
||
|
/* signal that we're down so the interrupt handler does not
|
||
|
* reschedule our watchdog timer
|
||
|
*/
|
||
|
set_bit(__E1000_DOWN, &adapter->state);
|
||
|
|
||
|
netif_carrier_off(netdev);
|
||
|
|
||
|
/* disable receives in the hardware */
|
||
|
rctl = er32(RCTL);
|
||
|
if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
|
||
|
ew32(RCTL, rctl & ~E1000_RCTL_EN);
|
||
|
/* flush and sleep below */
|
||
|
|
||
|
netif_stop_queue(netdev);
|
||
|
|
||
|
/* disable transmits in the hardware */
|
||
|
tctl = er32(TCTL);
|
||
|
tctl &= ~E1000_TCTL_EN;
|
||
|
ew32(TCTL, tctl);
|
||
|
|
||
|
/* flush both disables and wait for them to finish */
|
||
|
e1e_flush();
|
||
|
usleep_range(10000, 11000);
|
||
|
|
||
|
e1000_irq_disable(adapter);
|
||
|
|
||
|
napi_synchronize(&adapter->napi);
|
||
|
|
||
|
del_timer_sync(&adapter->watchdog_timer);
|
||
|
del_timer_sync(&adapter->phy_info_timer);
|
||
|
|
||
|
spin_lock(&adapter->stats64_lock);
|
||
|
e1000e_update_stats(adapter);
|
||
|
spin_unlock(&adapter->stats64_lock);
|
||
|
|
||
|
e1000e_flush_descriptors(adapter);
|
||
|
|
||
|
adapter->link_speed = 0;
|
||
|
adapter->link_duplex = 0;
|
||
|
|
||
|
/* Disable Si errata workaround on PCHx for jumbo frame flow */
|
||
|
if ((hw->mac.type >= e1000_pch2lan) &&
|
||
|
(adapter->netdev->mtu > ETH_DATA_LEN) &&
|
||
|
e1000_lv_jumbo_workaround_ich8lan(hw, false))
|
||
|
e_dbg("failed to disable jumbo frame workaround mode\n");
|
||
|
|
||
|
if (!pci_channel_offline(adapter->pdev)) {
|
||
|
if (reset)
|
||
|
e1000e_reset(adapter);
|
||
|
else if (hw->mac.type >= e1000_pch_spt)
|
||
|
e1000_flush_desc_rings(adapter);
|
||
|
}
|
||
|
e1000_clean_tx_ring(adapter->tx_ring);
|
||
|
e1000_clean_rx_ring(adapter->rx_ring);
|
||
|
}
|
||
|
|
||
|
void e1000e_reinit_locked(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
might_sleep();
|
||
|
while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
|
||
|
usleep_range(1000, 1100);
|
||
|
e1000e_down(adapter, true);
|
||
|
e1000e_up(adapter);
|
||
|
clear_bit(__E1000_RESETTING, &adapter->state);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_sanitize_systim - sanitize raw cycle counter reads
|
||
|
* @hw: pointer to the HW structure
|
||
|
* @systim: PHC time value read, sanitized and returned
|
||
|
* @sts: structure to hold system time before and after reading SYSTIML,
|
||
|
* may be NULL
|
||
|
*
|
||
|
* Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
|
||
|
* check to see that the time is incrementing at a reasonable
|
||
|
* rate and is a multiple of incvalue.
|
||
|
**/
|
||
|
static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim,
|
||
|
struct ptp_system_timestamp *sts)
|
||
|
{
|
||
|
u64 time_delta, rem, temp;
|
||
|
u64 systim_next;
|
||
|
u32 incvalue;
|
||
|
int i;
|
||
|
|
||
|
incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
|
||
|
for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
|
||
|
/* latch SYSTIMH on read of SYSTIML */
|
||
|
ptp_read_system_prets(sts);
|
||
|
systim_next = (u64)er32(SYSTIML);
|
||
|
ptp_read_system_postts(sts);
|
||
|
systim_next |= (u64)er32(SYSTIMH) << 32;
|
||
|
|
||
|
time_delta = systim_next - systim;
|
||
|
temp = time_delta;
|
||
|
/* VMWare users have seen incvalue of zero, don't div / 0 */
|
||
|
rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
|
||
|
|
||
|
systim = systim_next;
|
||
|
|
||
|
if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return systim;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_read_systim - read SYSTIM register
|
||
|
* @adapter: board private structure
|
||
|
* @sts: structure which will contain system time before and after reading
|
||
|
* SYSTIML, may be NULL
|
||
|
**/
|
||
|
u64 e1000e_read_systim(struct e1000_adapter *adapter,
|
||
|
struct ptp_system_timestamp *sts)
|
||
|
{
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
u32 systimel, systimel_2, systimeh;
|
||
|
u64 systim;
|
||
|
/* SYSTIMH latching upon SYSTIML read does not work well.
|
||
|
* This means that if SYSTIML overflows after we read it but before
|
||
|
* we read SYSTIMH, the value of SYSTIMH has been incremented and we
|
||
|
* will experience a huge non linear increment in the systime value
|
||
|
* to fix that we test for overflow and if true, we re-read systime.
|
||
|
*/
|
||
|
ptp_read_system_prets(sts);
|
||
|
systimel = er32(SYSTIML);
|
||
|
ptp_read_system_postts(sts);
|
||
|
systimeh = er32(SYSTIMH);
|
||
|
/* Is systimel is so large that overflow is possible? */
|
||
|
if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
|
||
|
ptp_read_system_prets(sts);
|
||
|
systimel_2 = er32(SYSTIML);
|
||
|
ptp_read_system_postts(sts);
|
||
|
if (systimel > systimel_2) {
|
||
|
/* There was an overflow, read again SYSTIMH, and use
|
||
|
* systimel_2
|
||
|
*/
|
||
|
systimeh = er32(SYSTIMH);
|
||
|
systimel = systimel_2;
|
||
|
}
|
||
|
}
|
||
|
systim = (u64)systimel;
|
||
|
systim |= (u64)systimeh << 32;
|
||
|
|
||
|
if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
|
||
|
systim = e1000e_sanitize_systim(hw, systim, sts);
|
||
|
|
||
|
return systim;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
|
||
|
* @cc: cyclecounter structure
|
||
|
**/
|
||
|
static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
|
||
|
cc);
|
||
|
|
||
|
return e1000e_read_systim(adapter, NULL);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_sw_init - Initialize general software structures (struct e1000_adapter)
|
||
|
* @adapter: board private structure to initialize
|
||
|
*
|
||
|
* e1000_sw_init initializes the Adapter private data structure.
|
||
|
* Fields are initialized based on PCI device information and
|
||
|
* OS network device settings (MTU size).
|
||
|
**/
|
||
|
static int e1000_sw_init(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
struct net_device *netdev = adapter->netdev;
|
||
|
|
||
|
adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
|
||
|
adapter->rx_ps_bsize0 = 128;
|
||
|
adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
|
||
|
adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
|
||
|
adapter->tx_ring_count = E1000_DEFAULT_TXD;
|
||
|
adapter->rx_ring_count = E1000_DEFAULT_RXD;
|
||
|
|
||
|
spin_lock_init(&adapter->stats64_lock);
|
||
|
|
||
|
e1000e_set_interrupt_capability(adapter);
|
||
|
|
||
|
if (e1000_alloc_queues(adapter))
|
||
|
return -ENOMEM;
|
||
|
|
||
|
/* Setup hardware time stamping cyclecounter */
|
||
|
if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
|
||
|
adapter->cc.read = e1000e_cyclecounter_read;
|
||
|
adapter->cc.mask = CYCLECOUNTER_MASK(64);
|
||
|
adapter->cc.mult = 1;
|
||
|
/* cc.shift set in e1000e_get_base_tininca() */
|
||
|
|
||
|
spin_lock_init(&adapter->systim_lock);
|
||
|
INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
|
||
|
}
|
||
|
|
||
|
/* Explicitly disable IRQ since the NIC can be in any state. */
|
||
|
e1000_irq_disable(adapter);
|
||
|
|
||
|
set_bit(__E1000_DOWN, &adapter->state);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_intr_msi_test - Interrupt Handler
|
||
|
* @irq: interrupt number
|
||
|
* @data: pointer to a network interface device structure
|
||
|
**/
|
||
|
static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
|
||
|
{
|
||
|
struct net_device *netdev = data;
|
||
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
u32 icr = er32(ICR);
|
||
|
|
||
|
e_dbg("icr is %08X\n", icr);
|
||
|
if (icr & E1000_ICR_RXSEQ) {
|
||
|
adapter->flags &= ~FLAG_MSI_TEST_FAILED;
|
||
|
/* Force memory writes to complete before acknowledging the
|
||
|
* interrupt is handled.
|
||
|
*/
|
||
|
wmb();
|
||
|
}
|
||
|
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_test_msi_interrupt - Returns 0 for successful test
|
||
|
* @adapter: board private struct
|
||
|
*
|
||
|
* code flow taken from tg3.c
|
||
|
**/
|
||
|
static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
struct net_device *netdev = adapter->netdev;
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
int err;
|
||
|
|
||
|
/* poll_enable hasn't been called yet, so don't need disable */
|
||
|
/* clear any pending events */
|
||
|
er32(ICR);
|
||
|
|
||
|
/* free the real vector and request a test handler */
|
||
|
e1000_free_irq(adapter);
|
||
|
e1000e_reset_interrupt_capability(adapter);
|
||
|
|
||
|
/* Assume that the test fails, if it succeeds then the test
|
||
|
* MSI irq handler will unset this flag
|
||
|
*/
|
||
|
adapter->flags |= FLAG_MSI_TEST_FAILED;
|
||
|
|
||
|
err = pci_enable_msi(adapter->pdev);
|
||
|
if (err)
|
||
|
goto msi_test_failed;
|
||
|
|
||
|
err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
|
||
|
netdev->name, netdev);
|
||
|
if (err) {
|
||
|
pci_disable_msi(adapter->pdev);
|
||
|
goto msi_test_failed;
|
||
|
}
|
||
|
|
||
|
/* Force memory writes to complete before enabling and firing an
|
||
|
* interrupt.
|
||
|
*/
|
||
|
wmb();
|
||
|
|
||
|
e1000_irq_enable(adapter);
|
||
|
|
||
|
/* fire an unusual interrupt on the test handler */
|
||
|
ew32(ICS, E1000_ICS_RXSEQ);
|
||
|
e1e_flush();
|
||
|
msleep(100);
|
||
|
|
||
|
e1000_irq_disable(adapter);
|
||
|
|
||
|
rmb(); /* read flags after interrupt has been fired */
|
||
|
|
||
|
if (adapter->flags & FLAG_MSI_TEST_FAILED) {
|
||
|
adapter->int_mode = E1000E_INT_MODE_LEGACY;
|
||
|
e_info("MSI interrupt test failed, using legacy interrupt.\n");
|
||
|
} else {
|
||
|
e_dbg("MSI interrupt test succeeded!\n");
|
||
|
}
|
||
|
|
||
|
free_irq(adapter->pdev->irq, netdev);
|
||
|
pci_disable_msi(adapter->pdev);
|
||
|
|
||
|
msi_test_failed:
|
||
|
e1000e_set_interrupt_capability(adapter);
|
||
|
return e1000_request_irq(adapter);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
|
||
|
* @adapter: board private struct
|
||
|
*
|
||
|
* code flow taken from tg3.c, called with e1000 interrupts disabled.
|
||
|
**/
|
||
|
static int e1000_test_msi(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
int err;
|
||
|
u16 pci_cmd;
|
||
|
|
||
|
if (!(adapter->flags & FLAG_MSI_ENABLED))
|
||
|
return 0;
|
||
|
|
||
|
/* disable SERR in case the MSI write causes a master abort */
|
||
|
pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
|
||
|
if (pci_cmd & PCI_COMMAND_SERR)
|
||
|
pci_write_config_word(adapter->pdev, PCI_COMMAND,
|
||
|
pci_cmd & ~PCI_COMMAND_SERR);
|
||
|
|
||
|
err = e1000_test_msi_interrupt(adapter);
|
||
|
|
||
|
/* re-enable SERR */
|
||
|
if (pci_cmd & PCI_COMMAND_SERR) {
|
||
|
pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
|
||
|
pci_cmd |= PCI_COMMAND_SERR;
|
||
|
pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
|
||
|
}
|
||
|
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_open - Called when a network interface is made active
|
||
|
* @netdev: network interface device structure
|
||
|
*
|
||
|
* Returns 0 on success, negative value on failure
|
||
|
*
|
||
|
* The open entry point is called when a network interface is made
|
||
|
* active by the system (IFF_UP). At this point all resources needed
|
||
|
* for transmit and receive operations are allocated, the interrupt
|
||
|
* handler is registered with the OS, the watchdog timer is started,
|
||
|
* and the stack is notified that the interface is ready.
|
||
|
**/
|
||
|
int e1000e_open(struct net_device *netdev)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
struct pci_dev *pdev = adapter->pdev;
|
||
|
int err;
|
||
|
|
||
|
/* disallow open during test */
|
||
|
if (test_bit(__E1000_TESTING, &adapter->state))
|
||
|
return -EBUSY;
|
||
|
|
||
|
pm_runtime_get_sync(&pdev->dev);
|
||
|
|
||
|
netif_carrier_off(netdev);
|
||
|
netif_stop_queue(netdev);
|
||
|
|
||
|
/* allocate transmit descriptors */
|
||
|
err = e1000e_setup_tx_resources(adapter->tx_ring);
|
||
|
if (err)
|
||
|
goto err_setup_tx;
|
||
|
|
||
|
/* allocate receive descriptors */
|
||
|
err = e1000e_setup_rx_resources(adapter->rx_ring);
|
||
|
if (err)
|
||
|
goto err_setup_rx;
|
||
|
|
||
|
/* If AMT is enabled, let the firmware know that the network
|
||
|
* interface is now open and reset the part to a known state.
|
||
|
*/
|
||
|
if (adapter->flags & FLAG_HAS_AMT) {
|
||
|
e1000e_get_hw_control(adapter);
|
||
|
e1000e_reset(adapter);
|
||
|
}
|
||
|
|
||
|
e1000e_power_up_phy(adapter);
|
||
|
|
||
|
adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
|
||
|
if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
|
||
|
e1000_update_mng_vlan(adapter);
|
||
|
|
||
|
/* DMA latency requirement to workaround jumbo issue */
|
||
|
cpu_latency_qos_add_request(&adapter->pm_qos_req, PM_QOS_DEFAULT_VALUE);
|
||
|
|
||
|
/* before we allocate an interrupt, we must be ready to handle it.
|
||
|
* Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
|
||
|
* as soon as we call pci_request_irq, so we have to setup our
|
||
|
* clean_rx handler before we do so.
|
||
|
*/
|
||
|
e1000_configure(adapter);
|
||
|
|
||
|
err = e1000_request_irq(adapter);
|
||
|
if (err)
|
||
|
goto err_req_irq;
|
||
|
|
||
|
/* Work around PCIe errata with MSI interrupts causing some chipsets to
|
||
|
* ignore e1000e MSI messages, which means we need to test our MSI
|
||
|
* interrupt now
|
||
|
*/
|
||
|
if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
|
||
|
err = e1000_test_msi(adapter);
|
||
|
if (err) {
|
||
|
e_err("Interrupt allocation failed\n");
|
||
|
goto err_req_irq;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* From here on the code is the same as e1000e_up() */
|
||
|
clear_bit(__E1000_DOWN, &adapter->state);
|
||
|
|
||
|
napi_enable(&adapter->napi);
|
||
|
|
||
|
e1000_irq_enable(adapter);
|
||
|
|
||
|
adapter->tx_hang_recheck = false;
|
||
|
|
||
|
hw->mac.get_link_status = true;
|
||
|
pm_runtime_put(&pdev->dev);
|
||
|
|
||
|
e1000e_trigger_lsc(adapter);
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
err_req_irq:
|
||
|
cpu_latency_qos_remove_request(&adapter->pm_qos_req);
|
||
|
e1000e_release_hw_control(adapter);
|
||
|
e1000_power_down_phy(adapter);
|
||
|
e1000e_free_rx_resources(adapter->rx_ring);
|
||
|
err_setup_rx:
|
||
|
e1000e_free_tx_resources(adapter->tx_ring);
|
||
|
err_setup_tx:
|
||
|
e1000e_reset(adapter);
|
||
|
pm_runtime_put_sync(&pdev->dev);
|
||
|
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_close - Disables a network interface
|
||
|
* @netdev: network interface device structure
|
||
|
*
|
||
|
* Returns 0, this is not allowed to fail
|
||
|
*
|
||
|
* The close entry point is called when an interface is de-activated
|
||
|
* by the OS. The hardware is still under the drivers control, but
|
||
|
* needs to be disabled. A global MAC reset is issued to stop the
|
||
|
* hardware, and all transmit and receive resources are freed.
|
||
|
**/
|
||
|
int e1000e_close(struct net_device *netdev)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
||
|
struct pci_dev *pdev = adapter->pdev;
|
||
|
int count = E1000_CHECK_RESET_COUNT;
|
||
|
|
||
|
while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
|
||
|
usleep_range(10000, 11000);
|
||
|
|
||
|
WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
|
||
|
|
||
|
pm_runtime_get_sync(&pdev->dev);
|
||
|
|
||
|
if (netif_device_present(netdev)) {
|
||
|
e1000e_down(adapter, true);
|
||
|
e1000_free_irq(adapter);
|
||
|
|
||
|
/* Link status message must follow this format */
|
||
|
netdev_info(netdev, "NIC Link is Down\n");
|
||
|
}
|
||
|
|
||
|
napi_disable(&adapter->napi);
|
||
|
|
||
|
e1000e_free_tx_resources(adapter->tx_ring);
|
||
|
e1000e_free_rx_resources(adapter->rx_ring);
|
||
|
|
||
|
/* kill manageability vlan ID if supported, but not if a vlan with
|
||
|
* the same ID is registered on the host OS (let 8021q kill it)
|
||
|
*/
|
||
|
if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
|
||
|
e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
|
||
|
adapter->mng_vlan_id);
|
||
|
|
||
|
/* If AMT is enabled, let the firmware know that the network
|
||
|
* interface is now closed
|
||
|
*/
|
||
|
if ((adapter->flags & FLAG_HAS_AMT) &&
|
||
|
!test_bit(__E1000_TESTING, &adapter->state))
|
||
|
e1000e_release_hw_control(adapter);
|
||
|
|
||
|
cpu_latency_qos_remove_request(&adapter->pm_qos_req);
|
||
|
|
||
|
pm_runtime_put_sync(&pdev->dev);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_set_mac - Change the Ethernet Address of the NIC
|
||
|
* @netdev: network interface device structure
|
||
|
* @p: pointer to an address structure
|
||
|
*
|
||
|
* Returns 0 on success, negative on failure
|
||
|
**/
|
||
|
static int e1000_set_mac(struct net_device *netdev, void *p)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
struct sockaddr *addr = p;
|
||
|
|
||
|
if (!is_valid_ether_addr(addr->sa_data))
|
||
|
return -EADDRNOTAVAIL;
|
||
|
|
||
|
eth_hw_addr_set(netdev, addr->sa_data);
|
||
|
memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
|
||
|
|
||
|
hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
|
||
|
|
||
|
if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
|
||
|
/* activate the work around */
|
||
|
e1000e_set_laa_state_82571(&adapter->hw, 1);
|
||
|
|
||
|
/* Hold a copy of the LAA in RAR[14] This is done so that
|
||
|
* between the time RAR[0] gets clobbered and the time it
|
||
|
* gets fixed (in e1000_watchdog), the actual LAA is in one
|
||
|
* of the RARs and no incoming packets directed to this port
|
||
|
* are dropped. Eventually the LAA will be in RAR[0] and
|
||
|
* RAR[14]
|
||
|
*/
|
||
|
hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
|
||
|
adapter->hw.mac.rar_entry_count - 1);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_update_phy_task - work thread to update phy
|
||
|
* @work: pointer to our work struct
|
||
|
*
|
||
|
* this worker thread exists because we must acquire a
|
||
|
* semaphore to read the phy, which we could msleep while
|
||
|
* waiting for it, and we can't msleep in a timer.
|
||
|
**/
|
||
|
static void e1000e_update_phy_task(struct work_struct *work)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = container_of(work,
|
||
|
struct e1000_adapter,
|
||
|
update_phy_task);
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
|
||
|
if (test_bit(__E1000_DOWN, &adapter->state))
|
||
|
return;
|
||
|
|
||
|
e1000_get_phy_info(hw);
|
||
|
|
||
|
/* Enable EEE on 82579 after link up */
|
||
|
if (hw->phy.type >= e1000_phy_82579)
|
||
|
e1000_set_eee_pchlan(hw);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_update_phy_info - timre call-back to update PHY info
|
||
|
* @t: pointer to timer_list containing private info adapter
|
||
|
*
|
||
|
* Need to wait a few seconds after link up to get diagnostic information from
|
||
|
* the phy
|
||
|
**/
|
||
|
static void e1000_update_phy_info(struct timer_list *t)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
|
||
|
|
||
|
if (test_bit(__E1000_DOWN, &adapter->state))
|
||
|
return;
|
||
|
|
||
|
schedule_work(&adapter->update_phy_task);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_update_phy_stats - Update the PHY statistics counters
|
||
|
* @adapter: board private structure
|
||
|
*
|
||
|
* Read/clear the upper 16-bit PHY registers and read/accumulate lower
|
||
|
**/
|
||
|
static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
s32 ret_val;
|
||
|
u16 phy_data;
|
||
|
|
||
|
ret_val = hw->phy.ops.acquire(hw);
|
||
|
if (ret_val)
|
||
|
return;
|
||
|
|
||
|
/* A page set is expensive so check if already on desired page.
|
||
|
* If not, set to the page with the PHY status registers.
|
||
|
*/
|
||
|
hw->phy.addr = 1;
|
||
|
ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
|
||
|
&phy_data);
|
||
|
if (ret_val)
|
||
|
goto release;
|
||
|
if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
|
||
|
ret_val = hw->phy.ops.set_page(hw,
|
||
|
HV_STATS_PAGE << IGP_PAGE_SHIFT);
|
||
|
if (ret_val)
|
||
|
goto release;
|
||
|
}
|
||
|
|
||
|
/* Single Collision Count */
|
||
|
hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
|
||
|
ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
|
||
|
if (!ret_val)
|
||
|
adapter->stats.scc += phy_data;
|
||
|
|
||
|
/* Excessive Collision Count */
|
||
|
hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
|
||
|
ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
|
||
|
if (!ret_val)
|
||
|
adapter->stats.ecol += phy_data;
|
||
|
|
||
|
/* Multiple Collision Count */
|
||
|
hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
|
||
|
ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
|
||
|
if (!ret_val)
|
||
|
adapter->stats.mcc += phy_data;
|
||
|
|
||
|
/* Late Collision Count */
|
||
|
hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
|
||
|
ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
|
||
|
if (!ret_val)
|
||
|
adapter->stats.latecol += phy_data;
|
||
|
|
||
|
/* Collision Count - also used for adaptive IFS */
|
||
|
hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
|
||
|
ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
|
||
|
if (!ret_val)
|
||
|
hw->mac.collision_delta = phy_data;
|
||
|
|
||
|
/* Defer Count */
|
||
|
hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
|
||
|
ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
|
||
|
if (!ret_val)
|
||
|
adapter->stats.dc += phy_data;
|
||
|
|
||
|
/* Transmit with no CRS */
|
||
|
hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
|
||
|
ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
|
||
|
if (!ret_val)
|
||
|
adapter->stats.tncrs += phy_data;
|
||
|
|
||
|
release:
|
||
|
hw->phy.ops.release(hw);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_update_stats - Update the board statistics counters
|
||
|
* @adapter: board private structure
|
||
|
**/
|
||
|
static void e1000e_update_stats(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
struct net_device *netdev = adapter->netdev;
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
struct pci_dev *pdev = adapter->pdev;
|
||
|
|
||
|
/* Prevent stats update while adapter is being reset, or if the pci
|
||
|
* connection is down.
|
||
|
*/
|
||
|
if (adapter->link_speed == 0)
|
||
|
return;
|
||
|
if (pci_channel_offline(pdev))
|
||
|
return;
|
||
|
|
||
|
adapter->stats.crcerrs += er32(CRCERRS);
|
||
|
adapter->stats.gprc += er32(GPRC);
|
||
|
adapter->stats.gorc += er32(GORCL);
|
||
|
er32(GORCH); /* Clear gorc */
|
||
|
adapter->stats.bprc += er32(BPRC);
|
||
|
adapter->stats.mprc += er32(MPRC);
|
||
|
adapter->stats.roc += er32(ROC);
|
||
|
|
||
|
adapter->stats.mpc += er32(MPC);
|
||
|
|
||
|
/* Half-duplex statistics */
|
||
|
if (adapter->link_duplex == HALF_DUPLEX) {
|
||
|
if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
|
||
|
e1000e_update_phy_stats(adapter);
|
||
|
} else {
|
||
|
adapter->stats.scc += er32(SCC);
|
||
|
adapter->stats.ecol += er32(ECOL);
|
||
|
adapter->stats.mcc += er32(MCC);
|
||
|
adapter->stats.latecol += er32(LATECOL);
|
||
|
adapter->stats.dc += er32(DC);
|
||
|
|
||
|
hw->mac.collision_delta = er32(COLC);
|
||
|
|
||
|
if ((hw->mac.type != e1000_82574) &&
|
||
|
(hw->mac.type != e1000_82583))
|
||
|
adapter->stats.tncrs += er32(TNCRS);
|
||
|
}
|
||
|
adapter->stats.colc += hw->mac.collision_delta;
|
||
|
}
|
||
|
|
||
|
adapter->stats.xonrxc += er32(XONRXC);
|
||
|
adapter->stats.xontxc += er32(XONTXC);
|
||
|
adapter->stats.xoffrxc += er32(XOFFRXC);
|
||
|
adapter->stats.xofftxc += er32(XOFFTXC);
|
||
|
adapter->stats.gptc += er32(GPTC);
|
||
|
adapter->stats.gotc += er32(GOTCL);
|
||
|
er32(GOTCH); /* Clear gotc */
|
||
|
adapter->stats.rnbc += er32(RNBC);
|
||
|
adapter->stats.ruc += er32(RUC);
|
||
|
|
||
|
adapter->stats.mptc += er32(MPTC);
|
||
|
adapter->stats.bptc += er32(BPTC);
|
||
|
|
||
|
/* used for adaptive IFS */
|
||
|
|
||
|
hw->mac.tx_packet_delta = er32(TPT);
|
||
|
adapter->stats.tpt += hw->mac.tx_packet_delta;
|
||
|
|
||
|
adapter->stats.algnerrc += er32(ALGNERRC);
|
||
|
adapter->stats.rxerrc += er32(RXERRC);
|
||
|
adapter->stats.cexterr += er32(CEXTERR);
|
||
|
adapter->stats.tsctc += er32(TSCTC);
|
||
|
adapter->stats.tsctfc += er32(TSCTFC);
|
||
|
|
||
|
/* Fill out the OS statistics structure */
|
||
|
netdev->stats.multicast = adapter->stats.mprc;
|
||
|
netdev->stats.collisions = adapter->stats.colc;
|
||
|
|
||
|
/* Rx Errors */
|
||
|
|
||
|
/* RLEC on some newer hardware can be incorrect so build
|
||
|
* our own version based on RUC and ROC
|
||
|
*/
|
||
|
netdev->stats.rx_errors = adapter->stats.rxerrc +
|
||
|
adapter->stats.crcerrs + adapter->stats.algnerrc +
|
||
|
adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
|
||
|
netdev->stats.rx_length_errors = adapter->stats.ruc +
|
||
|
adapter->stats.roc;
|
||
|
netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
|
||
|
netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
|
||
|
netdev->stats.rx_missed_errors = adapter->stats.mpc;
|
||
|
|
||
|
/* Tx Errors */
|
||
|
netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
|
||
|
netdev->stats.tx_aborted_errors = adapter->stats.ecol;
|
||
|
netdev->stats.tx_window_errors = adapter->stats.latecol;
|
||
|
netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
|
||
|
|
||
|
/* Tx Dropped needs to be maintained elsewhere */
|
||
|
|
||
|
/* Management Stats */
|
||
|
adapter->stats.mgptc += er32(MGTPTC);
|
||
|
adapter->stats.mgprc += er32(MGTPRC);
|
||
|
adapter->stats.mgpdc += er32(MGTPDC);
|
||
|
|
||
|
/* Correctable ECC Errors */
|
||
|
if (hw->mac.type >= e1000_pch_lpt) {
|
||
|
u32 pbeccsts = er32(PBECCSTS);
|
||
|
|
||
|
adapter->corr_errors +=
|
||
|
pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
|
||
|
adapter->uncorr_errors +=
|
||
|
(pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
|
||
|
E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_phy_read_status - Update the PHY register status snapshot
|
||
|
* @adapter: board private structure
|
||
|
**/
|
||
|
static void e1000_phy_read_status(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
struct e1000_phy_regs *phy = &adapter->phy_regs;
|
||
|
|
||
|
if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
|
||
|
(er32(STATUS) & E1000_STATUS_LU) &&
|
||
|
(adapter->hw.phy.media_type == e1000_media_type_copper)) {
|
||
|
int ret_val;
|
||
|
|
||
|
ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
|
||
|
ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
|
||
|
ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
|
||
|
ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
|
||
|
ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
|
||
|
ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
|
||
|
ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
|
||
|
ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
|
||
|
if (ret_val)
|
||
|
e_warn("Error reading PHY register\n");
|
||
|
} else {
|
||
|
/* Do not read PHY registers if link is not up
|
||
|
* Set values to typical power-on defaults
|
||
|
*/
|
||
|
phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
|
||
|
phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
|
||
|
BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
|
||
|
BMSR_ERCAP);
|
||
|
phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
|
||
|
ADVERTISE_ALL | ADVERTISE_CSMA);
|
||
|
phy->lpa = 0;
|
||
|
phy->expansion = EXPANSION_ENABLENPAGE;
|
||
|
phy->ctrl1000 = ADVERTISE_1000FULL;
|
||
|
phy->stat1000 = 0;
|
||
|
phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void e1000_print_link_info(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
u32 ctrl = er32(CTRL);
|
||
|
|
||
|
/* Link status message must follow this format for user tools */
|
||
|
netdev_info(adapter->netdev,
|
||
|
"NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
|
||
|
adapter->link_speed,
|
||
|
adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
|
||
|
(ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
|
||
|
(ctrl & E1000_CTRL_RFCE) ? "Rx" :
|
||
|
(ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
|
||
|
}
|
||
|
|
||
|
static bool e1000e_has_link(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
bool link_active = false;
|
||
|
s32 ret_val = 0;
|
||
|
|
||
|
/* get_link_status is set on LSC (link status) interrupt or
|
||
|
* Rx sequence error interrupt. get_link_status will stay
|
||
|
* true until the check_for_link establishes link
|
||
|
* for copper adapters ONLY
|
||
|
*/
|
||
|
switch (hw->phy.media_type) {
|
||
|
case e1000_media_type_copper:
|
||
|
if (hw->mac.get_link_status) {
|
||
|
ret_val = hw->mac.ops.check_for_link(hw);
|
||
|
link_active = !hw->mac.get_link_status;
|
||
|
} else {
|
||
|
link_active = true;
|
||
|
}
|
||
|
break;
|
||
|
case e1000_media_type_fiber:
|
||
|
ret_val = hw->mac.ops.check_for_link(hw);
|
||
|
link_active = !!(er32(STATUS) & E1000_STATUS_LU);
|
||
|
break;
|
||
|
case e1000_media_type_internal_serdes:
|
||
|
ret_val = hw->mac.ops.check_for_link(hw);
|
||
|
link_active = hw->mac.serdes_has_link;
|
||
|
break;
|
||
|
default:
|
||
|
case e1000_media_type_unknown:
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
|
||
|
(er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
|
||
|
/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
|
||
|
e_info("Gigabit has been disabled, downgrading speed\n");
|
||
|
}
|
||
|
|
||
|
return link_active;
|
||
|
}
|
||
|
|
||
|
static void e1000e_enable_receives(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
/* make sure the receive unit is started */
|
||
|
if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
|
||
|
(adapter->flags & FLAG_RESTART_NOW)) {
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
u32 rctl = er32(RCTL);
|
||
|
|
||
|
ew32(RCTL, rctl | E1000_RCTL_EN);
|
||
|
adapter->flags &= ~FLAG_RESTART_NOW;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
|
||
|
/* With 82574 controllers, PHY needs to be checked periodically
|
||
|
* for hung state and reset, if two calls return true
|
||
|
*/
|
||
|
if (e1000_check_phy_82574(hw))
|
||
|
adapter->phy_hang_count++;
|
||
|
else
|
||
|
adapter->phy_hang_count = 0;
|
||
|
|
||
|
if (adapter->phy_hang_count > 1) {
|
||
|
adapter->phy_hang_count = 0;
|
||
|
e_dbg("PHY appears hung - resetting\n");
|
||
|
schedule_work(&adapter->reset_task);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_watchdog - Timer Call-back
|
||
|
* @t: pointer to timer_list containing private info adapter
|
||
|
**/
|
||
|
static void e1000_watchdog(struct timer_list *t)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
|
||
|
|
||
|
/* Do the rest outside of interrupt context */
|
||
|
schedule_work(&adapter->watchdog_task);
|
||
|
|
||
|
/* TODO: make this use queue_delayed_work() */
|
||
|
}
|
||
|
|
||
|
static void e1000_watchdog_task(struct work_struct *work)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = container_of(work,
|
||
|
struct e1000_adapter,
|
||
|
watchdog_task);
|
||
|
struct net_device *netdev = adapter->netdev;
|
||
|
struct e1000_mac_info *mac = &adapter->hw.mac;
|
||
|
struct e1000_phy_info *phy = &adapter->hw.phy;
|
||
|
struct e1000_ring *tx_ring = adapter->tx_ring;
|
||
|
u32 dmoff_exit_timeout = 100, tries = 0;
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
u32 link, tctl, pcim_state;
|
||
|
|
||
|
if (test_bit(__E1000_DOWN, &adapter->state))
|
||
|
return;
|
||
|
|
||
|
link = e1000e_has_link(adapter);
|
||
|
if ((netif_carrier_ok(netdev)) && link) {
|
||
|
/* Cancel scheduled suspend requests. */
|
||
|
pm_runtime_resume(netdev->dev.parent);
|
||
|
|
||
|
e1000e_enable_receives(adapter);
|
||
|
goto link_up;
|
||
|
}
|
||
|
|
||
|
if ((e1000e_enable_tx_pkt_filtering(hw)) &&
|
||
|
(adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
|
||
|
e1000_update_mng_vlan(adapter);
|
||
|
|
||
|
if (link) {
|
||
|
if (!netif_carrier_ok(netdev)) {
|
||
|
bool txb2b = true;
|
||
|
|
||
|
/* Cancel scheduled suspend requests. */
|
||
|
pm_runtime_resume(netdev->dev.parent);
|
||
|
|
||
|
/* Checking if MAC is in DMoff state*/
|
||
|
if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
|
||
|
pcim_state = er32(STATUS);
|
||
|
while (pcim_state & E1000_STATUS_PCIM_STATE) {
|
||
|
if (tries++ == dmoff_exit_timeout) {
|
||
|
e_dbg("Error in exiting dmoff\n");
|
||
|
break;
|
||
|
}
|
||
|
usleep_range(10000, 20000);
|
||
|
pcim_state = er32(STATUS);
|
||
|
|
||
|
/* Checking if MAC exited DMoff state */
|
||
|
if (!(pcim_state & E1000_STATUS_PCIM_STATE))
|
||
|
e1000_phy_hw_reset(&adapter->hw);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* update snapshot of PHY registers on LSC */
|
||
|
e1000_phy_read_status(adapter);
|
||
|
mac->ops.get_link_up_info(&adapter->hw,
|
||
|
&adapter->link_speed,
|
||
|
&adapter->link_duplex);
|
||
|
e1000_print_link_info(adapter);
|
||
|
|
||
|
/* check if SmartSpeed worked */
|
||
|
e1000e_check_downshift(hw);
|
||
|
if (phy->speed_downgraded)
|
||
|
netdev_warn(netdev,
|
||
|
"Link Speed was downgraded by SmartSpeed\n");
|
||
|
|
||
|
/* On supported PHYs, check for duplex mismatch only
|
||
|
* if link has autonegotiated at 10/100 half
|
||
|
*/
|
||
|
if ((hw->phy.type == e1000_phy_igp_3 ||
|
||
|
hw->phy.type == e1000_phy_bm) &&
|
||
|
hw->mac.autoneg &&
|
||
|
(adapter->link_speed == SPEED_10 ||
|
||
|
adapter->link_speed == SPEED_100) &&
|
||
|
(adapter->link_duplex == HALF_DUPLEX)) {
|
||
|
u16 autoneg_exp;
|
||
|
|
||
|
e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
|
||
|
|
||
|
if (!(autoneg_exp & EXPANSION_NWAY))
|
||
|
e_info("Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n");
|
||
|
}
|
||
|
|
||
|
/* adjust timeout factor according to speed/duplex */
|
||
|
adapter->tx_timeout_factor = 1;
|
||
|
switch (adapter->link_speed) {
|
||
|
case SPEED_10:
|
||
|
txb2b = false;
|
||
|
adapter->tx_timeout_factor = 16;
|
||
|
break;
|
||
|
case SPEED_100:
|
||
|
txb2b = false;
|
||
|
adapter->tx_timeout_factor = 10;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* workaround: re-program speed mode bit after
|
||
|
* link-up event
|
||
|
*/
|
||
|
if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
|
||
|
!txb2b) {
|
||
|
u32 tarc0;
|
||
|
|
||
|
tarc0 = er32(TARC(0));
|
||
|
tarc0 &= ~SPEED_MODE_BIT;
|
||
|
ew32(TARC(0), tarc0);
|
||
|
}
|
||
|
|
||
|
/* enable transmits in the hardware, need to do this
|
||
|
* after setting TARC(0)
|
||
|
*/
|
||
|
tctl = er32(TCTL);
|
||
|
tctl |= E1000_TCTL_EN;
|
||
|
ew32(TCTL, tctl);
|
||
|
|
||
|
/* Perform any post-link-up configuration before
|
||
|
* reporting link up.
|
||
|
*/
|
||
|
if (phy->ops.cfg_on_link_up)
|
||
|
phy->ops.cfg_on_link_up(hw);
|
||
|
|
||
|
netif_wake_queue(netdev);
|
||
|
netif_carrier_on(netdev);
|
||
|
|
||
|
if (!test_bit(__E1000_DOWN, &adapter->state))
|
||
|
mod_timer(&adapter->phy_info_timer,
|
||
|
round_jiffies(jiffies + 2 * HZ));
|
||
|
}
|
||
|
} else {
|
||
|
if (netif_carrier_ok(netdev)) {
|
||
|
adapter->link_speed = 0;
|
||
|
adapter->link_duplex = 0;
|
||
|
/* Link status message must follow this format */
|
||
|
netdev_info(netdev, "NIC Link is Down\n");
|
||
|
netif_carrier_off(netdev);
|
||
|
netif_stop_queue(netdev);
|
||
|
if (!test_bit(__E1000_DOWN, &adapter->state))
|
||
|
mod_timer(&adapter->phy_info_timer,
|
||
|
round_jiffies(jiffies + 2 * HZ));
|
||
|
|
||
|
/* 8000ES2LAN requires a Rx packet buffer work-around
|
||
|
* on link down event; reset the controller to flush
|
||
|
* the Rx packet buffer.
|
||
|
*/
|
||
|
if (adapter->flags & FLAG_RX_NEEDS_RESTART)
|
||
|
adapter->flags |= FLAG_RESTART_NOW;
|
||
|
else
|
||
|
pm_schedule_suspend(netdev->dev.parent,
|
||
|
LINK_TIMEOUT);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
link_up:
|
||
|
spin_lock(&adapter->stats64_lock);
|
||
|
e1000e_update_stats(adapter);
|
||
|
|
||
|
mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
|
||
|
adapter->tpt_old = adapter->stats.tpt;
|
||
|
mac->collision_delta = adapter->stats.colc - adapter->colc_old;
|
||
|
adapter->colc_old = adapter->stats.colc;
|
||
|
|
||
|
adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
|
||
|
adapter->gorc_old = adapter->stats.gorc;
|
||
|
adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
|
||
|
adapter->gotc_old = adapter->stats.gotc;
|
||
|
spin_unlock(&adapter->stats64_lock);
|
||
|
|
||
|
/* If the link is lost the controller stops DMA, but
|
||
|
* if there is queued Tx work it cannot be done. So
|
||
|
* reset the controller to flush the Tx packet buffers.
|
||
|
*/
|
||
|
if (!netif_carrier_ok(netdev) &&
|
||
|
(e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
|
||
|
adapter->flags |= FLAG_RESTART_NOW;
|
||
|
|
||
|
/* If reset is necessary, do it outside of interrupt context. */
|
||
|
if (adapter->flags & FLAG_RESTART_NOW) {
|
||
|
schedule_work(&adapter->reset_task);
|
||
|
/* return immediately since reset is imminent */
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
e1000e_update_adaptive(&adapter->hw);
|
||
|
|
||
|
/* Simple mode for Interrupt Throttle Rate (ITR) */
|
||
|
if (adapter->itr_setting == 4) {
|
||
|
/* Symmetric Tx/Rx gets a reduced ITR=2000;
|
||
|
* Total asymmetrical Tx or Rx gets ITR=8000;
|
||
|
* everyone else is between 2000-8000.
|
||
|
*/
|
||
|
u32 goc = (adapter->gotc + adapter->gorc) / 10000;
|
||
|
u32 dif = (adapter->gotc > adapter->gorc ?
|
||
|
adapter->gotc - adapter->gorc :
|
||
|
adapter->gorc - adapter->gotc) / 10000;
|
||
|
u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
|
||
|
|
||
|
e1000e_write_itr(adapter, itr);
|
||
|
}
|
||
|
|
||
|
/* Cause software interrupt to ensure Rx ring is cleaned */
|
||
|
if (adapter->msix_entries)
|
||
|
ew32(ICS, adapter->rx_ring->ims_val);
|
||
|
else
|
||
|
ew32(ICS, E1000_ICS_RXDMT0);
|
||
|
|
||
|
/* flush pending descriptors to memory before detecting Tx hang */
|
||
|
e1000e_flush_descriptors(adapter);
|
||
|
|
||
|
/* Force detection of hung controller every watchdog period */
|
||
|
adapter->detect_tx_hung = true;
|
||
|
|
||
|
/* With 82571 controllers, LAA may be overwritten due to controller
|
||
|
* reset from the other port. Set the appropriate LAA in RAR[0]
|
||
|
*/
|
||
|
if (e1000e_get_laa_state_82571(hw))
|
||
|
hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
|
||
|
|
||
|
if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
|
||
|
e1000e_check_82574_phy_workaround(adapter);
|
||
|
|
||
|
/* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
|
||
|
if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
|
||
|
if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
|
||
|
(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
|
||
|
er32(RXSTMPH);
|
||
|
adapter->rx_hwtstamp_cleared++;
|
||
|
} else {
|
||
|
adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Reset the timer */
|
||
|
if (!test_bit(__E1000_DOWN, &adapter->state))
|
||
|
mod_timer(&adapter->watchdog_timer,
|
||
|
round_jiffies(jiffies + 2 * HZ));
|
||
|
}
|
||
|
|
||
|
#define E1000_TX_FLAGS_CSUM 0x00000001
|
||
|
#define E1000_TX_FLAGS_VLAN 0x00000002
|
||
|
#define E1000_TX_FLAGS_TSO 0x00000004
|
||
|
#define E1000_TX_FLAGS_IPV4 0x00000008
|
||
|
#define E1000_TX_FLAGS_NO_FCS 0x00000010
|
||
|
#define E1000_TX_FLAGS_HWTSTAMP 0x00000020
|
||
|
#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
|
||
|
#define E1000_TX_FLAGS_VLAN_SHIFT 16
|
||
|
|
||
|
static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
|
||
|
__be16 protocol)
|
||
|
{
|
||
|
struct e1000_context_desc *context_desc;
|
||
|
struct e1000_buffer *buffer_info;
|
||
|
unsigned int i;
|
||
|
u32 cmd_length = 0;
|
||
|
u16 ipcse = 0, mss;
|
||
|
u8 ipcss, ipcso, tucss, tucso, hdr_len;
|
||
|
int err;
|
||
|
|
||
|
if (!skb_is_gso(skb))
|
||
|
return 0;
|
||
|
|
||
|
err = skb_cow_head(skb, 0);
|
||
|
if (err < 0)
|
||
|
return err;
|
||
|
|
||
|
hdr_len = skb_tcp_all_headers(skb);
|
||
|
mss = skb_shinfo(skb)->gso_size;
|
||
|
if (protocol == htons(ETH_P_IP)) {
|
||
|
struct iphdr *iph = ip_hdr(skb);
|
||
|
iph->tot_len = 0;
|
||
|
iph->check = 0;
|
||
|
tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
|
||
|
0, IPPROTO_TCP, 0);
|
||
|
cmd_length = E1000_TXD_CMD_IP;
|
||
|
ipcse = skb_transport_offset(skb) - 1;
|
||
|
} else if (skb_is_gso_v6(skb)) {
|
||
|
tcp_v6_gso_csum_prep(skb);
|
||
|
ipcse = 0;
|
||
|
}
|
||
|
ipcss = skb_network_offset(skb);
|
||
|
ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
|
||
|
tucss = skb_transport_offset(skb);
|
||
|
tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
|
||
|
|
||
|
cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
|
||
|
E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
|
||
|
|
||
|
i = tx_ring->next_to_use;
|
||
|
context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
|
||
|
buffer_info = &tx_ring->buffer_info[i];
|
||
|
|
||
|
context_desc->lower_setup.ip_fields.ipcss = ipcss;
|
||
|
context_desc->lower_setup.ip_fields.ipcso = ipcso;
|
||
|
context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
|
||
|
context_desc->upper_setup.tcp_fields.tucss = tucss;
|
||
|
context_desc->upper_setup.tcp_fields.tucso = tucso;
|
||
|
context_desc->upper_setup.tcp_fields.tucse = 0;
|
||
|
context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
|
||
|
context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
|
||
|
context_desc->cmd_and_length = cpu_to_le32(cmd_length);
|
||
|
|
||
|
buffer_info->time_stamp = jiffies;
|
||
|
buffer_info->next_to_watch = i;
|
||
|
|
||
|
i++;
|
||
|
if (i == tx_ring->count)
|
||
|
i = 0;
|
||
|
tx_ring->next_to_use = i;
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
|
||
|
__be16 protocol)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = tx_ring->adapter;
|
||
|
struct e1000_context_desc *context_desc;
|
||
|
struct e1000_buffer *buffer_info;
|
||
|
unsigned int i;
|
||
|
u8 css;
|
||
|
u32 cmd_len = E1000_TXD_CMD_DEXT;
|
||
|
|
||
|
if (skb->ip_summed != CHECKSUM_PARTIAL)
|
||
|
return false;
|
||
|
|
||
|
switch (protocol) {
|
||
|
case cpu_to_be16(ETH_P_IP):
|
||
|
if (ip_hdr(skb)->protocol == IPPROTO_TCP)
|
||
|
cmd_len |= E1000_TXD_CMD_TCP;
|
||
|
break;
|
||
|
case cpu_to_be16(ETH_P_IPV6):
|
||
|
/* XXX not handling all IPV6 headers */
|
||
|
if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
|
||
|
cmd_len |= E1000_TXD_CMD_TCP;
|
||
|
break;
|
||
|
default:
|
||
|
if (unlikely(net_ratelimit()))
|
||
|
e_warn("checksum_partial proto=%x!\n",
|
||
|
be16_to_cpu(protocol));
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
css = skb_checksum_start_offset(skb);
|
||
|
|
||
|
i = tx_ring->next_to_use;
|
||
|
buffer_info = &tx_ring->buffer_info[i];
|
||
|
context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
|
||
|
|
||
|
context_desc->lower_setup.ip_config = 0;
|
||
|
context_desc->upper_setup.tcp_fields.tucss = css;
|
||
|
context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
|
||
|
context_desc->upper_setup.tcp_fields.tucse = 0;
|
||
|
context_desc->tcp_seg_setup.data = 0;
|
||
|
context_desc->cmd_and_length = cpu_to_le32(cmd_len);
|
||
|
|
||
|
buffer_info->time_stamp = jiffies;
|
||
|
buffer_info->next_to_watch = i;
|
||
|
|
||
|
i++;
|
||
|
if (i == tx_ring->count)
|
||
|
i = 0;
|
||
|
tx_ring->next_to_use = i;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
|
||
|
unsigned int first, unsigned int max_per_txd,
|
||
|
unsigned int nr_frags)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = tx_ring->adapter;
|
||
|
struct pci_dev *pdev = adapter->pdev;
|
||
|
struct e1000_buffer *buffer_info;
|
||
|
unsigned int len = skb_headlen(skb);
|
||
|
unsigned int offset = 0, size, count = 0, i;
|
||
|
unsigned int f, bytecount, segs;
|
||
|
|
||
|
i = tx_ring->next_to_use;
|
||
|
|
||
|
while (len) {
|
||
|
buffer_info = &tx_ring->buffer_info[i];
|
||
|
size = min(len, max_per_txd);
|
||
|
|
||
|
buffer_info->length = size;
|
||
|
buffer_info->time_stamp = jiffies;
|
||
|
buffer_info->next_to_watch = i;
|
||
|
buffer_info->dma = dma_map_single(&pdev->dev,
|
||
|
skb->data + offset,
|
||
|
size, DMA_TO_DEVICE);
|
||
|
buffer_info->mapped_as_page = false;
|
||
|
if (dma_mapping_error(&pdev->dev, buffer_info->dma))
|
||
|
goto dma_error;
|
||
|
|
||
|
len -= size;
|
||
|
offset += size;
|
||
|
count++;
|
||
|
|
||
|
if (len) {
|
||
|
i++;
|
||
|
if (i == tx_ring->count)
|
||
|
i = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (f = 0; f < nr_frags; f++) {
|
||
|
const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
|
||
|
|
||
|
len = skb_frag_size(frag);
|
||
|
offset = 0;
|
||
|
|
||
|
while (len) {
|
||
|
i++;
|
||
|
if (i == tx_ring->count)
|
||
|
i = 0;
|
||
|
|
||
|
buffer_info = &tx_ring->buffer_info[i];
|
||
|
size = min(len, max_per_txd);
|
||
|
|
||
|
buffer_info->length = size;
|
||
|
buffer_info->time_stamp = jiffies;
|
||
|
buffer_info->next_to_watch = i;
|
||
|
buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
|
||
|
offset, size,
|
||
|
DMA_TO_DEVICE);
|
||
|
buffer_info->mapped_as_page = true;
|
||
|
if (dma_mapping_error(&pdev->dev, buffer_info->dma))
|
||
|
goto dma_error;
|
||
|
|
||
|
len -= size;
|
||
|
offset += size;
|
||
|
count++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
segs = skb_shinfo(skb)->gso_segs ? : 1;
|
||
|
/* multiply data chunks by size of headers */
|
||
|
bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
|
||
|
|
||
|
tx_ring->buffer_info[i].skb = skb;
|
||
|
tx_ring->buffer_info[i].segs = segs;
|
||
|
tx_ring->buffer_info[i].bytecount = bytecount;
|
||
|
tx_ring->buffer_info[first].next_to_watch = i;
|
||
|
|
||
|
return count;
|
||
|
|
||
|
dma_error:
|
||
|
dev_err(&pdev->dev, "Tx DMA map failed\n");
|
||
|
buffer_info->dma = 0;
|
||
|
if (count)
|
||
|
count--;
|
||
|
|
||
|
while (count--) {
|
||
|
if (i == 0)
|
||
|
i += tx_ring->count;
|
||
|
i--;
|
||
|
buffer_info = &tx_ring->buffer_info[i];
|
||
|
e1000_put_txbuf(tx_ring, buffer_info, true);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = tx_ring->adapter;
|
||
|
struct e1000_tx_desc *tx_desc = NULL;
|
||
|
struct e1000_buffer *buffer_info;
|
||
|
u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
|
||
|
unsigned int i;
|
||
|
|
||
|
if (tx_flags & E1000_TX_FLAGS_TSO) {
|
||
|
txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
|
||
|
E1000_TXD_CMD_TSE;
|
||
|
txd_upper |= E1000_TXD_POPTS_TXSM << 8;
|
||
|
|
||
|
if (tx_flags & E1000_TX_FLAGS_IPV4)
|
||
|
txd_upper |= E1000_TXD_POPTS_IXSM << 8;
|
||
|
}
|
||
|
|
||
|
if (tx_flags & E1000_TX_FLAGS_CSUM) {
|
||
|
txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
|
||
|
txd_upper |= E1000_TXD_POPTS_TXSM << 8;
|
||
|
}
|
||
|
|
||
|
if (tx_flags & E1000_TX_FLAGS_VLAN) {
|
||
|
txd_lower |= E1000_TXD_CMD_VLE;
|
||
|
txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
|
||
|
}
|
||
|
|
||
|
if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
|
||
|
txd_lower &= ~(E1000_TXD_CMD_IFCS);
|
||
|
|
||
|
if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
|
||
|
txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
|
||
|
txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
|
||
|
}
|
||
|
|
||
|
i = tx_ring->next_to_use;
|
||
|
|
||
|
do {
|
||
|
buffer_info = &tx_ring->buffer_info[i];
|
||
|
tx_desc = E1000_TX_DESC(*tx_ring, i);
|
||
|
tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
|
||
|
tx_desc->lower.data = cpu_to_le32(txd_lower |
|
||
|
buffer_info->length);
|
||
|
tx_desc->upper.data = cpu_to_le32(txd_upper);
|
||
|
|
||
|
i++;
|
||
|
if (i == tx_ring->count)
|
||
|
i = 0;
|
||
|
} while (--count > 0);
|
||
|
|
||
|
tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
|
||
|
|
||
|
/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
|
||
|
if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
|
||
|
tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
|
||
|
|
||
|
/* Force memory writes to complete before letting h/w
|
||
|
* know there are new descriptors to fetch. (Only
|
||
|
* applicable for weak-ordered memory model archs,
|
||
|
* such as IA-64).
|
||
|
*/
|
||
|
wmb();
|
||
|
|
||
|
tx_ring->next_to_use = i;
|
||
|
}
|
||
|
|
||
|
#define MINIMUM_DHCP_PACKET_SIZE 282
|
||
|
static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
|
||
|
struct sk_buff *skb)
|
||
|
{
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
u16 length, offset;
|
||
|
|
||
|
if (skb_vlan_tag_present(skb) &&
|
||
|
!((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
|
||
|
(adapter->hw.mng_cookie.status &
|
||
|
E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
|
||
|
return 0;
|
||
|
|
||
|
if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
|
||
|
return 0;
|
||
|
|
||
|
if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
|
||
|
return 0;
|
||
|
|
||
|
{
|
||
|
const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
|
||
|
struct udphdr *udp;
|
||
|
|
||
|
if (ip->protocol != IPPROTO_UDP)
|
||
|
return 0;
|
||
|
|
||
|
udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
|
||
|
if (ntohs(udp->dest) != 67)
|
||
|
return 0;
|
||
|
|
||
|
offset = (u8 *)udp + 8 - skb->data;
|
||
|
length = skb->len - offset;
|
||
|
return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = tx_ring->adapter;
|
||
|
|
||
|
netif_stop_queue(adapter->netdev);
|
||
|
/* Herbert's original patch had:
|
||
|
* smp_mb__after_netif_stop_queue();
|
||
|
* but since that doesn't exist yet, just open code it.
|
||
|
*/
|
||
|
smp_mb();
|
||
|
|
||
|
/* We need to check again in a case another CPU has just
|
||
|
* made room available.
|
||
|
*/
|
||
|
if (e1000_desc_unused(tx_ring) < size)
|
||
|
return -EBUSY;
|
||
|
|
||
|
/* A reprieve! */
|
||
|
netif_start_queue(adapter->netdev);
|
||
|
++adapter->restart_queue;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
|
||
|
{
|
||
|
BUG_ON(size > tx_ring->count);
|
||
|
|
||
|
if (e1000_desc_unused(tx_ring) >= size)
|
||
|
return 0;
|
||
|
return __e1000_maybe_stop_tx(tx_ring, size);
|
||
|
}
|
||
|
|
||
|
static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
|
||
|
struct net_device *netdev)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
||
|
struct e1000_ring *tx_ring = adapter->tx_ring;
|
||
|
unsigned int first;
|
||
|
unsigned int tx_flags = 0;
|
||
|
unsigned int len = skb_headlen(skb);
|
||
|
unsigned int nr_frags;
|
||
|
unsigned int mss;
|
||
|
int count = 0;
|
||
|
int tso;
|
||
|
unsigned int f;
|
||
|
__be16 protocol = vlan_get_protocol(skb);
|
||
|
|
||
|
if (test_bit(__E1000_DOWN, &adapter->state)) {
|
||
|
dev_kfree_skb_any(skb);
|
||
|
return NETDEV_TX_OK;
|
||
|
}
|
||
|
|
||
|
if (skb->len <= 0) {
|
||
|
dev_kfree_skb_any(skb);
|
||
|
return NETDEV_TX_OK;
|
||
|
}
|
||
|
|
||
|
/* The minimum packet size with TCTL.PSP set is 17 bytes so
|
||
|
* pad skb in order to meet this minimum size requirement
|
||
|
*/
|
||
|
if (skb_put_padto(skb, 17))
|
||
|
return NETDEV_TX_OK;
|
||
|
|
||
|
mss = skb_shinfo(skb)->gso_size;
|
||
|
if (mss) {
|
||
|
u8 hdr_len;
|
||
|
|
||
|
/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
|
||
|
* points to just header, pull a few bytes of payload from
|
||
|
* frags into skb->data
|
||
|
*/
|
||
|
hdr_len = skb_tcp_all_headers(skb);
|
||
|
/* we do this workaround for ES2LAN, but it is un-necessary,
|
||
|
* avoiding it could save a lot of cycles
|
||
|
*/
|
||
|
if (skb->data_len && (hdr_len == len)) {
|
||
|
unsigned int pull_size;
|
||
|
|
||
|
pull_size = min_t(unsigned int, 4, skb->data_len);
|
||
|
if (!__pskb_pull_tail(skb, pull_size)) {
|
||
|
e_err("__pskb_pull_tail failed.\n");
|
||
|
dev_kfree_skb_any(skb);
|
||
|
return NETDEV_TX_OK;
|
||
|
}
|
||
|
len = skb_headlen(skb);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* reserve a descriptor for the offload context */
|
||
|
if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
|
||
|
count++;
|
||
|
count++;
|
||
|
|
||
|
count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
|
||
|
|
||
|
nr_frags = skb_shinfo(skb)->nr_frags;
|
||
|
for (f = 0; f < nr_frags; f++)
|
||
|
count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
|
||
|
adapter->tx_fifo_limit);
|
||
|
|
||
|
if (adapter->hw.mac.tx_pkt_filtering)
|
||
|
e1000_transfer_dhcp_info(adapter, skb);
|
||
|
|
||
|
/* need: count + 2 desc gap to keep tail from touching
|
||
|
* head, otherwise try next time
|
||
|
*/
|
||
|
if (e1000_maybe_stop_tx(tx_ring, count + 2))
|
||
|
return NETDEV_TX_BUSY;
|
||
|
|
||
|
if (skb_vlan_tag_present(skb)) {
|
||
|
tx_flags |= E1000_TX_FLAGS_VLAN;
|
||
|
tx_flags |= (skb_vlan_tag_get(skb) <<
|
||
|
E1000_TX_FLAGS_VLAN_SHIFT);
|
||
|
}
|
||
|
|
||
|
first = tx_ring->next_to_use;
|
||
|
|
||
|
tso = e1000_tso(tx_ring, skb, protocol);
|
||
|
if (tso < 0) {
|
||
|
dev_kfree_skb_any(skb);
|
||
|
return NETDEV_TX_OK;
|
||
|
}
|
||
|
|
||
|
if (tso)
|
||
|
tx_flags |= E1000_TX_FLAGS_TSO;
|
||
|
else if (e1000_tx_csum(tx_ring, skb, protocol))
|
||
|
tx_flags |= E1000_TX_FLAGS_CSUM;
|
||
|
|
||
|
/* Old method was to assume IPv4 packet by default if TSO was enabled.
|
||
|
* 82571 hardware supports TSO capabilities for IPv6 as well...
|
||
|
* no longer assume, we must.
|
||
|
*/
|
||
|
if (protocol == htons(ETH_P_IP))
|
||
|
tx_flags |= E1000_TX_FLAGS_IPV4;
|
||
|
|
||
|
if (unlikely(skb->no_fcs))
|
||
|
tx_flags |= E1000_TX_FLAGS_NO_FCS;
|
||
|
|
||
|
/* if count is 0 then mapping error has occurred */
|
||
|
count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
|
||
|
nr_frags);
|
||
|
if (count) {
|
||
|
if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
|
||
|
(adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
|
||
|
if (!adapter->tx_hwtstamp_skb) {
|
||
|
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
|
||
|
tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
|
||
|
adapter->tx_hwtstamp_skb = skb_get(skb);
|
||
|
adapter->tx_hwtstamp_start = jiffies;
|
||
|
schedule_work(&adapter->tx_hwtstamp_work);
|
||
|
} else {
|
||
|
adapter->tx_hwtstamp_skipped++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
skb_tx_timestamp(skb);
|
||
|
|
||
|
netdev_sent_queue(netdev, skb->len);
|
||
|
e1000_tx_queue(tx_ring, tx_flags, count);
|
||
|
/* Make sure there is space in the ring for the next send. */
|
||
|
e1000_maybe_stop_tx(tx_ring,
|
||
|
((MAX_SKB_FRAGS + 1) *
|
||
|
DIV_ROUND_UP(PAGE_SIZE,
|
||
|
adapter->tx_fifo_limit) + 4));
|
||
|
|
||
|
if (!netdev_xmit_more() ||
|
||
|
netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
|
||
|
if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
|
||
|
e1000e_update_tdt_wa(tx_ring,
|
||
|
tx_ring->next_to_use);
|
||
|
else
|
||
|
writel(tx_ring->next_to_use, tx_ring->tail);
|
||
|
}
|
||
|
} else {
|
||
|
dev_kfree_skb_any(skb);
|
||
|
tx_ring->buffer_info[first].time_stamp = 0;
|
||
|
tx_ring->next_to_use = first;
|
||
|
}
|
||
|
|
||
|
return NETDEV_TX_OK;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_tx_timeout - Respond to a Tx Hang
|
||
|
* @netdev: network interface device structure
|
||
|
* @txqueue: index of the hung queue (unused)
|
||
|
**/
|
||
|
static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
||
|
|
||
|
/* Do the reset outside of interrupt context */
|
||
|
adapter->tx_timeout_count++;
|
||
|
schedule_work(&adapter->reset_task);
|
||
|
}
|
||
|
|
||
|
static void e1000_reset_task(struct work_struct *work)
|
||
|
{
|
||
|
struct e1000_adapter *adapter;
|
||
|
adapter = container_of(work, struct e1000_adapter, reset_task);
|
||
|
|
||
|
rtnl_lock();
|
||
|
/* don't run the task if already down */
|
||
|
if (test_bit(__E1000_DOWN, &adapter->state)) {
|
||
|
rtnl_unlock();
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (!(adapter->flags & FLAG_RESTART_NOW)) {
|
||
|
e1000e_dump(adapter);
|
||
|
e_err("Reset adapter unexpectedly\n");
|
||
|
}
|
||
|
e1000e_reinit_locked(adapter);
|
||
|
rtnl_unlock();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_get_stats64 - Get System Network Statistics
|
||
|
* @netdev: network interface device structure
|
||
|
* @stats: rtnl_link_stats64 pointer
|
||
|
*
|
||
|
* Returns the address of the device statistics structure.
|
||
|
**/
|
||
|
void e1000e_get_stats64(struct net_device *netdev,
|
||
|
struct rtnl_link_stats64 *stats)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
||
|
|
||
|
spin_lock(&adapter->stats64_lock);
|
||
|
e1000e_update_stats(adapter);
|
||
|
/* Fill out the OS statistics structure */
|
||
|
stats->rx_bytes = adapter->stats.gorc;
|
||
|
stats->rx_packets = adapter->stats.gprc;
|
||
|
stats->tx_bytes = adapter->stats.gotc;
|
||
|
stats->tx_packets = adapter->stats.gptc;
|
||
|
stats->multicast = adapter->stats.mprc;
|
||
|
stats->collisions = adapter->stats.colc;
|
||
|
|
||
|
/* Rx Errors */
|
||
|
|
||
|
/* RLEC on some newer hardware can be incorrect so build
|
||
|
* our own version based on RUC and ROC
|
||
|
*/
|
||
|
stats->rx_errors = adapter->stats.rxerrc +
|
||
|
adapter->stats.crcerrs + adapter->stats.algnerrc +
|
||
|
adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
|
||
|
stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
|
||
|
stats->rx_crc_errors = adapter->stats.crcerrs;
|
||
|
stats->rx_frame_errors = adapter->stats.algnerrc;
|
||
|
stats->rx_missed_errors = adapter->stats.mpc;
|
||
|
|
||
|
/* Tx Errors */
|
||
|
stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
|
||
|
stats->tx_aborted_errors = adapter->stats.ecol;
|
||
|
stats->tx_window_errors = adapter->stats.latecol;
|
||
|
stats->tx_carrier_errors = adapter->stats.tncrs;
|
||
|
|
||
|
/* Tx Dropped needs to be maintained elsewhere */
|
||
|
|
||
|
spin_unlock(&adapter->stats64_lock);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_change_mtu - Change the Maximum Transfer Unit
|
||
|
* @netdev: network interface device structure
|
||
|
* @new_mtu: new value for maximum frame size
|
||
|
*
|
||
|
* Returns 0 on success, negative on failure
|
||
|
**/
|
||
|
static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
||
|
int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
|
||
|
|
||
|
/* Jumbo frame support */
|
||
|
if ((new_mtu > ETH_DATA_LEN) &&
|
||
|
!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
|
||
|
e_err("Jumbo Frames not supported.\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
|
||
|
if ((adapter->hw.mac.type >= e1000_pch2lan) &&
|
||
|
!(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
|
||
|
(new_mtu > ETH_DATA_LEN)) {
|
||
|
e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
|
||
|
usleep_range(1000, 1100);
|
||
|
/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
|
||
|
adapter->max_frame_size = max_frame;
|
||
|
netdev_dbg(netdev, "changing MTU from %d to %d\n",
|
||
|
netdev->mtu, new_mtu);
|
||
|
netdev->mtu = new_mtu;
|
||
|
|
||
|
pm_runtime_get_sync(netdev->dev.parent);
|
||
|
|
||
|
if (netif_running(netdev))
|
||
|
e1000e_down(adapter, true);
|
||
|
|
||
|
/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
|
||
|
* means we reserve 2 more, this pushes us to allocate from the next
|
||
|
* larger slab size.
|
||
|
* i.e. RXBUFFER_2048 --> size-4096 slab
|
||
|
* However with the new *_jumbo_rx* routines, jumbo receives will use
|
||
|
* fragmented skbs
|
||
|
*/
|
||
|
|
||
|
if (max_frame <= 2048)
|
||
|
adapter->rx_buffer_len = 2048;
|
||
|
else
|
||
|
adapter->rx_buffer_len = 4096;
|
||
|
|
||
|
/* adjust allocation if LPE protects us, and we aren't using SBP */
|
||
|
if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
|
||
|
adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
|
||
|
|
||
|
if (netif_running(netdev))
|
||
|
e1000e_up(adapter);
|
||
|
else
|
||
|
e1000e_reset(adapter);
|
||
|
|
||
|
pm_runtime_put_sync(netdev->dev.parent);
|
||
|
|
||
|
clear_bit(__E1000_RESETTING, &adapter->state);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
|
||
|
int cmd)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
||
|
struct mii_ioctl_data *data = if_mii(ifr);
|
||
|
|
||
|
if (adapter->hw.phy.media_type != e1000_media_type_copper)
|
||
|
return -EOPNOTSUPP;
|
||
|
|
||
|
switch (cmd) {
|
||
|
case SIOCGMIIPHY:
|
||
|
data->phy_id = adapter->hw.phy.addr;
|
||
|
break;
|
||
|
case SIOCGMIIREG:
|
||
|
e1000_phy_read_status(adapter);
|
||
|
|
||
|
switch (data->reg_num & 0x1F) {
|
||
|
case MII_BMCR:
|
||
|
data->val_out = adapter->phy_regs.bmcr;
|
||
|
break;
|
||
|
case MII_BMSR:
|
||
|
data->val_out = adapter->phy_regs.bmsr;
|
||
|
break;
|
||
|
case MII_PHYSID1:
|
||
|
data->val_out = (adapter->hw.phy.id >> 16);
|
||
|
break;
|
||
|
case MII_PHYSID2:
|
||
|
data->val_out = (adapter->hw.phy.id & 0xFFFF);
|
||
|
break;
|
||
|
case MII_ADVERTISE:
|
||
|
data->val_out = adapter->phy_regs.advertise;
|
||
|
break;
|
||
|
case MII_LPA:
|
||
|
data->val_out = adapter->phy_regs.lpa;
|
||
|
break;
|
||
|
case MII_EXPANSION:
|
||
|
data->val_out = adapter->phy_regs.expansion;
|
||
|
break;
|
||
|
case MII_CTRL1000:
|
||
|
data->val_out = adapter->phy_regs.ctrl1000;
|
||
|
break;
|
||
|
case MII_STAT1000:
|
||
|
data->val_out = adapter->phy_regs.stat1000;
|
||
|
break;
|
||
|
case MII_ESTATUS:
|
||
|
data->val_out = adapter->phy_regs.estatus;
|
||
|
break;
|
||
|
default:
|
||
|
return -EIO;
|
||
|
}
|
||
|
break;
|
||
|
case SIOCSMIIREG:
|
||
|
default:
|
||
|
return -EOPNOTSUPP;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_hwtstamp_set - control hardware time stamping
|
||
|
* @netdev: network interface device structure
|
||
|
* @ifr: interface request
|
||
|
*
|
||
|
* Outgoing time stamping can be enabled and disabled. Play nice and
|
||
|
* disable it when requested, although it shouldn't cause any overhead
|
||
|
* when no packet needs it. At most one packet in the queue may be
|
||
|
* marked for time stamping, otherwise it would be impossible to tell
|
||
|
* for sure to which packet the hardware time stamp belongs.
|
||
|
*
|
||
|
* Incoming time stamping has to be configured via the hardware filters.
|
||
|
* Not all combinations are supported, in particular event type has to be
|
||
|
* specified. Matching the kind of event packet is not supported, with the
|
||
|
* exception of "all V2 events regardless of level 2 or 4".
|
||
|
**/
|
||
|
static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
||
|
struct hwtstamp_config config;
|
||
|
int ret_val;
|
||
|
|
||
|
if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
|
||
|
return -EFAULT;
|
||
|
|
||
|
ret_val = e1000e_config_hwtstamp(adapter, &config);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
switch (config.rx_filter) {
|
||
|
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
|
||
|
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
|
||
|
case HWTSTAMP_FILTER_PTP_V2_SYNC:
|
||
|
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
|
||
|
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
|
||
|
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
|
||
|
/* With V2 type filters which specify a Sync or Delay Request,
|
||
|
* Path Delay Request/Response messages are also time stamped
|
||
|
* by hardware so notify the caller the requested packets plus
|
||
|
* some others are time stamped.
|
||
|
*/
|
||
|
config.rx_filter = HWTSTAMP_FILTER_SOME;
|
||
|
break;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return copy_to_user(ifr->ifr_data, &config,
|
||
|
sizeof(config)) ? -EFAULT : 0;
|
||
|
}
|
||
|
|
||
|
static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
||
|
|
||
|
return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
|
||
|
sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
|
||
|
}
|
||
|
|
||
|
static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
|
||
|
{
|
||
|
switch (cmd) {
|
||
|
case SIOCGMIIPHY:
|
||
|
case SIOCGMIIREG:
|
||
|
case SIOCSMIIREG:
|
||
|
return e1000_mii_ioctl(netdev, ifr, cmd);
|
||
|
case SIOCSHWTSTAMP:
|
||
|
return e1000e_hwtstamp_set(netdev, ifr);
|
||
|
case SIOCGHWTSTAMP:
|
||
|
return e1000e_hwtstamp_get(netdev, ifr);
|
||
|
default:
|
||
|
return -EOPNOTSUPP;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
|
||
|
{
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
u32 i, mac_reg, wuc;
|
||
|
u16 phy_reg, wuc_enable;
|
||
|
int retval;
|
||
|
|
||
|
/* copy MAC RARs to PHY RARs */
|
||
|
e1000_copy_rx_addrs_to_phy_ich8lan(hw);
|
||
|
|
||
|
retval = hw->phy.ops.acquire(hw);
|
||
|
if (retval) {
|
||
|
e_err("Could not acquire PHY\n");
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
|
||
|
retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
|
||
|
if (retval)
|
||
|
goto release;
|
||
|
|
||
|
/* copy MAC MTA to PHY MTA - only needed for pchlan */
|
||
|
for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
|
||
|
mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
|
||
|
hw->phy.ops.write_reg_page(hw, BM_MTA(i),
|
||
|
(u16)(mac_reg & 0xFFFF));
|
||
|
hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
|
||
|
(u16)((mac_reg >> 16) & 0xFFFF));
|
||
|
}
|
||
|
|
||
|
/* configure PHY Rx Control register */
|
||
|
hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
|
||
|
mac_reg = er32(RCTL);
|
||
|
if (mac_reg & E1000_RCTL_UPE)
|
||
|
phy_reg |= BM_RCTL_UPE;
|
||
|
if (mac_reg & E1000_RCTL_MPE)
|
||
|
phy_reg |= BM_RCTL_MPE;
|
||
|
phy_reg &= ~(BM_RCTL_MO_MASK);
|
||
|
if (mac_reg & E1000_RCTL_MO_3)
|
||
|
phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
|
||
|
<< BM_RCTL_MO_SHIFT);
|
||
|
if (mac_reg & E1000_RCTL_BAM)
|
||
|
phy_reg |= BM_RCTL_BAM;
|
||
|
if (mac_reg & E1000_RCTL_PMCF)
|
||
|
phy_reg |= BM_RCTL_PMCF;
|
||
|
mac_reg = er32(CTRL);
|
||
|
if (mac_reg & E1000_CTRL_RFCE)
|
||
|
phy_reg |= BM_RCTL_RFCE;
|
||
|
hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
|
||
|
|
||
|
wuc = E1000_WUC_PME_EN;
|
||
|
if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
|
||
|
wuc |= E1000_WUC_APME;
|
||
|
|
||
|
/* enable PHY wakeup in MAC register */
|
||
|
ew32(WUFC, wufc);
|
||
|
ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
|
||
|
E1000_WUC_PME_STATUS | wuc));
|
||
|
|
||
|
/* configure and enable PHY wakeup in PHY registers */
|
||
|
hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
|
||
|
hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
|
||
|
|
||
|
/* activate PHY wakeup */
|
||
|
wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
|
||
|
retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
|
||
|
if (retval)
|
||
|
e_err("Could not set PHY Host Wakeup bit\n");
|
||
|
release:
|
||
|
hw->phy.ops.release(hw);
|
||
|
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
static void e1000e_flush_lpic(struct pci_dev *pdev)
|
||
|
{
|
||
|
struct net_device *netdev = pci_get_drvdata(pdev);
|
||
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
u32 ret_val;
|
||
|
|
||
|
pm_runtime_get_sync(netdev->dev.parent);
|
||
|
|
||
|
ret_val = hw->phy.ops.acquire(hw);
|
||
|
if (ret_val)
|
||
|
goto fl_out;
|
||
|
|
||
|
pr_info("EEE TX LPI TIMER: %08X\n",
|
||
|
er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
|
||
|
|
||
|
hw->phy.ops.release(hw);
|
||
|
|
||
|
fl_out:
|
||
|
pm_runtime_put_sync(netdev->dev.parent);
|
||
|
}
|
||
|
|
||
|
/* S0ix implementation */
|
||
|
static void e1000e_s0ix_entry_flow(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
u32 mac_data;
|
||
|
u16 phy_data;
|
||
|
|
||
|
if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
|
||
|
hw->mac.type >= e1000_pch_adp) {
|
||
|
/* Request ME configure the device for S0ix */
|
||
|
mac_data = er32(H2ME);
|
||
|
mac_data |= E1000_H2ME_START_DPG;
|
||
|
mac_data &= ~E1000_H2ME_EXIT_DPG;
|
||
|
trace_e1000e_trace_mac_register(mac_data);
|
||
|
ew32(H2ME, mac_data);
|
||
|
} else {
|
||
|
/* Request driver configure the device to S0ix */
|
||
|
/* Disable the periodic inband message,
|
||
|
* don't request PCIe clock in K1 page770_17[10:9] = 10b
|
||
|
*/
|
||
|
e1e_rphy(hw, HV_PM_CTRL, &phy_data);
|
||
|
phy_data &= ~HV_PM_CTRL_K1_CLK_REQ;
|
||
|
phy_data |= BIT(10);
|
||
|
e1e_wphy(hw, HV_PM_CTRL, phy_data);
|
||
|
|
||
|
/* Make sure we don't exit K1 every time a new packet arrives
|
||
|
* 772_29[5] = 1 CS_Mode_Stay_In_K1
|
||
|
*/
|
||
|
e1e_rphy(hw, I217_CGFREG, &phy_data);
|
||
|
phy_data |= BIT(5);
|
||
|
e1e_wphy(hw, I217_CGFREG, phy_data);
|
||
|
|
||
|
/* Change the MAC/PHY interface to SMBus
|
||
|
* Force the SMBus in PHY page769_23[0] = 1
|
||
|
* Force the SMBus in MAC CTRL_EXT[11] = 1
|
||
|
*/
|
||
|
e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
|
||
|
phy_data |= CV_SMB_CTRL_FORCE_SMBUS;
|
||
|
e1e_wphy(hw, CV_SMB_CTRL, phy_data);
|
||
|
mac_data = er32(CTRL_EXT);
|
||
|
mac_data |= E1000_CTRL_EXT_FORCE_SMBUS;
|
||
|
ew32(CTRL_EXT, mac_data);
|
||
|
|
||
|
/* DFT control: PHY bit: page769_20[0] = 1
|
||
|
* page769_20[7] - PHY PLL stop
|
||
|
* page769_20[8] - PHY go to the electrical idle
|
||
|
* page769_20[9] - PHY serdes disable
|
||
|
* Gate PPW via EXTCNF_CTRL - set 0x0F00[7] = 1
|
||
|
*/
|
||
|
e1e_rphy(hw, I82579_DFT_CTRL, &phy_data);
|
||
|
phy_data |= BIT(0);
|
||
|
phy_data |= BIT(7);
|
||
|
phy_data |= BIT(8);
|
||
|
phy_data |= BIT(9);
|
||
|
e1e_wphy(hw, I82579_DFT_CTRL, phy_data);
|
||
|
|
||
|
mac_data = er32(EXTCNF_CTRL);
|
||
|
mac_data |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
|
||
|
ew32(EXTCNF_CTRL, mac_data);
|
||
|
|
||
|
/* Enable the Dynamic Power Gating in the MAC */
|
||
|
mac_data = er32(FEXTNVM7);
|
||
|
mac_data |= BIT(22);
|
||
|
ew32(FEXTNVM7, mac_data);
|
||
|
|
||
|
/* Disable disconnected cable conditioning for Power Gating */
|
||
|
mac_data = er32(DPGFR);
|
||
|
mac_data |= BIT(2);
|
||
|
ew32(DPGFR, mac_data);
|
||
|
|
||
|
/* Don't wake from dynamic Power Gating with clock request */
|
||
|
mac_data = er32(FEXTNVM12);
|
||
|
mac_data |= BIT(12);
|
||
|
ew32(FEXTNVM12, mac_data);
|
||
|
|
||
|
/* Ungate PGCB clock */
|
||
|
mac_data = er32(FEXTNVM9);
|
||
|
mac_data &= ~BIT(28);
|
||
|
ew32(FEXTNVM9, mac_data);
|
||
|
|
||
|
/* Enable K1 off to enable mPHY Power Gating */
|
||
|
mac_data = er32(FEXTNVM6);
|
||
|
mac_data |= BIT(31);
|
||
|
ew32(FEXTNVM6, mac_data);
|
||
|
|
||
|
/* Enable mPHY power gating for any link and speed */
|
||
|
mac_data = er32(FEXTNVM8);
|
||
|
mac_data |= BIT(9);
|
||
|
ew32(FEXTNVM8, mac_data);
|
||
|
|
||
|
/* Enable the Dynamic Clock Gating in the DMA and MAC */
|
||
|
mac_data = er32(CTRL_EXT);
|
||
|
mac_data |= E1000_CTRL_EXT_DMA_DYN_CLK_EN;
|
||
|
ew32(CTRL_EXT, mac_data);
|
||
|
|
||
|
/* No MAC DPG gating SLP_S0 in modern standby
|
||
|
* Switch the logic of the lanphypc to use PMC counter
|
||
|
*/
|
||
|
mac_data = er32(FEXTNVM5);
|
||
|
mac_data |= BIT(7);
|
||
|
ew32(FEXTNVM5, mac_data);
|
||
|
}
|
||
|
|
||
|
/* Disable the time synchronization clock */
|
||
|
mac_data = er32(FEXTNVM7);
|
||
|
mac_data |= BIT(31);
|
||
|
mac_data &= ~BIT(0);
|
||
|
ew32(FEXTNVM7, mac_data);
|
||
|
|
||
|
/* Dynamic Power Gating Enable */
|
||
|
mac_data = er32(CTRL_EXT);
|
||
|
mac_data |= BIT(3);
|
||
|
ew32(CTRL_EXT, mac_data);
|
||
|
|
||
|
/* Check MAC Tx/Rx packet buffer pointers.
|
||
|
* Reset MAC Tx/Rx packet buffer pointers to suppress any
|
||
|
* pending traffic indication that would prevent power gating.
|
||
|
*/
|
||
|
mac_data = er32(TDFH);
|
||
|
if (mac_data)
|
||
|
ew32(TDFH, 0);
|
||
|
mac_data = er32(TDFT);
|
||
|
if (mac_data)
|
||
|
ew32(TDFT, 0);
|
||
|
mac_data = er32(TDFHS);
|
||
|
if (mac_data)
|
||
|
ew32(TDFHS, 0);
|
||
|
mac_data = er32(TDFTS);
|
||
|
if (mac_data)
|
||
|
ew32(TDFTS, 0);
|
||
|
mac_data = er32(TDFPC);
|
||
|
if (mac_data)
|
||
|
ew32(TDFPC, 0);
|
||
|
mac_data = er32(RDFH);
|
||
|
if (mac_data)
|
||
|
ew32(RDFH, 0);
|
||
|
mac_data = er32(RDFT);
|
||
|
if (mac_data)
|
||
|
ew32(RDFT, 0);
|
||
|
mac_data = er32(RDFHS);
|
||
|
if (mac_data)
|
||
|
ew32(RDFHS, 0);
|
||
|
mac_data = er32(RDFTS);
|
||
|
if (mac_data)
|
||
|
ew32(RDFTS, 0);
|
||
|
mac_data = er32(RDFPC);
|
||
|
if (mac_data)
|
||
|
ew32(RDFPC, 0);
|
||
|
}
|
||
|
|
||
|
static void e1000e_s0ix_exit_flow(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
bool firmware_bug = false;
|
||
|
u32 mac_data;
|
||
|
u16 phy_data;
|
||
|
u32 i = 0;
|
||
|
|
||
|
if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
|
||
|
hw->mac.type >= e1000_pch_adp) {
|
||
|
/* Keep the GPT clock enabled for CSME */
|
||
|
mac_data = er32(FEXTNVM);
|
||
|
mac_data |= BIT(3);
|
||
|
ew32(FEXTNVM, mac_data);
|
||
|
/* Request ME unconfigure the device from S0ix */
|
||
|
mac_data = er32(H2ME);
|
||
|
mac_data &= ~E1000_H2ME_START_DPG;
|
||
|
mac_data |= E1000_H2ME_EXIT_DPG;
|
||
|
trace_e1000e_trace_mac_register(mac_data);
|
||
|
ew32(H2ME, mac_data);
|
||
|
|
||
|
/* Poll up to 2.5 seconds for ME to unconfigure DPG.
|
||
|
* If this takes more than 1 second, show a warning indicating a
|
||
|
* firmware bug
|
||
|
*/
|
||
|
while (!(er32(EXFWSM) & E1000_EXFWSM_DPG_EXIT_DONE)) {
|
||
|
if (i > 100 && !firmware_bug)
|
||
|
firmware_bug = true;
|
||
|
|
||
|
if (i++ == 250) {
|
||
|
e_dbg("Timeout (firmware bug): %d msec\n",
|
||
|
i * 10);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
usleep_range(10000, 11000);
|
||
|
}
|
||
|
if (firmware_bug)
|
||
|
e_warn("DPG_EXIT_DONE took %d msec. This is a firmware bug\n",
|
||
|
i * 10);
|
||
|
else
|
||
|
e_dbg("DPG_EXIT_DONE cleared after %d msec\n", i * 10);
|
||
|
} else {
|
||
|
/* Request driver unconfigure the device from S0ix */
|
||
|
|
||
|
/* Disable the Dynamic Power Gating in the MAC */
|
||
|
mac_data = er32(FEXTNVM7);
|
||
|
mac_data &= 0xFFBFFFFF;
|
||
|
ew32(FEXTNVM7, mac_data);
|
||
|
|
||
|
/* Disable mPHY power gating for any link and speed */
|
||
|
mac_data = er32(FEXTNVM8);
|
||
|
mac_data &= ~BIT(9);
|
||
|
ew32(FEXTNVM8, mac_data);
|
||
|
|
||
|
/* Disable K1 off */
|
||
|
mac_data = er32(FEXTNVM6);
|
||
|
mac_data &= ~BIT(31);
|
||
|
ew32(FEXTNVM6, mac_data);
|
||
|
|
||
|
/* Disable Ungate PGCB clock */
|
||
|
mac_data = er32(FEXTNVM9);
|
||
|
mac_data |= BIT(28);
|
||
|
ew32(FEXTNVM9, mac_data);
|
||
|
|
||
|
/* Cancel not waking from dynamic
|
||
|
* Power Gating with clock request
|
||
|
*/
|
||
|
mac_data = er32(FEXTNVM12);
|
||
|
mac_data &= ~BIT(12);
|
||
|
ew32(FEXTNVM12, mac_data);
|
||
|
|
||
|
/* Cancel disable disconnected cable conditioning
|
||
|
* for Power Gating
|
||
|
*/
|
||
|
mac_data = er32(DPGFR);
|
||
|
mac_data &= ~BIT(2);
|
||
|
ew32(DPGFR, mac_data);
|
||
|
|
||
|
/* Disable the Dynamic Clock Gating in the DMA and MAC */
|
||
|
mac_data = er32(CTRL_EXT);
|
||
|
mac_data &= 0xFFF7FFFF;
|
||
|
ew32(CTRL_EXT, mac_data);
|
||
|
|
||
|
/* Revert the lanphypc logic to use the internal Gbe counter
|
||
|
* and not the PMC counter
|
||
|
*/
|
||
|
mac_data = er32(FEXTNVM5);
|
||
|
mac_data &= 0xFFFFFF7F;
|
||
|
ew32(FEXTNVM5, mac_data);
|
||
|
|
||
|
/* Enable the periodic inband message,
|
||
|
* Request PCIe clock in K1 page770_17[10:9] =01b
|
||
|
*/
|
||
|
e1e_rphy(hw, HV_PM_CTRL, &phy_data);
|
||
|
phy_data &= 0xFBFF;
|
||
|
phy_data |= HV_PM_CTRL_K1_CLK_REQ;
|
||
|
e1e_wphy(hw, HV_PM_CTRL, phy_data);
|
||
|
|
||
|
/* Return back configuration
|
||
|
* 772_29[5] = 0 CS_Mode_Stay_In_K1
|
||
|
*/
|
||
|
e1e_rphy(hw, I217_CGFREG, &phy_data);
|
||
|
phy_data &= 0xFFDF;
|
||
|
e1e_wphy(hw, I217_CGFREG, phy_data);
|
||
|
|
||
|
/* Change the MAC/PHY interface to Kumeran
|
||
|
* Unforce the SMBus in PHY page769_23[0] = 0
|
||
|
* Unforce the SMBus in MAC CTRL_EXT[11] = 0
|
||
|
*/
|
||
|
e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
|
||
|
phy_data &= ~CV_SMB_CTRL_FORCE_SMBUS;
|
||
|
e1e_wphy(hw, CV_SMB_CTRL, phy_data);
|
||
|
mac_data = er32(CTRL_EXT);
|
||
|
mac_data &= ~E1000_CTRL_EXT_FORCE_SMBUS;
|
||
|
ew32(CTRL_EXT, mac_data);
|
||
|
}
|
||
|
|
||
|
/* Disable Dynamic Power Gating */
|
||
|
mac_data = er32(CTRL_EXT);
|
||
|
mac_data &= 0xFFFFFFF7;
|
||
|
ew32(CTRL_EXT, mac_data);
|
||
|
|
||
|
/* Enable the time synchronization clock */
|
||
|
mac_data = er32(FEXTNVM7);
|
||
|
mac_data &= ~BIT(31);
|
||
|
mac_data |= BIT(0);
|
||
|
ew32(FEXTNVM7, mac_data);
|
||
|
}
|
||
|
|
||
|
static int e1000e_pm_freeze(struct device *dev)
|
||
|
{
|
||
|
struct net_device *netdev = dev_get_drvdata(dev);
|
||
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
||
|
bool present;
|
||
|
|
||
|
rtnl_lock();
|
||
|
|
||
|
present = netif_device_present(netdev);
|
||
|
netif_device_detach(netdev);
|
||
|
|
||
|
if (present && netif_running(netdev)) {
|
||
|
int count = E1000_CHECK_RESET_COUNT;
|
||
|
|
||
|
while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
|
||
|
usleep_range(10000, 11000);
|
||
|
|
||
|
WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
|
||
|
|
||
|
/* Quiesce the device without resetting the hardware */
|
||
|
e1000e_down(adapter, false);
|
||
|
e1000_free_irq(adapter);
|
||
|
}
|
||
|
rtnl_unlock();
|
||
|
|
||
|
e1000e_reset_interrupt_capability(adapter);
|
||
|
|
||
|
/* Allow time for pending master requests to run */
|
||
|
e1000e_disable_pcie_master(&adapter->hw);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
|
||
|
{
|
||
|
struct net_device *netdev = pci_get_drvdata(pdev);
|
||
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
u32 ctrl, ctrl_ext, rctl, status, wufc;
|
||
|
int retval = 0;
|
||
|
|
||
|
/* Runtime suspend should only enable wakeup for link changes */
|
||
|
if (runtime)
|
||
|
wufc = E1000_WUFC_LNKC;
|
||
|
else if (device_may_wakeup(&pdev->dev))
|
||
|
wufc = adapter->wol;
|
||
|
else
|
||
|
wufc = 0;
|
||
|
|
||
|
status = er32(STATUS);
|
||
|
if (status & E1000_STATUS_LU)
|
||
|
wufc &= ~E1000_WUFC_LNKC;
|
||
|
|
||
|
if (wufc) {
|
||
|
e1000_setup_rctl(adapter);
|
||
|
e1000e_set_rx_mode(netdev);
|
||
|
|
||
|
/* turn on all-multi mode if wake on multicast is enabled */
|
||
|
if (wufc & E1000_WUFC_MC) {
|
||
|
rctl = er32(RCTL);
|
||
|
rctl |= E1000_RCTL_MPE;
|
||
|
ew32(RCTL, rctl);
|
||
|
}
|
||
|
|
||
|
ctrl = er32(CTRL);
|
||
|
ctrl |= E1000_CTRL_ADVD3WUC;
|
||
|
if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
|
||
|
ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
|
||
|
ew32(CTRL, ctrl);
|
||
|
|
||
|
if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
|
||
|
adapter->hw.phy.media_type ==
|
||
|
e1000_media_type_internal_serdes) {
|
||
|
/* keep the laser running in D3 */
|
||
|
ctrl_ext = er32(CTRL_EXT);
|
||
|
ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
|
||
|
ew32(CTRL_EXT, ctrl_ext);
|
||
|
}
|
||
|
|
||
|
if (!runtime)
|
||
|
e1000e_power_up_phy(adapter);
|
||
|
|
||
|
if (adapter->flags & FLAG_IS_ICH)
|
||
|
e1000_suspend_workarounds_ich8lan(&adapter->hw);
|
||
|
|
||
|
if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
|
||
|
/* enable wakeup by the PHY */
|
||
|
retval = e1000_init_phy_wakeup(adapter, wufc);
|
||
|
if (retval)
|
||
|
return retval;
|
||
|
} else {
|
||
|
/* enable wakeup by the MAC */
|
||
|
ew32(WUFC, wufc);
|
||
|
ew32(WUC, E1000_WUC_PME_EN);
|
||
|
}
|
||
|
} else {
|
||
|
ew32(WUC, 0);
|
||
|
ew32(WUFC, 0);
|
||
|
|
||
|
e1000_power_down_phy(adapter);
|
||
|
}
|
||
|
|
||
|
if (adapter->hw.phy.type == e1000_phy_igp_3) {
|
||
|
e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
|
||
|
} else if (hw->mac.type >= e1000_pch_lpt) {
|
||
|
if (wufc && !(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
|
||
|
/* ULP does not support wake from unicast, multicast
|
||
|
* or broadcast.
|
||
|
*/
|
||
|
retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
|
||
|
|
||
|
if (retval)
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
/* Ensure that the appropriate bits are set in LPI_CTRL
|
||
|
* for EEE in Sx
|
||
|
*/
|
||
|
if ((hw->phy.type >= e1000_phy_i217) &&
|
||
|
adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
|
||
|
u16 lpi_ctrl = 0;
|
||
|
|
||
|
retval = hw->phy.ops.acquire(hw);
|
||
|
if (!retval) {
|
||
|
retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
|
||
|
&lpi_ctrl);
|
||
|
if (!retval) {
|
||
|
if (adapter->eee_advert &
|
||
|
hw->dev_spec.ich8lan.eee_lp_ability &
|
||
|
I82579_EEE_100_SUPPORTED)
|
||
|
lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
|
||
|
if (adapter->eee_advert &
|
||
|
hw->dev_spec.ich8lan.eee_lp_ability &
|
||
|
I82579_EEE_1000_SUPPORTED)
|
||
|
lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
|
||
|
|
||
|
retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
|
||
|
lpi_ctrl);
|
||
|
}
|
||
|
}
|
||
|
hw->phy.ops.release(hw);
|
||
|
}
|
||
|
|
||
|
/* Release control of h/w to f/w. If f/w is AMT enabled, this
|
||
|
* would have already happened in close and is redundant.
|
||
|
*/
|
||
|
e1000e_release_hw_control(adapter);
|
||
|
|
||
|
pci_clear_master(pdev);
|
||
|
|
||
|
/* The pci-e switch on some quad port adapters will report a
|
||
|
* correctable error when the MAC transitions from D0 to D3. To
|
||
|
* prevent this we need to mask off the correctable errors on the
|
||
|
* downstream port of the pci-e switch.
|
||
|
*
|
||
|
* We don't have the associated upstream bridge while assigning
|
||
|
* the PCI device into guest. For example, the KVM on power is
|
||
|
* one of the cases.
|
||
|
*/
|
||
|
if (adapter->flags & FLAG_IS_QUAD_PORT) {
|
||
|
struct pci_dev *us_dev = pdev->bus->self;
|
||
|
u16 devctl;
|
||
|
|
||
|
if (!us_dev)
|
||
|
return 0;
|
||
|
|
||
|
pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
|
||
|
pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
|
||
|
(devctl & ~PCI_EXP_DEVCTL_CERE));
|
||
|
|
||
|
pci_save_state(pdev);
|
||
|
pci_prepare_to_sleep(pdev);
|
||
|
|
||
|
pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* __e1000e_disable_aspm - Disable ASPM states
|
||
|
* @pdev: pointer to PCI device struct
|
||
|
* @state: bit-mask of ASPM states to disable
|
||
|
* @locked: indication if this context holds pci_bus_sem locked.
|
||
|
*
|
||
|
* Some devices *must* have certain ASPM states disabled per hardware errata.
|
||
|
**/
|
||
|
static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
|
||
|
{
|
||
|
struct pci_dev *parent = pdev->bus->self;
|
||
|
u16 aspm_dis_mask = 0;
|
||
|
u16 pdev_aspmc, parent_aspmc;
|
||
|
|
||
|
switch (state) {
|
||
|
case PCIE_LINK_STATE_L0S:
|
||
|
case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
|
||
|
aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
|
||
|
fallthrough; /* can't have L1 without L0s */
|
||
|
case PCIE_LINK_STATE_L1:
|
||
|
aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
|
||
|
break;
|
||
|
default:
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
|
||
|
pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
|
||
|
|
||
|
if (parent) {
|
||
|
pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
|
||
|
&parent_aspmc);
|
||
|
parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
|
||
|
}
|
||
|
|
||
|
/* Nothing to do if the ASPM states to be disabled already are */
|
||
|
if (!(pdev_aspmc & aspm_dis_mask) &&
|
||
|
(!parent || !(parent_aspmc & aspm_dis_mask)))
|
||
|
return;
|
||
|
|
||
|
dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
|
||
|
(aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
|
||
|
"L0s" : "",
|
||
|
(aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
|
||
|
"L1" : "");
|
||
|
|
||
|
#ifdef CONFIG_PCIEASPM
|
||
|
if (locked)
|
||
|
pci_disable_link_state_locked(pdev, state);
|
||
|
else
|
||
|
pci_disable_link_state(pdev, state);
|
||
|
|
||
|
/* Double-check ASPM control. If not disabled by the above, the
|
||
|
* BIOS is preventing that from happening (or CONFIG_PCIEASPM is
|
||
|
* not enabled); override by writing PCI config space directly.
|
||
|
*/
|
||
|
pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
|
||
|
pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
|
||
|
|
||
|
if (!(aspm_dis_mask & pdev_aspmc))
|
||
|
return;
|
||
|
#endif
|
||
|
|
||
|
/* Both device and parent should have the same ASPM setting.
|
||
|
* Disable ASPM in downstream component first and then upstream.
|
||
|
*/
|
||
|
pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
|
||
|
|
||
|
if (parent)
|
||
|
pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
|
||
|
aspm_dis_mask);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_disable_aspm - Disable ASPM states.
|
||
|
* @pdev: pointer to PCI device struct
|
||
|
* @state: bit-mask of ASPM states to disable
|
||
|
*
|
||
|
* This function acquires the pci_bus_sem!
|
||
|
* Some devices *must* have certain ASPM states disabled per hardware errata.
|
||
|
**/
|
||
|
static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
|
||
|
{
|
||
|
__e1000e_disable_aspm(pdev, state, 0);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_disable_aspm_locked - Disable ASPM states.
|
||
|
* @pdev: pointer to PCI device struct
|
||
|
* @state: bit-mask of ASPM states to disable
|
||
|
*
|
||
|
* This function must be called with pci_bus_sem acquired!
|
||
|
* Some devices *must* have certain ASPM states disabled per hardware errata.
|
||
|
**/
|
||
|
static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
|
||
|
{
|
||
|
__e1000e_disable_aspm(pdev, state, 1);
|
||
|
}
|
||
|
|
||
|
static int e1000e_pm_thaw(struct device *dev)
|
||
|
{
|
||
|
struct net_device *netdev = dev_get_drvdata(dev);
|
||
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
||
|
int rc = 0;
|
||
|
|
||
|
e1000e_set_interrupt_capability(adapter);
|
||
|
|
||
|
rtnl_lock();
|
||
|
if (netif_running(netdev)) {
|
||
|
rc = e1000_request_irq(adapter);
|
||
|
if (rc)
|
||
|
goto err_irq;
|
||
|
|
||
|
e1000e_up(adapter);
|
||
|
}
|
||
|
|
||
|
netif_device_attach(netdev);
|
||
|
err_irq:
|
||
|
rtnl_unlock();
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
static int __e1000_resume(struct pci_dev *pdev)
|
||
|
{
|
||
|
struct net_device *netdev = pci_get_drvdata(pdev);
|
||
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
u16 aspm_disable_flag = 0;
|
||
|
|
||
|
if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
|
||
|
aspm_disable_flag = PCIE_LINK_STATE_L0S;
|
||
|
if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
|
||
|
aspm_disable_flag |= PCIE_LINK_STATE_L1;
|
||
|
if (aspm_disable_flag)
|
||
|
e1000e_disable_aspm(pdev, aspm_disable_flag);
|
||
|
|
||
|
pci_set_master(pdev);
|
||
|
|
||
|
if (hw->mac.type >= e1000_pch2lan)
|
||
|
e1000_resume_workarounds_pchlan(&adapter->hw);
|
||
|
|
||
|
e1000e_power_up_phy(adapter);
|
||
|
|
||
|
/* report the system wakeup cause from S3/S4 */
|
||
|
if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
|
||
|
u16 phy_data;
|
||
|
|
||
|
e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
|
||
|
if (phy_data) {
|
||
|
e_info("PHY Wakeup cause - %s\n",
|
||
|
phy_data & E1000_WUS_EX ? "Unicast Packet" :
|
||
|
phy_data & E1000_WUS_MC ? "Multicast Packet" :
|
||
|
phy_data & E1000_WUS_BC ? "Broadcast Packet" :
|
||
|
phy_data & E1000_WUS_MAG ? "Magic Packet" :
|
||
|
phy_data & E1000_WUS_LNKC ?
|
||
|
"Link Status Change" : "other");
|
||
|
}
|
||
|
e1e_wphy(&adapter->hw, BM_WUS, ~0);
|
||
|
} else {
|
||
|
u32 wus = er32(WUS);
|
||
|
|
||
|
if (wus) {
|
||
|
e_info("MAC Wakeup cause - %s\n",
|
||
|
wus & E1000_WUS_EX ? "Unicast Packet" :
|
||
|
wus & E1000_WUS_MC ? "Multicast Packet" :
|
||
|
wus & E1000_WUS_BC ? "Broadcast Packet" :
|
||
|
wus & E1000_WUS_MAG ? "Magic Packet" :
|
||
|
wus & E1000_WUS_LNKC ? "Link Status Change" :
|
||
|
"other");
|
||
|
}
|
||
|
ew32(WUS, ~0);
|
||
|
}
|
||
|
|
||
|
e1000e_reset(adapter);
|
||
|
|
||
|
e1000_init_manageability_pt(adapter);
|
||
|
|
||
|
/* If the controller has AMT, do not set DRV_LOAD until the interface
|
||
|
* is up. For all other cases, let the f/w know that the h/w is now
|
||
|
* under the control of the driver.
|
||
|
*/
|
||
|
if (!(adapter->flags & FLAG_HAS_AMT))
|
||
|
e1000e_get_hw_control(adapter);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static __maybe_unused int e1000e_pm_prepare(struct device *dev)
|
||
|
{
|
||
|
return pm_runtime_suspended(dev) &&
|
||
|
pm_suspend_via_firmware();
|
||
|
}
|
||
|
|
||
|
static __maybe_unused int e1000e_pm_suspend(struct device *dev)
|
||
|
{
|
||
|
struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
|
||
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
||
|
struct pci_dev *pdev = to_pci_dev(dev);
|
||
|
int rc;
|
||
|
|
||
|
e1000e_flush_lpic(pdev);
|
||
|
|
||
|
e1000e_pm_freeze(dev);
|
||
|
|
||
|
rc = __e1000_shutdown(pdev, false);
|
||
|
if (rc) {
|
||
|
e1000e_pm_thaw(dev);
|
||
|
} else {
|
||
|
/* Introduce S0ix implementation */
|
||
|
if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
|
||
|
e1000e_s0ix_entry_flow(adapter);
|
||
|
}
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
static __maybe_unused int e1000e_pm_resume(struct device *dev)
|
||
|
{
|
||
|
struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
|
||
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
||
|
struct pci_dev *pdev = to_pci_dev(dev);
|
||
|
int rc;
|
||
|
|
||
|
/* Introduce S0ix implementation */
|
||
|
if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
|
||
|
e1000e_s0ix_exit_flow(adapter);
|
||
|
|
||
|
rc = __e1000_resume(pdev);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
|
||
|
return e1000e_pm_thaw(dev);
|
||
|
}
|
||
|
|
||
|
static __maybe_unused int e1000e_pm_runtime_idle(struct device *dev)
|
||
|
{
|
||
|
struct net_device *netdev = dev_get_drvdata(dev);
|
||
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
||
|
u16 eee_lp;
|
||
|
|
||
|
eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
|
||
|
|
||
|
if (!e1000e_has_link(adapter)) {
|
||
|
adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
|
||
|
pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
|
||
|
}
|
||
|
|
||
|
return -EBUSY;
|
||
|
}
|
||
|
|
||
|
static __maybe_unused int e1000e_pm_runtime_resume(struct device *dev)
|
||
|
{
|
||
|
struct pci_dev *pdev = to_pci_dev(dev);
|
||
|
struct net_device *netdev = pci_get_drvdata(pdev);
|
||
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
||
|
int rc;
|
||
|
|
||
|
rc = __e1000_resume(pdev);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
|
||
|
if (netdev->flags & IFF_UP)
|
||
|
e1000e_up(adapter);
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
static __maybe_unused int e1000e_pm_runtime_suspend(struct device *dev)
|
||
|
{
|
||
|
struct pci_dev *pdev = to_pci_dev(dev);
|
||
|
struct net_device *netdev = pci_get_drvdata(pdev);
|
||
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
||
|
|
||
|
if (netdev->flags & IFF_UP) {
|
||
|
int count = E1000_CHECK_RESET_COUNT;
|
||
|
|
||
|
while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
|
||
|
usleep_range(10000, 11000);
|
||
|
|
||
|
WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
|
||
|
|
||
|
/* Down the device without resetting the hardware */
|
||
|
e1000e_down(adapter, false);
|
||
|
}
|
||
|
|
||
|
if (__e1000_shutdown(pdev, true)) {
|
||
|
e1000e_pm_runtime_resume(dev);
|
||
|
return -EBUSY;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void e1000_shutdown(struct pci_dev *pdev)
|
||
|
{
|
||
|
e1000e_flush_lpic(pdev);
|
||
|
|
||
|
e1000e_pm_freeze(&pdev->dev);
|
||
|
|
||
|
__e1000_shutdown(pdev, false);
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
||
|
|
||
|
static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
|
||
|
{
|
||
|
struct net_device *netdev = data;
|
||
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
||
|
|
||
|
if (adapter->msix_entries) {
|
||
|
int vector, msix_irq;
|
||
|
|
||
|
vector = 0;
|
||
|
msix_irq = adapter->msix_entries[vector].vector;
|
||
|
if (disable_hardirq(msix_irq))
|
||
|
e1000_intr_msix_rx(msix_irq, netdev);
|
||
|
enable_irq(msix_irq);
|
||
|
|
||
|
vector++;
|
||
|
msix_irq = adapter->msix_entries[vector].vector;
|
||
|
if (disable_hardirq(msix_irq))
|
||
|
e1000_intr_msix_tx(msix_irq, netdev);
|
||
|
enable_irq(msix_irq);
|
||
|
|
||
|
vector++;
|
||
|
msix_irq = adapter->msix_entries[vector].vector;
|
||
|
if (disable_hardirq(msix_irq))
|
||
|
e1000_msix_other(msix_irq, netdev);
|
||
|
enable_irq(msix_irq);
|
||
|
}
|
||
|
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_netpoll
|
||
|
* @netdev: network interface device structure
|
||
|
*
|
||
|
* Polling 'interrupt' - used by things like netconsole to send skbs
|
||
|
* without having to re-enable interrupts. It's not called while
|
||
|
* the interrupt routine is executing.
|
||
|
*/
|
||
|
static void e1000_netpoll(struct net_device *netdev)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
||
|
|
||
|
switch (adapter->int_mode) {
|
||
|
case E1000E_INT_MODE_MSIX:
|
||
|
e1000_intr_msix(adapter->pdev->irq, netdev);
|
||
|
break;
|
||
|
case E1000E_INT_MODE_MSI:
|
||
|
if (disable_hardirq(adapter->pdev->irq))
|
||
|
e1000_intr_msi(adapter->pdev->irq, netdev);
|
||
|
enable_irq(adapter->pdev->irq);
|
||
|
break;
|
||
|
default: /* E1000E_INT_MODE_LEGACY */
|
||
|
if (disable_hardirq(adapter->pdev->irq))
|
||
|
e1000_intr(adapter->pdev->irq, netdev);
|
||
|
enable_irq(adapter->pdev->irq);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/**
|
||
|
* e1000_io_error_detected - called when PCI error is detected
|
||
|
* @pdev: Pointer to PCI device
|
||
|
* @state: The current pci connection state
|
||
|
*
|
||
|
* This function is called after a PCI bus error affecting
|
||
|
* this device has been detected.
|
||
|
*/
|
||
|
static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
|
||
|
pci_channel_state_t state)
|
||
|
{
|
||
|
e1000e_pm_freeze(&pdev->dev);
|
||
|
|
||
|
if (state == pci_channel_io_perm_failure)
|
||
|
return PCI_ERS_RESULT_DISCONNECT;
|
||
|
|
||
|
pci_disable_device(pdev);
|
||
|
|
||
|
/* Request a slot reset. */
|
||
|
return PCI_ERS_RESULT_NEED_RESET;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_io_slot_reset - called after the pci bus has been reset.
|
||
|
* @pdev: Pointer to PCI device
|
||
|
*
|
||
|
* Restart the card from scratch, as if from a cold-boot. Implementation
|
||
|
* resembles the first-half of the e1000e_pm_resume routine.
|
||
|
*/
|
||
|
static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
|
||
|
{
|
||
|
struct net_device *netdev = pci_get_drvdata(pdev);
|
||
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
u16 aspm_disable_flag = 0;
|
||
|
int err;
|
||
|
pci_ers_result_t result;
|
||
|
|
||
|
if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
|
||
|
aspm_disable_flag = PCIE_LINK_STATE_L0S;
|
||
|
if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
|
||
|
aspm_disable_flag |= PCIE_LINK_STATE_L1;
|
||
|
if (aspm_disable_flag)
|
||
|
e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
|
||
|
|
||
|
err = pci_enable_device_mem(pdev);
|
||
|
if (err) {
|
||
|
dev_err(&pdev->dev,
|
||
|
"Cannot re-enable PCI device after reset.\n");
|
||
|
result = PCI_ERS_RESULT_DISCONNECT;
|
||
|
} else {
|
||
|
pdev->state_saved = true;
|
||
|
pci_restore_state(pdev);
|
||
|
pci_set_master(pdev);
|
||
|
|
||
|
pci_enable_wake(pdev, PCI_D3hot, 0);
|
||
|
pci_enable_wake(pdev, PCI_D3cold, 0);
|
||
|
|
||
|
e1000e_reset(adapter);
|
||
|
ew32(WUS, ~0);
|
||
|
result = PCI_ERS_RESULT_RECOVERED;
|
||
|
}
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_io_resume - called when traffic can start flowing again.
|
||
|
* @pdev: Pointer to PCI device
|
||
|
*
|
||
|
* This callback is called when the error recovery driver tells us that
|
||
|
* its OK to resume normal operation. Implementation resembles the
|
||
|
* second-half of the e1000e_pm_resume routine.
|
||
|
*/
|
||
|
static void e1000_io_resume(struct pci_dev *pdev)
|
||
|
{
|
||
|
struct net_device *netdev = pci_get_drvdata(pdev);
|
||
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
||
|
|
||
|
e1000_init_manageability_pt(adapter);
|
||
|
|
||
|
e1000e_pm_thaw(&pdev->dev);
|
||
|
|
||
|
/* If the controller has AMT, do not set DRV_LOAD until the interface
|
||
|
* is up. For all other cases, let the f/w know that the h/w is now
|
||
|
* under the control of the driver.
|
||
|
*/
|
||
|
if (!(adapter->flags & FLAG_HAS_AMT))
|
||
|
e1000e_get_hw_control(adapter);
|
||
|
}
|
||
|
|
||
|
static void e1000_print_device_info(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
struct net_device *netdev = adapter->netdev;
|
||
|
u32 ret_val;
|
||
|
u8 pba_str[E1000_PBANUM_LENGTH];
|
||
|
|
||
|
/* print bus type/speed/width info */
|
||
|
e_info("(PCI Express:2.5GT/s:%s) %pM\n",
|
||
|
/* bus width */
|
||
|
((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
|
||
|
"Width x1"),
|
||
|
/* MAC address */
|
||
|
netdev->dev_addr);
|
||
|
e_info("Intel(R) PRO/%s Network Connection\n",
|
||
|
(hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
|
||
|
ret_val = e1000_read_pba_string_generic(hw, pba_str,
|
||
|
E1000_PBANUM_LENGTH);
|
||
|
if (ret_val)
|
||
|
strscpy((char *)pba_str, "Unknown", sizeof(pba_str));
|
||
|
e_info("MAC: %d, PHY: %d, PBA No: %s\n",
|
||
|
hw->mac.type, hw->phy.type, pba_str);
|
||
|
}
|
||
|
|
||
|
static void e1000_eeprom_checks(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
int ret_val;
|
||
|
u16 buf = 0;
|
||
|
|
||
|
if (hw->mac.type != e1000_82573)
|
||
|
return;
|
||
|
|
||
|
ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
|
||
|
le16_to_cpus(&buf);
|
||
|
if (!ret_val && (!(buf & BIT(0)))) {
|
||
|
/* Deep Smart Power Down (DSPD) */
|
||
|
dev_warn(&adapter->pdev->dev,
|
||
|
"Warning: detected DSPD enabled in EEPROM\n");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static netdev_features_t e1000_fix_features(struct net_device *netdev,
|
||
|
netdev_features_t features)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
|
||
|
/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
|
||
|
if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
|
||
|
features &= ~NETIF_F_RXFCS;
|
||
|
|
||
|
/* Since there is no support for separate Rx/Tx vlan accel
|
||
|
* enable/disable make sure Tx flag is always in same state as Rx.
|
||
|
*/
|
||
|
if (features & NETIF_F_HW_VLAN_CTAG_RX)
|
||
|
features |= NETIF_F_HW_VLAN_CTAG_TX;
|
||
|
else
|
||
|
features &= ~NETIF_F_HW_VLAN_CTAG_TX;
|
||
|
|
||
|
return features;
|
||
|
}
|
||
|
|
||
|
static int e1000_set_features(struct net_device *netdev,
|
||
|
netdev_features_t features)
|
||
|
{
|
||
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
||
|
netdev_features_t changed = features ^ netdev->features;
|
||
|
|
||
|
if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
|
||
|
adapter->flags |= FLAG_TSO_FORCE;
|
||
|
|
||
|
if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
|
||
|
NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
|
||
|
NETIF_F_RXALL)))
|
||
|
return 0;
|
||
|
|
||
|
if (changed & NETIF_F_RXFCS) {
|
||
|
if (features & NETIF_F_RXFCS) {
|
||
|
adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
|
||
|
} else {
|
||
|
/* We need to take it back to defaults, which might mean
|
||
|
* stripping is still disabled at the adapter level.
|
||
|
*/
|
||
|
if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
|
||
|
adapter->flags2 |= FLAG2_CRC_STRIPPING;
|
||
|
else
|
||
|
adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
netdev->features = features;
|
||
|
|
||
|
if (netif_running(netdev))
|
||
|
e1000e_reinit_locked(adapter);
|
||
|
else
|
||
|
e1000e_reset(adapter);
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static const struct net_device_ops e1000e_netdev_ops = {
|
||
|
.ndo_open = e1000e_open,
|
||
|
.ndo_stop = e1000e_close,
|
||
|
.ndo_start_xmit = e1000_xmit_frame,
|
||
|
.ndo_get_stats64 = e1000e_get_stats64,
|
||
|
.ndo_set_rx_mode = e1000e_set_rx_mode,
|
||
|
.ndo_set_mac_address = e1000_set_mac,
|
||
|
.ndo_change_mtu = e1000_change_mtu,
|
||
|
.ndo_eth_ioctl = e1000_ioctl,
|
||
|
.ndo_tx_timeout = e1000_tx_timeout,
|
||
|
.ndo_validate_addr = eth_validate_addr,
|
||
|
|
||
|
.ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
|
||
|
.ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
|
||
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
||
|
.ndo_poll_controller = e1000_netpoll,
|
||
|
#endif
|
||
|
.ndo_set_features = e1000_set_features,
|
||
|
.ndo_fix_features = e1000_fix_features,
|
||
|
.ndo_features_check = passthru_features_check,
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* e1000_probe - Device Initialization Routine
|
||
|
* @pdev: PCI device information struct
|
||
|
* @ent: entry in e1000_pci_tbl
|
||
|
*
|
||
|
* Returns 0 on success, negative on failure
|
||
|
*
|
||
|
* e1000_probe initializes an adapter identified by a pci_dev structure.
|
||
|
* The OS initialization, configuring of the adapter private structure,
|
||
|
* and a hardware reset occur.
|
||
|
**/
|
||
|
static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
|
||
|
{
|
||
|
struct net_device *netdev;
|
||
|
struct e1000_adapter *adapter;
|
||
|
struct e1000_hw *hw;
|
||
|
const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
|
||
|
resource_size_t mmio_start, mmio_len;
|
||
|
resource_size_t flash_start, flash_len;
|
||
|
static int cards_found;
|
||
|
u16 aspm_disable_flag = 0;
|
||
|
u16 eeprom_data = 0;
|
||
|
u16 eeprom_apme_mask = E1000_EEPROM_APME;
|
||
|
int bars, i, err;
|
||
|
s32 ret_val = 0;
|
||
|
|
||
|
if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
|
||
|
aspm_disable_flag = PCIE_LINK_STATE_L0S;
|
||
|
if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
|
||
|
aspm_disable_flag |= PCIE_LINK_STATE_L1;
|
||
|
if (aspm_disable_flag)
|
||
|
e1000e_disable_aspm(pdev, aspm_disable_flag);
|
||
|
|
||
|
err = pci_enable_device_mem(pdev);
|
||
|
if (err)
|
||
|
return err;
|
||
|
|
||
|
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
|
||
|
if (err) {
|
||
|
dev_err(&pdev->dev,
|
||
|
"No usable DMA configuration, aborting\n");
|
||
|
goto err_dma;
|
||
|
}
|
||
|
|
||
|
bars = pci_select_bars(pdev, IORESOURCE_MEM);
|
||
|
err = pci_request_selected_regions_exclusive(pdev, bars,
|
||
|
e1000e_driver_name);
|
||
|
if (err)
|
||
|
goto err_pci_reg;
|
||
|
|
||
|
pci_set_master(pdev);
|
||
|
/* PCI config space info */
|
||
|
err = pci_save_state(pdev);
|
||
|
if (err)
|
||
|
goto err_alloc_etherdev;
|
||
|
|
||
|
err = -ENOMEM;
|
||
|
netdev = alloc_etherdev(sizeof(struct e1000_adapter));
|
||
|
if (!netdev)
|
||
|
goto err_alloc_etherdev;
|
||
|
|
||
|
SET_NETDEV_DEV(netdev, &pdev->dev);
|
||
|
|
||
|
netdev->irq = pdev->irq;
|
||
|
|
||
|
pci_set_drvdata(pdev, netdev);
|
||
|
adapter = netdev_priv(netdev);
|
||
|
hw = &adapter->hw;
|
||
|
adapter->netdev = netdev;
|
||
|
adapter->pdev = pdev;
|
||
|
adapter->ei = ei;
|
||
|
adapter->pba = ei->pba;
|
||
|
adapter->flags = ei->flags;
|
||
|
adapter->flags2 = ei->flags2;
|
||
|
adapter->hw.adapter = adapter;
|
||
|
adapter->hw.mac.type = ei->mac;
|
||
|
adapter->max_hw_frame_size = ei->max_hw_frame_size;
|
||
|
adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
|
||
|
|
||
|
mmio_start = pci_resource_start(pdev, 0);
|
||
|
mmio_len = pci_resource_len(pdev, 0);
|
||
|
|
||
|
err = -EIO;
|
||
|
adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
|
||
|
if (!adapter->hw.hw_addr)
|
||
|
goto err_ioremap;
|
||
|
|
||
|
if ((adapter->flags & FLAG_HAS_FLASH) &&
|
||
|
(pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
|
||
|
(hw->mac.type < e1000_pch_spt)) {
|
||
|
flash_start = pci_resource_start(pdev, 1);
|
||
|
flash_len = pci_resource_len(pdev, 1);
|
||
|
adapter->hw.flash_address = ioremap(flash_start, flash_len);
|
||
|
if (!adapter->hw.flash_address)
|
||
|
goto err_flashmap;
|
||
|
}
|
||
|
|
||
|
/* Set default EEE advertisement */
|
||
|
if (adapter->flags2 & FLAG2_HAS_EEE)
|
||
|
adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
|
||
|
|
||
|
/* construct the net_device struct */
|
||
|
netdev->netdev_ops = &e1000e_netdev_ops;
|
||
|
e1000e_set_ethtool_ops(netdev);
|
||
|
netdev->watchdog_timeo = 5 * HZ;
|
||
|
netif_napi_add(netdev, &adapter->napi, e1000e_poll);
|
||
|
strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
|
||
|
|
||
|
netdev->mem_start = mmio_start;
|
||
|
netdev->mem_end = mmio_start + mmio_len;
|
||
|
|
||
|
adapter->bd_number = cards_found++;
|
||
|
|
||
|
e1000e_check_options(adapter);
|
||
|
|
||
|
/* setup adapter struct */
|
||
|
err = e1000_sw_init(adapter);
|
||
|
if (err)
|
||
|
goto err_sw_init;
|
||
|
|
||
|
memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
|
||
|
memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
|
||
|
memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
|
||
|
|
||
|
err = ei->get_variants(adapter);
|
||
|
if (err)
|
||
|
goto err_hw_init;
|
||
|
|
||
|
if ((adapter->flags & FLAG_IS_ICH) &&
|
||
|
(adapter->flags & FLAG_READ_ONLY_NVM) &&
|
||
|
(hw->mac.type < e1000_pch_spt))
|
||
|
e1000e_write_protect_nvm_ich8lan(&adapter->hw);
|
||
|
|
||
|
hw->mac.ops.get_bus_info(&adapter->hw);
|
||
|
|
||
|
adapter->hw.phy.autoneg_wait_to_complete = 0;
|
||
|
|
||
|
/* Copper options */
|
||
|
if (adapter->hw.phy.media_type == e1000_media_type_copper) {
|
||
|
adapter->hw.phy.mdix = AUTO_ALL_MODES;
|
||
|
adapter->hw.phy.disable_polarity_correction = 0;
|
||
|
adapter->hw.phy.ms_type = e1000_ms_hw_default;
|
||
|
}
|
||
|
|
||
|
if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
|
||
|
dev_info(&pdev->dev,
|
||
|
"PHY reset is blocked due to SOL/IDER session.\n");
|
||
|
|
||
|
/* Set initial default active device features */
|
||
|
netdev->features = (NETIF_F_SG |
|
||
|
NETIF_F_HW_VLAN_CTAG_RX |
|
||
|
NETIF_F_HW_VLAN_CTAG_TX |
|
||
|
NETIF_F_TSO |
|
||
|
NETIF_F_TSO6 |
|
||
|
NETIF_F_RXHASH |
|
||
|
NETIF_F_RXCSUM |
|
||
|
NETIF_F_HW_CSUM);
|
||
|
|
||
|
/* disable TSO for pcie and 10/100 speeds to avoid
|
||
|
* some hardware issues and for i219 to fix transfer
|
||
|
* speed being capped at 60%
|
||
|
*/
|
||
|
if (!(adapter->flags & FLAG_TSO_FORCE)) {
|
||
|
switch (adapter->link_speed) {
|
||
|
case SPEED_10:
|
||
|
case SPEED_100:
|
||
|
e_info("10/100 speed: disabling TSO\n");
|
||
|
netdev->features &= ~NETIF_F_TSO;
|
||
|
netdev->features &= ~NETIF_F_TSO6;
|
||
|
break;
|
||
|
case SPEED_1000:
|
||
|
netdev->features |= NETIF_F_TSO;
|
||
|
netdev->features |= NETIF_F_TSO6;
|
||
|
break;
|
||
|
default:
|
||
|
/* oops */
|
||
|
break;
|
||
|
}
|
||
|
if (hw->mac.type == e1000_pch_spt) {
|
||
|
netdev->features &= ~NETIF_F_TSO;
|
||
|
netdev->features &= ~NETIF_F_TSO6;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Set user-changeable features (subset of all device features) */
|
||
|
netdev->hw_features = netdev->features;
|
||
|
netdev->hw_features |= NETIF_F_RXFCS;
|
||
|
netdev->priv_flags |= IFF_SUPP_NOFCS;
|
||
|
netdev->hw_features |= NETIF_F_RXALL;
|
||
|
|
||
|
if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
|
||
|
netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
|
||
|
|
||
|
netdev->vlan_features |= (NETIF_F_SG |
|
||
|
NETIF_F_TSO |
|
||
|
NETIF_F_TSO6 |
|
||
|
NETIF_F_HW_CSUM);
|
||
|
|
||
|
netdev->priv_flags |= IFF_UNICAST_FLT;
|
||
|
|
||
|
netdev->features |= NETIF_F_HIGHDMA;
|
||
|
netdev->vlan_features |= NETIF_F_HIGHDMA;
|
||
|
|
||
|
/* MTU range: 68 - max_hw_frame_size */
|
||
|
netdev->min_mtu = ETH_MIN_MTU;
|
||
|
netdev->max_mtu = adapter->max_hw_frame_size -
|
||
|
(VLAN_ETH_HLEN + ETH_FCS_LEN);
|
||
|
|
||
|
if (e1000e_enable_mng_pass_thru(&adapter->hw))
|
||
|
adapter->flags |= FLAG_MNG_PT_ENABLED;
|
||
|
|
||
|
/* before reading the NVM, reset the controller to
|
||
|
* put the device in a known good starting state
|
||
|
*/
|
||
|
adapter->hw.mac.ops.reset_hw(&adapter->hw);
|
||
|
|
||
|
/* systems with ASPM and others may see the checksum fail on the first
|
||
|
* attempt. Let's give it a few tries
|
||
|
*/
|
||
|
for (i = 0;; i++) {
|
||
|
if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
|
||
|
break;
|
||
|
if (i == 2) {
|
||
|
dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
|
||
|
err = -EIO;
|
||
|
goto err_eeprom;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
e1000_eeprom_checks(adapter);
|
||
|
|
||
|
/* copy the MAC address */
|
||
|
if (e1000e_read_mac_addr(&adapter->hw))
|
||
|
dev_err(&pdev->dev,
|
||
|
"NVM Read Error while reading MAC address\n");
|
||
|
|
||
|
eth_hw_addr_set(netdev, adapter->hw.mac.addr);
|
||
|
|
||
|
if (!is_valid_ether_addr(netdev->dev_addr)) {
|
||
|
dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
|
||
|
netdev->dev_addr);
|
||
|
err = -EIO;
|
||
|
goto err_eeprom;
|
||
|
}
|
||
|
|
||
|
timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
|
||
|
timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
|
||
|
|
||
|
INIT_WORK(&adapter->reset_task, e1000_reset_task);
|
||
|
INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
|
||
|
INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
|
||
|
INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
|
||
|
INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
|
||
|
|
||
|
/* Initialize link parameters. User can change them with ethtool */
|
||
|
adapter->hw.mac.autoneg = 1;
|
||
|
adapter->fc_autoneg = true;
|
||
|
adapter->hw.fc.requested_mode = e1000_fc_default;
|
||
|
adapter->hw.fc.current_mode = e1000_fc_default;
|
||
|
adapter->hw.phy.autoneg_advertised = 0x2f;
|
||
|
|
||
|
/* Initial Wake on LAN setting - If APM wake is enabled in
|
||
|
* the EEPROM, enable the ACPI Magic Packet filter
|
||
|
*/
|
||
|
if (adapter->flags & FLAG_APME_IN_WUC) {
|
||
|
/* APME bit in EEPROM is mapped to WUC.APME */
|
||
|
eeprom_data = er32(WUC);
|
||
|
eeprom_apme_mask = E1000_WUC_APME;
|
||
|
if ((hw->mac.type > e1000_ich10lan) &&
|
||
|
(eeprom_data & E1000_WUC_PHY_WAKE))
|
||
|
adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
|
||
|
} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
|
||
|
if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
|
||
|
(adapter->hw.bus.func == 1))
|
||
|
ret_val = e1000_read_nvm(&adapter->hw,
|
||
|
NVM_INIT_CONTROL3_PORT_B,
|
||
|
1, &eeprom_data);
|
||
|
else
|
||
|
ret_val = e1000_read_nvm(&adapter->hw,
|
||
|
NVM_INIT_CONTROL3_PORT_A,
|
||
|
1, &eeprom_data);
|
||
|
}
|
||
|
|
||
|
/* fetch WoL from EEPROM */
|
||
|
if (ret_val)
|
||
|
e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
|
||
|
else if (eeprom_data & eeprom_apme_mask)
|
||
|
adapter->eeprom_wol |= E1000_WUFC_MAG;
|
||
|
|
||
|
/* now that we have the eeprom settings, apply the special cases
|
||
|
* where the eeprom may be wrong or the board simply won't support
|
||
|
* wake on lan on a particular port
|
||
|
*/
|
||
|
if (!(adapter->flags & FLAG_HAS_WOL))
|
||
|
adapter->eeprom_wol = 0;
|
||
|
|
||
|
/* initialize the wol settings based on the eeprom settings */
|
||
|
adapter->wol = adapter->eeprom_wol;
|
||
|
|
||
|
/* make sure adapter isn't asleep if manageability is enabled */
|
||
|
if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
|
||
|
(hw->mac.ops.check_mng_mode(hw)))
|
||
|
device_wakeup_enable(&pdev->dev);
|
||
|
|
||
|
/* save off EEPROM version number */
|
||
|
ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
|
||
|
|
||
|
if (ret_val) {
|
||
|
e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
|
||
|
adapter->eeprom_vers = 0;
|
||
|
}
|
||
|
|
||
|
/* init PTP hardware clock */
|
||
|
e1000e_ptp_init(adapter);
|
||
|
|
||
|
/* reset the hardware with the new settings */
|
||
|
e1000e_reset(adapter);
|
||
|
|
||
|
/* If the controller has AMT, do not set DRV_LOAD until the interface
|
||
|
* is up. For all other cases, let the f/w know that the h/w is now
|
||
|
* under the control of the driver.
|
||
|
*/
|
||
|
if (!(adapter->flags & FLAG_HAS_AMT))
|
||
|
e1000e_get_hw_control(adapter);
|
||
|
|
||
|
if (hw->mac.type >= e1000_pch_cnp)
|
||
|
adapter->flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
|
||
|
|
||
|
strscpy(netdev->name, "eth%d", sizeof(netdev->name));
|
||
|
err = register_netdev(netdev);
|
||
|
if (err)
|
||
|
goto err_register;
|
||
|
|
||
|
/* carrier off reporting is important to ethtool even BEFORE open */
|
||
|
netif_carrier_off(netdev);
|
||
|
|
||
|
e1000_print_device_info(adapter);
|
||
|
|
||
|
dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_SMART_PREPARE);
|
||
|
|
||
|
if (pci_dev_run_wake(pdev) && hw->mac.type != e1000_pch_cnp)
|
||
|
pm_runtime_put_noidle(&pdev->dev);
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
err_register:
|
||
|
if (!(adapter->flags & FLAG_HAS_AMT))
|
||
|
e1000e_release_hw_control(adapter);
|
||
|
err_eeprom:
|
||
|
if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
|
||
|
e1000_phy_hw_reset(&adapter->hw);
|
||
|
err_hw_init:
|
||
|
kfree(adapter->tx_ring);
|
||
|
kfree(adapter->rx_ring);
|
||
|
err_sw_init:
|
||
|
if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
|
||
|
iounmap(adapter->hw.flash_address);
|
||
|
e1000e_reset_interrupt_capability(adapter);
|
||
|
err_flashmap:
|
||
|
iounmap(adapter->hw.hw_addr);
|
||
|
err_ioremap:
|
||
|
free_netdev(netdev);
|
||
|
err_alloc_etherdev:
|
||
|
pci_release_mem_regions(pdev);
|
||
|
err_pci_reg:
|
||
|
err_dma:
|
||
|
pci_disable_device(pdev);
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_remove - Device Removal Routine
|
||
|
* @pdev: PCI device information struct
|
||
|
*
|
||
|
* e1000_remove is called by the PCI subsystem to alert the driver
|
||
|
* that it should release a PCI device. This could be caused by a
|
||
|
* Hot-Plug event, or because the driver is going to be removed from
|
||
|
* memory.
|
||
|
**/
|
||
|
static void e1000_remove(struct pci_dev *pdev)
|
||
|
{
|
||
|
struct net_device *netdev = pci_get_drvdata(pdev);
|
||
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
||
|
|
||
|
e1000e_ptp_remove(adapter);
|
||
|
|
||
|
/* The timers may be rescheduled, so explicitly disable them
|
||
|
* from being rescheduled.
|
||
|
*/
|
||
|
set_bit(__E1000_DOWN, &adapter->state);
|
||
|
del_timer_sync(&adapter->watchdog_timer);
|
||
|
del_timer_sync(&adapter->phy_info_timer);
|
||
|
|
||
|
cancel_work_sync(&adapter->reset_task);
|
||
|
cancel_work_sync(&adapter->watchdog_task);
|
||
|
cancel_work_sync(&adapter->downshift_task);
|
||
|
cancel_work_sync(&adapter->update_phy_task);
|
||
|
cancel_work_sync(&adapter->print_hang_task);
|
||
|
|
||
|
if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
|
||
|
cancel_work_sync(&adapter->tx_hwtstamp_work);
|
||
|
if (adapter->tx_hwtstamp_skb) {
|
||
|
dev_consume_skb_any(adapter->tx_hwtstamp_skb);
|
||
|
adapter->tx_hwtstamp_skb = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
unregister_netdev(netdev);
|
||
|
|
||
|
if (pci_dev_run_wake(pdev))
|
||
|
pm_runtime_get_noresume(&pdev->dev);
|
||
|
|
||
|
/* Release control of h/w to f/w. If f/w is AMT enabled, this
|
||
|
* would have already happened in close and is redundant.
|
||
|
*/
|
||
|
e1000e_release_hw_control(adapter);
|
||
|
|
||
|
e1000e_reset_interrupt_capability(adapter);
|
||
|
kfree(adapter->tx_ring);
|
||
|
kfree(adapter->rx_ring);
|
||
|
|
||
|
iounmap(adapter->hw.hw_addr);
|
||
|
if ((adapter->hw.flash_address) &&
|
||
|
(adapter->hw.mac.type < e1000_pch_spt))
|
||
|
iounmap(adapter->hw.flash_address);
|
||
|
pci_release_mem_regions(pdev);
|
||
|
|
||
|
free_netdev(netdev);
|
||
|
|
||
|
pci_disable_device(pdev);
|
||
|
}
|
||
|
|
||
|
/* PCI Error Recovery (ERS) */
|
||
|
static const struct pci_error_handlers e1000_err_handler = {
|
||
|
.error_detected = e1000_io_error_detected,
|
||
|
.slot_reset = e1000_io_slot_reset,
|
||
|
.resume = e1000_io_resume,
|
||
|
};
|
||
|
|
||
|
static const struct pci_device_id e1000_pci_tbl[] = {
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
|
||
|
board_82571 },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
|
||
|
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
|
||
|
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
|
||
|
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
|
||
|
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
|
||
|
board_80003es2lan },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
|
||
|
board_80003es2lan },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
|
||
|
board_80003es2lan },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
|
||
|
board_80003es2lan },
|
||
|
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
|
||
|
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
|
||
|
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
|
||
|
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
|
||
|
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
|
||
|
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
|
||
|
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM10), board_pch_cnp },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V10), board_pch_cnp },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM11), board_pch_cnp },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V11), board_pch_cnp },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM12), board_pch_spt },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V12), board_pch_spt },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM13), board_pch_tgp },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V13), board_pch_tgp },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM14), board_pch_tgp },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V14), board_pch_tgp },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM15), board_pch_tgp },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V15), board_pch_tgp },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM23), board_pch_adp },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V23), board_pch_adp },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM16), board_pch_adp },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V16), board_pch_adp },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM17), board_pch_adp },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V17), board_pch_adp },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM22), board_pch_adp },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V22), board_pch_adp },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM18), board_pch_mtp },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V18), board_pch_mtp },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM19), board_pch_mtp },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V19), board_pch_mtp },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM20), board_pch_mtp },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V20), board_pch_mtp },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM21), board_pch_mtp },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V21), board_pch_mtp },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ARL_I219_LM24), board_pch_mtp },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ARL_I219_V24), board_pch_mtp },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM25), board_pch_mtp },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V25), board_pch_mtp },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM26), board_pch_mtp },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V26), board_pch_mtp },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM27), board_pch_mtp },
|
||
|
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V27), board_pch_mtp },
|
||
|
|
||
|
{ 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
|
||
|
};
|
||
|
MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
|
||
|
|
||
|
static const struct dev_pm_ops e1000_pm_ops = {
|
||
|
#ifdef CONFIG_PM_SLEEP
|
||
|
.prepare = e1000e_pm_prepare,
|
||
|
.suspend = e1000e_pm_suspend,
|
||
|
.resume = e1000e_pm_resume,
|
||
|
.freeze = e1000e_pm_freeze,
|
||
|
.thaw = e1000e_pm_thaw,
|
||
|
.poweroff = e1000e_pm_suspend,
|
||
|
.restore = e1000e_pm_resume,
|
||
|
#endif
|
||
|
SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
|
||
|
e1000e_pm_runtime_idle)
|
||
|
};
|
||
|
|
||
|
/* PCI Device API Driver */
|
||
|
static struct pci_driver e1000_driver = {
|
||
|
.name = e1000e_driver_name,
|
||
|
.id_table = e1000_pci_tbl,
|
||
|
.probe = e1000_probe,
|
||
|
.remove = e1000_remove,
|
||
|
.driver = {
|
||
|
.pm = &e1000_pm_ops,
|
||
|
},
|
||
|
.shutdown = e1000_shutdown,
|
||
|
.err_handler = &e1000_err_handler
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* e1000_init_module - Driver Registration Routine
|
||
|
*
|
||
|
* e1000_init_module is the first routine called when the driver is
|
||
|
* loaded. All it does is register with the PCI subsystem.
|
||
|
**/
|
||
|
static int __init e1000_init_module(void)
|
||
|
{
|
||
|
pr_info("Intel(R) PRO/1000 Network Driver\n");
|
||
|
pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
|
||
|
|
||
|
return pci_register_driver(&e1000_driver);
|
||
|
}
|
||
|
module_init(e1000_init_module);
|
||
|
|
||
|
/**
|
||
|
* e1000_exit_module - Driver Exit Cleanup Routine
|
||
|
*
|
||
|
* e1000_exit_module is called just before the driver is removed
|
||
|
* from memory.
|
||
|
**/
|
||
|
static void __exit e1000_exit_module(void)
|
||
|
{
|
||
|
pci_unregister_driver(&e1000_driver);
|
||
|
}
|
||
|
module_exit(e1000_exit_module);
|
||
|
|
||
|
MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
|
||
|
MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
|
||
|
MODULE_LICENSE("GPL v2");
|
||
|
|
||
|
/* netdev.c */
|