linux-zen-server/drivers/net/ethernet/netronome/nfp/flower/conntrack.c

2113 lines
59 KiB
C
Raw Normal View History

2023-08-30 17:53:23 +02:00
// SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
/* Copyright (C) 2021 Corigine, Inc. */
#include <net/tc_act/tc_csum.h>
#include <net/tc_act/tc_ct.h>
#include "conntrack.h"
#include "../nfp_port.h"
const struct rhashtable_params nfp_tc_ct_merge_params = {
.head_offset = offsetof(struct nfp_fl_ct_tc_merge,
hash_node),
.key_len = sizeof(unsigned long) * 2,
.key_offset = offsetof(struct nfp_fl_ct_tc_merge, cookie),
.automatic_shrinking = true,
};
const struct rhashtable_params nfp_nft_ct_merge_params = {
.head_offset = offsetof(struct nfp_fl_nft_tc_merge,
hash_node),
.key_len = sizeof(unsigned long) * 3,
.key_offset = offsetof(struct nfp_fl_nft_tc_merge, cookie),
.automatic_shrinking = true,
};
static struct flow_action_entry *get_flow_act(struct flow_rule *rule,
enum flow_action_id act_id);
/**
* get_hashentry() - Wrapper around hashtable lookup.
* @ht: hashtable where entry could be found
* @key: key to lookup
* @params: hashtable params
* @size: size of entry to allocate if not in table
*
* Returns an entry from a hashtable. If entry does not exist
* yet allocate the memory for it and return the new entry.
*/
static void *get_hashentry(struct rhashtable *ht, void *key,
const struct rhashtable_params params, size_t size)
{
void *result;
result = rhashtable_lookup_fast(ht, key, params);
if (result)
return result;
result = kzalloc(size, GFP_KERNEL);
if (!result)
return ERR_PTR(-ENOMEM);
return result;
}
bool is_pre_ct_flow(struct flow_cls_offload *flow)
{
struct flow_action_entry *act;
int i;
flow_action_for_each(i, act, &flow->rule->action) {
if (act->id == FLOW_ACTION_CT) {
/* The pre_ct rule only have the ct or ct nat action, cannot
* contains other ct action e.g ct commit and so on.
*/
if ((!act->ct.action || act->ct.action == TCA_CT_ACT_NAT))
return true;
else
return false;
}
}
return false;
}
bool is_post_ct_flow(struct flow_cls_offload *flow)
{
struct flow_rule *rule = flow_cls_offload_flow_rule(flow);
struct flow_dissector *dissector = rule->match.dissector;
struct flow_action_entry *act;
bool exist_ct_clear = false;
struct flow_match_ct ct;
int i;
/* post ct entry cannot contains any ct action except ct_clear. */
flow_action_for_each(i, act, &flow->rule->action) {
if (act->id == FLOW_ACTION_CT) {
/* ignore ct clear action. */
if (act->ct.action == TCA_CT_ACT_CLEAR) {
exist_ct_clear = true;
continue;
}
return false;
}
}
if (dissector->used_keys & BIT(FLOW_DISSECTOR_KEY_CT)) {
flow_rule_match_ct(rule, &ct);
if (ct.key->ct_state & TCA_FLOWER_KEY_CT_FLAGS_ESTABLISHED)
return true;
} else {
/* when do nat with ct, the post ct entry ignore the ct status,
* will match the nat field(sip/dip) instead. In this situation,
* the flow chain index is not zero and contains ct clear action.
*/
if (flow->common.chain_index && exist_ct_clear)
return true;
}
return false;
}
/**
* get_mangled_key() - Mangle the key if mangle act exists
* @rule: rule that carries the actions
* @buf: pointer to key to be mangled
* @offset: used to adjust mangled offset in L2/L3/L4 header
* @key_sz: key size
* @htype: mangling type
*
* Returns buf where the mangled key stores.
*/
static void *get_mangled_key(struct flow_rule *rule, void *buf,
u32 offset, size_t key_sz,
enum flow_action_mangle_base htype)
{
struct flow_action_entry *act;
u32 *val = (u32 *)buf;
u32 off, msk, key;
int i;
flow_action_for_each(i, act, &rule->action) {
if (act->id == FLOW_ACTION_MANGLE &&
act->mangle.htype == htype) {
off = act->mangle.offset - offset;
msk = act->mangle.mask;
key = act->mangle.val;
/* Mangling is supposed to be u32 aligned */
if (off % 4 || off >= key_sz)
continue;
val[off >> 2] &= msk;
val[off >> 2] |= key;
}
}
return buf;
}
/* Only tos and ttl are involved in flow_match_ip structure, which
* doesn't conform to the layout of ip/ipv6 header definition. So
* they need particular process here: fill them into the ip/ipv6
* header, so that mangling actions can work directly.
*/
#define NFP_IPV4_TOS_MASK GENMASK(23, 16)
#define NFP_IPV4_TTL_MASK GENMASK(31, 24)
#define NFP_IPV6_TCLASS_MASK GENMASK(27, 20)
#define NFP_IPV6_HLIMIT_MASK GENMASK(7, 0)
static void *get_mangled_tos_ttl(struct flow_rule *rule, void *buf,
bool is_v6)
{
struct flow_match_ip match;
/* IPv4's ttl field is in third dword. */
__be32 ip_hdr[3];
u32 tmp, hdr_len;
flow_rule_match_ip(rule, &match);
if (is_v6) {
tmp = FIELD_PREP(NFP_IPV6_TCLASS_MASK, match.key->tos);
ip_hdr[0] = cpu_to_be32(tmp);
tmp = FIELD_PREP(NFP_IPV6_HLIMIT_MASK, match.key->ttl);
ip_hdr[1] = cpu_to_be32(tmp);
hdr_len = 2 * sizeof(__be32);
} else {
tmp = FIELD_PREP(NFP_IPV4_TOS_MASK, match.key->tos);
ip_hdr[0] = cpu_to_be32(tmp);
tmp = FIELD_PREP(NFP_IPV4_TTL_MASK, match.key->ttl);
ip_hdr[2] = cpu_to_be32(tmp);
hdr_len = 3 * sizeof(__be32);
}
get_mangled_key(rule, ip_hdr, 0, hdr_len,
is_v6 ? FLOW_ACT_MANGLE_HDR_TYPE_IP6 :
FLOW_ACT_MANGLE_HDR_TYPE_IP4);
match.key = buf;
if (is_v6) {
tmp = be32_to_cpu(ip_hdr[0]);
match.key->tos = FIELD_GET(NFP_IPV6_TCLASS_MASK, tmp);
tmp = be32_to_cpu(ip_hdr[1]);
match.key->ttl = FIELD_GET(NFP_IPV6_HLIMIT_MASK, tmp);
} else {
tmp = be32_to_cpu(ip_hdr[0]);
match.key->tos = FIELD_GET(NFP_IPV4_TOS_MASK, tmp);
tmp = be32_to_cpu(ip_hdr[2]);
match.key->ttl = FIELD_GET(NFP_IPV4_TTL_MASK, tmp);
}
return buf;
}
/* Note entry1 and entry2 are not swappable. only skip ip and
* tport merge check for pre_ct and post_ct when pre_ct do nat.
*/
static bool nfp_ct_merge_check_cannot_skip(struct nfp_fl_ct_flow_entry *entry1,
struct nfp_fl_ct_flow_entry *entry2)
{
/* only pre_ct have NFP_FL_ACTION_DO_NAT flag. */
if ((entry1->flags & NFP_FL_ACTION_DO_NAT) &&
entry2->type == CT_TYPE_POST_CT)
return false;
return true;
}
/* Note entry1 and entry2 are not swappable, entry1 should be
* the former flow whose mangle action need be taken into account
* if existed, and entry2 should be the latter flow whose action
* we don't care.
*/
static int nfp_ct_merge_check(struct nfp_fl_ct_flow_entry *entry1,
struct nfp_fl_ct_flow_entry *entry2)
{
unsigned int ovlp_keys = entry1->rule->match.dissector->used_keys &
entry2->rule->match.dissector->used_keys;
bool out, is_v6 = false;
u8 ip_proto = 0;
/* Temporary buffer for mangling keys, 64 is enough to cover max
* struct size of key in various fields that may be mangled.
* Supported fields to mangle:
* mac_src/mac_dst(struct flow_match_eth_addrs, 12B)
* nw_tos/nw_ttl(struct flow_match_ip, 2B)
* nw_src/nw_dst(struct flow_match_ipv4/6_addrs, 32B)
* tp_src/tp_dst(struct flow_match_ports, 4B)
*/
char buf[64];
if (entry1->netdev && entry2->netdev &&
entry1->netdev != entry2->netdev)
return -EINVAL;
/* Check the overlapped fields one by one, the unmasked part
* should not conflict with each other.
*/
if (ovlp_keys & BIT(FLOW_DISSECTOR_KEY_CONTROL)) {
struct flow_match_control match1, match2;
flow_rule_match_control(entry1->rule, &match1);
flow_rule_match_control(entry2->rule, &match2);
COMPARE_UNMASKED_FIELDS(match1, match2, &out);
if (out)
goto check_failed;
}
if (ovlp_keys & BIT(FLOW_DISSECTOR_KEY_BASIC)) {
struct flow_match_basic match1, match2;
flow_rule_match_basic(entry1->rule, &match1);
flow_rule_match_basic(entry2->rule, &match2);
/* n_proto field is a must in ct-related flows,
* it should be either ipv4 or ipv6.
*/
is_v6 = match1.key->n_proto == htons(ETH_P_IPV6);
/* ip_proto field is a must when port field is cared */
ip_proto = match1.key->ip_proto;
COMPARE_UNMASKED_FIELDS(match1, match2, &out);
if (out)
goto check_failed;
}
/* if pre ct entry do nat, the nat ip exists in nft entry,
* will be do merge check when do nft and post ct merge,
* so skip this ip merge check here.
*/
if ((ovlp_keys & BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS)) &&
nfp_ct_merge_check_cannot_skip(entry1, entry2)) {
struct flow_match_ipv4_addrs match1, match2;
flow_rule_match_ipv4_addrs(entry1->rule, &match1);
flow_rule_match_ipv4_addrs(entry2->rule, &match2);
memcpy(buf, match1.key, sizeof(*match1.key));
match1.key = get_mangled_key(entry1->rule, buf,
offsetof(struct iphdr, saddr),
sizeof(*match1.key),
FLOW_ACT_MANGLE_HDR_TYPE_IP4);
COMPARE_UNMASKED_FIELDS(match1, match2, &out);
if (out)
goto check_failed;
}
/* if pre ct entry do nat, the nat ip exists in nft entry,
* will be do merge check when do nft and post ct merge,
* so skip this ip merge check here.
*/
if ((ovlp_keys & BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS)) &&
nfp_ct_merge_check_cannot_skip(entry1, entry2)) {
struct flow_match_ipv6_addrs match1, match2;
flow_rule_match_ipv6_addrs(entry1->rule, &match1);
flow_rule_match_ipv6_addrs(entry2->rule, &match2);
memcpy(buf, match1.key, sizeof(*match1.key));
match1.key = get_mangled_key(entry1->rule, buf,
offsetof(struct ipv6hdr, saddr),
sizeof(*match1.key),
FLOW_ACT_MANGLE_HDR_TYPE_IP6);
COMPARE_UNMASKED_FIELDS(match1, match2, &out);
if (out)
goto check_failed;
}
/* if pre ct entry do nat, the nat tport exists in nft entry,
* will be do merge check when do nft and post ct merge,
* so skip this tport merge check here.
*/
if ((ovlp_keys & BIT(FLOW_DISSECTOR_KEY_PORTS)) &&
nfp_ct_merge_check_cannot_skip(entry1, entry2)) {
enum flow_action_mangle_base htype = FLOW_ACT_MANGLE_UNSPEC;
struct flow_match_ports match1, match2;
flow_rule_match_ports(entry1->rule, &match1);
flow_rule_match_ports(entry2->rule, &match2);
if (ip_proto == IPPROTO_UDP)
htype = FLOW_ACT_MANGLE_HDR_TYPE_UDP;
else if (ip_proto == IPPROTO_TCP)
htype = FLOW_ACT_MANGLE_HDR_TYPE_TCP;
memcpy(buf, match1.key, sizeof(*match1.key));
match1.key = get_mangled_key(entry1->rule, buf, 0,
sizeof(*match1.key), htype);
COMPARE_UNMASKED_FIELDS(match1, match2, &out);
if (out)
goto check_failed;
}
if (ovlp_keys & BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
struct flow_match_eth_addrs match1, match2;
flow_rule_match_eth_addrs(entry1->rule, &match1);
flow_rule_match_eth_addrs(entry2->rule, &match2);
memcpy(buf, match1.key, sizeof(*match1.key));
match1.key = get_mangled_key(entry1->rule, buf, 0,
sizeof(*match1.key),
FLOW_ACT_MANGLE_HDR_TYPE_ETH);
COMPARE_UNMASKED_FIELDS(match1, match2, &out);
if (out)
goto check_failed;
}
if (ovlp_keys & BIT(FLOW_DISSECTOR_KEY_VLAN)) {
struct flow_match_vlan match1, match2;
flow_rule_match_vlan(entry1->rule, &match1);
flow_rule_match_vlan(entry2->rule, &match2);
COMPARE_UNMASKED_FIELDS(match1, match2, &out);
if (out)
goto check_failed;
}
if (ovlp_keys & BIT(FLOW_DISSECTOR_KEY_MPLS)) {
struct flow_match_mpls match1, match2;
flow_rule_match_mpls(entry1->rule, &match1);
flow_rule_match_mpls(entry2->rule, &match2);
COMPARE_UNMASKED_FIELDS(match1, match2, &out);
if (out)
goto check_failed;
}
if (ovlp_keys & BIT(FLOW_DISSECTOR_KEY_TCP)) {
struct flow_match_tcp match1, match2;
flow_rule_match_tcp(entry1->rule, &match1);
flow_rule_match_tcp(entry2->rule, &match2);
COMPARE_UNMASKED_FIELDS(match1, match2, &out);
if (out)
goto check_failed;
}
if (ovlp_keys & BIT(FLOW_DISSECTOR_KEY_IP)) {
struct flow_match_ip match1, match2;
flow_rule_match_ip(entry1->rule, &match1);
flow_rule_match_ip(entry2->rule, &match2);
match1.key = get_mangled_tos_ttl(entry1->rule, buf, is_v6);
COMPARE_UNMASKED_FIELDS(match1, match2, &out);
if (out)
goto check_failed;
}
if (ovlp_keys & BIT(FLOW_DISSECTOR_KEY_ENC_KEYID)) {
struct flow_match_enc_keyid match1, match2;
flow_rule_match_enc_keyid(entry1->rule, &match1);
flow_rule_match_enc_keyid(entry2->rule, &match2);
COMPARE_UNMASKED_FIELDS(match1, match2, &out);
if (out)
goto check_failed;
}
if (ovlp_keys & BIT(FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) {
struct flow_match_ipv4_addrs match1, match2;
flow_rule_match_enc_ipv4_addrs(entry1->rule, &match1);
flow_rule_match_enc_ipv4_addrs(entry2->rule, &match2);
COMPARE_UNMASKED_FIELDS(match1, match2, &out);
if (out)
goto check_failed;
}
if (ovlp_keys & BIT(FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) {
struct flow_match_ipv6_addrs match1, match2;
flow_rule_match_enc_ipv6_addrs(entry1->rule, &match1);
flow_rule_match_enc_ipv6_addrs(entry2->rule, &match2);
COMPARE_UNMASKED_FIELDS(match1, match2, &out);
if (out)
goto check_failed;
}
if (ovlp_keys & BIT(FLOW_DISSECTOR_KEY_ENC_CONTROL)) {
struct flow_match_control match1, match2;
flow_rule_match_enc_control(entry1->rule, &match1);
flow_rule_match_enc_control(entry2->rule, &match2);
COMPARE_UNMASKED_FIELDS(match1, match2, &out);
if (out)
goto check_failed;
}
if (ovlp_keys & BIT(FLOW_DISSECTOR_KEY_ENC_IP)) {
struct flow_match_ip match1, match2;
flow_rule_match_enc_ip(entry1->rule, &match1);
flow_rule_match_enc_ip(entry2->rule, &match2);
COMPARE_UNMASKED_FIELDS(match1, match2, &out);
if (out)
goto check_failed;
}
if (ovlp_keys & BIT(FLOW_DISSECTOR_KEY_ENC_OPTS)) {
struct flow_match_enc_opts match1, match2;
flow_rule_match_enc_opts(entry1->rule, &match1);
flow_rule_match_enc_opts(entry2->rule, &match2);
COMPARE_UNMASKED_FIELDS(match1, match2, &out);
if (out)
goto check_failed;
}
return 0;
check_failed:
return -EINVAL;
}
static int nfp_ct_check_vlan_merge(struct flow_action_entry *a_in,
struct flow_rule *rule)
{
struct flow_match_vlan match;
if (unlikely(flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CVLAN)))
return -EOPNOTSUPP;
/* post_ct does not match VLAN KEY, can be merged. */
if (likely(!flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)))
return 0;
switch (a_in->id) {
/* pre_ct has pop vlan, post_ct cannot match VLAN KEY, cannot be merged. */
case FLOW_ACTION_VLAN_POP:
return -EOPNOTSUPP;
case FLOW_ACTION_VLAN_PUSH:
case FLOW_ACTION_VLAN_MANGLE:
flow_rule_match_vlan(rule, &match);
/* different vlan id, cannot be merged. */
if ((match.key->vlan_id & match.mask->vlan_id) ^
(a_in->vlan.vid & match.mask->vlan_id))
return -EOPNOTSUPP;
/* different tpid, cannot be merged. */
if ((match.key->vlan_tpid & match.mask->vlan_tpid) ^
(a_in->vlan.proto & match.mask->vlan_tpid))
return -EOPNOTSUPP;
/* different priority, cannot be merged. */
if ((match.key->vlan_priority & match.mask->vlan_priority) ^
(a_in->vlan.prio & match.mask->vlan_priority))
return -EOPNOTSUPP;
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static int nfp_ct_merge_act_check(struct nfp_fl_ct_flow_entry *pre_ct_entry,
struct nfp_fl_ct_flow_entry *post_ct_entry,
struct nfp_fl_ct_flow_entry *nft_entry)
{
struct flow_action_entry *act;
int i, err;
/* Check for pre_ct->action conflicts */
flow_action_for_each(i, act, &pre_ct_entry->rule->action) {
switch (act->id) {
case FLOW_ACTION_VLAN_PUSH:
case FLOW_ACTION_VLAN_POP:
case FLOW_ACTION_VLAN_MANGLE:
err = nfp_ct_check_vlan_merge(act, post_ct_entry->rule);
if (err)
return err;
break;
case FLOW_ACTION_MPLS_PUSH:
case FLOW_ACTION_MPLS_POP:
case FLOW_ACTION_MPLS_MANGLE:
return -EOPNOTSUPP;
default:
break;
}
}
/* Check for nft->action conflicts */
flow_action_for_each(i, act, &nft_entry->rule->action) {
switch (act->id) {
case FLOW_ACTION_VLAN_PUSH:
case FLOW_ACTION_VLAN_POP:
case FLOW_ACTION_VLAN_MANGLE:
case FLOW_ACTION_MPLS_PUSH:
case FLOW_ACTION_MPLS_POP:
case FLOW_ACTION_MPLS_MANGLE:
return -EOPNOTSUPP;
default:
break;
}
}
return 0;
}
static int nfp_ct_check_meta(struct nfp_fl_ct_flow_entry *post_ct_entry,
struct nfp_fl_ct_flow_entry *nft_entry)
{
struct flow_dissector *dissector = post_ct_entry->rule->match.dissector;
struct flow_action_entry *ct_met;
struct flow_match_ct ct;
int i;
ct_met = get_flow_act(nft_entry->rule, FLOW_ACTION_CT_METADATA);
if (ct_met && (dissector->used_keys & BIT(FLOW_DISSECTOR_KEY_CT))) {
u32 *act_lbl;
act_lbl = ct_met->ct_metadata.labels;
flow_rule_match_ct(post_ct_entry->rule, &ct);
for (i = 0; i < 4; i++) {
if ((ct.key->ct_labels[i] & ct.mask->ct_labels[i]) ^
(act_lbl[i] & ct.mask->ct_labels[i]))
return -EINVAL;
}
if ((ct.key->ct_mark & ct.mask->ct_mark) ^
(ct_met->ct_metadata.mark & ct.mask->ct_mark))
return -EINVAL;
return 0;
} else {
/* post_ct with ct clear action will not match the
* ct status when nft is nat entry.
*/
if (nft_entry->flags & NFP_FL_ACTION_DO_MANGLE)
return 0;
}
return -EINVAL;
}
static int
nfp_fl_calc_key_layers_sz(struct nfp_fl_key_ls in_key_ls, uint16_t *map)
{
int key_size;
/* This field must always be present */
key_size = sizeof(struct nfp_flower_meta_tci);
map[FLOW_PAY_META_TCI] = 0;
if (in_key_ls.key_layer & NFP_FLOWER_LAYER_EXT_META) {
map[FLOW_PAY_EXT_META] = key_size;
key_size += sizeof(struct nfp_flower_ext_meta);
}
if (in_key_ls.key_layer & NFP_FLOWER_LAYER_PORT) {
map[FLOW_PAY_INPORT] = key_size;
key_size += sizeof(struct nfp_flower_in_port);
}
if (in_key_ls.key_layer & NFP_FLOWER_LAYER_MAC) {
map[FLOW_PAY_MAC_MPLS] = key_size;
key_size += sizeof(struct nfp_flower_mac_mpls);
}
if (in_key_ls.key_layer & NFP_FLOWER_LAYER_TP) {
map[FLOW_PAY_L4] = key_size;
key_size += sizeof(struct nfp_flower_tp_ports);
}
if (in_key_ls.key_layer & NFP_FLOWER_LAYER_IPV4) {
map[FLOW_PAY_IPV4] = key_size;
key_size += sizeof(struct nfp_flower_ipv4);
}
if (in_key_ls.key_layer & NFP_FLOWER_LAYER_IPV6) {
map[FLOW_PAY_IPV6] = key_size;
key_size += sizeof(struct nfp_flower_ipv6);
}
if (in_key_ls.key_layer_two & NFP_FLOWER_LAYER2_QINQ) {
map[FLOW_PAY_QINQ] = key_size;
key_size += sizeof(struct nfp_flower_vlan);
}
if (in_key_ls.key_layer_two & NFP_FLOWER_LAYER2_GRE) {
map[FLOW_PAY_GRE] = key_size;
if (in_key_ls.key_layer_two & NFP_FLOWER_LAYER2_TUN_IPV6)
key_size += sizeof(struct nfp_flower_ipv6_gre_tun);
else
key_size += sizeof(struct nfp_flower_ipv4_gre_tun);
}
if ((in_key_ls.key_layer & NFP_FLOWER_LAYER_VXLAN) ||
(in_key_ls.key_layer_two & NFP_FLOWER_LAYER2_GENEVE)) {
map[FLOW_PAY_UDP_TUN] = key_size;
if (in_key_ls.key_layer_two & NFP_FLOWER_LAYER2_TUN_IPV6)
key_size += sizeof(struct nfp_flower_ipv6_udp_tun);
else
key_size += sizeof(struct nfp_flower_ipv4_udp_tun);
}
if (in_key_ls.key_layer_two & NFP_FLOWER_LAYER2_GENEVE_OP) {
map[FLOW_PAY_GENEVE_OPT] = key_size;
key_size += sizeof(struct nfp_flower_geneve_options);
}
return key_size;
}
/* get the csum flag according the ip proto and mangle action. */
static void nfp_fl_get_csum_flag(struct flow_action_entry *a_in, u8 ip_proto, u32 *csum)
{
if (a_in->id != FLOW_ACTION_MANGLE)
return;
switch (a_in->mangle.htype) {
case FLOW_ACT_MANGLE_HDR_TYPE_IP4:
*csum |= TCA_CSUM_UPDATE_FLAG_IPV4HDR;
if (ip_proto == IPPROTO_TCP)
*csum |= TCA_CSUM_UPDATE_FLAG_TCP;
else if (ip_proto == IPPROTO_UDP)
*csum |= TCA_CSUM_UPDATE_FLAG_UDP;
break;
case FLOW_ACT_MANGLE_HDR_TYPE_TCP:
*csum |= TCA_CSUM_UPDATE_FLAG_TCP;
break;
case FLOW_ACT_MANGLE_HDR_TYPE_UDP:
*csum |= TCA_CSUM_UPDATE_FLAG_UDP;
break;
default:
break;
}
}
static int nfp_fl_merge_actions_offload(struct flow_rule **rules,
struct nfp_flower_priv *priv,
struct net_device *netdev,
struct nfp_fl_payload *flow_pay)
{
enum flow_action_hw_stats tmp_stats = FLOW_ACTION_HW_STATS_DONT_CARE;
struct flow_action_entry *a_in;
int i, j, num_actions, id;
struct flow_rule *a_rule;
int err = 0, offset = 0;
num_actions = rules[CT_TYPE_PRE_CT]->action.num_entries +
rules[CT_TYPE_NFT]->action.num_entries +
rules[CT_TYPE_POST_CT]->action.num_entries;
/* Add one action to make sure there is enough room to add an checksum action
* when do nat.
*/
a_rule = flow_rule_alloc(num_actions + 1);
if (!a_rule)
return -ENOMEM;
/* Actions need a BASIC dissector. */
a_rule->match = rules[CT_TYPE_PRE_CT]->match;
/* post_ct entry have one action at least. */
if (rules[CT_TYPE_POST_CT]->action.num_entries != 0) {
tmp_stats = rules[CT_TYPE_POST_CT]->action.entries[0].hw_stats;
}
/* Copy actions */
for (j = 0; j < _CT_TYPE_MAX; j++) {
u32 csum_updated = 0;
u8 ip_proto = 0;
if (flow_rule_match_key(rules[j], FLOW_DISSECTOR_KEY_BASIC)) {
struct flow_match_basic match;
/* ip_proto is the only field that is needed in later compile_action,
* needed to set the correct checksum flags. It doesn't really matter
* which input rule's ip_proto field we take as the earlier merge checks
* would have made sure that they don't conflict. We do not know which
* of the subflows would have the ip_proto filled in, so we need to iterate
* through the subflows and assign the proper subflow to a_rule
*/
flow_rule_match_basic(rules[j], &match);
if (match.mask->ip_proto) {
a_rule->match = rules[j]->match;
ip_proto = match.key->ip_proto;
}
}
for (i = 0; i < rules[j]->action.num_entries; i++) {
a_in = &rules[j]->action.entries[i];
id = a_in->id;
/* Ignore CT related actions as these would already have
* been taken care of by previous checks, and we do not send
* any CT actions to the firmware.
*/
switch (id) {
case FLOW_ACTION_CT:
case FLOW_ACTION_GOTO:
case FLOW_ACTION_CT_METADATA:
continue;
default:
/* nft entry is generated by tc ct, which mangle action do not care
* the stats, inherit the post entry stats to meet the
* flow_action_hw_stats_check.
*/
if (j == CT_TYPE_NFT) {
if (a_in->hw_stats == FLOW_ACTION_HW_STATS_DONT_CARE)
a_in->hw_stats = tmp_stats;
nfp_fl_get_csum_flag(a_in, ip_proto, &csum_updated);
}
memcpy(&a_rule->action.entries[offset++],
a_in, sizeof(struct flow_action_entry));
break;
}
}
/* nft entry have mangle action, but do not have checksum action when do NAT,
* hardware will automatically fix IPv4 and TCP/UDP checksum. so add an csum action
* to meet csum action check.
*/
if (csum_updated) {
struct flow_action_entry *csum_action;
csum_action = &a_rule->action.entries[offset++];
csum_action->id = FLOW_ACTION_CSUM;
csum_action->csum_flags = csum_updated;
csum_action->hw_stats = tmp_stats;
}
}
/* Some actions would have been ignored, so update the num_entries field */
a_rule->action.num_entries = offset;
err = nfp_flower_compile_action(priv->app, a_rule, netdev, flow_pay, NULL);
kfree(a_rule);
return err;
}
static int nfp_fl_ct_add_offload(struct nfp_fl_nft_tc_merge *m_entry)
{
enum nfp_flower_tun_type tun_type = NFP_FL_TUNNEL_NONE;
struct nfp_fl_ct_zone_entry *zt = m_entry->zt;
struct nfp_fl_key_ls key_layer, tmp_layer;
struct nfp_flower_priv *priv = zt->priv;
u16 key_map[_FLOW_PAY_LAYERS_MAX];
struct nfp_fl_payload *flow_pay;
struct flow_rule *rules[_CT_TYPE_MAX];
u8 *key, *msk, *kdata, *mdata;
struct nfp_port *port = NULL;
struct net_device *netdev;
bool qinq_sup;
u32 port_id;
u16 offset;
int i, err;
netdev = m_entry->netdev;
qinq_sup = !!(priv->flower_ext_feats & NFP_FL_FEATS_VLAN_QINQ);
rules[CT_TYPE_PRE_CT] = m_entry->tc_m_parent->pre_ct_parent->rule;
rules[CT_TYPE_NFT] = m_entry->nft_parent->rule;
rules[CT_TYPE_POST_CT] = m_entry->tc_m_parent->post_ct_parent->rule;
memset(&key_layer, 0, sizeof(struct nfp_fl_key_ls));
memset(&key_map, 0, sizeof(key_map));
/* Calculate the resultant key layer and size for offload */
for (i = 0; i < _CT_TYPE_MAX; i++) {
err = nfp_flower_calculate_key_layers(priv->app,
m_entry->netdev,
&tmp_layer, rules[i],
&tun_type, NULL);
if (err)
return err;
key_layer.key_layer |= tmp_layer.key_layer;
key_layer.key_layer_two |= tmp_layer.key_layer_two;
}
key_layer.key_size = nfp_fl_calc_key_layers_sz(key_layer, key_map);
flow_pay = nfp_flower_allocate_new(&key_layer);
if (!flow_pay)
return -ENOMEM;
memset(flow_pay->unmasked_data, 0, key_layer.key_size);
memset(flow_pay->mask_data, 0, key_layer.key_size);
kdata = flow_pay->unmasked_data;
mdata = flow_pay->mask_data;
offset = key_map[FLOW_PAY_META_TCI];
key = kdata + offset;
msk = mdata + offset;
nfp_flower_compile_meta((struct nfp_flower_meta_tci *)key,
(struct nfp_flower_meta_tci *)msk,
key_layer.key_layer);
if (NFP_FLOWER_LAYER_EXT_META & key_layer.key_layer) {
offset = key_map[FLOW_PAY_EXT_META];
key = kdata + offset;
msk = mdata + offset;
nfp_flower_compile_ext_meta((struct nfp_flower_ext_meta *)key,
key_layer.key_layer_two);
nfp_flower_compile_ext_meta((struct nfp_flower_ext_meta *)msk,
key_layer.key_layer_two);
}
/* Using in_port from the -trk rule. The tc merge checks should already
* be checking that the ingress netdevs are the same
*/
port_id = nfp_flower_get_port_id_from_netdev(priv->app, netdev);
offset = key_map[FLOW_PAY_INPORT];
key = kdata + offset;
msk = mdata + offset;
err = nfp_flower_compile_port((struct nfp_flower_in_port *)key,
port_id, false, tun_type, NULL);
if (err)
goto ct_offload_err;
err = nfp_flower_compile_port((struct nfp_flower_in_port *)msk,
port_id, true, tun_type, NULL);
if (err)
goto ct_offload_err;
/* This following part works on the assumption that previous checks has
* already filtered out flows that has different values for the different
* layers. Here we iterate through all three rules and merge their respective
* masked value(cared bits), basic method is:
* final_key = (r1_key & r1_mask) | (r2_key & r2_mask) | (r3_key & r3_mask)
* final_mask = r1_mask | r2_mask | r3_mask
* If none of the rules contains a match that is also fine, that simply means
* that the layer is not present.
*/
if (!qinq_sup) {
for (i = 0; i < _CT_TYPE_MAX; i++) {
offset = key_map[FLOW_PAY_META_TCI];
key = kdata + offset;
msk = mdata + offset;
nfp_flower_compile_tci((struct nfp_flower_meta_tci *)key,
(struct nfp_flower_meta_tci *)msk,
rules[i]);
}
}
if (NFP_FLOWER_LAYER_MAC & key_layer.key_layer) {
offset = key_map[FLOW_PAY_MAC_MPLS];
key = kdata + offset;
msk = mdata + offset;
for (i = 0; i < _CT_TYPE_MAX; i++) {
nfp_flower_compile_mac((struct nfp_flower_mac_mpls *)key,
(struct nfp_flower_mac_mpls *)msk,
rules[i]);
err = nfp_flower_compile_mpls((struct nfp_flower_mac_mpls *)key,
(struct nfp_flower_mac_mpls *)msk,
rules[i], NULL);
if (err)
goto ct_offload_err;
}
}
if (NFP_FLOWER_LAYER_IPV4 & key_layer.key_layer) {
offset = key_map[FLOW_PAY_IPV4];
key = kdata + offset;
msk = mdata + offset;
for (i = 0; i < _CT_TYPE_MAX; i++) {
nfp_flower_compile_ipv4((struct nfp_flower_ipv4 *)key,
(struct nfp_flower_ipv4 *)msk,
rules[i]);
}
}
if (NFP_FLOWER_LAYER_IPV6 & key_layer.key_layer) {
offset = key_map[FLOW_PAY_IPV6];
key = kdata + offset;
msk = mdata + offset;
for (i = 0; i < _CT_TYPE_MAX; i++) {
nfp_flower_compile_ipv6((struct nfp_flower_ipv6 *)key,
(struct nfp_flower_ipv6 *)msk,
rules[i]);
}
}
if (NFP_FLOWER_LAYER_TP & key_layer.key_layer) {
offset = key_map[FLOW_PAY_L4];
key = kdata + offset;
msk = mdata + offset;
for (i = 0; i < _CT_TYPE_MAX; i++) {
nfp_flower_compile_tport((struct nfp_flower_tp_ports *)key,
(struct nfp_flower_tp_ports *)msk,
rules[i]);
}
}
if (NFP_FLOWER_LAYER2_QINQ & key_layer.key_layer_two) {
offset = key_map[FLOW_PAY_QINQ];
key = kdata + offset;
msk = mdata + offset;
for (i = 0; i < _CT_TYPE_MAX; i++) {
nfp_flower_compile_vlan((struct nfp_flower_vlan *)key,
(struct nfp_flower_vlan *)msk,
rules[i]);
}
}
if (key_layer.key_layer_two & NFP_FLOWER_LAYER2_GRE) {
offset = key_map[FLOW_PAY_GRE];
key = kdata + offset;
msk = mdata + offset;
if (key_layer.key_layer_two & NFP_FLOWER_LAYER2_TUN_IPV6) {
struct nfp_flower_ipv6_gre_tun *gre_match;
struct nfp_ipv6_addr_entry *entry;
struct in6_addr *dst;
for (i = 0; i < _CT_TYPE_MAX; i++) {
nfp_flower_compile_ipv6_gre_tun((void *)key,
(void *)msk, rules[i]);
}
gre_match = (struct nfp_flower_ipv6_gre_tun *)key;
dst = &gre_match->ipv6.dst;
entry = nfp_tunnel_add_ipv6_off(priv->app, dst);
if (!entry) {
err = -ENOMEM;
goto ct_offload_err;
}
flow_pay->nfp_tun_ipv6 = entry;
} else {
__be32 dst;
for (i = 0; i < _CT_TYPE_MAX; i++) {
nfp_flower_compile_ipv4_gre_tun((void *)key,
(void *)msk, rules[i]);
}
dst = ((struct nfp_flower_ipv4_gre_tun *)key)->ipv4.dst;
/* Store the tunnel destination in the rule data.
* This must be present and be an exact match.
*/
flow_pay->nfp_tun_ipv4_addr = dst;
nfp_tunnel_add_ipv4_off(priv->app, dst);
}
}
if (key_layer.key_layer & NFP_FLOWER_LAYER_VXLAN ||
key_layer.key_layer_two & NFP_FLOWER_LAYER2_GENEVE) {
offset = key_map[FLOW_PAY_UDP_TUN];
key = kdata + offset;
msk = mdata + offset;
if (key_layer.key_layer_two & NFP_FLOWER_LAYER2_TUN_IPV6) {
struct nfp_flower_ipv6_udp_tun *udp_match;
struct nfp_ipv6_addr_entry *entry;
struct in6_addr *dst;
for (i = 0; i < _CT_TYPE_MAX; i++) {
nfp_flower_compile_ipv6_udp_tun((void *)key,
(void *)msk, rules[i]);
}
udp_match = (struct nfp_flower_ipv6_udp_tun *)key;
dst = &udp_match->ipv6.dst;
entry = nfp_tunnel_add_ipv6_off(priv->app, dst);
if (!entry) {
err = -ENOMEM;
goto ct_offload_err;
}
flow_pay->nfp_tun_ipv6 = entry;
} else {
__be32 dst;
for (i = 0; i < _CT_TYPE_MAX; i++) {
nfp_flower_compile_ipv4_udp_tun((void *)key,
(void *)msk, rules[i]);
}
dst = ((struct nfp_flower_ipv4_udp_tun *)key)->ipv4.dst;
/* Store the tunnel destination in the rule data.
* This must be present and be an exact match.
*/
flow_pay->nfp_tun_ipv4_addr = dst;
nfp_tunnel_add_ipv4_off(priv->app, dst);
}
if (key_layer.key_layer_two & NFP_FLOWER_LAYER2_GENEVE_OP) {
offset = key_map[FLOW_PAY_GENEVE_OPT];
key = kdata + offset;
msk = mdata + offset;
for (i = 0; i < _CT_TYPE_MAX; i++)
nfp_flower_compile_geneve_opt(key, msk, rules[i]);
}
}
/* Merge actions into flow_pay */
err = nfp_fl_merge_actions_offload(rules, priv, netdev, flow_pay);
if (err)
goto ct_offload_err;
/* Use the pointer address as the cookie, but set the last bit to 1.
* This is to avoid the 'is_merge_flow' check from detecting this as
* an already merged flow. This works since address alignment means
* that the last bit for pointer addresses will be 0.
*/
flow_pay->tc_flower_cookie = ((unsigned long)flow_pay) | 0x1;
err = nfp_compile_flow_metadata(priv->app, flow_pay->tc_flower_cookie,
flow_pay, netdev, NULL);
if (err)
goto ct_offload_err;
if (nfp_netdev_is_nfp_repr(netdev))
port = nfp_port_from_netdev(netdev);
err = rhashtable_insert_fast(&priv->flow_table, &flow_pay->fl_node,
nfp_flower_table_params);
if (err)
goto ct_release_offload_meta_err;
err = nfp_flower_xmit_flow(priv->app, flow_pay,
NFP_FLOWER_CMSG_TYPE_FLOW_ADD);
if (err)
goto ct_remove_rhash_err;
m_entry->tc_flower_cookie = flow_pay->tc_flower_cookie;
m_entry->flow_pay = flow_pay;
if (port)
port->tc_offload_cnt++;
return err;
ct_remove_rhash_err:
WARN_ON_ONCE(rhashtable_remove_fast(&priv->flow_table,
&flow_pay->fl_node,
nfp_flower_table_params));
ct_release_offload_meta_err:
nfp_modify_flow_metadata(priv->app, flow_pay);
ct_offload_err:
if (flow_pay->nfp_tun_ipv4_addr)
nfp_tunnel_del_ipv4_off(priv->app, flow_pay->nfp_tun_ipv4_addr);
if (flow_pay->nfp_tun_ipv6)
nfp_tunnel_put_ipv6_off(priv->app, flow_pay->nfp_tun_ipv6);
kfree(flow_pay->action_data);
kfree(flow_pay->mask_data);
kfree(flow_pay->unmasked_data);
kfree(flow_pay);
return err;
}
static int nfp_fl_ct_del_offload(struct nfp_app *app, unsigned long cookie,
struct net_device *netdev)
{
struct nfp_flower_priv *priv = app->priv;
struct nfp_fl_payload *flow_pay;
struct nfp_port *port = NULL;
int err = 0;
if (nfp_netdev_is_nfp_repr(netdev))
port = nfp_port_from_netdev(netdev);
flow_pay = nfp_flower_search_fl_table(app, cookie, netdev);
if (!flow_pay)
return -ENOENT;
err = nfp_modify_flow_metadata(app, flow_pay);
if (err)
goto err_free_merge_flow;
if (flow_pay->nfp_tun_ipv4_addr)
nfp_tunnel_del_ipv4_off(app, flow_pay->nfp_tun_ipv4_addr);
if (flow_pay->nfp_tun_ipv6)
nfp_tunnel_put_ipv6_off(app, flow_pay->nfp_tun_ipv6);
if (!flow_pay->in_hw) {
err = 0;
goto err_free_merge_flow;
}
err = nfp_flower_xmit_flow(app, flow_pay,
NFP_FLOWER_CMSG_TYPE_FLOW_DEL);
err_free_merge_flow:
nfp_flower_del_linked_merge_flows(app, flow_pay);
if (port)
port->tc_offload_cnt--;
kfree(flow_pay->action_data);
kfree(flow_pay->mask_data);
kfree(flow_pay->unmasked_data);
WARN_ON_ONCE(rhashtable_remove_fast(&priv->flow_table,
&flow_pay->fl_node,
nfp_flower_table_params));
kfree_rcu(flow_pay, rcu);
return err;
}
static int nfp_ct_do_nft_merge(struct nfp_fl_ct_zone_entry *zt,
struct nfp_fl_ct_flow_entry *nft_entry,
struct nfp_fl_ct_tc_merge *tc_m_entry)
{
struct nfp_fl_ct_flow_entry *post_ct_entry, *pre_ct_entry;
struct nfp_fl_nft_tc_merge *nft_m_entry;
unsigned long new_cookie[3];
int err;
pre_ct_entry = tc_m_entry->pre_ct_parent;
post_ct_entry = tc_m_entry->post_ct_parent;
err = nfp_ct_merge_act_check(pre_ct_entry, post_ct_entry, nft_entry);
if (err)
return err;
/* Check that the two tc flows are also compatible with
* the nft entry. No need to check the pre_ct and post_ct
* entries as that was already done during pre_merge.
* The nft entry does not have a chain populated, so
* skip this check.
*/
err = nfp_ct_merge_check(pre_ct_entry, nft_entry);
if (err)
return err;
err = nfp_ct_merge_check(nft_entry, post_ct_entry);
if (err)
return err;
err = nfp_ct_check_meta(post_ct_entry, nft_entry);
if (err)
return err;
/* Combine tc_merge and nft cookies for this cookie. */
new_cookie[0] = tc_m_entry->cookie[0];
new_cookie[1] = tc_m_entry->cookie[1];
new_cookie[2] = nft_entry->cookie;
nft_m_entry = get_hashentry(&zt->nft_merge_tb,
&new_cookie,
nfp_nft_ct_merge_params,
sizeof(*nft_m_entry));
if (IS_ERR(nft_m_entry))
return PTR_ERR(nft_m_entry);
/* nft_m_entry already present, not merging again */
if (!memcmp(&new_cookie, nft_m_entry->cookie, sizeof(new_cookie)))
return 0;
memcpy(&nft_m_entry->cookie, &new_cookie, sizeof(new_cookie));
nft_m_entry->zt = zt;
nft_m_entry->tc_m_parent = tc_m_entry;
nft_m_entry->nft_parent = nft_entry;
nft_m_entry->tc_flower_cookie = 0;
/* Copy the netdev from the pre_ct entry. When the tc_m_entry was created
* it only combined them if the netdevs were the same, so can use any of them.
*/
nft_m_entry->netdev = pre_ct_entry->netdev;
/* Add this entry to the tc_m_list and nft_flow lists */
list_add(&nft_m_entry->tc_merge_list, &tc_m_entry->children);
list_add(&nft_m_entry->nft_flow_list, &nft_entry->children);
/* Generate offload structure and send to nfp */
err = nfp_fl_ct_add_offload(nft_m_entry);
if (err)
goto err_nft_ct_offload;
err = rhashtable_insert_fast(&zt->nft_merge_tb, &nft_m_entry->hash_node,
nfp_nft_ct_merge_params);
if (err)
goto err_nft_ct_merge_insert;
zt->nft_merge_count++;
return err;
err_nft_ct_merge_insert:
nfp_fl_ct_del_offload(zt->priv->app, nft_m_entry->tc_flower_cookie,
nft_m_entry->netdev);
err_nft_ct_offload:
list_del(&nft_m_entry->tc_merge_list);
list_del(&nft_m_entry->nft_flow_list);
kfree(nft_m_entry);
return err;
}
static int nfp_ct_do_tc_merge(struct nfp_fl_ct_zone_entry *zt,
struct nfp_fl_ct_flow_entry *ct_entry1,
struct nfp_fl_ct_flow_entry *ct_entry2)
{
struct nfp_fl_ct_flow_entry *post_ct_entry, *pre_ct_entry;
struct nfp_fl_ct_flow_entry *nft_entry, *nft_tmp;
struct nfp_fl_ct_tc_merge *m_entry;
unsigned long new_cookie[2];
int err;
if (ct_entry1->type == CT_TYPE_PRE_CT) {
pre_ct_entry = ct_entry1;
post_ct_entry = ct_entry2;
} else {
post_ct_entry = ct_entry1;
pre_ct_entry = ct_entry2;
}
/* Checks that the chain_index of the filter matches the
* chain_index of the GOTO action.
*/
if (post_ct_entry->chain_index != pre_ct_entry->chain_index)
return -EINVAL;
err = nfp_ct_merge_check(pre_ct_entry, post_ct_entry);
if (err)
return err;
new_cookie[0] = pre_ct_entry->cookie;
new_cookie[1] = post_ct_entry->cookie;
m_entry = get_hashentry(&zt->tc_merge_tb, &new_cookie,
nfp_tc_ct_merge_params, sizeof(*m_entry));
if (IS_ERR(m_entry))
return PTR_ERR(m_entry);
/* m_entry already present, not merging again */
if (!memcmp(&new_cookie, m_entry->cookie, sizeof(new_cookie)))
return 0;
memcpy(&m_entry->cookie, &new_cookie, sizeof(new_cookie));
m_entry->zt = zt;
m_entry->post_ct_parent = post_ct_entry;
m_entry->pre_ct_parent = pre_ct_entry;
/* Add this entry to the pre_ct and post_ct lists */
list_add(&m_entry->post_ct_list, &post_ct_entry->children);
list_add(&m_entry->pre_ct_list, &pre_ct_entry->children);
INIT_LIST_HEAD(&m_entry->children);
err = rhashtable_insert_fast(&zt->tc_merge_tb, &m_entry->hash_node,
nfp_tc_ct_merge_params);
if (err)
goto err_ct_tc_merge_insert;
zt->tc_merge_count++;
/* Merge with existing nft flows */
list_for_each_entry_safe(nft_entry, nft_tmp, &zt->nft_flows_list,
list_node) {
nfp_ct_do_nft_merge(zt, nft_entry, m_entry);
}
return 0;
err_ct_tc_merge_insert:
list_del(&m_entry->post_ct_list);
list_del(&m_entry->pre_ct_list);
kfree(m_entry);
return err;
}
static struct
nfp_fl_ct_zone_entry *get_nfp_zone_entry(struct nfp_flower_priv *priv,
u16 zone, bool wildcarded)
{
struct nfp_fl_ct_zone_entry *zt;
int err;
if (wildcarded && priv->ct_zone_wc)
return priv->ct_zone_wc;
if (!wildcarded) {
zt = get_hashentry(&priv->ct_zone_table, &zone,
nfp_zone_table_params, sizeof(*zt));
/* If priv is set this is an existing entry, just return it */
if (IS_ERR(zt) || zt->priv)
return zt;
} else {
zt = kzalloc(sizeof(*zt), GFP_KERNEL);
if (!zt)
return ERR_PTR(-ENOMEM);
}
zt->zone = zone;
zt->priv = priv;
zt->nft = NULL;
/* init the various hash tables and lists */
INIT_LIST_HEAD(&zt->pre_ct_list);
INIT_LIST_HEAD(&zt->post_ct_list);
INIT_LIST_HEAD(&zt->nft_flows_list);
err = rhashtable_init(&zt->tc_merge_tb, &nfp_tc_ct_merge_params);
if (err)
goto err_tc_merge_tb_init;
err = rhashtable_init(&zt->nft_merge_tb, &nfp_nft_ct_merge_params);
if (err)
goto err_nft_merge_tb_init;
if (wildcarded) {
priv->ct_zone_wc = zt;
} else {
err = rhashtable_insert_fast(&priv->ct_zone_table,
&zt->hash_node,
nfp_zone_table_params);
if (err)
goto err_zone_insert;
}
return zt;
err_zone_insert:
rhashtable_destroy(&zt->nft_merge_tb);
err_nft_merge_tb_init:
rhashtable_destroy(&zt->tc_merge_tb);
err_tc_merge_tb_init:
kfree(zt);
return ERR_PTR(err);
}
static struct net_device *get_netdev_from_rule(struct flow_rule *rule)
{
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_META)) {
struct flow_match_meta match;
flow_rule_match_meta(rule, &match);
if (match.key->ingress_ifindex & match.mask->ingress_ifindex)
return __dev_get_by_index(&init_net,
match.key->ingress_ifindex);
}
return NULL;
}
static void nfp_nft_ct_translate_mangle_action(struct flow_action_entry *mangle_action)
{
if (mangle_action->id != FLOW_ACTION_MANGLE)
return;
switch (mangle_action->mangle.htype) {
case FLOW_ACT_MANGLE_HDR_TYPE_IP4:
case FLOW_ACT_MANGLE_HDR_TYPE_IP6:
mangle_action->mangle.val = (__force u32)cpu_to_be32(mangle_action->mangle.val);
mangle_action->mangle.mask = (__force u32)cpu_to_be32(mangle_action->mangle.mask);
return;
case FLOW_ACT_MANGLE_HDR_TYPE_TCP:
case FLOW_ACT_MANGLE_HDR_TYPE_UDP:
mangle_action->mangle.val = (__force u16)cpu_to_be16(mangle_action->mangle.val);
mangle_action->mangle.mask = (__force u16)cpu_to_be16(mangle_action->mangle.mask);
return;
default:
return;
}
}
static int nfp_nft_ct_set_flow_flag(struct flow_action_entry *act,
struct nfp_fl_ct_flow_entry *entry)
{
switch (act->id) {
case FLOW_ACTION_CT:
if (act->ct.action == TCA_CT_ACT_NAT)
entry->flags |= NFP_FL_ACTION_DO_NAT;
break;
case FLOW_ACTION_MANGLE:
entry->flags |= NFP_FL_ACTION_DO_MANGLE;
break;
default:
break;
}
return 0;
}
static struct
nfp_fl_ct_flow_entry *nfp_fl_ct_add_flow(struct nfp_fl_ct_zone_entry *zt,
struct net_device *netdev,
struct flow_cls_offload *flow,
bool is_nft, struct netlink_ext_ack *extack)
{
struct nf_flow_match *nft_match = NULL;
struct nfp_fl_ct_flow_entry *entry;
struct nfp_fl_ct_map_entry *map;
struct flow_action_entry *act;
int err, i;
entry = kzalloc(sizeof(*entry), GFP_KERNEL);
if (!entry)
return ERR_PTR(-ENOMEM);
entry->rule = flow_rule_alloc(flow->rule->action.num_entries);
if (!entry->rule) {
err = -ENOMEM;
goto err_pre_ct_rule;
}
/* nft flows gets destroyed after callback return, so need
* to do a full copy instead of just a reference.
*/
if (is_nft) {
nft_match = kzalloc(sizeof(*nft_match), GFP_KERNEL);
if (!nft_match) {
err = -ENOMEM;
goto err_pre_ct_act;
}
memcpy(&nft_match->dissector, flow->rule->match.dissector,
sizeof(nft_match->dissector));
memcpy(&nft_match->mask, flow->rule->match.mask,
sizeof(nft_match->mask));
memcpy(&nft_match->key, flow->rule->match.key,
sizeof(nft_match->key));
entry->rule->match.dissector = &nft_match->dissector;
entry->rule->match.mask = &nft_match->mask;
entry->rule->match.key = &nft_match->key;
if (!netdev)
netdev = get_netdev_from_rule(entry->rule);
} else {
entry->rule->match.dissector = flow->rule->match.dissector;
entry->rule->match.mask = flow->rule->match.mask;
entry->rule->match.key = flow->rule->match.key;
}
entry->zt = zt;
entry->netdev = netdev;
entry->cookie = flow->cookie;
entry->chain_index = flow->common.chain_index;
entry->tun_offset = NFP_FL_CT_NO_TUN;
/* Copy over action data. Unfortunately we do not get a handle to the
* original tcf_action data, and the flow objects gets destroyed, so we
* cannot just save a pointer to this either, so need to copy over the
* data unfortunately.
*/
entry->rule->action.num_entries = flow->rule->action.num_entries;
flow_action_for_each(i, act, &flow->rule->action) {
struct flow_action_entry *new_act;
new_act = &entry->rule->action.entries[i];
memcpy(new_act, act, sizeof(struct flow_action_entry));
/* nft entry mangle field is host byte order, need translate to
* network byte order.
*/
if (is_nft)
nfp_nft_ct_translate_mangle_action(new_act);
nfp_nft_ct_set_flow_flag(new_act, entry);
/* Entunnel is a special case, need to allocate and copy
* tunnel info.
*/
if (act->id == FLOW_ACTION_TUNNEL_ENCAP) {
struct ip_tunnel_info *tun = act->tunnel;
size_t tun_size = sizeof(*tun) + tun->options_len;
new_act->tunnel = kmemdup(tun, tun_size, GFP_ATOMIC);
if (!new_act->tunnel) {
err = -ENOMEM;
goto err_pre_ct_tun_cp;
}
entry->tun_offset = i;
}
}
INIT_LIST_HEAD(&entry->children);
/* Now add a ct map entry to flower-priv */
map = get_hashentry(&zt->priv->ct_map_table, &flow->cookie,
nfp_ct_map_params, sizeof(*map));
if (IS_ERR(map)) {
NL_SET_ERR_MSG_MOD(extack,
"offload error: ct map entry creation failed");
err = -ENOMEM;
goto err_ct_flow_insert;
}
map->cookie = flow->cookie;
map->ct_entry = entry;
err = rhashtable_insert_fast(&zt->priv->ct_map_table,
&map->hash_node,
nfp_ct_map_params);
if (err) {
NL_SET_ERR_MSG_MOD(extack,
"offload error: ct map entry table add failed");
goto err_map_insert;
}
return entry;
err_map_insert:
kfree(map);
err_ct_flow_insert:
if (entry->tun_offset != NFP_FL_CT_NO_TUN)
kfree(entry->rule->action.entries[entry->tun_offset].tunnel);
err_pre_ct_tun_cp:
kfree(nft_match);
err_pre_ct_act:
kfree(entry->rule);
err_pre_ct_rule:
kfree(entry);
return ERR_PTR(err);
}
static void cleanup_nft_merge_entry(struct nfp_fl_nft_tc_merge *m_entry)
{
struct nfp_fl_ct_zone_entry *zt;
int err;
zt = m_entry->zt;
/* Flow is in HW, need to delete */
if (m_entry->tc_flower_cookie) {
err = nfp_fl_ct_del_offload(zt->priv->app, m_entry->tc_flower_cookie,
m_entry->netdev);
if (err)
return;
}
WARN_ON_ONCE(rhashtable_remove_fast(&zt->nft_merge_tb,
&m_entry->hash_node,
nfp_nft_ct_merge_params));
zt->nft_merge_count--;
list_del(&m_entry->tc_merge_list);
list_del(&m_entry->nft_flow_list);
kfree(m_entry);
}
static void nfp_free_nft_merge_children(void *entry, bool is_nft_flow)
{
struct nfp_fl_nft_tc_merge *m_entry, *tmp;
/* These post entries are parts of two lists, one is a list of nft_entries
* and the other is of from a list of tc_merge structures. Iterate
* through the relevant list and cleanup the entries.
*/
if (is_nft_flow) {
/* Need to iterate through list of nft_flow entries */
struct nfp_fl_ct_flow_entry *ct_entry = entry;
list_for_each_entry_safe(m_entry, tmp, &ct_entry->children,
nft_flow_list) {
cleanup_nft_merge_entry(m_entry);
}
} else {
/* Need to iterate through list of tc_merged_flow entries */
struct nfp_fl_ct_tc_merge *ct_entry = entry;
list_for_each_entry_safe(m_entry, tmp, &ct_entry->children,
tc_merge_list) {
cleanup_nft_merge_entry(m_entry);
}
}
}
static void nfp_del_tc_merge_entry(struct nfp_fl_ct_tc_merge *m_ent)
{
struct nfp_fl_ct_zone_entry *zt;
int err;
zt = m_ent->zt;
err = rhashtable_remove_fast(&zt->tc_merge_tb,
&m_ent->hash_node,
nfp_tc_ct_merge_params);
if (err)
pr_warn("WARNING: could not remove merge_entry from hashtable\n");
zt->tc_merge_count--;
list_del(&m_ent->post_ct_list);
list_del(&m_ent->pre_ct_list);
if (!list_empty(&m_ent->children))
nfp_free_nft_merge_children(m_ent, false);
kfree(m_ent);
}
static void nfp_free_tc_merge_children(struct nfp_fl_ct_flow_entry *entry)
{
struct nfp_fl_ct_tc_merge *m_ent, *tmp;
switch (entry->type) {
case CT_TYPE_PRE_CT:
list_for_each_entry_safe(m_ent, tmp, &entry->children, pre_ct_list) {
nfp_del_tc_merge_entry(m_ent);
}
break;
case CT_TYPE_POST_CT:
list_for_each_entry_safe(m_ent, tmp, &entry->children, post_ct_list) {
nfp_del_tc_merge_entry(m_ent);
}
break;
default:
break;
}
}
void nfp_fl_ct_clean_flow_entry(struct nfp_fl_ct_flow_entry *entry)
{
list_del(&entry->list_node);
if (!list_empty(&entry->children)) {
if (entry->type == CT_TYPE_NFT)
nfp_free_nft_merge_children(entry, true);
else
nfp_free_tc_merge_children(entry);
}
if (entry->tun_offset != NFP_FL_CT_NO_TUN)
kfree(entry->rule->action.entries[entry->tun_offset].tunnel);
if (entry->type == CT_TYPE_NFT) {
struct nf_flow_match *nft_match;
nft_match = container_of(entry->rule->match.dissector,
struct nf_flow_match, dissector);
kfree(nft_match);
}
kfree(entry->rule);
kfree(entry);
}
static struct flow_action_entry *get_flow_act(struct flow_rule *rule,
enum flow_action_id act_id)
{
struct flow_action_entry *act = NULL;
int i;
flow_action_for_each(i, act, &rule->action) {
if (act->id == act_id)
return act;
}
return NULL;
}
static void
nfp_ct_merge_tc_entries(struct nfp_fl_ct_flow_entry *ct_entry1,
struct nfp_fl_ct_zone_entry *zt_src,
struct nfp_fl_ct_zone_entry *zt_dst)
{
struct nfp_fl_ct_flow_entry *ct_entry2, *ct_tmp;
struct list_head *ct_list;
if (ct_entry1->type == CT_TYPE_PRE_CT)
ct_list = &zt_src->post_ct_list;
else if (ct_entry1->type == CT_TYPE_POST_CT)
ct_list = &zt_src->pre_ct_list;
else
return;
list_for_each_entry_safe(ct_entry2, ct_tmp, ct_list,
list_node) {
nfp_ct_do_tc_merge(zt_dst, ct_entry2, ct_entry1);
}
}
static void
nfp_ct_merge_nft_with_tc(struct nfp_fl_ct_flow_entry *nft_entry,
struct nfp_fl_ct_zone_entry *zt)
{
struct nfp_fl_ct_tc_merge *tc_merge_entry;
struct rhashtable_iter iter;
rhashtable_walk_enter(&zt->tc_merge_tb, &iter);
rhashtable_walk_start(&iter);
while ((tc_merge_entry = rhashtable_walk_next(&iter)) != NULL) {
if (IS_ERR(tc_merge_entry))
continue;
rhashtable_walk_stop(&iter);
nfp_ct_do_nft_merge(zt, nft_entry, tc_merge_entry);
rhashtable_walk_start(&iter);
}
rhashtable_walk_stop(&iter);
rhashtable_walk_exit(&iter);
}
int nfp_fl_ct_handle_pre_ct(struct nfp_flower_priv *priv,
struct net_device *netdev,
struct flow_cls_offload *flow,
struct netlink_ext_ack *extack)
{
struct flow_action_entry *ct_act, *ct_goto;
struct nfp_fl_ct_flow_entry *ct_entry;
struct nfp_fl_ct_zone_entry *zt;
int err;
ct_act = get_flow_act(flow->rule, FLOW_ACTION_CT);
if (!ct_act) {
NL_SET_ERR_MSG_MOD(extack,
"unsupported offload: Conntrack action empty in conntrack offload");
return -EOPNOTSUPP;
}
ct_goto = get_flow_act(flow->rule, FLOW_ACTION_GOTO);
if (!ct_goto) {
NL_SET_ERR_MSG_MOD(extack,
"unsupported offload: Conntrack requires ACTION_GOTO");
return -EOPNOTSUPP;
}
zt = get_nfp_zone_entry(priv, ct_act->ct.zone, false);
if (IS_ERR(zt)) {
NL_SET_ERR_MSG_MOD(extack,
"offload error: Could not create zone table entry");
return PTR_ERR(zt);
}
if (!zt->nft) {
zt->nft = ct_act->ct.flow_table;
err = nf_flow_table_offload_add_cb(zt->nft, nfp_fl_ct_handle_nft_flow, zt);
if (err) {
NL_SET_ERR_MSG_MOD(extack,
"offload error: Could not register nft_callback");
return err;
}
}
/* Add entry to pre_ct_list */
ct_entry = nfp_fl_ct_add_flow(zt, netdev, flow, false, extack);
if (IS_ERR(ct_entry))
return PTR_ERR(ct_entry);
ct_entry->type = CT_TYPE_PRE_CT;
ct_entry->chain_index = ct_goto->chain_index;
list_add(&ct_entry->list_node, &zt->pre_ct_list);
zt->pre_ct_count++;
nfp_ct_merge_tc_entries(ct_entry, zt, zt);
/* Need to check and merge with tables in the wc_zone as well */
if (priv->ct_zone_wc)
nfp_ct_merge_tc_entries(ct_entry, priv->ct_zone_wc, zt);
return 0;
}
int nfp_fl_ct_handle_post_ct(struct nfp_flower_priv *priv,
struct net_device *netdev,
struct flow_cls_offload *flow,
struct netlink_ext_ack *extack)
{
struct flow_rule *rule = flow_cls_offload_flow_rule(flow);
struct nfp_fl_ct_flow_entry *ct_entry;
struct nfp_fl_ct_zone_entry *zt;
bool wildcarded = false;
struct flow_match_ct ct;
flow_rule_match_ct(rule, &ct);
if (!ct.mask->ct_zone) {
wildcarded = true;
} else if (ct.mask->ct_zone != U16_MAX) {
NL_SET_ERR_MSG_MOD(extack,
"unsupported offload: partially wildcarded ct_zone is not supported");
return -EOPNOTSUPP;
}
zt = get_nfp_zone_entry(priv, ct.key->ct_zone, wildcarded);
if (IS_ERR(zt)) {
NL_SET_ERR_MSG_MOD(extack,
"offload error: Could not create zone table entry");
return PTR_ERR(zt);
}
/* Add entry to post_ct_list */
ct_entry = nfp_fl_ct_add_flow(zt, netdev, flow, false, extack);
if (IS_ERR(ct_entry))
return PTR_ERR(ct_entry);
ct_entry->type = CT_TYPE_POST_CT;
ct_entry->chain_index = flow->common.chain_index;
list_add(&ct_entry->list_node, &zt->post_ct_list);
zt->post_ct_count++;
if (wildcarded) {
/* Iterate through all zone tables if not empty, look for merges with
* pre_ct entries and merge them.
*/
struct rhashtable_iter iter;
struct nfp_fl_ct_zone_entry *zone_table;
rhashtable_walk_enter(&priv->ct_zone_table, &iter);
rhashtable_walk_start(&iter);
while ((zone_table = rhashtable_walk_next(&iter)) != NULL) {
if (IS_ERR(zone_table))
continue;
rhashtable_walk_stop(&iter);
nfp_ct_merge_tc_entries(ct_entry, zone_table, zone_table);
rhashtable_walk_start(&iter);
}
rhashtable_walk_stop(&iter);
rhashtable_walk_exit(&iter);
} else {
nfp_ct_merge_tc_entries(ct_entry, zt, zt);
}
return 0;
}
static void
nfp_fl_ct_sub_stats(struct nfp_fl_nft_tc_merge *nft_merge,
enum ct_entry_type type, u64 *m_pkts,
u64 *m_bytes, u64 *m_used)
{
struct nfp_flower_priv *priv = nft_merge->zt->priv;
struct nfp_fl_payload *nfp_flow;
u32 ctx_id;
nfp_flow = nft_merge->flow_pay;
if (!nfp_flow)
return;
ctx_id = be32_to_cpu(nfp_flow->meta.host_ctx_id);
*m_pkts += priv->stats[ctx_id].pkts;
*m_bytes += priv->stats[ctx_id].bytes;
*m_used = max_t(u64, *m_used, priv->stats[ctx_id].used);
/* If request is for a sub_flow which is part of a tunnel merged
* flow then update stats from tunnel merged flows first.
*/
if (!list_empty(&nfp_flow->linked_flows))
nfp_flower_update_merge_stats(priv->app, nfp_flow);
if (type != CT_TYPE_NFT) {
/* Update nft cached stats */
flow_stats_update(&nft_merge->nft_parent->stats,
priv->stats[ctx_id].bytes,
priv->stats[ctx_id].pkts,
0, priv->stats[ctx_id].used,
FLOW_ACTION_HW_STATS_DELAYED);
} else {
/* Update pre_ct cached stats */
flow_stats_update(&nft_merge->tc_m_parent->pre_ct_parent->stats,
priv->stats[ctx_id].bytes,
priv->stats[ctx_id].pkts,
0, priv->stats[ctx_id].used,
FLOW_ACTION_HW_STATS_DELAYED);
/* Update post_ct cached stats */
flow_stats_update(&nft_merge->tc_m_parent->post_ct_parent->stats,
priv->stats[ctx_id].bytes,
priv->stats[ctx_id].pkts,
0, priv->stats[ctx_id].used,
FLOW_ACTION_HW_STATS_DELAYED);
}
/* Reset stats from the nfp */
priv->stats[ctx_id].pkts = 0;
priv->stats[ctx_id].bytes = 0;
}
int nfp_fl_ct_stats(struct flow_cls_offload *flow,
struct nfp_fl_ct_map_entry *ct_map_ent)
{
struct nfp_fl_ct_flow_entry *ct_entry = ct_map_ent->ct_entry;
struct nfp_fl_nft_tc_merge *nft_merge, *nft_m_tmp;
struct nfp_fl_ct_tc_merge *tc_merge, *tc_m_tmp;
u64 pkts = 0, bytes = 0, used = 0;
u64 m_pkts, m_bytes, m_used;
spin_lock_bh(&ct_entry->zt->priv->stats_lock);
if (ct_entry->type == CT_TYPE_PRE_CT) {
/* Iterate tc_merge entries associated with this flow */
list_for_each_entry_safe(tc_merge, tc_m_tmp, &ct_entry->children,
pre_ct_list) {
m_pkts = 0;
m_bytes = 0;
m_used = 0;
/* Iterate nft_merge entries associated with this tc_merge flow */
list_for_each_entry_safe(nft_merge, nft_m_tmp, &tc_merge->children,
tc_merge_list) {
nfp_fl_ct_sub_stats(nft_merge, CT_TYPE_PRE_CT,
&m_pkts, &m_bytes, &m_used);
}
pkts += m_pkts;
bytes += m_bytes;
used = max_t(u64, used, m_used);
/* Update post_ct partner */
flow_stats_update(&tc_merge->post_ct_parent->stats,
m_bytes, m_pkts, 0, m_used,
FLOW_ACTION_HW_STATS_DELAYED);
}
} else if (ct_entry->type == CT_TYPE_POST_CT) {
/* Iterate tc_merge entries associated with this flow */
list_for_each_entry_safe(tc_merge, tc_m_tmp, &ct_entry->children,
post_ct_list) {
m_pkts = 0;
m_bytes = 0;
m_used = 0;
/* Iterate nft_merge entries associated with this tc_merge flow */
list_for_each_entry_safe(nft_merge, nft_m_tmp, &tc_merge->children,
tc_merge_list) {
nfp_fl_ct_sub_stats(nft_merge, CT_TYPE_POST_CT,
&m_pkts, &m_bytes, &m_used);
}
pkts += m_pkts;
bytes += m_bytes;
used = max_t(u64, used, m_used);
/* Update pre_ct partner */
flow_stats_update(&tc_merge->pre_ct_parent->stats,
m_bytes, m_pkts, 0, m_used,
FLOW_ACTION_HW_STATS_DELAYED);
}
} else {
/* Iterate nft_merge entries associated with this nft flow */
list_for_each_entry_safe(nft_merge, nft_m_tmp, &ct_entry->children,
nft_flow_list) {
nfp_fl_ct_sub_stats(nft_merge, CT_TYPE_NFT,
&pkts, &bytes, &used);
}
}
/* Add stats from this request to stats potentially cached by
* previous requests.
*/
flow_stats_update(&ct_entry->stats, bytes, pkts, 0, used,
FLOW_ACTION_HW_STATS_DELAYED);
/* Finally update the flow stats from the original stats request */
flow_stats_update(&flow->stats, ct_entry->stats.bytes,
ct_entry->stats.pkts, 0,
ct_entry->stats.lastused,
FLOW_ACTION_HW_STATS_DELAYED);
/* Stats has been synced to original flow, can now clear
* the cache.
*/
ct_entry->stats.pkts = 0;
ct_entry->stats.bytes = 0;
spin_unlock_bh(&ct_entry->zt->priv->stats_lock);
return 0;
}
static bool
nfp_fl_ct_offload_nft_supported(struct flow_cls_offload *flow)
{
struct flow_rule *flow_rule = flow->rule;
struct flow_action *flow_action =
&flow_rule->action;
struct flow_action_entry *act;
int i;
flow_action_for_each(i, act, flow_action) {
if (act->id == FLOW_ACTION_CT_METADATA) {
enum ip_conntrack_info ctinfo =
act->ct_metadata.cookie & NFCT_INFOMASK;
return ctinfo != IP_CT_NEW;
}
}
return false;
}
static int
nfp_fl_ct_offload_nft_flow(struct nfp_fl_ct_zone_entry *zt, struct flow_cls_offload *flow)
{
struct nfp_fl_ct_map_entry *ct_map_ent;
struct nfp_fl_ct_flow_entry *ct_entry;
struct netlink_ext_ack *extack = NULL;
ASSERT_RTNL();
extack = flow->common.extack;
switch (flow->command) {
case FLOW_CLS_REPLACE:
if (!nfp_fl_ct_offload_nft_supported(flow))
return -EOPNOTSUPP;
/* Netfilter can request offload multiple times for the same
* flow - protect against adding duplicates.
*/
ct_map_ent = rhashtable_lookup_fast(&zt->priv->ct_map_table, &flow->cookie,
nfp_ct_map_params);
if (!ct_map_ent) {
ct_entry = nfp_fl_ct_add_flow(zt, NULL, flow, true, extack);
if (IS_ERR(ct_entry))
return PTR_ERR(ct_entry);
ct_entry->type = CT_TYPE_NFT;
list_add(&ct_entry->list_node, &zt->nft_flows_list);
zt->nft_flows_count++;
nfp_ct_merge_nft_with_tc(ct_entry, zt);
}
return 0;
case FLOW_CLS_DESTROY:
ct_map_ent = rhashtable_lookup_fast(&zt->priv->ct_map_table, &flow->cookie,
nfp_ct_map_params);
return nfp_fl_ct_del_flow(ct_map_ent);
case FLOW_CLS_STATS:
ct_map_ent = rhashtable_lookup_fast(&zt->priv->ct_map_table, &flow->cookie,
nfp_ct_map_params);
if (ct_map_ent)
return nfp_fl_ct_stats(flow, ct_map_ent);
break;
default:
break;
}
return -EINVAL;
}
int nfp_fl_ct_handle_nft_flow(enum tc_setup_type type, void *type_data, void *cb_priv)
{
struct flow_cls_offload *flow = type_data;
struct nfp_fl_ct_zone_entry *zt = cb_priv;
int err = -EOPNOTSUPP;
switch (type) {
case TC_SETUP_CLSFLOWER:
rtnl_lock();
err = nfp_fl_ct_offload_nft_flow(zt, flow);
rtnl_unlock();
break;
default:
return -EOPNOTSUPP;
}
return err;
}
static void
nfp_fl_ct_clean_nft_entries(struct nfp_fl_ct_zone_entry *zt)
{
struct nfp_fl_ct_flow_entry *nft_entry, *ct_tmp;
struct nfp_fl_ct_map_entry *ct_map_ent;
list_for_each_entry_safe(nft_entry, ct_tmp, &zt->nft_flows_list,
list_node) {
ct_map_ent = rhashtable_lookup_fast(&zt->priv->ct_map_table,
&nft_entry->cookie,
nfp_ct_map_params);
nfp_fl_ct_del_flow(ct_map_ent);
}
}
int nfp_fl_ct_del_flow(struct nfp_fl_ct_map_entry *ct_map_ent)
{
struct nfp_fl_ct_flow_entry *ct_entry;
struct nfp_fl_ct_zone_entry *zt;
struct rhashtable *m_table;
if (!ct_map_ent)
return -ENOENT;
zt = ct_map_ent->ct_entry->zt;
ct_entry = ct_map_ent->ct_entry;
m_table = &zt->priv->ct_map_table;
switch (ct_entry->type) {
case CT_TYPE_PRE_CT:
zt->pre_ct_count--;
rhashtable_remove_fast(m_table, &ct_map_ent->hash_node,
nfp_ct_map_params);
nfp_fl_ct_clean_flow_entry(ct_entry);
kfree(ct_map_ent);
if (!zt->pre_ct_count) {
zt->nft = NULL;
nfp_fl_ct_clean_nft_entries(zt);
}
break;
case CT_TYPE_POST_CT:
zt->post_ct_count--;
rhashtable_remove_fast(m_table, &ct_map_ent->hash_node,
nfp_ct_map_params);
nfp_fl_ct_clean_flow_entry(ct_entry);
kfree(ct_map_ent);
break;
case CT_TYPE_NFT:
zt->nft_flows_count--;
rhashtable_remove_fast(m_table, &ct_map_ent->hash_node,
nfp_ct_map_params);
nfp_fl_ct_clean_flow_entry(ct_map_ent->ct_entry);
kfree(ct_map_ent);
break;
default:
break;
}
return 0;
}