393 lines
11 KiB
C
393 lines
11 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-only
|
||
|
/****************************************************************************
|
||
|
* Driver for Solarflare network controllers and boards
|
||
|
* Copyright 2005-2006 Fen Systems Ltd.
|
||
|
* Copyright 2005-2013 Solarflare Communications Inc.
|
||
|
*/
|
||
|
|
||
|
#include <linux/pci.h>
|
||
|
#include <linux/tcp.h>
|
||
|
#include <linux/ip.h>
|
||
|
#include <linux/in.h>
|
||
|
#include <linux/ipv6.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <net/ipv6.h>
|
||
|
#include <linux/if_ether.h>
|
||
|
#include <linux/highmem.h>
|
||
|
#include <linux/cache.h>
|
||
|
#include "net_driver.h"
|
||
|
#include "efx.h"
|
||
|
#include "io.h"
|
||
|
#include "nic.h"
|
||
|
#include "tx.h"
|
||
|
#include "tx_common.h"
|
||
|
#include "workarounds.h"
|
||
|
|
||
|
static inline u8 *efx_tx_get_copy_buffer(struct efx_tx_queue *tx_queue,
|
||
|
struct efx_tx_buffer *buffer)
|
||
|
{
|
||
|
unsigned int index = efx_tx_queue_get_insert_index(tx_queue);
|
||
|
struct efx_buffer *page_buf =
|
||
|
&tx_queue->cb_page[index >> (PAGE_SHIFT - EFX_TX_CB_ORDER)];
|
||
|
unsigned int offset =
|
||
|
((index << EFX_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1);
|
||
|
|
||
|
if (unlikely(!page_buf->addr) &&
|
||
|
efx_siena_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
|
||
|
GFP_ATOMIC))
|
||
|
return NULL;
|
||
|
buffer->dma_addr = page_buf->dma_addr + offset;
|
||
|
buffer->unmap_len = 0;
|
||
|
return (u8 *)page_buf->addr + offset;
|
||
|
}
|
||
|
|
||
|
static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
|
||
|
{
|
||
|
/* We need to consider all queues that the net core sees as one */
|
||
|
struct efx_nic *efx = txq1->efx;
|
||
|
struct efx_tx_queue *txq2;
|
||
|
unsigned int fill_level;
|
||
|
|
||
|
fill_level = efx_channel_tx_old_fill_level(txq1->channel);
|
||
|
if (likely(fill_level < efx->txq_stop_thresh))
|
||
|
return;
|
||
|
|
||
|
/* We used the stale old_read_count above, which gives us a
|
||
|
* pessimistic estimate of the fill level (which may even
|
||
|
* validly be >= efx->txq_entries). Now try again using
|
||
|
* read_count (more likely to be a cache miss).
|
||
|
*
|
||
|
* If we read read_count and then conditionally stop the
|
||
|
* queue, it is possible for the completion path to race with
|
||
|
* us and complete all outstanding descriptors in the middle,
|
||
|
* after which there will be no more completions to wake it.
|
||
|
* Therefore we stop the queue first, then read read_count
|
||
|
* (with a memory barrier to ensure the ordering), then
|
||
|
* restart the queue if the fill level turns out to be low
|
||
|
* enough.
|
||
|
*/
|
||
|
netif_tx_stop_queue(txq1->core_txq);
|
||
|
smp_mb();
|
||
|
efx_for_each_channel_tx_queue(txq2, txq1->channel)
|
||
|
txq2->old_read_count = READ_ONCE(txq2->read_count);
|
||
|
|
||
|
fill_level = efx_channel_tx_old_fill_level(txq1->channel);
|
||
|
EFX_WARN_ON_ONCE_PARANOID(fill_level >= efx->txq_entries);
|
||
|
if (likely(fill_level < efx->txq_stop_thresh)) {
|
||
|
smp_mb();
|
||
|
if (likely(!efx->loopback_selftest))
|
||
|
netif_tx_start_queue(txq1->core_txq);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int efx_enqueue_skb_copy(struct efx_tx_queue *tx_queue,
|
||
|
struct sk_buff *skb)
|
||
|
{
|
||
|
unsigned int copy_len = skb->len;
|
||
|
struct efx_tx_buffer *buffer;
|
||
|
u8 *copy_buffer;
|
||
|
int rc;
|
||
|
|
||
|
EFX_WARN_ON_ONCE_PARANOID(copy_len > EFX_TX_CB_SIZE);
|
||
|
|
||
|
buffer = efx_tx_queue_get_insert_buffer(tx_queue);
|
||
|
|
||
|
copy_buffer = efx_tx_get_copy_buffer(tx_queue, buffer);
|
||
|
if (unlikely(!copy_buffer))
|
||
|
return -ENOMEM;
|
||
|
|
||
|
rc = skb_copy_bits(skb, 0, copy_buffer, copy_len);
|
||
|
EFX_WARN_ON_PARANOID(rc);
|
||
|
buffer->len = copy_len;
|
||
|
|
||
|
buffer->skb = skb;
|
||
|
buffer->flags = EFX_TX_BUF_SKB;
|
||
|
|
||
|
++tx_queue->insert_count;
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/* Send any pending traffic for a channel. xmit_more is shared across all
|
||
|
* queues for a channel, so we must check all of them.
|
||
|
*/
|
||
|
static void efx_tx_send_pending(struct efx_channel *channel)
|
||
|
{
|
||
|
struct efx_tx_queue *q;
|
||
|
|
||
|
efx_for_each_channel_tx_queue(q, channel) {
|
||
|
if (q->xmit_pending)
|
||
|
efx_nic_push_buffers(q);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Add a socket buffer to a TX queue
|
||
|
*
|
||
|
* This maps all fragments of a socket buffer for DMA and adds them to
|
||
|
* the TX queue. The queue's insert pointer will be incremented by
|
||
|
* the number of fragments in the socket buffer.
|
||
|
*
|
||
|
* If any DMA mapping fails, any mapped fragments will be unmapped,
|
||
|
* the queue's insert pointer will be restored to its original value.
|
||
|
*
|
||
|
* This function is split out from efx_siena_hard_start_xmit to allow the
|
||
|
* loopback test to direct packets via specific TX queues.
|
||
|
*
|
||
|
* Returns NETDEV_TX_OK.
|
||
|
* You must hold netif_tx_lock() to call this function.
|
||
|
*/
|
||
|
netdev_tx_t __efx_siena_enqueue_skb(struct efx_tx_queue *tx_queue,
|
||
|
struct sk_buff *skb)
|
||
|
{
|
||
|
unsigned int old_insert_count = tx_queue->insert_count;
|
||
|
bool xmit_more = netdev_xmit_more();
|
||
|
bool data_mapped = false;
|
||
|
unsigned int segments;
|
||
|
unsigned int skb_len;
|
||
|
int rc;
|
||
|
|
||
|
skb_len = skb->len;
|
||
|
segments = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 0;
|
||
|
if (segments == 1)
|
||
|
segments = 0; /* Don't use TSO for a single segment. */
|
||
|
|
||
|
/* Handle TSO first - it's *possible* (although unlikely) that we might
|
||
|
* be passed a packet to segment that's smaller than the copybreak/PIO
|
||
|
* size limit.
|
||
|
*/
|
||
|
if (segments) {
|
||
|
rc = efx_siena_tx_tso_fallback(tx_queue, skb);
|
||
|
tx_queue->tso_fallbacks++;
|
||
|
if (rc == 0)
|
||
|
return 0;
|
||
|
goto err;
|
||
|
} else if (skb->data_len && skb_len <= EFX_TX_CB_SIZE) {
|
||
|
/* Pad short packets or coalesce short fragmented packets. */
|
||
|
if (efx_enqueue_skb_copy(tx_queue, skb))
|
||
|
goto err;
|
||
|
tx_queue->cb_packets++;
|
||
|
data_mapped = true;
|
||
|
}
|
||
|
|
||
|
/* Map for DMA and create descriptors if we haven't done so already. */
|
||
|
if (!data_mapped && (efx_siena_tx_map_data(tx_queue, skb, segments)))
|
||
|
goto err;
|
||
|
|
||
|
efx_tx_maybe_stop_queue(tx_queue);
|
||
|
|
||
|
tx_queue->xmit_pending = true;
|
||
|
|
||
|
/* Pass off to hardware */
|
||
|
if (__netdev_tx_sent_queue(tx_queue->core_txq, skb_len, xmit_more))
|
||
|
efx_tx_send_pending(tx_queue->channel);
|
||
|
|
||
|
tx_queue->tx_packets++;
|
||
|
return NETDEV_TX_OK;
|
||
|
|
||
|
|
||
|
err:
|
||
|
efx_siena_enqueue_unwind(tx_queue, old_insert_count);
|
||
|
dev_kfree_skb_any(skb);
|
||
|
|
||
|
/* If we're not expecting another transmit and we had something to push
|
||
|
* on this queue or a partner queue then we need to push here to get the
|
||
|
* previous packets out.
|
||
|
*/
|
||
|
if (!xmit_more)
|
||
|
efx_tx_send_pending(tx_queue->channel);
|
||
|
|
||
|
return NETDEV_TX_OK;
|
||
|
}
|
||
|
|
||
|
/* Transmit a packet from an XDP buffer
|
||
|
*
|
||
|
* Returns number of packets sent on success, error code otherwise.
|
||
|
* Runs in NAPI context, either in our poll (for XDP TX) or a different NIC
|
||
|
* (for XDP redirect).
|
||
|
*/
|
||
|
int efx_siena_xdp_tx_buffers(struct efx_nic *efx, int n, struct xdp_frame **xdpfs,
|
||
|
bool flush)
|
||
|
{
|
||
|
struct efx_tx_buffer *tx_buffer;
|
||
|
struct efx_tx_queue *tx_queue;
|
||
|
struct xdp_frame *xdpf;
|
||
|
dma_addr_t dma_addr;
|
||
|
unsigned int len;
|
||
|
int space;
|
||
|
int cpu;
|
||
|
int i = 0;
|
||
|
|
||
|
if (unlikely(n && !xdpfs))
|
||
|
return -EINVAL;
|
||
|
if (unlikely(!n))
|
||
|
return 0;
|
||
|
|
||
|
cpu = raw_smp_processor_id();
|
||
|
if (unlikely(cpu >= efx->xdp_tx_queue_count))
|
||
|
return -EINVAL;
|
||
|
|
||
|
tx_queue = efx->xdp_tx_queues[cpu];
|
||
|
if (unlikely(!tx_queue))
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (!tx_queue->initialised)
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (efx->xdp_txq_queues_mode != EFX_XDP_TX_QUEUES_DEDICATED)
|
||
|
HARD_TX_LOCK(efx->net_dev, tx_queue->core_txq, cpu);
|
||
|
|
||
|
/* If we're borrowing net stack queues we have to handle stop-restart
|
||
|
* or we might block the queue and it will be considered as frozen
|
||
|
*/
|
||
|
if (efx->xdp_txq_queues_mode == EFX_XDP_TX_QUEUES_BORROWED) {
|
||
|
if (netif_tx_queue_stopped(tx_queue->core_txq))
|
||
|
goto unlock;
|
||
|
efx_tx_maybe_stop_queue(tx_queue);
|
||
|
}
|
||
|
|
||
|
/* Check for available space. We should never need multiple
|
||
|
* descriptors per frame.
|
||
|
*/
|
||
|
space = efx->txq_entries +
|
||
|
tx_queue->read_count - tx_queue->insert_count;
|
||
|
|
||
|
for (i = 0; i < n; i++) {
|
||
|
xdpf = xdpfs[i];
|
||
|
|
||
|
if (i >= space)
|
||
|
break;
|
||
|
|
||
|
/* We'll want a descriptor for this tx. */
|
||
|
prefetchw(__efx_tx_queue_get_insert_buffer(tx_queue));
|
||
|
|
||
|
len = xdpf->len;
|
||
|
|
||
|
/* Map for DMA. */
|
||
|
dma_addr = dma_map_single(&efx->pci_dev->dev,
|
||
|
xdpf->data, len,
|
||
|
DMA_TO_DEVICE);
|
||
|
if (dma_mapping_error(&efx->pci_dev->dev, dma_addr))
|
||
|
break;
|
||
|
|
||
|
/* Create descriptor and set up for unmapping DMA. */
|
||
|
tx_buffer = efx_siena_tx_map_chunk(tx_queue, dma_addr, len);
|
||
|
tx_buffer->xdpf = xdpf;
|
||
|
tx_buffer->flags = EFX_TX_BUF_XDP |
|
||
|
EFX_TX_BUF_MAP_SINGLE;
|
||
|
tx_buffer->dma_offset = 0;
|
||
|
tx_buffer->unmap_len = len;
|
||
|
tx_queue->tx_packets++;
|
||
|
}
|
||
|
|
||
|
/* Pass mapped frames to hardware. */
|
||
|
if (flush && i > 0)
|
||
|
efx_nic_push_buffers(tx_queue);
|
||
|
|
||
|
unlock:
|
||
|
if (efx->xdp_txq_queues_mode != EFX_XDP_TX_QUEUES_DEDICATED)
|
||
|
HARD_TX_UNLOCK(efx->net_dev, tx_queue->core_txq);
|
||
|
|
||
|
return i == 0 ? -EIO : i;
|
||
|
}
|
||
|
|
||
|
/* Initiate a packet transmission. We use one channel per CPU
|
||
|
* (sharing when we have more CPUs than channels).
|
||
|
*
|
||
|
* Context: non-blocking.
|
||
|
* Should always return NETDEV_TX_OK and consume the skb.
|
||
|
*/
|
||
|
netdev_tx_t efx_siena_hard_start_xmit(struct sk_buff *skb,
|
||
|
struct net_device *net_dev)
|
||
|
{
|
||
|
struct efx_nic *efx = netdev_priv(net_dev);
|
||
|
struct efx_tx_queue *tx_queue;
|
||
|
unsigned index, type;
|
||
|
|
||
|
EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
|
||
|
|
||
|
index = skb_get_queue_mapping(skb);
|
||
|
type = efx_tx_csum_type_skb(skb);
|
||
|
if (index >= efx->n_tx_channels) {
|
||
|
index -= efx->n_tx_channels;
|
||
|
type |= EFX_TXQ_TYPE_HIGHPRI;
|
||
|
}
|
||
|
|
||
|
/* PTP "event" packet */
|
||
|
if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
|
||
|
((efx_siena_ptp_use_mac_tx_timestamps(efx) && efx->ptp_data) ||
|
||
|
unlikely(efx_siena_ptp_is_ptp_tx(efx, skb)))) {
|
||
|
/* There may be existing transmits on the channel that are
|
||
|
* waiting for this packet to trigger the doorbell write.
|
||
|
* We need to send the packets at this point.
|
||
|
*/
|
||
|
efx_tx_send_pending(efx_get_tx_channel(efx, index));
|
||
|
return efx_siena_ptp_tx(efx, skb);
|
||
|
}
|
||
|
|
||
|
tx_queue = efx_get_tx_queue(efx, index, type);
|
||
|
if (WARN_ON_ONCE(!tx_queue)) {
|
||
|
/* We don't have a TXQ of the right type.
|
||
|
* This should never happen, as we don't advertise offload
|
||
|
* features unless we can support them.
|
||
|
*/
|
||
|
dev_kfree_skb_any(skb);
|
||
|
/* If we're not expecting another transmit and we had something to push
|
||
|
* on this queue or a partner queue then we need to push here to get the
|
||
|
* previous packets out.
|
||
|
*/
|
||
|
if (!netdev_xmit_more())
|
||
|
efx_tx_send_pending(efx_get_tx_channel(efx, index));
|
||
|
return NETDEV_TX_OK;
|
||
|
}
|
||
|
|
||
|
return __efx_siena_enqueue_skb(tx_queue, skb);
|
||
|
}
|
||
|
|
||
|
void efx_siena_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
|
||
|
{
|
||
|
struct efx_nic *efx = tx_queue->efx;
|
||
|
|
||
|
/* Must be inverse of queue lookup in efx_siena_hard_start_xmit() */
|
||
|
tx_queue->core_txq =
|
||
|
netdev_get_tx_queue(efx->net_dev,
|
||
|
tx_queue->channel->channel +
|
||
|
((tx_queue->type & EFX_TXQ_TYPE_HIGHPRI) ?
|
||
|
efx->n_tx_channels : 0));
|
||
|
}
|
||
|
|
||
|
int efx_siena_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
|
||
|
void *type_data)
|
||
|
{
|
||
|
struct efx_nic *efx = netdev_priv(net_dev);
|
||
|
struct tc_mqprio_qopt *mqprio = type_data;
|
||
|
unsigned tc, num_tc;
|
||
|
|
||
|
if (type != TC_SETUP_QDISC_MQPRIO)
|
||
|
return -EOPNOTSUPP;
|
||
|
|
||
|
/* Only Siena supported highpri queues */
|
||
|
if (efx_nic_rev(efx) > EFX_REV_SIENA_A0)
|
||
|
return -EOPNOTSUPP;
|
||
|
|
||
|
num_tc = mqprio->num_tc;
|
||
|
|
||
|
if (num_tc > EFX_MAX_TX_TC)
|
||
|
return -EINVAL;
|
||
|
|
||
|
mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
|
||
|
|
||
|
if (num_tc == net_dev->num_tc)
|
||
|
return 0;
|
||
|
|
||
|
for (tc = 0; tc < num_tc; tc++) {
|
||
|
net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
|
||
|
net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
|
||
|
}
|
||
|
|
||
|
net_dev->num_tc = num_tc;
|
||
|
|
||
|
return netif_set_real_num_tx_queues(net_dev,
|
||
|
max_t(int, num_tc, 1) *
|
||
|
efx->n_tx_channels);
|
||
|
}
|