linux-zen-server/drivers/net/ipa/ipa_table.c

773 lines
24 KiB
C
Raw Normal View History

2023-08-30 17:53:23 +02:00
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
* Copyright (C) 2018-2023 Linaro Ltd.
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/bits.h>
#include <linux/bitops.h>
#include <linux/bitfield.h>
#include <linux/io.h>
#include <linux/build_bug.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include "ipa.h"
#include "ipa_version.h"
#include "ipa_endpoint.h"
#include "ipa_table.h"
#include "ipa_reg.h"
#include "ipa_mem.h"
#include "ipa_cmd.h"
#include "gsi.h"
#include "gsi_trans.h"
/**
* DOC: IPA Filter and Route Tables
*
* The IPA has tables defined in its local (IPA-resident) memory that define
* filter and routing rules. An entry in either of these tables is a little
* endian 64-bit "slot" that holds the address of a rule definition. (The
* size of these slots is 64 bits regardless of the host DMA address size.)
*
* Separate tables (both filter and route) are used for IPv4 and IPv6. There
* is normally another set of "hashed" filter and route tables, which are
* used with a hash of message metadata. Hashed operation is not supported
* by all IPA hardware (IPA v4.2 doesn't support hashed tables).
*
* Rules can be in local memory or in DRAM (system memory). The offset of
* an object (such as a route or filter table) in IPA-resident memory must
* 128-byte aligned. An object in system memory (such as a route or filter
* rule) must be at an 8-byte aligned address. We currently only place
* route or filter rules in system memory.
*
* A rule consists of a contiguous block of 32-bit values terminated with
* 32 zero bits. A special "zero entry" rule consisting of 64 zero bits
* represents "no filtering" or "no routing," and is the reset value for
* filter or route table rules.
*
* Each filter rule is associated with an AP or modem TX endpoint, though
* not all TX endpoints support filtering. The first 64-bit slot in a
* filter table is a bitmap indicating which endpoints have entries in
* the table. Each set bit in this bitmap indicates the presence of the
* address of a filter rule in the memory following the bitmap. Until IPA
* v5.0, the low-order bit (bit 0) in this bitmap represents a special
* global filter, which applies to all traffic. Otherwise the position of
* each set bit represents an endpoint for which a filter rule is defined.
*
* The global rule is not used in current code, and support for it is
* removed starting at IPA v5.0. For IPA v5.0+, the endpoint bitmap
* position defines the endpoint ID--i.e. if bit 1 is set in the endpoint
* bitmap, endpoint 1 has a filter rule. Older versions of IPA represent
* the presence of a filter rule for endpoint X by bit (X + 1) being set.
* I.e., bit 1 set indicates the presence of a filter rule for endpoint 0,
* and bit 3 set means there is a filter rule present for endpoint 2.
*
* Each filter table entry has the address of a set of equations that
* implement a filter rule. So following the endpoint bitmap there
* will be such an address/entry for each endpoint with a set bit in
* the bitmap.
*
* The AP initializes all entries in a filter table to refer to a "zero"
* rule. Once initialized, the modem and AP update the entries for
* endpoints they "own" directly. Currently the AP does not use the IPA
* filtering functionality.
*
* This diagram shows an example of a filter table with an endpoint
* bitmap as defined prior to IPA v5.0.
*
* IPA Filter Table
* ----------------------
* endpoint bitmap | 0x0000000000000048 | Bits 3 and 6 set (endpoints 2 and 5)
* |--------------------|
* 1st endpoint | 0x000123456789abc0 | DMA address for modem endpoint 2 rule
* |--------------------|
* 2nd endpoint | 0x000123456789abf0 | DMA address for AP endpoint 5 rule
* |--------------------|
* (unused) | | (Unused space in filter table)
* |--------------------|
* . . .
* |--------------------|
* (unused) | | (Unused space in filter table)
* ----------------------
*
* The set of available route rules is divided about equally between the AP
* and modem. The AP initializes all entries in a route table to refer to
* a "zero entry". Once initialized, the modem and AP are responsible for
* updating their own entries. All entries in a route table are usable,
* though the AP currently does not use the IPA routing functionality.
*
* IPA Route Table
* ----------------------
* 1st modem route | 0x0001234500001100 | DMA address for first route rule
* |--------------------|
* 2nd modem route | 0x0001234500001140 | DMA address for second route rule
* |--------------------|
* . . .
* |--------------------|
* Last modem route| 0x0001234500002280 | DMA address for Nth route rule
* |--------------------|
* 1st AP route | 0x0001234500001100 | DMA address for route rule (N+1)
* |--------------------|
* 2nd AP route | 0x0001234500001140 | DMA address for next route rule
* |--------------------|
* . . .
* |--------------------|
* Last AP route | 0x0001234500002280 | DMA address for last route rule
* ----------------------
*/
/* Filter or route rules consist of a set of 32-bit values followed by a
* 32-bit all-zero rule list terminator. The "zero rule" is simply an
* all-zero rule followed by the list terminator.
*/
#define IPA_ZERO_RULE_SIZE (2 * sizeof(__le32))
/* Check things that can be validated at build time. */
static void ipa_table_validate_build(void)
{
/* Filter and route tables contain DMA addresses that refer
* to filter or route rules. But the size of a table entry
* is 64 bits regardless of what the size of an AP DMA address
* is. A fixed constant defines the size of an entry, and
* code in ipa_table_init() uses a pointer to __le64 to
* initialize tables.
*/
BUILD_BUG_ON(sizeof(dma_addr_t) > sizeof(__le64));
/* A "zero rule" is used to represent no filtering or no routing.
* It is a 64-bit block of zeroed memory. Code in ipa_table_init()
* assumes that it can be written using a pointer to __le64.
*/
BUILD_BUG_ON(IPA_ZERO_RULE_SIZE != sizeof(__le64));
}
static const struct ipa_mem *
ipa_table_mem(struct ipa *ipa, bool filter, bool hashed, bool ipv6)
{
enum ipa_mem_id mem_id;
mem_id = filter ? hashed ? ipv6 ? IPA_MEM_V6_FILTER_HASHED
: IPA_MEM_V4_FILTER_HASHED
: ipv6 ? IPA_MEM_V6_FILTER
: IPA_MEM_V4_FILTER
: hashed ? ipv6 ? IPA_MEM_V6_ROUTE_HASHED
: IPA_MEM_V4_ROUTE_HASHED
: ipv6 ? IPA_MEM_V6_ROUTE
: IPA_MEM_V4_ROUTE;
return ipa_mem_find(ipa, mem_id);
}
bool ipa_filtered_valid(struct ipa *ipa, u64 filtered)
{
struct device *dev = &ipa->pdev->dev;
u32 count;
if (!filtered) {
dev_err(dev, "at least one filtering endpoint is required\n");
return false;
}
count = hweight64(filtered);
if (count > ipa->filter_count) {
dev_err(dev, "too many filtering endpoints (%u > %u)\n",
count, ipa->filter_count);
return false;
}
return true;
}
/* Zero entry count means no table, so just return a 0 address */
static dma_addr_t ipa_table_addr(struct ipa *ipa, bool filter_mask, u16 count)
{
u32 skip;
if (!count)
return 0;
WARN_ON(count > max_t(u32, ipa->filter_count, ipa->route_count));
/* Skip over the zero rule and possibly the filter mask */
skip = filter_mask ? 1 : 2;
return ipa->table_addr + skip * sizeof(*ipa->table_virt);
}
static void ipa_table_reset_add(struct gsi_trans *trans, bool filter,
bool hashed, bool ipv6, u16 first, u16 count)
{
struct ipa *ipa = container_of(trans->gsi, struct ipa, gsi);
const struct ipa_mem *mem;
dma_addr_t addr;
u32 offset;
u16 size;
/* Nothing to do if the memory region is doesn't exist or is empty */
mem = ipa_table_mem(ipa, filter, hashed, ipv6);
if (!mem || !mem->size)
return;
if (filter)
first++; /* skip over bitmap */
offset = mem->offset + first * sizeof(__le64);
size = count * sizeof(__le64);
addr = ipa_table_addr(ipa, false, count);
ipa_cmd_dma_shared_mem_add(trans, offset, size, addr, true);
}
/* Reset entries in a single filter table belonging to either the AP or
* modem to refer to the zero entry. The memory region supplied will be
* for the IPv4 and IPv6 non-hashed and hashed filter tables.
*/
static int
ipa_filter_reset_table(struct ipa *ipa, bool hashed, bool ipv6, bool modem)
{
u64 ep_mask = ipa->filtered;
struct gsi_trans *trans;
enum gsi_ee_id ee_id;
trans = ipa_cmd_trans_alloc(ipa, hweight64(ep_mask));
if (!trans) {
dev_err(&ipa->pdev->dev,
"no transaction for %s filter reset\n",
modem ? "modem" : "AP");
return -EBUSY;
}
ee_id = modem ? GSI_EE_MODEM : GSI_EE_AP;
while (ep_mask) {
u32 endpoint_id = __ffs(ep_mask);
struct ipa_endpoint *endpoint;
ep_mask ^= BIT(endpoint_id);
endpoint = &ipa->endpoint[endpoint_id];
if (endpoint->ee_id != ee_id)
continue;
ipa_table_reset_add(trans, true, hashed, ipv6, endpoint_id, 1);
}
gsi_trans_commit_wait(trans);
return 0;
}
/* Theoretically, each filter table could have more filter slots to
* update than the maximum number of commands in a transaction. So
* we do each table separately.
*/
static int ipa_filter_reset(struct ipa *ipa, bool modem)
{
int ret;
ret = ipa_filter_reset_table(ipa, false, false, modem);
if (ret)
return ret;
ret = ipa_filter_reset_table(ipa, true, false, modem);
if (ret)
return ret;
ret = ipa_filter_reset_table(ipa, false, true, modem);
if (ret)
return ret;
ret = ipa_filter_reset_table(ipa, true, true, modem);
return ret;
}
/* The AP routes and modem routes are each contiguous within the
* table. We can update each table with a single command, and we
* won't exceed the per-transaction command limit.
* */
static int ipa_route_reset(struct ipa *ipa, bool modem)
{
u32 modem_route_count = ipa->modem_route_count;
struct gsi_trans *trans;
u16 first;
u16 count;
trans = ipa_cmd_trans_alloc(ipa, 4);
if (!trans) {
dev_err(&ipa->pdev->dev,
"no transaction for %s route reset\n",
modem ? "modem" : "AP");
return -EBUSY;
}
if (modem) {
first = 0;
count = modem_route_count;
} else {
first = modem_route_count;
count = ipa->route_count - modem_route_count;
}
ipa_table_reset_add(trans, false, false, false, first, count);
ipa_table_reset_add(trans, false, true, false, first, count);
ipa_table_reset_add(trans, false, false, true, first, count);
ipa_table_reset_add(trans, false, true, true, first, count);
gsi_trans_commit_wait(trans);
return 0;
}
void ipa_table_reset(struct ipa *ipa, bool modem)
{
struct device *dev = &ipa->pdev->dev;
const char *ee_name;
int ret;
ee_name = modem ? "modem" : "AP";
/* Report errors, but reset filter and route tables */
ret = ipa_filter_reset(ipa, modem);
if (ret)
dev_err(dev, "error %d resetting filter table for %s\n",
ret, ee_name);
ret = ipa_route_reset(ipa, modem);
if (ret)
dev_err(dev, "error %d resetting route table for %s\n",
ret, ee_name);
}
int ipa_table_hash_flush(struct ipa *ipa)
{
struct gsi_trans *trans;
const struct reg *reg;
u32 val;
if (!ipa_table_hash_support(ipa))
return 0;
trans = ipa_cmd_trans_alloc(ipa, 1);
if (!trans) {
dev_err(&ipa->pdev->dev, "no transaction for hash flush\n");
return -EBUSY;
}
if (ipa->version < IPA_VERSION_5_0) {
reg = ipa_reg(ipa, FILT_ROUT_HASH_FLUSH);
val = reg_bit(reg, IPV6_ROUTER_HASH);
val |= reg_bit(reg, IPV6_FILTER_HASH);
val |= reg_bit(reg, IPV4_ROUTER_HASH);
val |= reg_bit(reg, IPV4_FILTER_HASH);
} else {
reg = ipa_reg(ipa, FILT_ROUT_CACHE_FLUSH);
/* IPA v5.0+ uses a unified cache (both IPv4 and IPv6) */
val = reg_bit(reg, ROUTER_CACHE);
val |= reg_bit(reg, FILTER_CACHE);
}
ipa_cmd_register_write_add(trans, reg_offset(reg), val, val, false);
gsi_trans_commit_wait(trans);
return 0;
}
static void ipa_table_init_add(struct gsi_trans *trans, bool filter, bool ipv6)
{
struct ipa *ipa = container_of(trans->gsi, struct ipa, gsi);
const struct ipa_mem *hash_mem;
enum ipa_cmd_opcode opcode;
const struct ipa_mem *mem;
dma_addr_t hash_addr;
dma_addr_t addr;
u32 hash_offset;
u32 zero_offset;
u16 hash_count;
u32 zero_size;
u16 hash_size;
u16 count;
u16 size;
opcode = filter ? ipv6 ? IPA_CMD_IP_V6_FILTER_INIT
: IPA_CMD_IP_V4_FILTER_INIT
: ipv6 ? IPA_CMD_IP_V6_ROUTING_INIT
: IPA_CMD_IP_V4_ROUTING_INIT;
/* The non-hashed region will exist (see ipa_table_mem_valid()) */
mem = ipa_table_mem(ipa, filter, false, ipv6);
hash_mem = ipa_table_mem(ipa, filter, true, ipv6);
hash_offset = hash_mem ? hash_mem->offset : 0;
/* Compute the number of table entries to initialize */
if (filter) {
/* The number of filtering endpoints determines number of
* entries in the filter table; we also add one more "slot"
* to hold the bitmap itself. The size of the hashed filter
* table is either the same as the non-hashed one, or zero.
*/
count = 1 + hweight64(ipa->filtered);
hash_count = hash_mem && hash_mem->size ? count : 0;
} else {
/* The size of a route table region determines the number
* of entries it has.
*/
count = mem->size / sizeof(__le64);
hash_count = hash_mem ? hash_mem->size / sizeof(__le64) : 0;
}
size = count * sizeof(__le64);
hash_size = hash_count * sizeof(__le64);
addr = ipa_table_addr(ipa, filter, count);
hash_addr = ipa_table_addr(ipa, filter, hash_count);
ipa_cmd_table_init_add(trans, opcode, size, mem->offset, addr,
hash_size, hash_offset, hash_addr);
if (!filter)
return;
/* Zero the unused space in the filter table */
zero_offset = mem->offset + size;
zero_size = mem->size - size;
ipa_cmd_dma_shared_mem_add(trans, zero_offset, zero_size,
ipa->zero_addr, true);
if (!hash_size)
return;
/* Zero the unused space in the hashed filter table */
zero_offset = hash_offset + hash_size;
zero_size = hash_mem->size - hash_size;
ipa_cmd_dma_shared_mem_add(trans, zero_offset, zero_size,
ipa->zero_addr, true);
}
int ipa_table_setup(struct ipa *ipa)
{
struct gsi_trans *trans;
/* We will need at most 8 TREs:
* - IPv4:
* - One for route table initialization (non-hashed and hashed)
* - One for filter table initialization (non-hashed and hashed)
* - One to zero unused entries in the non-hashed filter table
* - One to zero unused entries in the hashed filter table
* - IPv6:
* - One for route table initialization (non-hashed and hashed)
* - One for filter table initialization (non-hashed and hashed)
* - One to zero unused entries in the non-hashed filter table
* - One to zero unused entries in the hashed filter table
* All platforms support at least 8 TREs in a transaction.
*/
trans = ipa_cmd_trans_alloc(ipa, 8);
if (!trans) {
dev_err(&ipa->pdev->dev, "no transaction for table setup\n");
return -EBUSY;
}
ipa_table_init_add(trans, false, false);
ipa_table_init_add(trans, false, true);
ipa_table_init_add(trans, true, false);
ipa_table_init_add(trans, true, true);
gsi_trans_commit_wait(trans);
return 0;
}
/**
* ipa_filter_tuple_zero() - Zero an endpoint's hashed filter tuple
* @endpoint: Endpoint whose filter hash tuple should be zeroed
*
* Endpoint must be for the AP (not modem) and support filtering. Updates
* the filter hash values without changing route ones.
*/
static void ipa_filter_tuple_zero(struct ipa_endpoint *endpoint)
{
u32 endpoint_id = endpoint->endpoint_id;
struct ipa *ipa = endpoint->ipa;
const struct reg *reg;
u32 offset;
u32 val;
if (ipa->version < IPA_VERSION_5_0) {
reg = ipa_reg(ipa, ENDP_FILTER_ROUTER_HSH_CFG);
offset = reg_n_offset(reg, endpoint_id);
val = ioread32(endpoint->ipa->reg_virt + offset);
/* Zero all filter-related fields, preserving the rest */
val &= ~reg_fmask(reg, FILTER_HASH_MSK_ALL);
} else {
/* IPA v5.0 separates filter and router cache configuration */
reg = ipa_reg(ipa, ENDP_FILTER_CACHE_CFG);
offset = reg_n_offset(reg, endpoint_id);
/* Zero all filter-related fields */
val = 0;
}
iowrite32(val, endpoint->ipa->reg_virt + offset);
}
/* Configure a hashed filter table; there is no ipa_filter_deconfig() */
static void ipa_filter_config(struct ipa *ipa, bool modem)
{
enum gsi_ee_id ee_id = modem ? GSI_EE_MODEM : GSI_EE_AP;
u64 ep_mask = ipa->filtered;
if (!ipa_table_hash_support(ipa))
return;
while (ep_mask) {
u32 endpoint_id = __ffs(ep_mask);
struct ipa_endpoint *endpoint;
ep_mask ^= BIT(endpoint_id);
endpoint = &ipa->endpoint[endpoint_id];
if (endpoint->ee_id == ee_id)
ipa_filter_tuple_zero(endpoint);
}
}
static bool ipa_route_id_modem(struct ipa *ipa, u32 route_id)
{
return route_id < ipa->modem_route_count;
}
/**
* ipa_route_tuple_zero() - Zero a hashed route table entry tuple
* @ipa: IPA pointer
* @route_id: Route table entry whose hash tuple should be zeroed
*
* Updates the route hash values without changing filter ones.
*/
static void ipa_route_tuple_zero(struct ipa *ipa, u32 route_id)
{
const struct reg *reg;
u32 offset;
u32 val;
if (ipa->version < IPA_VERSION_5_0) {
reg = ipa_reg(ipa, ENDP_FILTER_ROUTER_HSH_CFG);
offset = reg_n_offset(reg, route_id);
val = ioread32(ipa->reg_virt + offset);
/* Zero all route-related fields, preserving the rest */
val &= ~reg_fmask(reg, ROUTER_HASH_MSK_ALL);
} else {
/* IPA v5.0 separates filter and router cache configuration */
reg = ipa_reg(ipa, ENDP_ROUTER_CACHE_CFG);
offset = reg_n_offset(reg, route_id);
/* Zero all route-related fields */
val = 0;
}
iowrite32(val, ipa->reg_virt + offset);
}
/* Configure a hashed route table; there is no ipa_route_deconfig() */
static void ipa_route_config(struct ipa *ipa, bool modem)
{
u32 route_id;
if (!ipa_table_hash_support(ipa))
return;
for (route_id = 0; route_id < ipa->route_count; route_id++)
if (ipa_route_id_modem(ipa, route_id) == modem)
ipa_route_tuple_zero(ipa, route_id);
}
/* Configure a filter and route tables; there is no ipa_table_deconfig() */
void ipa_table_config(struct ipa *ipa)
{
ipa_filter_config(ipa, false);
ipa_filter_config(ipa, true);
ipa_route_config(ipa, false);
ipa_route_config(ipa, true);
}
/* Verify the sizes of all IPA table filter or routing table memory regions
* are valid. If valid, this records the size of the routing table.
*/
bool ipa_table_mem_valid(struct ipa *ipa, bool filter)
{
bool hash_support = ipa_table_hash_support(ipa);
const struct ipa_mem *mem_hashed;
const struct ipa_mem *mem_ipv4;
const struct ipa_mem *mem_ipv6;
u32 count;
/* IPv4 and IPv6 non-hashed tables are expected to be defined and
* have the same size. Both must have at least two entries (and
* would normally have more than that).
*/
mem_ipv4 = ipa_table_mem(ipa, filter, false, false);
if (!mem_ipv4)
return false;
mem_ipv6 = ipa_table_mem(ipa, filter, false, true);
if (!mem_ipv6)
return false;
if (mem_ipv4->size != mem_ipv6->size)
return false;
/* Compute and record the number of entries for each table type */
count = mem_ipv4->size / sizeof(__le64);
if (count < 2)
return false;
if (filter)
ipa->filter_count = count - 1; /* Filter map in first entry */
else
ipa->route_count = count;
/* Table offset and size must fit in TABLE_INIT command fields */
if (!ipa_cmd_table_init_valid(ipa, mem_ipv4, !filter))
return false;
/* Make sure the regions are big enough */
if (filter) {
/* Filter tables must able to hold the endpoint bitmap plus
* an entry for each endpoint that supports filtering
*/
if (count < 1 + hweight64(ipa->filtered))
return false;
} else {
/* Routing tables must be able to hold all modem entries,
* plus at least one entry for the AP.
*/
if (count < ipa->modem_route_count + 1)
return false;
}
/* If hashing is supported, hashed tables are expected to be defined,
* and have the same size as non-hashed tables. If hashing is not
* supported, hashed tables are expected to have zero size (or not
* be defined).
*/
mem_hashed = ipa_table_mem(ipa, filter, true, false);
if (hash_support) {
if (!mem_hashed || mem_hashed->size != mem_ipv4->size)
return false;
} else {
if (mem_hashed && mem_hashed->size)
return false;
}
/* Same check for IPv6 tables */
mem_hashed = ipa_table_mem(ipa, filter, true, true);
if (hash_support) {
if (!mem_hashed || mem_hashed->size != mem_ipv6->size)
return false;
} else {
if (mem_hashed && mem_hashed->size)
return false;
}
return true;
}
/* Initialize a coherent DMA allocation containing initialized filter and
* route table data. This is used when initializing or resetting the IPA
* filter or route table.
*
* The first entry in a filter table contains a bitmap indicating which
* endpoints contain entries in the table. In addition to that first entry,
* there is a fixed maximum number of entries that follow. Filter table
* entries are 64 bits wide, and (other than the bitmap) contain the DMA
* address of a filter rule. A "zero rule" indicates no filtering, and
* consists of 64 bits of zeroes. When a filter table is initialized (or
* reset) its entries are made to refer to the zero rule.
*
* Each entry in a route table is the DMA address of a routing rule. For
* routing there is also a 64-bit "zero rule" that means no routing, and
* when a route table is initialized or reset, its entries are made to refer
* to the zero rule. The zero rule is shared for route and filter tables.
*
* +-------------------+
* --> | zero rule |
* / |-------------------|
* | | filter mask |
* |\ |-------------------|
* | ---- zero rule address | \
* |\ |-------------------| |
* | ---- zero rule address | | Max IPA filter count
* | |-------------------| > or IPA route count,
* | ... | whichever is greater
* \ |-------------------| |
* ---- zero rule address | /
* +-------------------+
*/
int ipa_table_init(struct ipa *ipa)
{
struct device *dev = &ipa->pdev->dev;
dma_addr_t addr;
__le64 le_addr;
__le64 *virt;
size_t size;
u32 count;
ipa_table_validate_build();
count = max_t(u32, ipa->filter_count, ipa->route_count);
/* The IPA hardware requires route and filter table rules to be
* aligned on a 128-byte boundary. We put the "zero rule" at the
* base of the table area allocated here. The DMA address returned
* by dma_alloc_coherent() is guaranteed to be a power-of-2 number
* of pages, which satisfies the rule alignment requirement.
*/
size = IPA_ZERO_RULE_SIZE + (1 + count) * sizeof(__le64);
virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL);
if (!virt)
return -ENOMEM;
ipa->table_virt = virt;
ipa->table_addr = addr;
/* First slot is the zero rule */
*virt++ = 0;
/* Next is the filter table bitmap. The "soft" bitmap value might
* need to be converted to the hardware representation by shifting
* it left one position. Prior to IPA v5.0, bit 0 repesents global
* filtering, which is possible but not used. IPA v5.0+ eliminated
* that option, so there's no shifting required.
*/
if (ipa->version < IPA_VERSION_5_0)
*virt++ = cpu_to_le64(ipa->filtered << 1);
else
*virt++ = cpu_to_le64(ipa->filtered);
/* All the rest contain the DMA address of the zero rule */
le_addr = cpu_to_le64(addr);
while (count--)
*virt++ = le_addr;
return 0;
}
void ipa_table_exit(struct ipa *ipa)
{
u32 count = max_t(u32, 1 + ipa->filter_count, ipa->route_count);
struct device *dev = &ipa->pdev->dev;
size_t size;
size = IPA_ZERO_RULE_SIZE + (1 + count) * sizeof(__le64);
dma_free_coherent(dev, size, ipa->table_virt, ipa->table_addr);
ipa->table_addr = 0;
ipa->table_virt = NULL;
}