linux-zen-server/drivers/net/wireless/intel/iwlwifi/dvm/tt.c

669 lines
21 KiB
C
Raw Normal View History

2023-08-30 17:53:23 +02:00
// SPDX-License-Identifier: GPL-2.0-only
/******************************************************************************
*
* Copyright(c) 2007 - 2014 Intel Corporation. All rights reserved.
* Copyright (C) 2018, 2020 Intel Corporation
*
* Portions of this file are derived from the ipw3945 project, as well
* as portions of the ieee80211 subsystem header files.
*****************************************************************************/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <net/mac80211.h>
#include "iwl-io.h"
#include "iwl-modparams.h"
#include "iwl-debug.h"
#include "agn.h"
#include "dev.h"
#include "commands.h"
#include "tt.h"
/* default Thermal Throttling transaction table
* Current state | Throttling Down | Throttling Up
*=============================================================================
* Condition Nxt State Condition Nxt State Condition Nxt State
*-----------------------------------------------------------------------------
* IWL_TI_0 T >= 114 CT_KILL 114>T>=105 TI_1 N/A N/A
* IWL_TI_1 T >= 114 CT_KILL 114>T>=110 TI_2 T<=95 TI_0
* IWL_TI_2 T >= 114 CT_KILL T<=100 TI_1
* IWL_CT_KILL N/A N/A N/A N/A T<=95 TI_0
*=============================================================================
*/
static const struct iwl_tt_trans tt_range_0[IWL_TI_STATE_MAX - 1] = {
{IWL_TI_0, IWL_ABSOLUTE_ZERO, 104},
{IWL_TI_1, 105, CT_KILL_THRESHOLD - 1},
{IWL_TI_CT_KILL, CT_KILL_THRESHOLD, IWL_ABSOLUTE_MAX}
};
static const struct iwl_tt_trans tt_range_1[IWL_TI_STATE_MAX - 1] = {
{IWL_TI_0, IWL_ABSOLUTE_ZERO, 95},
{IWL_TI_2, 110, CT_KILL_THRESHOLD - 1},
{IWL_TI_CT_KILL, CT_KILL_THRESHOLD, IWL_ABSOLUTE_MAX}
};
static const struct iwl_tt_trans tt_range_2[IWL_TI_STATE_MAX - 1] = {
{IWL_TI_1, IWL_ABSOLUTE_ZERO, 100},
{IWL_TI_CT_KILL, CT_KILL_THRESHOLD, IWL_ABSOLUTE_MAX},
{IWL_TI_CT_KILL, CT_KILL_THRESHOLD, IWL_ABSOLUTE_MAX}
};
static const struct iwl_tt_trans tt_range_3[IWL_TI_STATE_MAX - 1] = {
{IWL_TI_0, IWL_ABSOLUTE_ZERO, CT_KILL_EXIT_THRESHOLD},
{IWL_TI_CT_KILL, CT_KILL_EXIT_THRESHOLD + 1, IWL_ABSOLUTE_MAX},
{IWL_TI_CT_KILL, CT_KILL_EXIT_THRESHOLD + 1, IWL_ABSOLUTE_MAX}
};
/* Advance Thermal Throttling default restriction table */
static const struct iwl_tt_restriction restriction_range[IWL_TI_STATE_MAX] = {
{IWL_ANT_OK_MULTI, IWL_ANT_OK_MULTI, true },
{IWL_ANT_OK_SINGLE, IWL_ANT_OK_MULTI, true },
{IWL_ANT_OK_SINGLE, IWL_ANT_OK_SINGLE, false },
{IWL_ANT_OK_NONE, IWL_ANT_OK_NONE, false }
};
bool iwl_tt_is_low_power_state(struct iwl_priv *priv)
{
struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
if (tt->state >= IWL_TI_1)
return true;
return false;
}
u8 iwl_tt_current_power_mode(struct iwl_priv *priv)
{
struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
return tt->tt_power_mode;
}
bool iwl_ht_enabled(struct iwl_priv *priv)
{
struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
struct iwl_tt_restriction *restriction;
if (!priv->thermal_throttle.advanced_tt)
return true;
restriction = tt->restriction + tt->state;
return restriction->is_ht;
}
static bool iwl_within_ct_kill_margin(struct iwl_priv *priv)
{
s32 temp = priv->temperature; /* degrees CELSIUS except specified */
bool within_margin = false;
if (!priv->thermal_throttle.advanced_tt)
within_margin = ((temp + IWL_TT_CT_KILL_MARGIN) >=
CT_KILL_THRESHOLD_LEGACY) ? true : false;
else
within_margin = ((temp + IWL_TT_CT_KILL_MARGIN) >=
CT_KILL_THRESHOLD) ? true : false;
return within_margin;
}
bool iwl_check_for_ct_kill(struct iwl_priv *priv)
{
bool is_ct_kill = false;
if (iwl_within_ct_kill_margin(priv)) {
iwl_tt_enter_ct_kill(priv);
is_ct_kill = true;
}
return is_ct_kill;
}
enum iwl_antenna_ok iwl_tx_ant_restriction(struct iwl_priv *priv)
{
struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
struct iwl_tt_restriction *restriction;
if (!priv->thermal_throttle.advanced_tt)
return IWL_ANT_OK_MULTI;
restriction = tt->restriction + tt->state;
return restriction->tx_stream;
}
enum iwl_antenna_ok iwl_rx_ant_restriction(struct iwl_priv *priv)
{
struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
struct iwl_tt_restriction *restriction;
if (!priv->thermal_throttle.advanced_tt)
return IWL_ANT_OK_MULTI;
restriction = tt->restriction + tt->state;
return restriction->rx_stream;
}
#define CT_KILL_EXIT_DURATION (5) /* 5 seconds duration */
#define CT_KILL_WAITING_DURATION (300) /* 300ms duration */
/*
* toggle the bit to wake up uCode and check the temperature
* if the temperature is below CT, uCode will stay awake and send card
* state notification with CT_KILL bit clear to inform Thermal Throttling
* Management to change state. Otherwise, uCode will go back to sleep
* without doing anything, driver should continue the 5 seconds timer
* to wake up uCode for temperature check until temperature drop below CT
*/
static void iwl_tt_check_exit_ct_kill(struct timer_list *t)
{
struct iwl_priv *priv = from_timer(priv, t,
thermal_throttle.ct_kill_exit_tm);
struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
if (test_bit(STATUS_EXIT_PENDING, &priv->status))
return;
if (tt->state == IWL_TI_CT_KILL) {
if (priv->thermal_throttle.ct_kill_toggle) {
iwl_write32(priv->trans, CSR_UCODE_DRV_GP1_CLR,
CSR_UCODE_DRV_GP1_REG_BIT_CT_KILL_EXIT);
priv->thermal_throttle.ct_kill_toggle = false;
} else {
iwl_write32(priv->trans, CSR_UCODE_DRV_GP1_SET,
CSR_UCODE_DRV_GP1_REG_BIT_CT_KILL_EXIT);
priv->thermal_throttle.ct_kill_toggle = true;
}
iwl_read32(priv->trans, CSR_UCODE_DRV_GP1);
if (iwl_trans_grab_nic_access(priv->trans))
iwl_trans_release_nic_access(priv->trans);
/* Reschedule the ct_kill timer to occur in
* CT_KILL_EXIT_DURATION seconds to ensure we get a
* thermal update */
IWL_DEBUG_TEMP(priv, "schedule ct_kill exit timer\n");
mod_timer(&priv->thermal_throttle.ct_kill_exit_tm,
jiffies + CT_KILL_EXIT_DURATION * HZ);
}
}
static void iwl_perform_ct_kill_task(struct iwl_priv *priv,
bool stop)
{
if (stop) {
IWL_DEBUG_TEMP(priv, "Stop all queues\n");
if (priv->mac80211_registered)
ieee80211_stop_queues(priv->hw);
IWL_DEBUG_TEMP(priv,
"Schedule 5 seconds CT_KILL Timer\n");
mod_timer(&priv->thermal_throttle.ct_kill_exit_tm,
jiffies + CT_KILL_EXIT_DURATION * HZ);
} else {
IWL_DEBUG_TEMP(priv, "Wake all queues\n");
if (priv->mac80211_registered)
ieee80211_wake_queues(priv->hw);
}
}
static void iwl_tt_ready_for_ct_kill(struct timer_list *t)
{
struct iwl_priv *priv = from_timer(priv, t,
thermal_throttle.ct_kill_waiting_tm);
struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
if (test_bit(STATUS_EXIT_PENDING, &priv->status))
return;
/* temperature timer expired, ready to go into CT_KILL state */
if (tt->state != IWL_TI_CT_KILL) {
IWL_DEBUG_TEMP(priv, "entering CT_KILL state when "
"temperature timer expired\n");
tt->state = IWL_TI_CT_KILL;
set_bit(STATUS_CT_KILL, &priv->status);
iwl_perform_ct_kill_task(priv, true);
}
}
static void iwl_prepare_ct_kill_task(struct iwl_priv *priv)
{
IWL_DEBUG_TEMP(priv, "Prepare to enter IWL_TI_CT_KILL\n");
/* make request to retrieve statistics information */
iwl_send_statistics_request(priv, 0, false);
/* Reschedule the ct_kill wait timer */
mod_timer(&priv->thermal_throttle.ct_kill_waiting_tm,
jiffies + msecs_to_jiffies(CT_KILL_WAITING_DURATION));
}
#define IWL_MINIMAL_POWER_THRESHOLD (CT_KILL_THRESHOLD_LEGACY)
#define IWL_REDUCED_PERFORMANCE_THRESHOLD_2 (100)
#define IWL_REDUCED_PERFORMANCE_THRESHOLD_1 (90)
/*
* Legacy thermal throttling
* 1) Avoid NIC destruction due to high temperatures
* Chip will identify dangerously high temperatures that can
* harm the device and will power down
* 2) Avoid the NIC power down due to high temperature
* Throttle early enough to lower the power consumption before
* drastic steps are needed
*/
static void iwl_legacy_tt_handler(struct iwl_priv *priv, s32 temp, bool force)
{
struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
enum iwl_tt_state old_state;
#ifdef CONFIG_IWLWIFI_DEBUG
if ((tt->tt_previous_temp) &&
(temp > tt->tt_previous_temp) &&
((temp - tt->tt_previous_temp) >
IWL_TT_INCREASE_MARGIN)) {
IWL_DEBUG_TEMP(priv,
"Temperature increase %d degree Celsius\n",
(temp - tt->tt_previous_temp));
}
#endif
old_state = tt->state;
/* in Celsius */
if (temp >= IWL_MINIMAL_POWER_THRESHOLD)
tt->state = IWL_TI_CT_KILL;
else if (temp >= IWL_REDUCED_PERFORMANCE_THRESHOLD_2)
tt->state = IWL_TI_2;
else if (temp >= IWL_REDUCED_PERFORMANCE_THRESHOLD_1)
tt->state = IWL_TI_1;
else
tt->state = IWL_TI_0;
#ifdef CONFIG_IWLWIFI_DEBUG
tt->tt_previous_temp = temp;
#endif
/* stop ct_kill_waiting_tm timer */
del_timer_sync(&priv->thermal_throttle.ct_kill_waiting_tm);
if (tt->state != old_state) {
switch (tt->state) {
case IWL_TI_0:
/*
* When the system is ready to go back to IWL_TI_0
* we only have to call iwl_power_update_mode() to
* do so.
*/
break;
case IWL_TI_1:
tt->tt_power_mode = IWL_POWER_INDEX_3;
break;
case IWL_TI_2:
tt->tt_power_mode = IWL_POWER_INDEX_4;
break;
default:
tt->tt_power_mode = IWL_POWER_INDEX_5;
break;
}
mutex_lock(&priv->mutex);
if (old_state == IWL_TI_CT_KILL)
clear_bit(STATUS_CT_KILL, &priv->status);
if (tt->state != IWL_TI_CT_KILL &&
iwl_power_update_mode(priv, true)) {
/* TT state not updated
* try again during next temperature read
*/
if (old_state == IWL_TI_CT_KILL)
set_bit(STATUS_CT_KILL, &priv->status);
tt->state = old_state;
IWL_ERR(priv, "Cannot update power mode, "
"TT state not updated\n");
} else {
if (tt->state == IWL_TI_CT_KILL) {
if (force) {
set_bit(STATUS_CT_KILL, &priv->status);
iwl_perform_ct_kill_task(priv, true);
} else {
iwl_prepare_ct_kill_task(priv);
tt->state = old_state;
}
} else if (old_state == IWL_TI_CT_KILL) {
iwl_perform_ct_kill_task(priv, false);
}
IWL_DEBUG_TEMP(priv, "Temperature state changed %u\n",
tt->state);
IWL_DEBUG_TEMP(priv, "Power Index change to %u\n",
tt->tt_power_mode);
}
mutex_unlock(&priv->mutex);
}
}
/*
* Advance thermal throttling
* 1) Avoid NIC destruction due to high temperatures
* Chip will identify dangerously high temperatures that can
* harm the device and will power down
* 2) Avoid the NIC power down due to high temperature
* Throttle early enough to lower the power consumption before
* drastic steps are needed
* Actions include relaxing the power down sleep thresholds and
* decreasing the number of TX streams
* 3) Avoid throughput performance impact as much as possible
*
*=============================================================================
* Condition Nxt State Condition Nxt State Condition Nxt State
*-----------------------------------------------------------------------------
* IWL_TI_0 T >= 114 CT_KILL 114>T>=105 TI_1 N/A N/A
* IWL_TI_1 T >= 114 CT_KILL 114>T>=110 TI_2 T<=95 TI_0
* IWL_TI_2 T >= 114 CT_KILL T<=100 TI_1
* IWL_CT_KILL N/A N/A N/A N/A T<=95 TI_0
*=============================================================================
*/
static void iwl_advance_tt_handler(struct iwl_priv *priv, s32 temp, bool force)
{
struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
int i;
bool changed = false;
enum iwl_tt_state old_state;
struct iwl_tt_trans *transaction;
old_state = tt->state;
for (i = 0; i < IWL_TI_STATE_MAX - 1; i++) {
/* based on the current TT state,
* find the curresponding transaction table
* each table has (IWL_TI_STATE_MAX - 1) entries
* tt->transaction + ((old_state * (IWL_TI_STATE_MAX - 1))
* will advance to the correct table.
* then based on the current temperature
* find the next state need to transaction to
* go through all the possible (IWL_TI_STATE_MAX - 1) entries
* in the current table to see if transaction is needed
*/
transaction = tt->transaction +
((old_state * (IWL_TI_STATE_MAX - 1)) + i);
if (temp >= transaction->tt_low &&
temp <= transaction->tt_high) {
#ifdef CONFIG_IWLWIFI_DEBUG
if ((tt->tt_previous_temp) &&
(temp > tt->tt_previous_temp) &&
((temp - tt->tt_previous_temp) >
IWL_TT_INCREASE_MARGIN)) {
IWL_DEBUG_TEMP(priv,
"Temperature increase %d "
"degree Celsius\n",
(temp - tt->tt_previous_temp));
}
tt->tt_previous_temp = temp;
#endif
if (old_state !=
transaction->next_state) {
changed = true;
tt->state =
transaction->next_state;
}
break;
}
}
/* stop ct_kill_waiting_tm timer */
del_timer_sync(&priv->thermal_throttle.ct_kill_waiting_tm);
if (changed) {
if (tt->state >= IWL_TI_1) {
/* force PI = IWL_POWER_INDEX_5 in the case of TI > 0 */
tt->tt_power_mode = IWL_POWER_INDEX_5;
if (!iwl_ht_enabled(priv)) {
struct iwl_rxon_context *ctx;
for_each_context(priv, ctx) {
struct iwl_rxon_cmd *rxon;
rxon = &ctx->staging;
/* disable HT */
rxon->flags &= ~(
RXON_FLG_CHANNEL_MODE_MSK |
RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK |
RXON_FLG_HT40_PROT_MSK |
RXON_FLG_HT_PROT_MSK);
}
} else {
/* check HT capability and set
* according to the system HT capability
* in case get disabled before */
iwl_set_rxon_ht(priv, &priv->current_ht_config);
}
} else {
/*
* restore system power setting -- it will be
* recalculated automatically.
*/
/* check HT capability and set
* according to the system HT capability
* in case get disabled before */
iwl_set_rxon_ht(priv, &priv->current_ht_config);
}
mutex_lock(&priv->mutex);
if (old_state == IWL_TI_CT_KILL)
clear_bit(STATUS_CT_KILL, &priv->status);
if (tt->state != IWL_TI_CT_KILL &&
iwl_power_update_mode(priv, true)) {
/* TT state not updated
* try again during next temperature read
*/
IWL_ERR(priv, "Cannot update power mode, "
"TT state not updated\n");
if (old_state == IWL_TI_CT_KILL)
set_bit(STATUS_CT_KILL, &priv->status);
tt->state = old_state;
} else {
IWL_DEBUG_TEMP(priv,
"Thermal Throttling to new state: %u\n",
tt->state);
if (old_state != IWL_TI_CT_KILL &&
tt->state == IWL_TI_CT_KILL) {
if (force) {
IWL_DEBUG_TEMP(priv,
"Enter IWL_TI_CT_KILL\n");
set_bit(STATUS_CT_KILL, &priv->status);
iwl_perform_ct_kill_task(priv, true);
} else {
tt->state = old_state;
iwl_prepare_ct_kill_task(priv);
}
} else if (old_state == IWL_TI_CT_KILL &&
tt->state != IWL_TI_CT_KILL) {
IWL_DEBUG_TEMP(priv, "Exit IWL_TI_CT_KILL\n");
iwl_perform_ct_kill_task(priv, false);
}
}
mutex_unlock(&priv->mutex);
}
}
/* Card State Notification indicated reach critical temperature
* if PSP not enable, no Thermal Throttling function will be performed
* just set the GP1 bit to acknowledge the event
* otherwise, go into IWL_TI_CT_KILL state
* since Card State Notification will not provide any temperature reading
* for Legacy mode
* so just pass the CT_KILL temperature to iwl_legacy_tt_handler()
* for advance mode
* pass CT_KILL_THRESHOLD+1 to make sure move into IWL_TI_CT_KILL state
*/
static void iwl_bg_ct_enter(struct work_struct *work)
{
struct iwl_priv *priv = container_of(work, struct iwl_priv, ct_enter);
struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
if (test_bit(STATUS_EXIT_PENDING, &priv->status))
return;
if (!iwl_is_ready(priv))
return;
if (tt->state != IWL_TI_CT_KILL) {
IWL_ERR(priv, "Device reached critical temperature "
"- ucode going to sleep!\n");
if (!priv->thermal_throttle.advanced_tt)
iwl_legacy_tt_handler(priv,
IWL_MINIMAL_POWER_THRESHOLD,
true);
else
iwl_advance_tt_handler(priv,
CT_KILL_THRESHOLD + 1, true);
}
}
/* Card State Notification indicated out of critical temperature
* since Card State Notification will not provide any temperature reading
* so pass the IWL_REDUCED_PERFORMANCE_THRESHOLD_2 temperature
* to iwl_legacy_tt_handler() to get out of IWL_CT_KILL state
*/
static void iwl_bg_ct_exit(struct work_struct *work)
{
struct iwl_priv *priv = container_of(work, struct iwl_priv, ct_exit);
struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
if (test_bit(STATUS_EXIT_PENDING, &priv->status))
return;
if (!iwl_is_ready(priv))
return;
/* stop ct_kill_exit_tm timer */
del_timer_sync(&priv->thermal_throttle.ct_kill_exit_tm);
if (tt->state == IWL_TI_CT_KILL) {
IWL_ERR(priv,
"Device temperature below critical"
"- ucode awake!\n");
/*
* exit from CT_KILL state
* reset the current temperature reading
*/
priv->temperature = 0;
if (!priv->thermal_throttle.advanced_tt)
iwl_legacy_tt_handler(priv,
IWL_REDUCED_PERFORMANCE_THRESHOLD_2,
true);
else
iwl_advance_tt_handler(priv, CT_KILL_EXIT_THRESHOLD,
true);
}
}
void iwl_tt_enter_ct_kill(struct iwl_priv *priv)
{
if (test_bit(STATUS_EXIT_PENDING, &priv->status))
return;
IWL_DEBUG_TEMP(priv, "Queueing critical temperature enter.\n");
queue_work(priv->workqueue, &priv->ct_enter);
}
void iwl_tt_exit_ct_kill(struct iwl_priv *priv)
{
if (test_bit(STATUS_EXIT_PENDING, &priv->status))
return;
IWL_DEBUG_TEMP(priv, "Queueing critical temperature exit.\n");
queue_work(priv->workqueue, &priv->ct_exit);
}
static void iwl_bg_tt_work(struct work_struct *work)
{
struct iwl_priv *priv = container_of(work, struct iwl_priv, tt_work);
s32 temp = priv->temperature; /* degrees CELSIUS except specified */
if (test_bit(STATUS_EXIT_PENDING, &priv->status))
return;
if (!priv->thermal_throttle.advanced_tt)
iwl_legacy_tt_handler(priv, temp, false);
else
iwl_advance_tt_handler(priv, temp, false);
}
void iwl_tt_handler(struct iwl_priv *priv)
{
if (test_bit(STATUS_EXIT_PENDING, &priv->status))
return;
IWL_DEBUG_TEMP(priv, "Queueing thermal throttling work.\n");
queue_work(priv->workqueue, &priv->tt_work);
}
/* Thermal throttling initialization
* For advance thermal throttling:
* Initialize Thermal Index and temperature threshold table
* Initialize thermal throttling restriction table
*/
void iwl_tt_initialize(struct iwl_priv *priv)
{
struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
int size = sizeof(struct iwl_tt_trans) * (IWL_TI_STATE_MAX - 1);
struct iwl_tt_trans *transaction;
IWL_DEBUG_TEMP(priv, "Initialize Thermal Throttling\n");
memset(tt, 0, sizeof(struct iwl_tt_mgmt));
tt->state = IWL_TI_0;
timer_setup(&priv->thermal_throttle.ct_kill_exit_tm,
iwl_tt_check_exit_ct_kill, 0);
timer_setup(&priv->thermal_throttle.ct_kill_waiting_tm,
iwl_tt_ready_for_ct_kill, 0);
/* setup deferred ct kill work */
INIT_WORK(&priv->tt_work, iwl_bg_tt_work);
INIT_WORK(&priv->ct_enter, iwl_bg_ct_enter);
INIT_WORK(&priv->ct_exit, iwl_bg_ct_exit);
if (priv->lib->adv_thermal_throttle) {
IWL_DEBUG_TEMP(priv, "Advanced Thermal Throttling\n");
tt->restriction = kcalloc(IWL_TI_STATE_MAX,
sizeof(struct iwl_tt_restriction),
GFP_KERNEL);
tt->transaction = kcalloc(IWL_TI_STATE_MAX *
(IWL_TI_STATE_MAX - 1),
sizeof(struct iwl_tt_trans),
GFP_KERNEL);
if (!tt->restriction || !tt->transaction) {
IWL_ERR(priv, "Fallback to Legacy Throttling\n");
priv->thermal_throttle.advanced_tt = false;
kfree(tt->restriction);
tt->restriction = NULL;
kfree(tt->transaction);
tt->transaction = NULL;
} else {
transaction = tt->transaction +
(IWL_TI_0 * (IWL_TI_STATE_MAX - 1));
memcpy(transaction, &tt_range_0[0], size);
transaction = tt->transaction +
(IWL_TI_1 * (IWL_TI_STATE_MAX - 1));
memcpy(transaction, &tt_range_1[0], size);
transaction = tt->transaction +
(IWL_TI_2 * (IWL_TI_STATE_MAX - 1));
memcpy(transaction, &tt_range_2[0], size);
transaction = tt->transaction +
(IWL_TI_CT_KILL * (IWL_TI_STATE_MAX - 1));
memcpy(transaction, &tt_range_3[0], size);
size = sizeof(struct iwl_tt_restriction) *
IWL_TI_STATE_MAX;
memcpy(tt->restriction,
&restriction_range[0], size);
priv->thermal_throttle.advanced_tt = true;
}
} else {
IWL_DEBUG_TEMP(priv, "Legacy Thermal Throttling\n");
priv->thermal_throttle.advanced_tt = false;
}
}
/* cleanup thermal throttling management related memory and timer */
void iwl_tt_exit(struct iwl_priv *priv)
{
struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
/* stop ct_kill_exit_tm timer if activated */
del_timer_sync(&priv->thermal_throttle.ct_kill_exit_tm);
/* stop ct_kill_waiting_tm timer if activated */
del_timer_sync(&priv->thermal_throttle.ct_kill_waiting_tm);
cancel_work_sync(&priv->tt_work);
cancel_work_sync(&priv->ct_enter);
cancel_work_sync(&priv->ct_exit);
if (priv->thermal_throttle.advanced_tt) {
/* free advance thermal throttling memory */
kfree(tt->restriction);
tt->restriction = NULL;
kfree(tt->transaction);
tt->transaction = NULL;
}
}