linux-zen-server/drivers/net/wireless/marvell/mwifiex/wmm.c

1540 lines
40 KiB
C
Raw Normal View History

2023-08-30 17:53:23 +02:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* NXP Wireless LAN device driver: WMM
*
* Copyright 2011-2020 NXP
*/
#include "decl.h"
#include "ioctl.h"
#include "util.h"
#include "fw.h"
#include "main.h"
#include "wmm.h"
#include "11n.h"
/* Maximum value FW can accept for driver delay in packet transmission */
#define DRV_PKT_DELAY_TO_FW_MAX 512
#define WMM_QUEUED_PACKET_LOWER_LIMIT 180
#define WMM_QUEUED_PACKET_UPPER_LIMIT 200
/* Offset for TOS field in the IP header */
#define IPTOS_OFFSET 5
static bool disable_tx_amsdu;
module_param(disable_tx_amsdu, bool, 0644);
/* This table inverses the tos_to_tid operation to get a priority
* which is in sequential order, and can be compared.
* Use this to compare the priority of two different TIDs.
*/
const u8 tos_to_tid_inv[] = {
0x02, /* from tos_to_tid[2] = 0 */
0x00, /* from tos_to_tid[0] = 1 */
0x01, /* from tos_to_tid[1] = 2 */
0x03,
0x04,
0x05,
0x06,
0x07
};
/* WMM information IE */
static const u8 wmm_info_ie[] = { WLAN_EID_VENDOR_SPECIFIC, 0x07,
0x00, 0x50, 0xf2, 0x02,
0x00, 0x01, 0x00
};
static const u8 wmm_aci_to_qidx_map[] = { WMM_AC_BE,
WMM_AC_BK,
WMM_AC_VI,
WMM_AC_VO
};
static u8 tos_to_tid[] = {
/* TID DSCP_P2 DSCP_P1 DSCP_P0 WMM_AC */
0x01, /* 0 1 0 AC_BK */
0x02, /* 0 0 0 AC_BK */
0x00, /* 0 0 1 AC_BE */
0x03, /* 0 1 1 AC_BE */
0x04, /* 1 0 0 AC_VI */
0x05, /* 1 0 1 AC_VI */
0x06, /* 1 1 0 AC_VO */
0x07 /* 1 1 1 AC_VO */
};
static u8 ac_to_tid[4][2] = { {1, 2}, {0, 3}, {4, 5}, {6, 7} };
/*
* This function debug prints the priority parameters for a WMM AC.
*/
static void
mwifiex_wmm_ac_debug_print(const struct ieee_types_wmm_ac_parameters *ac_param)
{
const char *ac_str[] = { "BK", "BE", "VI", "VO" };
pr_debug("info: WMM AC_%s: ACI=%d, ACM=%d, Aifsn=%d, "
"EcwMin=%d, EcwMax=%d, TxopLimit=%d\n",
ac_str[wmm_aci_to_qidx_map[(ac_param->aci_aifsn_bitmap
& MWIFIEX_ACI) >> 5]],
(ac_param->aci_aifsn_bitmap & MWIFIEX_ACI) >> 5,
(ac_param->aci_aifsn_bitmap & MWIFIEX_ACM) >> 4,
ac_param->aci_aifsn_bitmap & MWIFIEX_AIFSN,
ac_param->ecw_bitmap & MWIFIEX_ECW_MIN,
(ac_param->ecw_bitmap & MWIFIEX_ECW_MAX) >> 4,
le16_to_cpu(ac_param->tx_op_limit));
}
/*
* This function allocates a route address list.
*
* The function also initializes the list with the provided RA.
*/
static struct mwifiex_ra_list_tbl *
mwifiex_wmm_allocate_ralist_node(struct mwifiex_adapter *adapter, const u8 *ra)
{
struct mwifiex_ra_list_tbl *ra_list;
ra_list = kzalloc(sizeof(struct mwifiex_ra_list_tbl), GFP_ATOMIC);
if (!ra_list)
return NULL;
INIT_LIST_HEAD(&ra_list->list);
skb_queue_head_init(&ra_list->skb_head);
memcpy(ra_list->ra, ra, ETH_ALEN);
ra_list->total_pkt_count = 0;
mwifiex_dbg(adapter, INFO, "info: allocated ra_list %p\n", ra_list);
return ra_list;
}
/* This function returns random no between 16 and 32 to be used as threshold
* for no of packets after which BA setup is initiated.
*/
static u8 mwifiex_get_random_ba_threshold(void)
{
u64 ns;
/* setup ba_packet_threshold here random number between
* [BA_SETUP_PACKET_OFFSET,
* BA_SETUP_PACKET_OFFSET+BA_SETUP_MAX_PACKET_THRESHOLD-1]
*/
ns = ktime_get_ns();
ns += (ns >> 32) + (ns >> 16);
return ((u8)ns % BA_SETUP_MAX_PACKET_THRESHOLD) + BA_SETUP_PACKET_OFFSET;
}
/*
* This function allocates and adds a RA list for all TIDs
* with the given RA.
*/
void mwifiex_ralist_add(struct mwifiex_private *priv, const u8 *ra)
{
int i;
struct mwifiex_ra_list_tbl *ra_list;
struct mwifiex_adapter *adapter = priv->adapter;
struct mwifiex_sta_node *node;
for (i = 0; i < MAX_NUM_TID; ++i) {
ra_list = mwifiex_wmm_allocate_ralist_node(adapter, ra);
mwifiex_dbg(adapter, INFO,
"info: created ra_list %p\n", ra_list);
if (!ra_list)
break;
ra_list->is_11n_enabled = 0;
ra_list->tdls_link = false;
ra_list->ba_status = BA_SETUP_NONE;
ra_list->amsdu_in_ampdu = false;
if (!mwifiex_queuing_ra_based(priv)) {
if (mwifiex_is_tdls_link_setup
(mwifiex_get_tdls_link_status(priv, ra))) {
ra_list->tdls_link = true;
ra_list->is_11n_enabled =
mwifiex_tdls_peer_11n_enabled(priv, ra);
} else {
ra_list->is_11n_enabled = IS_11N_ENABLED(priv);
}
} else {
spin_lock_bh(&priv->sta_list_spinlock);
node = mwifiex_get_sta_entry(priv, ra);
if (node)
ra_list->tx_paused = node->tx_pause;
ra_list->is_11n_enabled =
mwifiex_is_sta_11n_enabled(priv, node);
if (ra_list->is_11n_enabled)
ra_list->max_amsdu = node->max_amsdu;
spin_unlock_bh(&priv->sta_list_spinlock);
}
mwifiex_dbg(adapter, DATA, "data: ralist %p: is_11n_enabled=%d\n",
ra_list, ra_list->is_11n_enabled);
if (ra_list->is_11n_enabled) {
ra_list->ba_pkt_count = 0;
ra_list->ba_packet_thr =
mwifiex_get_random_ba_threshold();
}
list_add_tail(&ra_list->list,
&priv->wmm.tid_tbl_ptr[i].ra_list);
}
}
/*
* This function sets the WMM queue priorities to their default values.
*/
static void mwifiex_wmm_default_queue_priorities(struct mwifiex_private *priv)
{
/* Default queue priorities: VO->VI->BE->BK */
priv->wmm.queue_priority[0] = WMM_AC_VO;
priv->wmm.queue_priority[1] = WMM_AC_VI;
priv->wmm.queue_priority[2] = WMM_AC_BE;
priv->wmm.queue_priority[3] = WMM_AC_BK;
}
/*
* This function map ACs to TIDs.
*/
static void
mwifiex_wmm_queue_priorities_tid(struct mwifiex_private *priv)
{
struct mwifiex_wmm_desc *wmm = &priv->wmm;
u8 *queue_priority = wmm->queue_priority;
int i;
for (i = 0; i < 4; ++i) {
tos_to_tid[7 - (i * 2)] = ac_to_tid[queue_priority[i]][1];
tos_to_tid[6 - (i * 2)] = ac_to_tid[queue_priority[i]][0];
}
for (i = 0; i < MAX_NUM_TID; ++i)
priv->tos_to_tid_inv[tos_to_tid[i]] = (u8)i;
atomic_set(&wmm->highest_queued_prio, HIGH_PRIO_TID);
}
/*
* This function initializes WMM priority queues.
*/
void
mwifiex_wmm_setup_queue_priorities(struct mwifiex_private *priv,
struct ieee_types_wmm_parameter *wmm_ie)
{
u16 cw_min, avg_back_off, tmp[4];
u32 i, j, num_ac;
u8 ac_idx;
if (!wmm_ie || !priv->wmm_enabled) {
/* WMM is not enabled, just set the defaults and return */
mwifiex_wmm_default_queue_priorities(priv);
return;
}
mwifiex_dbg(priv->adapter, INFO,
"info: WMM Parameter IE: version=%d,\t"
"qos_info Parameter Set Count=%d, Reserved=%#x\n",
wmm_ie->version, wmm_ie->qos_info_bitmap &
IEEE80211_WMM_IE_AP_QOSINFO_PARAM_SET_CNT_MASK,
wmm_ie->reserved);
for (num_ac = 0; num_ac < ARRAY_SIZE(wmm_ie->ac_params); num_ac++) {
u8 ecw = wmm_ie->ac_params[num_ac].ecw_bitmap;
u8 aci_aifsn = wmm_ie->ac_params[num_ac].aci_aifsn_bitmap;
cw_min = (1 << (ecw & MWIFIEX_ECW_MIN)) - 1;
avg_back_off = (cw_min >> 1) + (aci_aifsn & MWIFIEX_AIFSN);
ac_idx = wmm_aci_to_qidx_map[(aci_aifsn & MWIFIEX_ACI) >> 5];
priv->wmm.queue_priority[ac_idx] = ac_idx;
tmp[ac_idx] = avg_back_off;
mwifiex_dbg(priv->adapter, INFO,
"info: WMM: CWmax=%d CWmin=%d Avg Back-off=%d\n",
(1 << ((ecw & MWIFIEX_ECW_MAX) >> 4)) - 1,
cw_min, avg_back_off);
mwifiex_wmm_ac_debug_print(&wmm_ie->ac_params[num_ac]);
}
/* Bubble sort */
for (i = 0; i < num_ac; i++) {
for (j = 1; j < num_ac - i; j++) {
if (tmp[j - 1] > tmp[j]) {
swap(tmp[j - 1], tmp[j]);
swap(priv->wmm.queue_priority[j - 1],
priv->wmm.queue_priority[j]);
} else if (tmp[j - 1] == tmp[j]) {
if (priv->wmm.queue_priority[j - 1]
< priv->wmm.queue_priority[j])
swap(priv->wmm.queue_priority[j - 1],
priv->wmm.queue_priority[j]);
}
}
}
mwifiex_wmm_queue_priorities_tid(priv);
}
/*
* This function evaluates whether or not an AC is to be downgraded.
*
* In case the AC is not enabled, the highest AC is returned that is
* enabled and does not require admission control.
*/
static enum mwifiex_wmm_ac_e
mwifiex_wmm_eval_downgrade_ac(struct mwifiex_private *priv,
enum mwifiex_wmm_ac_e eval_ac)
{
int down_ac;
enum mwifiex_wmm_ac_e ret_ac;
struct mwifiex_wmm_ac_status *ac_status;
ac_status = &priv->wmm.ac_status[eval_ac];
if (!ac_status->disabled)
/* Okay to use this AC, its enabled */
return eval_ac;
/* Setup a default return value of the lowest priority */
ret_ac = WMM_AC_BK;
/*
* Find the highest AC that is enabled and does not require
* admission control. The spec disallows downgrading to an AC,
* which is enabled due to a completed admission control.
* Unadmitted traffic is not to be sent on an AC with admitted
* traffic.
*/
for (down_ac = WMM_AC_BK; down_ac < eval_ac; down_ac++) {
ac_status = &priv->wmm.ac_status[down_ac];
if (!ac_status->disabled && !ac_status->flow_required)
/* AC is enabled and does not require admission
control */
ret_ac = (enum mwifiex_wmm_ac_e) down_ac;
}
return ret_ac;
}
/*
* This function downgrades WMM priority queue.
*/
void
mwifiex_wmm_setup_ac_downgrade(struct mwifiex_private *priv)
{
int ac_val;
mwifiex_dbg(priv->adapter, INFO, "info: WMM: AC Priorities:\t"
"BK(0), BE(1), VI(2), VO(3)\n");
if (!priv->wmm_enabled) {
/* WMM is not enabled, default priorities */
for (ac_val = WMM_AC_BK; ac_val <= WMM_AC_VO; ac_val++)
priv->wmm.ac_down_graded_vals[ac_val] =
(enum mwifiex_wmm_ac_e) ac_val;
} else {
for (ac_val = WMM_AC_BK; ac_val <= WMM_AC_VO; ac_val++) {
priv->wmm.ac_down_graded_vals[ac_val]
= mwifiex_wmm_eval_downgrade_ac(priv,
(enum mwifiex_wmm_ac_e) ac_val);
mwifiex_dbg(priv->adapter, INFO,
"info: WMM: AC PRIO %d maps to %d\n",
ac_val,
priv->wmm.ac_down_graded_vals[ac_val]);
}
}
}
/*
* This function converts the IP TOS field to an WMM AC
* Queue assignment.
*/
static enum mwifiex_wmm_ac_e
mwifiex_wmm_convert_tos_to_ac(struct mwifiex_adapter *adapter, u32 tos)
{
/* Map of TOS UP values to WMM AC */
static const enum mwifiex_wmm_ac_e tos_to_ac[] = {
WMM_AC_BE,
WMM_AC_BK,
WMM_AC_BK,
WMM_AC_BE,
WMM_AC_VI,
WMM_AC_VI,
WMM_AC_VO,
WMM_AC_VO
};
if (tos >= ARRAY_SIZE(tos_to_ac))
return WMM_AC_BE;
return tos_to_ac[tos];
}
/*
* This function evaluates a given TID and downgrades it to a lower
* TID if the WMM Parameter IE received from the AP indicates that the
* AP is disabled (due to call admission control (ACM bit). Mapping
* of TID to AC is taken care of internally.
*/
u8 mwifiex_wmm_downgrade_tid(struct mwifiex_private *priv, u32 tid)
{
enum mwifiex_wmm_ac_e ac, ac_down;
u8 new_tid;
ac = mwifiex_wmm_convert_tos_to_ac(priv->adapter, tid);
ac_down = priv->wmm.ac_down_graded_vals[ac];
/* Send the index to tid array, picking from the array will be
* taken care by dequeuing function
*/
new_tid = ac_to_tid[ac_down][tid % 2];
return new_tid;
}
/*
* This function initializes the WMM state information and the
* WMM data path queues.
*/
void
mwifiex_wmm_init(struct mwifiex_adapter *adapter)
{
int i, j;
struct mwifiex_private *priv;
for (j = 0; j < adapter->priv_num; ++j) {
priv = adapter->priv[j];
if (!priv)
continue;
for (i = 0; i < MAX_NUM_TID; ++i) {
if (!disable_tx_amsdu &&
adapter->tx_buf_size > MWIFIEX_TX_DATA_BUF_SIZE_2K)
priv->aggr_prio_tbl[i].amsdu =
priv->tos_to_tid_inv[i];
else
priv->aggr_prio_tbl[i].amsdu =
BA_STREAM_NOT_ALLOWED;
priv->aggr_prio_tbl[i].ampdu_ap =
priv->tos_to_tid_inv[i];
priv->aggr_prio_tbl[i].ampdu_user =
priv->tos_to_tid_inv[i];
}
priv->aggr_prio_tbl[6].amsdu
= priv->aggr_prio_tbl[6].ampdu_ap
= priv->aggr_prio_tbl[6].ampdu_user
= BA_STREAM_NOT_ALLOWED;
priv->aggr_prio_tbl[7].amsdu = priv->aggr_prio_tbl[7].ampdu_ap
= priv->aggr_prio_tbl[7].ampdu_user
= BA_STREAM_NOT_ALLOWED;
mwifiex_set_ba_params(priv);
mwifiex_reset_11n_rx_seq_num(priv);
priv->wmm.drv_pkt_delay_max = MWIFIEX_WMM_DRV_DELAY_MAX;
atomic_set(&priv->wmm.tx_pkts_queued, 0);
atomic_set(&priv->wmm.highest_queued_prio, HIGH_PRIO_TID);
}
}
int mwifiex_bypass_txlist_empty(struct mwifiex_adapter *adapter)
{
struct mwifiex_private *priv;
int i;
for (i = 0; i < adapter->priv_num; i++) {
priv = adapter->priv[i];
if (!priv)
continue;
if (adapter->if_ops.is_port_ready &&
!adapter->if_ops.is_port_ready(priv))
continue;
if (!skb_queue_empty(&priv->bypass_txq))
return false;
}
return true;
}
/*
* This function checks if WMM Tx queue is empty.
*/
int
mwifiex_wmm_lists_empty(struct mwifiex_adapter *adapter)
{
int i;
struct mwifiex_private *priv;
for (i = 0; i < adapter->priv_num; ++i) {
priv = adapter->priv[i];
if (!priv)
continue;
if (!priv->port_open &&
(priv->bss_mode != NL80211_IFTYPE_ADHOC))
continue;
if (adapter->if_ops.is_port_ready &&
!adapter->if_ops.is_port_ready(priv))
continue;
if (atomic_read(&priv->wmm.tx_pkts_queued))
return false;
}
return true;
}
/*
* This function deletes all packets in an RA list node.
*
* The packet sent completion callback handler are called with
* status failure, after they are dequeued to ensure proper
* cleanup. The RA list node itself is freed at the end.
*/
static void
mwifiex_wmm_del_pkts_in_ralist_node(struct mwifiex_private *priv,
struct mwifiex_ra_list_tbl *ra_list)
{
struct mwifiex_adapter *adapter = priv->adapter;
struct sk_buff *skb, *tmp;
skb_queue_walk_safe(&ra_list->skb_head, skb, tmp) {
skb_unlink(skb, &ra_list->skb_head);
mwifiex_write_data_complete(adapter, skb, 0, -1);
}
}
/*
* This function deletes all packets in an RA list.
*
* Each nodes in the RA list are freed individually first, and then
* the RA list itself is freed.
*/
static void
mwifiex_wmm_del_pkts_in_ralist(struct mwifiex_private *priv,
struct list_head *ra_list_head)
{
struct mwifiex_ra_list_tbl *ra_list;
list_for_each_entry(ra_list, ra_list_head, list)
mwifiex_wmm_del_pkts_in_ralist_node(priv, ra_list);
}
/*
* This function deletes all packets in all RA lists.
*/
static void mwifiex_wmm_cleanup_queues(struct mwifiex_private *priv)
{
int i;
for (i = 0; i < MAX_NUM_TID; i++)
mwifiex_wmm_del_pkts_in_ralist(priv, &priv->wmm.tid_tbl_ptr[i].
ra_list);
atomic_set(&priv->wmm.tx_pkts_queued, 0);
atomic_set(&priv->wmm.highest_queued_prio, HIGH_PRIO_TID);
}
/*
* This function deletes all route addresses from all RA lists.
*/
static void mwifiex_wmm_delete_all_ralist(struct mwifiex_private *priv)
{
struct mwifiex_ra_list_tbl *ra_list, *tmp_node;
int i;
for (i = 0; i < MAX_NUM_TID; ++i) {
mwifiex_dbg(priv->adapter, INFO,
"info: ra_list: freeing buf for tid %d\n", i);
list_for_each_entry_safe(ra_list, tmp_node,
&priv->wmm.tid_tbl_ptr[i].ra_list,
list) {
list_del(&ra_list->list);
kfree(ra_list);
}
INIT_LIST_HEAD(&priv->wmm.tid_tbl_ptr[i].ra_list);
}
}
static int mwifiex_free_ack_frame(int id, void *p, void *data)
{
pr_warn("Have pending ack frames!\n");
kfree_skb(p);
return 0;
}
/*
* This function cleans up the Tx and Rx queues.
*
* Cleanup includes -
* - All packets in RA lists
* - All entries in Rx reorder table
* - All entries in Tx BA stream table
* - MPA buffer (if required)
* - All RA lists
*/
void
mwifiex_clean_txrx(struct mwifiex_private *priv)
{
struct sk_buff *skb, *tmp;
mwifiex_11n_cleanup_reorder_tbl(priv);
spin_lock_bh(&priv->wmm.ra_list_spinlock);
mwifiex_wmm_cleanup_queues(priv);
mwifiex_11n_delete_all_tx_ba_stream_tbl(priv);
if (priv->adapter->if_ops.cleanup_mpa_buf)
priv->adapter->if_ops.cleanup_mpa_buf(priv->adapter);
mwifiex_wmm_delete_all_ralist(priv);
memcpy(tos_to_tid, ac_to_tid, sizeof(tos_to_tid));
if (priv->adapter->if_ops.clean_pcie_ring &&
!test_bit(MWIFIEX_SURPRISE_REMOVED, &priv->adapter->work_flags))
priv->adapter->if_ops.clean_pcie_ring(priv->adapter);
spin_unlock_bh(&priv->wmm.ra_list_spinlock);
skb_queue_walk_safe(&priv->tdls_txq, skb, tmp) {
skb_unlink(skb, &priv->tdls_txq);
mwifiex_write_data_complete(priv->adapter, skb, 0, -1);
}
skb_queue_walk_safe(&priv->bypass_txq, skb, tmp) {
skb_unlink(skb, &priv->bypass_txq);
mwifiex_write_data_complete(priv->adapter, skb, 0, -1);
}
atomic_set(&priv->adapter->bypass_tx_pending, 0);
idr_for_each(&priv->ack_status_frames, mwifiex_free_ack_frame, NULL);
idr_destroy(&priv->ack_status_frames);
}
/*
* This function retrieves a particular RA list node, matching with the
* given TID and RA address.
*/
struct mwifiex_ra_list_tbl *
mwifiex_wmm_get_ralist_node(struct mwifiex_private *priv, u8 tid,
const u8 *ra_addr)
{
struct mwifiex_ra_list_tbl *ra_list;
list_for_each_entry(ra_list, &priv->wmm.tid_tbl_ptr[tid].ra_list,
list) {
if (!memcmp(ra_list->ra, ra_addr, ETH_ALEN))
return ra_list;
}
return NULL;
}
void mwifiex_update_ralist_tx_pause(struct mwifiex_private *priv, u8 *mac,
u8 tx_pause)
{
struct mwifiex_ra_list_tbl *ra_list;
u32 pkt_cnt = 0, tx_pkts_queued;
int i;
spin_lock_bh(&priv->wmm.ra_list_spinlock);
for (i = 0; i < MAX_NUM_TID; ++i) {
ra_list = mwifiex_wmm_get_ralist_node(priv, i, mac);
if (ra_list && ra_list->tx_paused != tx_pause) {
pkt_cnt += ra_list->total_pkt_count;
ra_list->tx_paused = tx_pause;
if (tx_pause)
priv->wmm.pkts_paused[i] +=
ra_list->total_pkt_count;
else
priv->wmm.pkts_paused[i] -=
ra_list->total_pkt_count;
}
}
if (pkt_cnt) {
tx_pkts_queued = atomic_read(&priv->wmm.tx_pkts_queued);
if (tx_pause)
tx_pkts_queued -= pkt_cnt;
else
tx_pkts_queued += pkt_cnt;
atomic_set(&priv->wmm.tx_pkts_queued, tx_pkts_queued);
atomic_set(&priv->wmm.highest_queued_prio, HIGH_PRIO_TID);
}
spin_unlock_bh(&priv->wmm.ra_list_spinlock);
}
/* This function updates non-tdls peer ralist tx_pause while
* tdls channel switching
*/
void mwifiex_update_ralist_tx_pause_in_tdls_cs(struct mwifiex_private *priv,
u8 *mac, u8 tx_pause)
{
struct mwifiex_ra_list_tbl *ra_list;
u32 pkt_cnt = 0, tx_pkts_queued;
int i;
spin_lock_bh(&priv->wmm.ra_list_spinlock);
for (i = 0; i < MAX_NUM_TID; ++i) {
list_for_each_entry(ra_list, &priv->wmm.tid_tbl_ptr[i].ra_list,
list) {
if (!memcmp(ra_list->ra, mac, ETH_ALEN))
continue;
if (ra_list->tx_paused != tx_pause) {
pkt_cnt += ra_list->total_pkt_count;
ra_list->tx_paused = tx_pause;
if (tx_pause)
priv->wmm.pkts_paused[i] +=
ra_list->total_pkt_count;
else
priv->wmm.pkts_paused[i] -=
ra_list->total_pkt_count;
}
}
}
if (pkt_cnt) {
tx_pkts_queued = atomic_read(&priv->wmm.tx_pkts_queued);
if (tx_pause)
tx_pkts_queued -= pkt_cnt;
else
tx_pkts_queued += pkt_cnt;
atomic_set(&priv->wmm.tx_pkts_queued, tx_pkts_queued);
atomic_set(&priv->wmm.highest_queued_prio, HIGH_PRIO_TID);
}
spin_unlock_bh(&priv->wmm.ra_list_spinlock);
}
/*
* This function retrieves an RA list node for a given TID and
* RA address pair.
*
* If no such node is found, a new node is added first and then
* retrieved.
*/
struct mwifiex_ra_list_tbl *
mwifiex_wmm_get_queue_raptr(struct mwifiex_private *priv, u8 tid,
const u8 *ra_addr)
{
struct mwifiex_ra_list_tbl *ra_list;
ra_list = mwifiex_wmm_get_ralist_node(priv, tid, ra_addr);
if (ra_list)
return ra_list;
mwifiex_ralist_add(priv, ra_addr);
return mwifiex_wmm_get_ralist_node(priv, tid, ra_addr);
}
/*
* This function deletes RA list nodes for given mac for all TIDs.
* Function also decrements TX pending count accordingly.
*/
void
mwifiex_wmm_del_peer_ra_list(struct mwifiex_private *priv, const u8 *ra_addr)
{
struct mwifiex_ra_list_tbl *ra_list;
int i;
spin_lock_bh(&priv->wmm.ra_list_spinlock);
for (i = 0; i < MAX_NUM_TID; ++i) {
ra_list = mwifiex_wmm_get_ralist_node(priv, i, ra_addr);
if (!ra_list)
continue;
mwifiex_wmm_del_pkts_in_ralist_node(priv, ra_list);
if (ra_list->tx_paused)
priv->wmm.pkts_paused[i] -= ra_list->total_pkt_count;
else
atomic_sub(ra_list->total_pkt_count,
&priv->wmm.tx_pkts_queued);
list_del(&ra_list->list);
kfree(ra_list);
}
spin_unlock_bh(&priv->wmm.ra_list_spinlock);
}
/*
* This function checks if a particular RA list node exists in a given TID
* table index.
*/
int
mwifiex_is_ralist_valid(struct mwifiex_private *priv,
struct mwifiex_ra_list_tbl *ra_list, int ptr_index)
{
struct mwifiex_ra_list_tbl *rlist;
list_for_each_entry(rlist, &priv->wmm.tid_tbl_ptr[ptr_index].ra_list,
list) {
if (rlist == ra_list)
return true;
}
return false;
}
/*
* This function adds a packet to bypass TX queue.
* This is special TX queue for packets which can be sent even when port_open
* is false.
*/
void
mwifiex_wmm_add_buf_bypass_txqueue(struct mwifiex_private *priv,
struct sk_buff *skb)
{
skb_queue_tail(&priv->bypass_txq, skb);
}
/*
* This function adds a packet to WMM queue.
*
* In disconnected state the packet is immediately dropped and the
* packet send completion callback is called with status failure.
*
* Otherwise, the correct RA list node is located and the packet
* is queued at the list tail.
*/
void
mwifiex_wmm_add_buf_txqueue(struct mwifiex_private *priv,
struct sk_buff *skb)
{
struct mwifiex_adapter *adapter = priv->adapter;
u32 tid;
struct mwifiex_ra_list_tbl *ra_list;
u8 ra[ETH_ALEN], tid_down;
struct list_head list_head;
int tdls_status = TDLS_NOT_SETUP;
struct ethhdr *eth_hdr = (struct ethhdr *)skb->data;
struct mwifiex_txinfo *tx_info = MWIFIEX_SKB_TXCB(skb);
memcpy(ra, eth_hdr->h_dest, ETH_ALEN);
if (GET_BSS_ROLE(priv) == MWIFIEX_BSS_ROLE_STA &&
ISSUPP_TDLS_ENABLED(adapter->fw_cap_info)) {
if (ntohs(eth_hdr->h_proto) == ETH_P_TDLS)
mwifiex_dbg(adapter, DATA,
"TDLS setup packet for %pM.\t"
"Don't block\n", ra);
else if (memcmp(priv->cfg_bssid, ra, ETH_ALEN))
tdls_status = mwifiex_get_tdls_link_status(priv, ra);
}
if (!priv->media_connected && !mwifiex_is_skb_mgmt_frame(skb)) {
mwifiex_dbg(adapter, DATA, "data: drop packet in disconnect\n");
mwifiex_write_data_complete(adapter, skb, 0, -1);
return;
}
tid = skb->priority;
spin_lock_bh(&priv->wmm.ra_list_spinlock);
tid_down = mwifiex_wmm_downgrade_tid(priv, tid);
/* In case of infra as we have already created the list during
association we just don't have to call get_queue_raptr, we will
have only 1 raptr for a tid in case of infra */
if (!mwifiex_queuing_ra_based(priv) &&
!mwifiex_is_skb_mgmt_frame(skb)) {
switch (tdls_status) {
case TDLS_SETUP_COMPLETE:
case TDLS_CHAN_SWITCHING:
case TDLS_IN_BASE_CHAN:
case TDLS_IN_OFF_CHAN:
ra_list = mwifiex_wmm_get_queue_raptr(priv, tid_down,
ra);
tx_info->flags |= MWIFIEX_BUF_FLAG_TDLS_PKT;
break;
case TDLS_SETUP_INPROGRESS:
skb_queue_tail(&priv->tdls_txq, skb);
spin_unlock_bh(&priv->wmm.ra_list_spinlock);
return;
default:
list_head = priv->wmm.tid_tbl_ptr[tid_down].ra_list;
ra_list = list_first_entry_or_null(&list_head,
struct mwifiex_ra_list_tbl, list);
break;
}
} else {
memcpy(ra, skb->data, ETH_ALEN);
if (ra[0] & 0x01 || mwifiex_is_skb_mgmt_frame(skb))
eth_broadcast_addr(ra);
ra_list = mwifiex_wmm_get_queue_raptr(priv, tid_down, ra);
}
if (!ra_list) {
spin_unlock_bh(&priv->wmm.ra_list_spinlock);
mwifiex_write_data_complete(adapter, skb, 0, -1);
return;
}
skb_queue_tail(&ra_list->skb_head, skb);
ra_list->ba_pkt_count++;
ra_list->total_pkt_count++;
if (atomic_read(&priv->wmm.highest_queued_prio) <
priv->tos_to_tid_inv[tid_down])
atomic_set(&priv->wmm.highest_queued_prio,
priv->tos_to_tid_inv[tid_down]);
if (ra_list->tx_paused)
priv->wmm.pkts_paused[tid_down]++;
else
atomic_inc(&priv->wmm.tx_pkts_queued);
spin_unlock_bh(&priv->wmm.ra_list_spinlock);
}
/*
* This function processes the get WMM status command response from firmware.
*
* The response may contain multiple TLVs -
* - AC Queue status TLVs
* - Current WMM Parameter IE TLV
* - Admission Control action frame TLVs
*
* This function parses the TLVs and then calls further specific functions
* to process any changes in the queue prioritize or state.
*/
int mwifiex_ret_wmm_get_status(struct mwifiex_private *priv,
const struct host_cmd_ds_command *resp)
{
u8 *curr = (u8 *) &resp->params.get_wmm_status;
uint16_t resp_len = le16_to_cpu(resp->size), tlv_len;
int mask = IEEE80211_WMM_IE_AP_QOSINFO_PARAM_SET_CNT_MASK;
bool valid = true;
struct mwifiex_ie_types_data *tlv_hdr;
struct mwifiex_ie_types_wmm_queue_status *tlv_wmm_qstatus;
struct ieee_types_wmm_parameter *wmm_param_ie = NULL;
struct mwifiex_wmm_ac_status *ac_status;
mwifiex_dbg(priv->adapter, INFO,
"info: WMM: WMM_GET_STATUS cmdresp received: %d\n",
resp_len);
while ((resp_len >= sizeof(tlv_hdr->header)) && valid) {
tlv_hdr = (struct mwifiex_ie_types_data *) curr;
tlv_len = le16_to_cpu(tlv_hdr->header.len);
if (resp_len < tlv_len + sizeof(tlv_hdr->header))
break;
switch (le16_to_cpu(tlv_hdr->header.type)) {
case TLV_TYPE_WMMQSTATUS:
tlv_wmm_qstatus =
(struct mwifiex_ie_types_wmm_queue_status *)
tlv_hdr;
mwifiex_dbg(priv->adapter, CMD,
"info: CMD_RESP: WMM_GET_STATUS:\t"
"QSTATUS TLV: %d, %d, %d\n",
tlv_wmm_qstatus->queue_index,
tlv_wmm_qstatus->flow_required,
tlv_wmm_qstatus->disabled);
ac_status = &priv->wmm.ac_status[tlv_wmm_qstatus->
queue_index];
ac_status->disabled = tlv_wmm_qstatus->disabled;
ac_status->flow_required =
tlv_wmm_qstatus->flow_required;
ac_status->flow_created = tlv_wmm_qstatus->flow_created;
break;
case WLAN_EID_VENDOR_SPECIFIC:
/*
* Point the regular IEEE IE 2 bytes into the Marvell IE
* and setup the IEEE IE type and length byte fields
*/
wmm_param_ie =
(struct ieee_types_wmm_parameter *) (curr +
2);
wmm_param_ie->vend_hdr.len = (u8) tlv_len;
wmm_param_ie->vend_hdr.element_id =
WLAN_EID_VENDOR_SPECIFIC;
mwifiex_dbg(priv->adapter, CMD,
"info: CMD_RESP: WMM_GET_STATUS:\t"
"WMM Parameter Set Count: %d\n",
wmm_param_ie->qos_info_bitmap & mask);
if (wmm_param_ie->vend_hdr.len + 2 >
sizeof(struct ieee_types_wmm_parameter))
break;
memcpy((u8 *) &priv->curr_bss_params.bss_descriptor.
wmm_ie, wmm_param_ie,
wmm_param_ie->vend_hdr.len + 2);
break;
default:
valid = false;
break;
}
curr += (tlv_len + sizeof(tlv_hdr->header));
resp_len -= (tlv_len + sizeof(tlv_hdr->header));
}
mwifiex_wmm_setup_queue_priorities(priv, wmm_param_ie);
mwifiex_wmm_setup_ac_downgrade(priv);
return 0;
}
/*
* Callback handler from the command module to allow insertion of a WMM TLV.
*
* If the BSS we are associating to supports WMM, this function adds the
* required WMM Information IE to the association request command buffer in
* the form of a Marvell extended IEEE IE.
*/
u32
mwifiex_wmm_process_association_req(struct mwifiex_private *priv,
u8 **assoc_buf,
struct ieee_types_wmm_parameter *wmm_ie,
struct ieee80211_ht_cap *ht_cap)
{
struct mwifiex_ie_types_wmm_param_set *wmm_tlv;
u32 ret_len = 0;
/* Null checks */
if (!assoc_buf)
return 0;
if (!(*assoc_buf))
return 0;
if (!wmm_ie)
return 0;
mwifiex_dbg(priv->adapter, INFO,
"info: WMM: process assoc req: bss->wmm_ie=%#x\n",
wmm_ie->vend_hdr.element_id);
if ((priv->wmm_required ||
(ht_cap && (priv->adapter->config_bands & BAND_GN ||
priv->adapter->config_bands & BAND_AN))) &&
wmm_ie->vend_hdr.element_id == WLAN_EID_VENDOR_SPECIFIC) {
wmm_tlv = (struct mwifiex_ie_types_wmm_param_set *) *assoc_buf;
wmm_tlv->header.type = cpu_to_le16((u16) wmm_info_ie[0]);
wmm_tlv->header.len = cpu_to_le16((u16) wmm_info_ie[1]);
memcpy(wmm_tlv->wmm_ie, &wmm_info_ie[2],
le16_to_cpu(wmm_tlv->header.len));
if (wmm_ie->qos_info_bitmap & IEEE80211_WMM_IE_AP_QOSINFO_UAPSD)
memcpy((u8 *) (wmm_tlv->wmm_ie
+ le16_to_cpu(wmm_tlv->header.len)
- sizeof(priv->wmm_qosinfo)),
&priv->wmm_qosinfo, sizeof(priv->wmm_qosinfo));
ret_len = sizeof(wmm_tlv->header)
+ le16_to_cpu(wmm_tlv->header.len);
*assoc_buf += ret_len;
}
return ret_len;
}
/*
* This function computes the time delay in the driver queues for a
* given packet.
*
* When the packet is received at the OS/Driver interface, the current
* time is set in the packet structure. The difference between the present
* time and that received time is computed in this function and limited
* based on pre-compiled limits in the driver.
*/
u8
mwifiex_wmm_compute_drv_pkt_delay(struct mwifiex_private *priv,
const struct sk_buff *skb)
{
u32 queue_delay = ktime_to_ms(net_timedelta(skb->tstamp));
u8 ret_val;
/*
* Queue delay is passed as a uint8 in units of 2ms (ms shifted
* by 1). Min value (other than 0) is therefore 2ms, max is 510ms.
*
* Pass max value if queue_delay is beyond the uint8 range
*/
ret_val = (u8) (min(queue_delay, priv->wmm.drv_pkt_delay_max) >> 1);
mwifiex_dbg(priv->adapter, DATA, "data: WMM: Pkt Delay: %d ms,\t"
"%d ms sent to FW\n", queue_delay, ret_val);
return ret_val;
}
/*
* This function retrieves the highest priority RA list table pointer.
*/
static struct mwifiex_ra_list_tbl *
mwifiex_wmm_get_highest_priolist_ptr(struct mwifiex_adapter *adapter,
struct mwifiex_private **priv, int *tid)
{
struct mwifiex_private *priv_tmp;
struct mwifiex_ra_list_tbl *ptr;
struct mwifiex_tid_tbl *tid_ptr;
atomic_t *hqp;
int i, j;
/* check the BSS with highest priority first */
for (j = adapter->priv_num - 1; j >= 0; --j) {
/* iterate over BSS with the equal priority */
list_for_each_entry(adapter->bss_prio_tbl[j].bss_prio_cur,
&adapter->bss_prio_tbl[j].bss_prio_head,
list) {
try_again:
priv_tmp = adapter->bss_prio_tbl[j].bss_prio_cur->priv;
if (((priv_tmp->bss_mode != NL80211_IFTYPE_ADHOC) &&
!priv_tmp->port_open) ||
(atomic_read(&priv_tmp->wmm.tx_pkts_queued) == 0))
continue;
if (adapter->if_ops.is_port_ready &&
!adapter->if_ops.is_port_ready(priv_tmp))
continue;
/* iterate over the WMM queues of the BSS */
hqp = &priv_tmp->wmm.highest_queued_prio;
for (i = atomic_read(hqp); i >= LOW_PRIO_TID; --i) {
spin_lock_bh(&priv_tmp->wmm.ra_list_spinlock);
tid_ptr = &(priv_tmp)->wmm.
tid_tbl_ptr[tos_to_tid[i]];
/* iterate over receiver addresses */
list_for_each_entry(ptr, &tid_ptr->ra_list,
list) {
if (!ptr->tx_paused &&
!skb_queue_empty(&ptr->skb_head))
/* holds both locks */
goto found;
}
spin_unlock_bh(&priv_tmp->wmm.ra_list_spinlock);
}
if (atomic_read(&priv_tmp->wmm.tx_pkts_queued) != 0) {
atomic_set(&priv_tmp->wmm.highest_queued_prio,
HIGH_PRIO_TID);
/* Iterate current private once more, since
* there still exist packets in data queue
*/
goto try_again;
} else
atomic_set(&priv_tmp->wmm.highest_queued_prio,
NO_PKT_PRIO_TID);
}
}
return NULL;
found:
/* holds ra_list_spinlock */
if (atomic_read(hqp) > i)
atomic_set(hqp, i);
spin_unlock_bh(&priv_tmp->wmm.ra_list_spinlock);
*priv = priv_tmp;
*tid = tos_to_tid[i];
return ptr;
}
/* This functions rotates ra and bss lists so packets are picked round robin.
*
* After a packet is successfully transmitted, rotate the ra list, so the ra
* next to the one transmitted, will come first in the list. This way we pick
* the ra' in a round robin fashion. Same applies to bss nodes of equal
* priority.
*
* Function also increments wmm.packets_out counter.
*/
void mwifiex_rotate_priolists(struct mwifiex_private *priv,
struct mwifiex_ra_list_tbl *ra,
int tid)
{
struct mwifiex_adapter *adapter = priv->adapter;
struct mwifiex_bss_prio_tbl *tbl = adapter->bss_prio_tbl;
struct mwifiex_tid_tbl *tid_ptr = &priv->wmm.tid_tbl_ptr[tid];
spin_lock_bh(&tbl[priv->bss_priority].bss_prio_lock);
/*
* dirty trick: we remove 'head' temporarily and reinsert it after
* curr bss node. imagine list to stay fixed while head is moved
*/
list_move(&tbl[priv->bss_priority].bss_prio_head,
&tbl[priv->bss_priority].bss_prio_cur->list);
spin_unlock_bh(&tbl[priv->bss_priority].bss_prio_lock);
spin_lock_bh(&priv->wmm.ra_list_spinlock);
if (mwifiex_is_ralist_valid(priv, ra, tid)) {
priv->wmm.packets_out[tid]++;
/* same as above */
list_move(&tid_ptr->ra_list, &ra->list);
}
spin_unlock_bh(&priv->wmm.ra_list_spinlock);
}
/*
* This function checks if 11n aggregation is possible.
*/
static int
mwifiex_is_11n_aggragation_possible(struct mwifiex_private *priv,
struct mwifiex_ra_list_tbl *ptr,
int max_buf_size)
{
int count = 0, total_size = 0;
struct sk_buff *skb, *tmp;
int max_amsdu_size;
if (priv->bss_role == MWIFIEX_BSS_ROLE_UAP && priv->ap_11n_enabled &&
ptr->is_11n_enabled)
max_amsdu_size = min_t(int, ptr->max_amsdu, max_buf_size);
else
max_amsdu_size = max_buf_size;
skb_queue_walk_safe(&ptr->skb_head, skb, tmp) {
total_size += skb->len;
if (total_size >= max_amsdu_size)
break;
if (++count >= MIN_NUM_AMSDU)
return true;
}
return false;
}
/*
* This function sends a single packet to firmware for transmission.
*/
static void
mwifiex_send_single_packet(struct mwifiex_private *priv,
struct mwifiex_ra_list_tbl *ptr, int ptr_index)
__releases(&priv->wmm.ra_list_spinlock)
{
struct sk_buff *skb, *skb_next;
struct mwifiex_tx_param tx_param;
struct mwifiex_adapter *adapter = priv->adapter;
struct mwifiex_txinfo *tx_info;
if (skb_queue_empty(&ptr->skb_head)) {
spin_unlock_bh(&priv->wmm.ra_list_spinlock);
mwifiex_dbg(adapter, DATA, "data: nothing to send\n");
return;
}
skb = skb_dequeue(&ptr->skb_head);
tx_info = MWIFIEX_SKB_TXCB(skb);
mwifiex_dbg(adapter, DATA,
"data: dequeuing the packet %p %p\n", ptr, skb);
ptr->total_pkt_count--;
if (!skb_queue_empty(&ptr->skb_head))
skb_next = skb_peek(&ptr->skb_head);
else
skb_next = NULL;
spin_unlock_bh(&priv->wmm.ra_list_spinlock);
tx_param.next_pkt_len = ((skb_next) ? skb_next->len +
sizeof(struct txpd) : 0);
if (mwifiex_process_tx(priv, skb, &tx_param) == -EBUSY) {
/* Queue the packet back at the head */
spin_lock_bh(&priv->wmm.ra_list_spinlock);
if (!mwifiex_is_ralist_valid(priv, ptr, ptr_index)) {
spin_unlock_bh(&priv->wmm.ra_list_spinlock);
mwifiex_write_data_complete(adapter, skb, 0, -1);
return;
}
skb_queue_tail(&ptr->skb_head, skb);
ptr->total_pkt_count++;
ptr->ba_pkt_count++;
tx_info->flags |= MWIFIEX_BUF_FLAG_REQUEUED_PKT;
spin_unlock_bh(&priv->wmm.ra_list_spinlock);
} else {
mwifiex_rotate_priolists(priv, ptr, ptr_index);
atomic_dec(&priv->wmm.tx_pkts_queued);
}
}
/*
* This function checks if the first packet in the given RA list
* is already processed or not.
*/
static int
mwifiex_is_ptr_processed(struct mwifiex_private *priv,
struct mwifiex_ra_list_tbl *ptr)
{
struct sk_buff *skb;
struct mwifiex_txinfo *tx_info;
if (skb_queue_empty(&ptr->skb_head))
return false;
skb = skb_peek(&ptr->skb_head);
tx_info = MWIFIEX_SKB_TXCB(skb);
if (tx_info->flags & MWIFIEX_BUF_FLAG_REQUEUED_PKT)
return true;
return false;
}
/*
* This function sends a single processed packet to firmware for
* transmission.
*/
static void
mwifiex_send_processed_packet(struct mwifiex_private *priv,
struct mwifiex_ra_list_tbl *ptr, int ptr_index)
__releases(&priv->wmm.ra_list_spinlock)
{
struct mwifiex_tx_param tx_param;
struct mwifiex_adapter *adapter = priv->adapter;
int ret = -1;
struct sk_buff *skb, *skb_next;
struct mwifiex_txinfo *tx_info;
if (skb_queue_empty(&ptr->skb_head)) {
spin_unlock_bh(&priv->wmm.ra_list_spinlock);
return;
}
skb = skb_dequeue(&ptr->skb_head);
if (adapter->data_sent || adapter->tx_lock_flag) {
ptr->total_pkt_count--;
spin_unlock_bh(&priv->wmm.ra_list_spinlock);
skb_queue_tail(&adapter->tx_data_q, skb);
atomic_dec(&priv->wmm.tx_pkts_queued);
atomic_inc(&adapter->tx_queued);
return;
}
if (!skb_queue_empty(&ptr->skb_head))
skb_next = skb_peek(&ptr->skb_head);
else
skb_next = NULL;
tx_info = MWIFIEX_SKB_TXCB(skb);
spin_unlock_bh(&priv->wmm.ra_list_spinlock);
tx_param.next_pkt_len =
((skb_next) ? skb_next->len +
sizeof(struct txpd) : 0);
if (adapter->iface_type == MWIFIEX_USB) {
ret = adapter->if_ops.host_to_card(adapter, priv->usb_port,
skb, &tx_param);
} else {
ret = adapter->if_ops.host_to_card(adapter, MWIFIEX_TYPE_DATA,
skb, &tx_param);
}
switch (ret) {
case -EBUSY:
mwifiex_dbg(adapter, ERROR, "data: -EBUSY is returned\n");
spin_lock_bh(&priv->wmm.ra_list_spinlock);
if (!mwifiex_is_ralist_valid(priv, ptr, ptr_index)) {
spin_unlock_bh(&priv->wmm.ra_list_spinlock);
mwifiex_write_data_complete(adapter, skb, 0, -1);
return;
}
skb_queue_tail(&ptr->skb_head, skb);
tx_info->flags |= MWIFIEX_BUF_FLAG_REQUEUED_PKT;
spin_unlock_bh(&priv->wmm.ra_list_spinlock);
break;
case -1:
mwifiex_dbg(adapter, ERROR, "host_to_card failed: %#x\n", ret);
adapter->dbg.num_tx_host_to_card_failure++;
mwifiex_write_data_complete(adapter, skb, 0, ret);
break;
case -EINPROGRESS:
break;
case 0:
mwifiex_write_data_complete(adapter, skb, 0, ret);
break;
default:
break;
}
if (ret != -EBUSY) {
mwifiex_rotate_priolists(priv, ptr, ptr_index);
atomic_dec(&priv->wmm.tx_pkts_queued);
spin_lock_bh(&priv->wmm.ra_list_spinlock);
ptr->total_pkt_count--;
spin_unlock_bh(&priv->wmm.ra_list_spinlock);
}
}
/*
* This function dequeues a packet from the highest priority list
* and transmits it.
*/
static int
mwifiex_dequeue_tx_packet(struct mwifiex_adapter *adapter)
{
struct mwifiex_ra_list_tbl *ptr;
struct mwifiex_private *priv = NULL;
int ptr_index = 0;
u8 ra[ETH_ALEN];
int tid_del = 0, tid = 0;
ptr = mwifiex_wmm_get_highest_priolist_ptr(adapter, &priv, &ptr_index);
if (!ptr)
return -1;
tid = mwifiex_get_tid(ptr);
mwifiex_dbg(adapter, DATA, "data: tid=%d\n", tid);
spin_lock_bh(&priv->wmm.ra_list_spinlock);
if (!mwifiex_is_ralist_valid(priv, ptr, ptr_index)) {
spin_unlock_bh(&priv->wmm.ra_list_spinlock);
return -1;
}
if (mwifiex_is_ptr_processed(priv, ptr)) {
mwifiex_send_processed_packet(priv, ptr, ptr_index);
/* ra_list_spinlock has been freed in
mwifiex_send_processed_packet() */
return 0;
}
if (!ptr->is_11n_enabled ||
ptr->ba_status ||
priv->wps.session_enable) {
if (ptr->is_11n_enabled &&
ptr->ba_status &&
ptr->amsdu_in_ampdu &&
mwifiex_is_amsdu_allowed(priv, tid) &&
mwifiex_is_11n_aggragation_possible(priv, ptr,
adapter->tx_buf_size))
mwifiex_11n_aggregate_pkt(priv, ptr, ptr_index);
/* ra_list_spinlock has been freed in
* mwifiex_11n_aggregate_pkt()
*/
else
mwifiex_send_single_packet(priv, ptr, ptr_index);
/* ra_list_spinlock has been freed in
* mwifiex_send_single_packet()
*/
} else {
if (mwifiex_is_ampdu_allowed(priv, ptr, tid) &&
ptr->ba_pkt_count > ptr->ba_packet_thr) {
if (mwifiex_space_avail_for_new_ba_stream(adapter)) {
mwifiex_create_ba_tbl(priv, ptr->ra, tid,
BA_SETUP_INPROGRESS);
mwifiex_send_addba(priv, tid, ptr->ra);
} else if (mwifiex_find_stream_to_delete
(priv, tid, &tid_del, ra)) {
mwifiex_create_ba_tbl(priv, ptr->ra, tid,
BA_SETUP_INPROGRESS);
mwifiex_send_delba(priv, tid_del, ra, 1);
}
}
if (mwifiex_is_amsdu_allowed(priv, tid) &&
mwifiex_is_11n_aggragation_possible(priv, ptr,
adapter->tx_buf_size))
mwifiex_11n_aggregate_pkt(priv, ptr, ptr_index);
/* ra_list_spinlock has been freed in
mwifiex_11n_aggregate_pkt() */
else
mwifiex_send_single_packet(priv, ptr, ptr_index);
/* ra_list_spinlock has been freed in
mwifiex_send_single_packet() */
}
return 0;
}
void mwifiex_process_bypass_tx(struct mwifiex_adapter *adapter)
{
struct mwifiex_tx_param tx_param;
struct sk_buff *skb;
struct mwifiex_txinfo *tx_info;
struct mwifiex_private *priv;
int i;
if (adapter->data_sent || adapter->tx_lock_flag)
return;
for (i = 0; i < adapter->priv_num; ++i) {
priv = adapter->priv[i];
if (!priv)
continue;
if (adapter->if_ops.is_port_ready &&
!adapter->if_ops.is_port_ready(priv))
continue;
if (skb_queue_empty(&priv->bypass_txq))
continue;
skb = skb_dequeue(&priv->bypass_txq);
tx_info = MWIFIEX_SKB_TXCB(skb);
/* no aggregation for bypass packets */
tx_param.next_pkt_len = 0;
if (mwifiex_process_tx(priv, skb, &tx_param) == -EBUSY) {
skb_queue_head(&priv->bypass_txq, skb);
tx_info->flags |= MWIFIEX_BUF_FLAG_REQUEUED_PKT;
} else {
atomic_dec(&adapter->bypass_tx_pending);
}
}
}
/*
* This function transmits the highest priority packet awaiting in the
* WMM Queues.
*/
void
mwifiex_wmm_process_tx(struct mwifiex_adapter *adapter)
{
do {
if (mwifiex_dequeue_tx_packet(adapter))
break;
if (adapter->iface_type != MWIFIEX_SDIO) {
if (adapter->data_sent ||
adapter->tx_lock_flag)
break;
} else {
if (atomic_read(&adapter->tx_queued) >=
MWIFIEX_MAX_PKTS_TXQ)
break;
}
} while (!mwifiex_wmm_lists_empty(adapter));
}