linux-zen-server/drivers/net/wireless/mediatek/mt76/mt7615/mac.c

2376 lines
60 KiB
C
Raw Normal View History

2023-08-30 17:53:23 +02:00
// SPDX-License-Identifier: ISC
/* Copyright (C) 2019 MediaTek Inc.
*
* Author: Ryder Lee <ryder.lee@mediatek.com>
* Roy Luo <royluo@google.com>
* Felix Fietkau <nbd@nbd.name>
* Lorenzo Bianconi <lorenzo@kernel.org>
*/
#include <linux/devcoredump.h>
#include <linux/etherdevice.h>
#include <linux/timekeeping.h>
#include "mt7615.h"
#include "../trace.h"
#include "../dma.h"
#include "mt7615_trace.h"
#include "mac.h"
#include "mcu.h"
#define to_rssi(field, rxv) ((FIELD_GET(field, rxv) - 220) / 2)
static const struct mt7615_dfs_radar_spec etsi_radar_specs = {
.pulse_th = { 110, -10, -80, 40, 5200, 128, 5200 },
.radar_pattern = {
[5] = { 1, 0, 6, 32, 28, 0, 17, 990, 5010, 1, 1 },
[6] = { 1, 0, 9, 32, 28, 0, 27, 615, 5010, 1, 1 },
[7] = { 1, 0, 15, 32, 28, 0, 27, 240, 445, 1, 1 },
[8] = { 1, 0, 12, 32, 28, 0, 42, 240, 510, 1, 1 },
[9] = { 1, 1, 0, 0, 0, 0, 14, 2490, 3343, 0, 0, 12, 32, 28 },
[10] = { 1, 1, 0, 0, 0, 0, 14, 2490, 3343, 0, 0, 15, 32, 24 },
[11] = { 1, 1, 0, 0, 0, 0, 14, 823, 2510, 0, 0, 18, 32, 28 },
[12] = { 1, 1, 0, 0, 0, 0, 14, 823, 2510, 0, 0, 27, 32, 24 },
},
};
static const struct mt7615_dfs_radar_spec fcc_radar_specs = {
.pulse_th = { 110, -10, -80, 40, 5200, 128, 5200 },
.radar_pattern = {
[0] = { 1, 0, 9, 32, 28, 0, 13, 508, 3076, 1, 1 },
[1] = { 1, 0, 12, 32, 28, 0, 17, 140, 240, 1, 1 },
[2] = { 1, 0, 8, 32, 28, 0, 22, 190, 510, 1, 1 },
[3] = { 1, 0, 6, 32, 28, 0, 32, 190, 510, 1, 1 },
[4] = { 1, 0, 9, 255, 28, 0, 13, 323, 343, 1, 32 },
},
};
static const struct mt7615_dfs_radar_spec jp_radar_specs = {
.pulse_th = { 110, -10, -80, 40, 5200, 128, 5200 },
.radar_pattern = {
[0] = { 1, 0, 8, 32, 28, 0, 13, 508, 3076, 1, 1 },
[1] = { 1, 0, 12, 32, 28, 0, 17, 140, 240, 1, 1 },
[2] = { 1, 0, 8, 32, 28, 0, 22, 190, 510, 1, 1 },
[3] = { 1, 0, 6, 32, 28, 0, 32, 190, 510, 1, 1 },
[4] = { 1, 0, 9, 32, 28, 0, 13, 323, 343, 1, 32 },
[13] = { 1, 0, 8, 32, 28, 0, 14, 3836, 3856, 1, 1 },
[14] = { 1, 0, 8, 32, 28, 0, 14, 3990, 4010, 1, 1 },
},
};
static enum mt76_cipher_type
mt7615_mac_get_cipher(int cipher)
{
switch (cipher) {
case WLAN_CIPHER_SUITE_WEP40:
return MT_CIPHER_WEP40;
case WLAN_CIPHER_SUITE_WEP104:
return MT_CIPHER_WEP104;
case WLAN_CIPHER_SUITE_TKIP:
return MT_CIPHER_TKIP;
case WLAN_CIPHER_SUITE_AES_CMAC:
return MT_CIPHER_BIP_CMAC_128;
case WLAN_CIPHER_SUITE_CCMP:
return MT_CIPHER_AES_CCMP;
case WLAN_CIPHER_SUITE_CCMP_256:
return MT_CIPHER_CCMP_256;
case WLAN_CIPHER_SUITE_GCMP:
return MT_CIPHER_GCMP;
case WLAN_CIPHER_SUITE_GCMP_256:
return MT_CIPHER_GCMP_256;
case WLAN_CIPHER_SUITE_SMS4:
return MT_CIPHER_WAPI;
default:
return MT_CIPHER_NONE;
}
}
static struct mt76_wcid *mt7615_rx_get_wcid(struct mt7615_dev *dev,
u8 idx, bool unicast)
{
struct mt7615_sta *sta;
struct mt76_wcid *wcid;
if (idx >= MT7615_WTBL_SIZE)
return NULL;
wcid = rcu_dereference(dev->mt76.wcid[idx]);
if (unicast || !wcid)
return wcid;
if (!wcid->sta)
return NULL;
sta = container_of(wcid, struct mt7615_sta, wcid);
if (!sta->vif)
return NULL;
return &sta->vif->sta.wcid;
}
void mt7615_mac_reset_counters(struct mt7615_phy *phy)
{
struct mt7615_dev *dev = phy->dev;
int i;
for (i = 0; i < 4; i++) {
mt76_rr(dev, MT_TX_AGG_CNT(0, i));
mt76_rr(dev, MT_TX_AGG_CNT(1, i));
}
memset(phy->mt76->aggr_stats, 0, sizeof(phy->mt76->aggr_stats));
phy->mt76->survey_time = ktime_get_boottime();
/* reset airtime counters */
mt76_rr(dev, MT_MIB_SDR9(0));
mt76_rr(dev, MT_MIB_SDR9(1));
mt76_rr(dev, MT_MIB_SDR36(0));
mt76_rr(dev, MT_MIB_SDR36(1));
mt76_rr(dev, MT_MIB_SDR37(0));
mt76_rr(dev, MT_MIB_SDR37(1));
mt76_set(dev, MT_WF_RMAC_MIB_TIME0, MT_WF_RMAC_MIB_RXTIME_CLR);
mt76_set(dev, MT_WF_RMAC_MIB_AIRTIME0, MT_WF_RMAC_MIB_RXTIME_CLR);
}
void mt7615_mac_set_timing(struct mt7615_phy *phy)
{
s16 coverage_class = phy->coverage_class;
struct mt7615_dev *dev = phy->dev;
bool ext_phy = phy != &dev->phy;
u32 val, reg_offset;
u32 cck = FIELD_PREP(MT_TIMEOUT_VAL_PLCP, 231) |
FIELD_PREP(MT_TIMEOUT_VAL_CCA, 48);
u32 ofdm = FIELD_PREP(MT_TIMEOUT_VAL_PLCP, 60) |
FIELD_PREP(MT_TIMEOUT_VAL_CCA, 28);
int sifs, offset;
bool is_5ghz = phy->mt76->chandef.chan->band == NL80211_BAND_5GHZ;
if (!test_bit(MT76_STATE_RUNNING, &phy->mt76->state))
return;
if (is_5ghz)
sifs = 16;
else
sifs = 10;
if (ext_phy) {
coverage_class = max_t(s16, dev->phy.coverage_class,
coverage_class);
mt76_set(dev, MT_ARB_SCR,
MT_ARB_SCR_TX1_DISABLE | MT_ARB_SCR_RX1_DISABLE);
} else {
struct mt7615_phy *phy_ext = mt7615_ext_phy(dev);
if (phy_ext)
coverage_class = max_t(s16, phy_ext->coverage_class,
coverage_class);
mt76_set(dev, MT_ARB_SCR,
MT_ARB_SCR_TX0_DISABLE | MT_ARB_SCR_RX0_DISABLE);
}
udelay(1);
offset = 3 * coverage_class;
reg_offset = FIELD_PREP(MT_TIMEOUT_VAL_PLCP, offset) |
FIELD_PREP(MT_TIMEOUT_VAL_CCA, offset);
mt76_wr(dev, MT_TMAC_CDTR, cck + reg_offset);
mt76_wr(dev, MT_TMAC_ODTR, ofdm + reg_offset);
mt76_wr(dev, MT_TMAC_ICR(ext_phy),
FIELD_PREP(MT_IFS_EIFS, 360) |
FIELD_PREP(MT_IFS_RIFS, 2) |
FIELD_PREP(MT_IFS_SIFS, sifs) |
FIELD_PREP(MT_IFS_SLOT, phy->slottime));
if (phy->slottime < 20 || is_5ghz)
val = MT7615_CFEND_RATE_DEFAULT;
else
val = MT7615_CFEND_RATE_11B;
mt76_rmw_field(dev, MT_AGG_ACR(ext_phy), MT_AGG_ACR_CFEND_RATE, val);
if (ext_phy)
mt76_clear(dev, MT_ARB_SCR,
MT_ARB_SCR_TX1_DISABLE | MT_ARB_SCR_RX1_DISABLE);
else
mt76_clear(dev, MT_ARB_SCR,
MT_ARB_SCR_TX0_DISABLE | MT_ARB_SCR_RX0_DISABLE);
}
static void
mt7615_get_status_freq_info(struct mt7615_dev *dev, struct mt76_phy *mphy,
struct mt76_rx_status *status, u8 chfreq)
{
if (!test_bit(MT76_HW_SCANNING, &mphy->state) &&
!test_bit(MT76_HW_SCHED_SCANNING, &mphy->state) &&
!test_bit(MT76_STATE_ROC, &mphy->state)) {
status->freq = mphy->chandef.chan->center_freq;
status->band = mphy->chandef.chan->band;
return;
}
status->band = chfreq <= 14 ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
status->freq = ieee80211_channel_to_frequency(chfreq, status->band);
}
static void mt7615_mac_fill_tm_rx(struct mt7615_phy *phy, __le32 *rxv)
{
#ifdef CONFIG_NL80211_TESTMODE
u32 rxv1 = le32_to_cpu(rxv[0]);
u32 rxv3 = le32_to_cpu(rxv[2]);
u32 rxv4 = le32_to_cpu(rxv[3]);
u32 rxv5 = le32_to_cpu(rxv[4]);
u8 cbw = FIELD_GET(MT_RXV1_FRAME_MODE, rxv1);
u8 mode = FIELD_GET(MT_RXV1_TX_MODE, rxv1);
s16 foe = FIELD_GET(MT_RXV5_FOE, rxv5);
u32 foe_const = (BIT(cbw + 1) & 0xf) * 10000;
if (!mode) {
/* CCK */
foe &= ~BIT(11);
foe *= 1000;
foe >>= 11;
} else {
if (foe > 2048)
foe -= 4096;
foe = (foe * foe_const) >> 15;
}
phy->test.last_freq_offset = foe;
phy->test.last_rcpi[0] = FIELD_GET(MT_RXV4_RCPI0, rxv4);
phy->test.last_rcpi[1] = FIELD_GET(MT_RXV4_RCPI1, rxv4);
phy->test.last_rcpi[2] = FIELD_GET(MT_RXV4_RCPI2, rxv4);
phy->test.last_rcpi[3] = FIELD_GET(MT_RXV4_RCPI3, rxv4);
phy->test.last_ib_rssi[0] = FIELD_GET(MT_RXV3_IB_RSSI, rxv3);
phy->test.last_wb_rssi[0] = FIELD_GET(MT_RXV3_WB_RSSI, rxv3);
#endif
}
/* The HW does not translate the mac header to 802.3 for mesh point */
static int mt7615_reverse_frag0_hdr_trans(struct sk_buff *skb, u16 hdr_gap)
{
struct mt76_rx_status *status = (struct mt76_rx_status *)skb->cb;
struct ethhdr *eth_hdr = (struct ethhdr *)(skb->data + hdr_gap);
struct mt7615_sta *msta = (struct mt7615_sta *)status->wcid;
__le32 *rxd = (__le32 *)skb->data;
struct ieee80211_sta *sta;
struct ieee80211_vif *vif;
struct ieee80211_hdr hdr;
u16 frame_control;
if (le32_get_bits(rxd[1], MT_RXD1_NORMAL_ADDR_TYPE) !=
MT_RXD1_NORMAL_U2M)
return -EINVAL;
if (!(le32_to_cpu(rxd[0]) & MT_RXD0_NORMAL_GROUP_4))
return -EINVAL;
if (!msta || !msta->vif)
return -EINVAL;
sta = container_of((void *)msta, struct ieee80211_sta, drv_priv);
vif = container_of((void *)msta->vif, struct ieee80211_vif, drv_priv);
/* store the info from RXD and ethhdr to avoid being overridden */
frame_control = le32_get_bits(rxd[4], MT_RXD4_FRAME_CONTROL);
hdr.frame_control = cpu_to_le16(frame_control);
hdr.seq_ctrl = cpu_to_le16(le32_get_bits(rxd[6], MT_RXD6_SEQ_CTRL));
hdr.duration_id = 0;
ether_addr_copy(hdr.addr1, vif->addr);
ether_addr_copy(hdr.addr2, sta->addr);
switch (frame_control & (IEEE80211_FCTL_TODS |
IEEE80211_FCTL_FROMDS)) {
case 0:
ether_addr_copy(hdr.addr3, vif->bss_conf.bssid);
break;
case IEEE80211_FCTL_FROMDS:
ether_addr_copy(hdr.addr3, eth_hdr->h_source);
break;
case IEEE80211_FCTL_TODS:
ether_addr_copy(hdr.addr3, eth_hdr->h_dest);
break;
case IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS:
ether_addr_copy(hdr.addr3, eth_hdr->h_dest);
ether_addr_copy(hdr.addr4, eth_hdr->h_source);
break;
default:
break;
}
skb_pull(skb, hdr_gap + sizeof(struct ethhdr) - 2);
if (eth_hdr->h_proto == cpu_to_be16(ETH_P_AARP) ||
eth_hdr->h_proto == cpu_to_be16(ETH_P_IPX))
ether_addr_copy(skb_push(skb, ETH_ALEN), bridge_tunnel_header);
else if (be16_to_cpu(eth_hdr->h_proto) >= ETH_P_802_3_MIN)
ether_addr_copy(skb_push(skb, ETH_ALEN), rfc1042_header);
else
skb_pull(skb, 2);
if (ieee80211_has_order(hdr.frame_control))
memcpy(skb_push(skb, IEEE80211_HT_CTL_LEN), &rxd[7],
IEEE80211_HT_CTL_LEN);
if (ieee80211_is_data_qos(hdr.frame_control)) {
__le16 qos_ctrl;
qos_ctrl = cpu_to_le16(le32_get_bits(rxd[6], MT_RXD6_QOS_CTL));
memcpy(skb_push(skb, IEEE80211_QOS_CTL_LEN), &qos_ctrl,
IEEE80211_QOS_CTL_LEN);
}
if (ieee80211_has_a4(hdr.frame_control))
memcpy(skb_push(skb, sizeof(hdr)), &hdr, sizeof(hdr));
else
memcpy(skb_push(skb, sizeof(hdr) - 6), &hdr, sizeof(hdr) - 6);
status->flag &= ~(RX_FLAG_RADIOTAP_HE | RX_FLAG_RADIOTAP_HE_MU);
return 0;
}
static int mt7615_mac_fill_rx(struct mt7615_dev *dev, struct sk_buff *skb)
{
struct mt76_rx_status *status = (struct mt76_rx_status *)skb->cb;
struct mt76_phy *mphy = &dev->mt76.phy;
struct mt7615_phy *phy = &dev->phy;
struct ieee80211_supported_band *sband;
struct ieee80211_hdr *hdr;
struct mt7615_phy *phy2;
__le32 *rxd = (__le32 *)skb->data;
u32 rxd0 = le32_to_cpu(rxd[0]);
u32 rxd1 = le32_to_cpu(rxd[1]);
u32 rxd2 = le32_to_cpu(rxd[2]);
u32 csum_mask = MT_RXD0_NORMAL_IP_SUM | MT_RXD0_NORMAL_UDP_TCP_SUM;
u32 csum_status = *(u32 *)skb->cb;
bool unicast, hdr_trans, remove_pad, insert_ccmp_hdr = false;
u16 hdr_gap;
int phy_idx;
int i, idx;
u8 chfreq, amsdu_info, qos_ctl = 0;
u16 seq_ctrl = 0;
__le16 fc = 0;
memset(status, 0, sizeof(*status));
chfreq = FIELD_GET(MT_RXD1_NORMAL_CH_FREQ, rxd1);
phy2 = dev->mt76.phys[MT_BAND1] ? dev->mt76.phys[MT_BAND1]->priv : NULL;
if (!phy2)
phy_idx = 0;
else if (phy2->chfreq == phy->chfreq)
phy_idx = -1;
else if (phy->chfreq == chfreq)
phy_idx = 0;
else if (phy2->chfreq == chfreq)
phy_idx = 1;
else
phy_idx = -1;
if (rxd2 & MT_RXD2_NORMAL_AMSDU_ERR)
return -EINVAL;
hdr_trans = rxd1 & MT_RXD1_NORMAL_HDR_TRANS;
if (hdr_trans && (rxd2 & MT_RXD2_NORMAL_CM))
return -EINVAL;
/* ICV error or CCMP/BIP/WPI MIC error */
if (rxd2 & MT_RXD2_NORMAL_ICV_ERR)
status->flag |= RX_FLAG_ONLY_MONITOR;
unicast = (rxd1 & MT_RXD1_NORMAL_ADDR_TYPE) == MT_RXD1_NORMAL_U2M;
idx = FIELD_GET(MT_RXD2_NORMAL_WLAN_IDX, rxd2);
status->wcid = mt7615_rx_get_wcid(dev, idx, unicast);
if (status->wcid) {
struct mt7615_sta *msta;
msta = container_of(status->wcid, struct mt7615_sta, wcid);
spin_lock_bh(&dev->sta_poll_lock);
if (list_empty(&msta->poll_list))
list_add_tail(&msta->poll_list, &dev->sta_poll_list);
spin_unlock_bh(&dev->sta_poll_lock);
}
if (mt76_is_mmio(&dev->mt76) && (rxd0 & csum_mask) == csum_mask &&
!(csum_status & (BIT(0) | BIT(2) | BIT(3))))
skb->ip_summed = CHECKSUM_UNNECESSARY;
if (rxd2 & MT_RXD2_NORMAL_FCS_ERR)
status->flag |= RX_FLAG_FAILED_FCS_CRC;
if (rxd2 & MT_RXD2_NORMAL_TKIP_MIC_ERR)
status->flag |= RX_FLAG_MMIC_ERROR;
if (FIELD_GET(MT_RXD2_NORMAL_SEC_MODE, rxd2) != 0 &&
!(rxd2 & (MT_RXD2_NORMAL_CLM | MT_RXD2_NORMAL_CM))) {
status->flag |= RX_FLAG_DECRYPTED;
status->flag |= RX_FLAG_IV_STRIPPED;
status->flag |= RX_FLAG_MMIC_STRIPPED | RX_FLAG_MIC_STRIPPED;
}
remove_pad = rxd1 & MT_RXD1_NORMAL_HDR_OFFSET;
if (rxd2 & MT_RXD2_NORMAL_MAX_LEN_ERROR)
return -EINVAL;
rxd += 4;
if (rxd0 & MT_RXD0_NORMAL_GROUP_4) {
u32 v0 = le32_to_cpu(rxd[0]);
u32 v2 = le32_to_cpu(rxd[2]);
fc = cpu_to_le16(FIELD_GET(MT_RXD4_FRAME_CONTROL, v0));
qos_ctl = FIELD_GET(MT_RXD6_QOS_CTL, v2);
seq_ctrl = FIELD_GET(MT_RXD6_SEQ_CTRL, v2);
rxd += 4;
if ((u8 *)rxd - skb->data >= skb->len)
return -EINVAL;
}
if (rxd0 & MT_RXD0_NORMAL_GROUP_1) {
u8 *data = (u8 *)rxd;
if (status->flag & RX_FLAG_DECRYPTED) {
switch (FIELD_GET(MT_RXD2_NORMAL_SEC_MODE, rxd2)) {
case MT_CIPHER_AES_CCMP:
case MT_CIPHER_CCMP_CCX:
case MT_CIPHER_CCMP_256:
insert_ccmp_hdr =
FIELD_GET(MT_RXD2_NORMAL_FRAG, rxd2);
fallthrough;
case MT_CIPHER_TKIP:
case MT_CIPHER_TKIP_NO_MIC:
case MT_CIPHER_GCMP:
case MT_CIPHER_GCMP_256:
status->iv[0] = data[5];
status->iv[1] = data[4];
status->iv[2] = data[3];
status->iv[3] = data[2];
status->iv[4] = data[1];
status->iv[5] = data[0];
break;
default:
break;
}
}
rxd += 4;
if ((u8 *)rxd - skb->data >= skb->len)
return -EINVAL;
}
if (rxd0 & MT_RXD0_NORMAL_GROUP_2) {
status->timestamp = le32_to_cpu(rxd[0]);
status->flag |= RX_FLAG_MACTIME_START;
if (!(rxd2 & (MT_RXD2_NORMAL_NON_AMPDU_SUB |
MT_RXD2_NORMAL_NON_AMPDU))) {
status->flag |= RX_FLAG_AMPDU_DETAILS;
/* all subframes of an A-MPDU have the same timestamp */
if (phy->rx_ampdu_ts != status->timestamp) {
if (!++phy->ampdu_ref)
phy->ampdu_ref++;
}
phy->rx_ampdu_ts = status->timestamp;
status->ampdu_ref = phy->ampdu_ref;
}
rxd += 2;
if ((u8 *)rxd - skb->data >= skb->len)
return -EINVAL;
}
if (rxd0 & MT_RXD0_NORMAL_GROUP_3) {
u32 rxdg5 = le32_to_cpu(rxd[5]);
/*
* If both PHYs are on the same channel and we don't have a WCID,
* we need to figure out which PHY this packet was received on.
* On the primary PHY, the noise value for the chains belonging to the
* second PHY will be set to the noise value of the last packet from
* that PHY.
*/
if (phy_idx < 0) {
int first_chain = ffs(phy2->mt76->chainmask) - 1;
phy_idx = ((rxdg5 >> (first_chain * 8)) & 0xff) == 0;
}
}
if (phy_idx == 1 && phy2) {
mphy = dev->mt76.phys[MT_BAND1];
phy = phy2;
status->phy_idx = phy_idx;
}
if (!mt7615_firmware_offload(dev) && chfreq != phy->chfreq)
return -EINVAL;
mt7615_get_status_freq_info(dev, mphy, status, chfreq);
if (status->band == NL80211_BAND_5GHZ)
sband = &mphy->sband_5g.sband;
else
sband = &mphy->sband_2g.sband;
if (!test_bit(MT76_STATE_RUNNING, &mphy->state))
return -EINVAL;
if (!sband->channels)
return -EINVAL;
if (rxd0 & MT_RXD0_NORMAL_GROUP_3) {
u32 rxdg0 = le32_to_cpu(rxd[0]);
u32 rxdg1 = le32_to_cpu(rxd[1]);
u32 rxdg3 = le32_to_cpu(rxd[3]);
u8 stbc = FIELD_GET(MT_RXV1_HT_STBC, rxdg0);
bool cck = false;
i = FIELD_GET(MT_RXV1_TX_RATE, rxdg0);
switch (FIELD_GET(MT_RXV1_TX_MODE, rxdg0)) {
case MT_PHY_TYPE_CCK:
cck = true;
fallthrough;
case MT_PHY_TYPE_OFDM:
i = mt76_get_rate(&dev->mt76, sband, i, cck);
break;
case MT_PHY_TYPE_HT_GF:
case MT_PHY_TYPE_HT:
status->encoding = RX_ENC_HT;
if (i > 31)
return -EINVAL;
break;
case MT_PHY_TYPE_VHT:
status->nss = FIELD_GET(MT_RXV2_NSTS, rxdg1) + 1;
status->encoding = RX_ENC_VHT;
break;
default:
return -EINVAL;
}
status->rate_idx = i;
switch (FIELD_GET(MT_RXV1_FRAME_MODE, rxdg0)) {
case MT_PHY_BW_20:
break;
case MT_PHY_BW_40:
status->bw = RATE_INFO_BW_40;
break;
case MT_PHY_BW_80:
status->bw = RATE_INFO_BW_80;
break;
case MT_PHY_BW_160:
status->bw = RATE_INFO_BW_160;
break;
default:
return -EINVAL;
}
if (rxdg0 & MT_RXV1_HT_SHORT_GI)
status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
if (rxdg0 & MT_RXV1_HT_AD_CODE)
status->enc_flags |= RX_ENC_FLAG_LDPC;
status->enc_flags |= RX_ENC_FLAG_STBC_MASK * stbc;
status->chains = mphy->antenna_mask;
status->chain_signal[0] = to_rssi(MT_RXV4_RCPI0, rxdg3);
status->chain_signal[1] = to_rssi(MT_RXV4_RCPI1, rxdg3);
status->chain_signal[2] = to_rssi(MT_RXV4_RCPI2, rxdg3);
status->chain_signal[3] = to_rssi(MT_RXV4_RCPI3, rxdg3);
mt7615_mac_fill_tm_rx(mphy->priv, rxd);
rxd += 6;
if ((u8 *)rxd - skb->data >= skb->len)
return -EINVAL;
}
amsdu_info = FIELD_GET(MT_RXD1_NORMAL_PAYLOAD_FORMAT, rxd1);
status->amsdu = !!amsdu_info;
if (status->amsdu) {
status->first_amsdu = amsdu_info == MT_RXD1_FIRST_AMSDU_FRAME;
status->last_amsdu = amsdu_info == MT_RXD1_LAST_AMSDU_FRAME;
}
hdr_gap = (u8 *)rxd - skb->data + 2 * remove_pad;
if (hdr_trans && ieee80211_has_morefrags(fc)) {
if (mt7615_reverse_frag0_hdr_trans(skb, hdr_gap))
return -EINVAL;
hdr_trans = false;
} else {
int pad_start = 0;
skb_pull(skb, hdr_gap);
if (!hdr_trans && status->amsdu) {
pad_start = ieee80211_get_hdrlen_from_skb(skb);
} else if (hdr_trans && (rxd2 & MT_RXD2_NORMAL_HDR_TRANS_ERROR)) {
/*
* When header translation failure is indicated,
* the hardware will insert an extra 2-byte field
* containing the data length after the protocol
* type field. This happens either when the LLC-SNAP
* pattern did not match, or if a VLAN header was
* detected.
*/
pad_start = 12;
if (get_unaligned_be16(skb->data + pad_start) == ETH_P_8021Q)
pad_start += 4;
else
pad_start = 0;
}
if (pad_start) {
memmove(skb->data + 2, skb->data, pad_start);
skb_pull(skb, 2);
}
}
if (insert_ccmp_hdr && !hdr_trans) {
u8 key_id = FIELD_GET(MT_RXD1_NORMAL_KEY_ID, rxd1);
mt76_insert_ccmp_hdr(skb, key_id);
}
if (!hdr_trans) {
hdr = (struct ieee80211_hdr *)skb->data;
fc = hdr->frame_control;
if (ieee80211_is_data_qos(fc)) {
seq_ctrl = le16_to_cpu(hdr->seq_ctrl);
qos_ctl = *ieee80211_get_qos_ctl(hdr);
}
} else {
status->flag |= RX_FLAG_8023;
}
if (!status->wcid || !ieee80211_is_data_qos(fc))
return 0;
status->aggr = unicast &&
!ieee80211_is_qos_nullfunc(fc);
status->qos_ctl = qos_ctl;
status->seqno = IEEE80211_SEQ_TO_SN(seq_ctrl);
return 0;
}
void mt7615_sta_ps(struct mt76_dev *mdev, struct ieee80211_sta *sta, bool ps)
{
}
EXPORT_SYMBOL_GPL(mt7615_sta_ps);
static u16
mt7615_mac_tx_rate_val(struct mt7615_dev *dev,
struct mt76_phy *mphy,
const struct ieee80211_tx_rate *rate,
bool stbc, u8 *bw)
{
u8 phy, nss, rate_idx;
u16 rateval = 0;
*bw = 0;
if (rate->flags & IEEE80211_TX_RC_VHT_MCS) {
rate_idx = ieee80211_rate_get_vht_mcs(rate);
nss = ieee80211_rate_get_vht_nss(rate);
phy = MT_PHY_TYPE_VHT;
if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
*bw = 1;
else if (rate->flags & IEEE80211_TX_RC_80_MHZ_WIDTH)
*bw = 2;
else if (rate->flags & IEEE80211_TX_RC_160_MHZ_WIDTH)
*bw = 3;
} else if (rate->flags & IEEE80211_TX_RC_MCS) {
rate_idx = rate->idx;
nss = 1 + (rate->idx >> 3);
phy = MT_PHY_TYPE_HT;
if (rate->flags & IEEE80211_TX_RC_GREEN_FIELD)
phy = MT_PHY_TYPE_HT_GF;
if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
*bw = 1;
} else {
const struct ieee80211_rate *r;
int band = mphy->chandef.chan->band;
u16 val;
nss = 1;
r = &mphy->hw->wiphy->bands[band]->bitrates[rate->idx];
if (rate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
val = r->hw_value_short;
else
val = r->hw_value;
phy = val >> 8;
rate_idx = val & 0xff;
}
if (stbc && nss == 1) {
nss++;
rateval |= MT_TX_RATE_STBC;
}
rateval |= (FIELD_PREP(MT_TX_RATE_IDX, rate_idx) |
FIELD_PREP(MT_TX_RATE_MODE, phy) |
FIELD_PREP(MT_TX_RATE_NSS, nss - 1));
return rateval;
}
int mt7615_mac_write_txwi(struct mt7615_dev *dev, __le32 *txwi,
struct sk_buff *skb, struct mt76_wcid *wcid,
struct ieee80211_sta *sta, int pid,
struct ieee80211_key_conf *key,
enum mt76_txq_id qid, bool beacon)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
u8 fc_type, fc_stype, p_fmt, q_idx, omac_idx = 0, wmm_idx = 0;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_tx_rate *rate = &info->control.rates[0];
u8 phy_idx = (info->hw_queue & MT_TX_HW_QUEUE_PHY) >> 2;
bool multicast = is_multicast_ether_addr(hdr->addr1);
struct ieee80211_vif *vif = info->control.vif;
bool is_mmio = mt76_is_mmio(&dev->mt76);
u32 val, sz_txd = is_mmio ? MT_TXD_SIZE : MT_USB_TXD_SIZE;
struct mt76_phy *mphy = &dev->mphy;
__le16 fc = hdr->frame_control;
int tx_count = 8;
u16 seqno = 0;
if (vif) {
struct mt76_vif *mvif = (struct mt76_vif *)vif->drv_priv;
omac_idx = mvif->omac_idx;
wmm_idx = mvif->wmm_idx;
}
if (sta) {
struct mt7615_sta *msta = (struct mt7615_sta *)sta->drv_priv;
tx_count = msta->rate_count;
}
if (phy_idx && dev->mt76.phys[MT_BAND1])
mphy = dev->mt76.phys[MT_BAND1];
fc_type = (le16_to_cpu(fc) & IEEE80211_FCTL_FTYPE) >> 2;
fc_stype = (le16_to_cpu(fc) & IEEE80211_FCTL_STYPE) >> 4;
if (beacon) {
p_fmt = MT_TX_TYPE_FW;
q_idx = phy_idx ? MT_LMAC_BCN1 : MT_LMAC_BCN0;
} else if (qid >= MT_TXQ_PSD) {
p_fmt = is_mmio ? MT_TX_TYPE_CT : MT_TX_TYPE_SF;
q_idx = phy_idx ? MT_LMAC_ALTX1 : MT_LMAC_ALTX0;
} else {
p_fmt = is_mmio ? MT_TX_TYPE_CT : MT_TX_TYPE_SF;
q_idx = wmm_idx * MT7615_MAX_WMM_SETS +
mt7615_lmac_mapping(dev, skb_get_queue_mapping(skb));
}
val = FIELD_PREP(MT_TXD0_TX_BYTES, skb->len + sz_txd) |
FIELD_PREP(MT_TXD0_P_IDX, MT_TX_PORT_IDX_LMAC) |
FIELD_PREP(MT_TXD0_Q_IDX, q_idx);
txwi[0] = cpu_to_le32(val);
val = MT_TXD1_LONG_FORMAT |
FIELD_PREP(MT_TXD1_WLAN_IDX, wcid->idx) |
FIELD_PREP(MT_TXD1_HDR_FORMAT, MT_HDR_FORMAT_802_11) |
FIELD_PREP(MT_TXD1_HDR_INFO,
ieee80211_get_hdrlen_from_skb(skb) / 2) |
FIELD_PREP(MT_TXD1_TID,
skb->priority & IEEE80211_QOS_CTL_TID_MASK) |
FIELD_PREP(MT_TXD1_PKT_FMT, p_fmt) |
FIELD_PREP(MT_TXD1_OWN_MAC, omac_idx);
txwi[1] = cpu_to_le32(val);
val = FIELD_PREP(MT_TXD2_FRAME_TYPE, fc_type) |
FIELD_PREP(MT_TXD2_SUB_TYPE, fc_stype) |
FIELD_PREP(MT_TXD2_MULTICAST, multicast);
if (key) {
if (multicast && ieee80211_is_robust_mgmt_frame(skb) &&
key->cipher == WLAN_CIPHER_SUITE_AES_CMAC) {
val |= MT_TXD2_BIP;
txwi[3] = 0;
} else {
txwi[3] = cpu_to_le32(MT_TXD3_PROTECT_FRAME);
}
} else {
txwi[3] = 0;
}
txwi[2] = cpu_to_le32(val);
if (!(info->flags & IEEE80211_TX_CTL_AMPDU))
txwi[2] |= cpu_to_le32(MT_TXD2_BA_DISABLE);
txwi[4] = 0;
txwi[6] = 0;
if (rate->idx >= 0 && rate->count &&
!(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)) {
bool stbc = info->flags & IEEE80211_TX_CTL_STBC;
u8 bw;
u16 rateval = mt7615_mac_tx_rate_val(dev, mphy, rate, stbc,
&bw);
txwi[2] |= cpu_to_le32(MT_TXD2_FIX_RATE);
val = MT_TXD6_FIXED_BW |
FIELD_PREP(MT_TXD6_BW, bw) |
FIELD_PREP(MT_TXD6_TX_RATE, rateval);
txwi[6] |= cpu_to_le32(val);
if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
txwi[6] |= cpu_to_le32(MT_TXD6_SGI);
if (info->flags & IEEE80211_TX_CTL_LDPC)
txwi[6] |= cpu_to_le32(MT_TXD6_LDPC);
if (!(rate->flags & (IEEE80211_TX_RC_MCS |
IEEE80211_TX_RC_VHT_MCS)))
txwi[2] |= cpu_to_le32(MT_TXD2_BA_DISABLE);
tx_count = rate->count;
}
if (!ieee80211_is_beacon(fc)) {
struct ieee80211_hw *hw = mt76_hw(dev);
val = MT_TXD5_TX_STATUS_HOST | FIELD_PREP(MT_TXD5_PID, pid);
if (!ieee80211_hw_check(hw, SUPPORTS_PS))
val |= MT_TXD5_SW_POWER_MGMT;
txwi[5] = cpu_to_le32(val);
} else {
txwi[5] = 0;
/* use maximum tx count for beacons */
tx_count = 0x1f;
}
val = FIELD_PREP(MT_TXD3_REM_TX_COUNT, tx_count);
if (info->flags & IEEE80211_TX_CTL_INJECTED) {
seqno = le16_to_cpu(hdr->seq_ctrl);
if (ieee80211_is_back_req(hdr->frame_control)) {
struct ieee80211_bar *bar;
bar = (struct ieee80211_bar *)skb->data;
seqno = le16_to_cpu(bar->start_seq_num);
}
val |= MT_TXD3_SN_VALID |
FIELD_PREP(MT_TXD3_SEQ, IEEE80211_SEQ_TO_SN(seqno));
}
txwi[3] |= cpu_to_le32(val);
if (info->flags & IEEE80211_TX_CTL_NO_ACK)
txwi[3] |= cpu_to_le32(MT_TXD3_NO_ACK);
val = FIELD_PREP(MT_TXD7_TYPE, fc_type) |
FIELD_PREP(MT_TXD7_SUB_TYPE, fc_stype) |
FIELD_PREP(MT_TXD7_SPE_IDX, 0x18);
txwi[7] = cpu_to_le32(val);
if (!is_mmio) {
val = FIELD_PREP(MT_TXD8_L_TYPE, fc_type) |
FIELD_PREP(MT_TXD8_L_SUB_TYPE, fc_stype);
txwi[8] = cpu_to_le32(val);
}
return 0;
}
EXPORT_SYMBOL_GPL(mt7615_mac_write_txwi);
bool mt7615_mac_wtbl_update(struct mt7615_dev *dev, int idx, u32 mask)
{
mt76_rmw(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_WLAN_IDX,
FIELD_PREP(MT_WTBL_UPDATE_WLAN_IDX, idx) | mask);
return mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY,
0, 5000);
}
void mt7615_mac_sta_poll(struct mt7615_dev *dev)
{
static const u8 ac_to_tid[4] = {
[IEEE80211_AC_BE] = 0,
[IEEE80211_AC_BK] = 1,
[IEEE80211_AC_VI] = 4,
[IEEE80211_AC_VO] = 6
};
static const u8 hw_queue_map[] = {
[IEEE80211_AC_BK] = 0,
[IEEE80211_AC_BE] = 1,
[IEEE80211_AC_VI] = 2,
[IEEE80211_AC_VO] = 3,
};
struct ieee80211_sta *sta;
struct mt7615_sta *msta;
u32 addr, tx_time[4], rx_time[4];
struct list_head sta_poll_list;
int i;
INIT_LIST_HEAD(&sta_poll_list);
spin_lock_bh(&dev->sta_poll_lock);
list_splice_init(&dev->sta_poll_list, &sta_poll_list);
spin_unlock_bh(&dev->sta_poll_lock);
while (!list_empty(&sta_poll_list)) {
bool clear = false;
msta = list_first_entry(&sta_poll_list, struct mt7615_sta,
poll_list);
spin_lock_bh(&dev->sta_poll_lock);
list_del_init(&msta->poll_list);
spin_unlock_bh(&dev->sta_poll_lock);
addr = mt7615_mac_wtbl_addr(dev, msta->wcid.idx) + 19 * 4;
for (i = 0; i < 4; i++, addr += 8) {
u32 tx_last = msta->airtime_ac[i];
u32 rx_last = msta->airtime_ac[i + 4];
msta->airtime_ac[i] = mt76_rr(dev, addr);
msta->airtime_ac[i + 4] = mt76_rr(dev, addr + 4);
tx_time[i] = msta->airtime_ac[i] - tx_last;
rx_time[i] = msta->airtime_ac[i + 4] - rx_last;
if ((tx_last | rx_last) & BIT(30))
clear = true;
}
if (clear) {
mt7615_mac_wtbl_update(dev, msta->wcid.idx,
MT_WTBL_UPDATE_ADM_COUNT_CLEAR);
memset(msta->airtime_ac, 0, sizeof(msta->airtime_ac));
}
if (!msta->wcid.sta)
continue;
sta = container_of((void *)msta, struct ieee80211_sta,
drv_priv);
for (i = 0; i < 4; i++) {
u32 tx_cur = tx_time[i];
u32 rx_cur = rx_time[hw_queue_map[i]];
u8 tid = ac_to_tid[i];
if (!tx_cur && !rx_cur)
continue;
ieee80211_sta_register_airtime(sta, tid, tx_cur,
rx_cur);
}
}
}
EXPORT_SYMBOL_GPL(mt7615_mac_sta_poll);
static void
mt7615_mac_update_rate_desc(struct mt7615_phy *phy, struct mt7615_sta *sta,
struct ieee80211_tx_rate *probe_rate,
struct ieee80211_tx_rate *rates,
struct mt7615_rate_desc *rd)
{
struct mt7615_dev *dev = phy->dev;
struct mt76_phy *mphy = phy->mt76;
struct ieee80211_tx_rate *ref;
bool rateset, stbc = false;
int n_rates = sta->n_rates;
u8 bw, bw_prev;
int i, j;
for (i = n_rates; i < 4; i++)
rates[i] = rates[n_rates - 1];
rateset = !(sta->rate_set_tsf & BIT(0));
memcpy(sta->rateset[rateset].rates, rates,
sizeof(sta->rateset[rateset].rates));
if (probe_rate) {
sta->rateset[rateset].probe_rate = *probe_rate;
ref = &sta->rateset[rateset].probe_rate;
} else {
sta->rateset[rateset].probe_rate.idx = -1;
ref = &sta->rateset[rateset].rates[0];
}
rates = sta->rateset[rateset].rates;
for (i = 0; i < ARRAY_SIZE(sta->rateset[rateset].rates); i++) {
/*
* We don't support switching between short and long GI
* within the rate set. For accurate tx status reporting, we
* need to make sure that flags match.
* For improved performance, avoid duplicate entries by
* decrementing the MCS index if necessary
*/
if ((ref->flags ^ rates[i].flags) & IEEE80211_TX_RC_SHORT_GI)
rates[i].flags ^= IEEE80211_TX_RC_SHORT_GI;
for (j = 0; j < i; j++) {
if (rates[i].idx != rates[j].idx)
continue;
if ((rates[i].flags ^ rates[j].flags) &
(IEEE80211_TX_RC_40_MHZ_WIDTH |
IEEE80211_TX_RC_80_MHZ_WIDTH |
IEEE80211_TX_RC_160_MHZ_WIDTH))
continue;
if (!rates[i].idx)
continue;
rates[i].idx--;
}
}
rd->val[0] = mt7615_mac_tx_rate_val(dev, mphy, &rates[0], stbc, &bw);
bw_prev = bw;
if (probe_rate) {
rd->probe_val = mt7615_mac_tx_rate_val(dev, mphy, probe_rate,
stbc, &bw);
if (bw)
rd->bw_idx = 1;
else
bw_prev = 0;
} else {
rd->probe_val = rd->val[0];
}
rd->val[1] = mt7615_mac_tx_rate_val(dev, mphy, &rates[1], stbc, &bw);
if (bw_prev) {
rd->bw_idx = 3;
bw_prev = bw;
}
rd->val[2] = mt7615_mac_tx_rate_val(dev, mphy, &rates[2], stbc, &bw);
if (bw_prev) {
rd->bw_idx = 5;
bw_prev = bw;
}
rd->val[3] = mt7615_mac_tx_rate_val(dev, mphy, &rates[3], stbc, &bw);
if (bw_prev)
rd->bw_idx = 7;
rd->rateset = rateset;
rd->bw = bw;
}
static int
mt7615_mac_queue_rate_update(struct mt7615_phy *phy, struct mt7615_sta *sta,
struct ieee80211_tx_rate *probe_rate,
struct ieee80211_tx_rate *rates)
{
struct mt7615_dev *dev = phy->dev;
struct mt7615_wtbl_rate_desc *wrd;
if (work_pending(&dev->rate_work))
return -EBUSY;
wrd = kzalloc(sizeof(*wrd), GFP_ATOMIC);
if (!wrd)
return -ENOMEM;
wrd->sta = sta;
mt7615_mac_update_rate_desc(phy, sta, probe_rate, rates,
&wrd->rate);
list_add_tail(&wrd->node, &dev->wrd_head);
queue_work(dev->mt76.wq, &dev->rate_work);
return 0;
}
u32 mt7615_mac_get_sta_tid_sn(struct mt7615_dev *dev, int wcid, u8 tid)
{
u32 addr, val, val2;
u8 offset;
addr = mt7615_mac_wtbl_addr(dev, wcid) + 11 * 4;
offset = tid * 12;
addr += 4 * (offset / 32);
offset %= 32;
val = mt76_rr(dev, addr);
val >>= offset;
if (offset > 20) {
addr += 4;
val2 = mt76_rr(dev, addr);
val |= val2 << (32 - offset);
}
return val & GENMASK(11, 0);
}
void mt7615_mac_set_rates(struct mt7615_phy *phy, struct mt7615_sta *sta,
struct ieee80211_tx_rate *probe_rate,
struct ieee80211_tx_rate *rates)
{
int wcid = sta->wcid.idx, n_rates = sta->n_rates;
struct mt7615_dev *dev = phy->dev;
struct mt7615_rate_desc rd;
u32 w5, w27, addr;
u16 idx = sta->vif->mt76.omac_idx;
if (!mt76_is_mmio(&dev->mt76)) {
mt7615_mac_queue_rate_update(phy, sta, probe_rate, rates);
return;
}
if (!mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000))
return;
memset(&rd, 0, sizeof(struct mt7615_rate_desc));
mt7615_mac_update_rate_desc(phy, sta, probe_rate, rates, &rd);
addr = mt7615_mac_wtbl_addr(dev, wcid);
w27 = mt76_rr(dev, addr + 27 * 4);
w27 &= ~MT_WTBL_W27_CC_BW_SEL;
w27 |= FIELD_PREP(MT_WTBL_W27_CC_BW_SEL, rd.bw);
w5 = mt76_rr(dev, addr + 5 * 4);
w5 &= ~(MT_WTBL_W5_BW_CAP | MT_WTBL_W5_CHANGE_BW_RATE |
MT_WTBL_W5_MPDU_OK_COUNT |
MT_WTBL_W5_MPDU_FAIL_COUNT |
MT_WTBL_W5_RATE_IDX);
w5 |= FIELD_PREP(MT_WTBL_W5_BW_CAP, rd.bw) |
FIELD_PREP(MT_WTBL_W5_CHANGE_BW_RATE,
rd.bw_idx ? rd.bw_idx - 1 : 7);
mt76_wr(dev, MT_WTBL_RIUCR0, w5);
mt76_wr(dev, MT_WTBL_RIUCR1,
FIELD_PREP(MT_WTBL_RIUCR1_RATE0, rd.probe_val) |
FIELD_PREP(MT_WTBL_RIUCR1_RATE1, rd.val[0]) |
FIELD_PREP(MT_WTBL_RIUCR1_RATE2_LO, rd.val[1]));
mt76_wr(dev, MT_WTBL_RIUCR2,
FIELD_PREP(MT_WTBL_RIUCR2_RATE2_HI, rd.val[1] >> 8) |
FIELD_PREP(MT_WTBL_RIUCR2_RATE3, rd.val[1]) |
FIELD_PREP(MT_WTBL_RIUCR2_RATE4, rd.val[2]) |
FIELD_PREP(MT_WTBL_RIUCR2_RATE5_LO, rd.val[2]));
mt76_wr(dev, MT_WTBL_RIUCR3,
FIELD_PREP(MT_WTBL_RIUCR3_RATE5_HI, rd.val[2] >> 4) |
FIELD_PREP(MT_WTBL_RIUCR3_RATE6, rd.val[3]) |
FIELD_PREP(MT_WTBL_RIUCR3_RATE7, rd.val[3]));
mt76_wr(dev, MT_WTBL_UPDATE,
FIELD_PREP(MT_WTBL_UPDATE_WLAN_IDX, wcid) |
MT_WTBL_UPDATE_RATE_UPDATE |
MT_WTBL_UPDATE_TX_COUNT_CLEAR);
mt76_wr(dev, addr + 27 * 4, w27);
idx = idx > HW_BSSID_MAX ? HW_BSSID_0 : idx;
addr = idx > 1 ? MT_LPON_TCR2(idx): MT_LPON_TCR0(idx);
mt76_rmw(dev, addr, MT_LPON_TCR_MODE, MT_LPON_TCR_READ); /* TSF read */
sta->rate_set_tsf = mt76_rr(dev, MT_LPON_UTTR0) & ~BIT(0);
sta->rate_set_tsf |= rd.rateset;
if (!(sta->wcid.tx_info & MT_WCID_TX_INFO_SET))
mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000);
sta->rate_count = 2 * MT7615_RATE_RETRY * n_rates;
sta->wcid.tx_info |= MT_WCID_TX_INFO_SET;
sta->rate_probe = !!probe_rate;
}
EXPORT_SYMBOL_GPL(mt7615_mac_set_rates);
void mt7615_mac_enable_rtscts(struct mt7615_dev *dev,
struct ieee80211_vif *vif, bool enable)
{
struct mt7615_vif *mvif = (struct mt7615_vif *)vif->drv_priv;
u32 addr;
addr = mt7615_mac_wtbl_addr(dev, mvif->sta.wcid.idx) + 3 * 4;
if (enable)
mt76_set(dev, addr, MT_WTBL_W3_RTS);
else
mt76_clear(dev, addr, MT_WTBL_W3_RTS);
}
EXPORT_SYMBOL_GPL(mt7615_mac_enable_rtscts);
static int
mt7615_mac_wtbl_update_key(struct mt7615_dev *dev, struct mt76_wcid *wcid,
struct ieee80211_key_conf *key,
enum mt76_cipher_type cipher, u16 cipher_mask)
{
u32 addr = mt7615_mac_wtbl_addr(dev, wcid->idx) + 30 * 4;
u8 data[32] = {};
if (key->keylen > sizeof(data))
return -EINVAL;
mt76_rr_copy(dev, addr, data, sizeof(data));
if (cipher == MT_CIPHER_TKIP) {
/* Rx/Tx MIC keys are swapped */
memcpy(data, key->key, 16);
memcpy(data + 16, key->key + 24, 8);
memcpy(data + 24, key->key + 16, 8);
} else {
if (cipher_mask == BIT(cipher))
memcpy(data, key->key, key->keylen);
else if (cipher != MT_CIPHER_BIP_CMAC_128)
memcpy(data, key->key, 16);
if (cipher == MT_CIPHER_BIP_CMAC_128)
memcpy(data + 16, key->key, 16);
}
mt76_wr_copy(dev, addr, data, sizeof(data));
return 0;
}
static int
mt7615_mac_wtbl_update_pk(struct mt7615_dev *dev, struct mt76_wcid *wcid,
enum mt76_cipher_type cipher, u16 cipher_mask,
int keyidx)
{
u32 addr = mt7615_mac_wtbl_addr(dev, wcid->idx), w0, w1;
if (!mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000))
return -ETIMEDOUT;
w0 = mt76_rr(dev, addr);
w1 = mt76_rr(dev, addr + 4);
if (cipher_mask)
w0 |= MT_WTBL_W0_RX_KEY_VALID;
else
w0 &= ~(MT_WTBL_W0_RX_KEY_VALID | MT_WTBL_W0_KEY_IDX);
if (cipher_mask & BIT(MT_CIPHER_BIP_CMAC_128))
w0 |= MT_WTBL_W0_RX_IK_VALID;
else
w0 &= ~MT_WTBL_W0_RX_IK_VALID;
if (cipher != MT_CIPHER_BIP_CMAC_128 || cipher_mask == BIT(cipher)) {
w0 &= ~MT_WTBL_W0_KEY_IDX;
w0 |= FIELD_PREP(MT_WTBL_W0_KEY_IDX, keyidx);
}
mt76_wr(dev, MT_WTBL_RICR0, w0);
mt76_wr(dev, MT_WTBL_RICR1, w1);
if (!mt7615_mac_wtbl_update(dev, wcid->idx,
MT_WTBL_UPDATE_RXINFO_UPDATE))
return -ETIMEDOUT;
return 0;
}
static void
mt7615_mac_wtbl_update_cipher(struct mt7615_dev *dev, struct mt76_wcid *wcid,
enum mt76_cipher_type cipher, u16 cipher_mask)
{
u32 addr = mt7615_mac_wtbl_addr(dev, wcid->idx);
if (cipher == MT_CIPHER_BIP_CMAC_128 &&
cipher_mask & ~BIT(MT_CIPHER_BIP_CMAC_128))
return;
mt76_rmw(dev, addr + 2 * 4, MT_WTBL_W2_KEY_TYPE,
FIELD_PREP(MT_WTBL_W2_KEY_TYPE, cipher));
}
int __mt7615_mac_wtbl_set_key(struct mt7615_dev *dev,
struct mt76_wcid *wcid,
struct ieee80211_key_conf *key)
{
enum mt76_cipher_type cipher;
u16 cipher_mask = wcid->cipher;
int err;
cipher = mt7615_mac_get_cipher(key->cipher);
if (cipher == MT_CIPHER_NONE)
return -EOPNOTSUPP;
cipher_mask |= BIT(cipher);
mt7615_mac_wtbl_update_cipher(dev, wcid, cipher, cipher_mask);
err = mt7615_mac_wtbl_update_key(dev, wcid, key, cipher, cipher_mask);
if (err < 0)
return err;
err = mt7615_mac_wtbl_update_pk(dev, wcid, cipher, cipher_mask,
key->keyidx);
if (err < 0)
return err;
wcid->cipher = cipher_mask;
return 0;
}
int mt7615_mac_wtbl_set_key(struct mt7615_dev *dev,
struct mt76_wcid *wcid,
struct ieee80211_key_conf *key)
{
int err;
spin_lock_bh(&dev->mt76.lock);
err = __mt7615_mac_wtbl_set_key(dev, wcid, key);
spin_unlock_bh(&dev->mt76.lock);
return err;
}
static bool mt7615_fill_txs(struct mt7615_dev *dev, struct mt7615_sta *sta,
struct ieee80211_tx_info *info, __le32 *txs_data)
{
struct ieee80211_supported_band *sband;
struct mt7615_rate_set *rs;
struct mt76_phy *mphy;
int first_idx = 0, last_idx;
int i, idx, count;
bool fixed_rate, ack_timeout;
bool ampdu, cck = false;
bool rs_idx;
u32 rate_set_tsf;
u32 final_rate, final_rate_flags, final_nss, txs;
txs = le32_to_cpu(txs_data[1]);
ampdu = txs & MT_TXS1_AMPDU;
txs = le32_to_cpu(txs_data[3]);
count = FIELD_GET(MT_TXS3_TX_COUNT, txs);
last_idx = FIELD_GET(MT_TXS3_LAST_TX_RATE, txs);
txs = le32_to_cpu(txs_data[0]);
fixed_rate = txs & MT_TXS0_FIXED_RATE;
final_rate = FIELD_GET(MT_TXS0_TX_RATE, txs);
ack_timeout = txs & MT_TXS0_ACK_TIMEOUT;
if (!ampdu && (txs & MT_TXS0_RTS_TIMEOUT))
return false;
if (txs & MT_TXS0_QUEUE_TIMEOUT)
return false;
if (!ack_timeout)
info->flags |= IEEE80211_TX_STAT_ACK;
info->status.ampdu_len = 1;
info->status.ampdu_ack_len = !!(info->flags &
IEEE80211_TX_STAT_ACK);
if (ampdu || (info->flags & IEEE80211_TX_CTL_AMPDU))
info->flags |= IEEE80211_TX_STAT_AMPDU | IEEE80211_TX_CTL_AMPDU;
first_idx = max_t(int, 0, last_idx - (count - 1) / MT7615_RATE_RETRY);
if (fixed_rate) {
info->status.rates[0].count = count;
i = 0;
goto out;
}
rate_set_tsf = READ_ONCE(sta->rate_set_tsf);
rs_idx = !((u32)(le32_get_bits(txs_data[4], MT_TXS4_F0_TIMESTAMP) -
rate_set_tsf) < 1000000);
rs_idx ^= rate_set_tsf & BIT(0);
rs = &sta->rateset[rs_idx];
if (!first_idx && rs->probe_rate.idx >= 0) {
info->status.rates[0] = rs->probe_rate;
spin_lock_bh(&dev->mt76.lock);
if (sta->rate_probe) {
struct mt7615_phy *phy = &dev->phy;
if (sta->wcid.phy_idx && dev->mt76.phys[MT_BAND1])
phy = dev->mt76.phys[MT_BAND1]->priv;
mt7615_mac_set_rates(phy, sta, NULL, sta->rates);
}
spin_unlock_bh(&dev->mt76.lock);
} else {
info->status.rates[0] = rs->rates[first_idx / 2];
}
info->status.rates[0].count = 0;
for (i = 0, idx = first_idx; count && idx <= last_idx; idx++) {
struct ieee80211_tx_rate *cur_rate;
int cur_count;
cur_rate = &rs->rates[idx / 2];
cur_count = min_t(int, MT7615_RATE_RETRY, count);
count -= cur_count;
if (idx && (cur_rate->idx != info->status.rates[i].idx ||
cur_rate->flags != info->status.rates[i].flags)) {
i++;
if (i == ARRAY_SIZE(info->status.rates)) {
i--;
break;
}
info->status.rates[i] = *cur_rate;
info->status.rates[i].count = 0;
}
info->status.rates[i].count += cur_count;
}
out:
final_rate_flags = info->status.rates[i].flags;
switch (FIELD_GET(MT_TX_RATE_MODE, final_rate)) {
case MT_PHY_TYPE_CCK:
cck = true;
fallthrough;
case MT_PHY_TYPE_OFDM:
mphy = &dev->mphy;
if (sta->wcid.phy_idx && dev->mt76.phys[MT_BAND1])
mphy = dev->mt76.phys[MT_BAND1];
if (mphy->chandef.chan->band == NL80211_BAND_5GHZ)
sband = &mphy->sband_5g.sband;
else
sband = &mphy->sband_2g.sband;
final_rate &= MT_TX_RATE_IDX;
final_rate = mt76_get_rate(&dev->mt76, sband, final_rate,
cck);
final_rate_flags = 0;
break;
case MT_PHY_TYPE_HT_GF:
case MT_PHY_TYPE_HT:
final_rate_flags |= IEEE80211_TX_RC_MCS;
final_rate &= MT_TX_RATE_IDX;
if (final_rate > 31)
return false;
break;
case MT_PHY_TYPE_VHT:
final_nss = FIELD_GET(MT_TX_RATE_NSS, final_rate);
if ((final_rate & MT_TX_RATE_STBC) && final_nss)
final_nss--;
final_rate_flags |= IEEE80211_TX_RC_VHT_MCS;
final_rate = (final_rate & MT_TX_RATE_IDX) | (final_nss << 4);
break;
default:
return false;
}
info->status.rates[i].idx = final_rate;
info->status.rates[i].flags = final_rate_flags;
return true;
}
static bool mt7615_mac_add_txs_skb(struct mt7615_dev *dev,
struct mt7615_sta *sta, int pid,
__le32 *txs_data)
{
struct mt76_dev *mdev = &dev->mt76;
struct sk_buff_head list;
struct sk_buff *skb;
if (pid < MT_PACKET_ID_FIRST)
return false;
trace_mac_txdone(mdev, sta->wcid.idx, pid);
mt76_tx_status_lock(mdev, &list);
skb = mt76_tx_status_skb_get(mdev, &sta->wcid, pid, &list);
if (skb) {
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
if (!mt7615_fill_txs(dev, sta, info, txs_data)) {
info->status.rates[0].count = 0;
info->status.rates[0].idx = -1;
}
mt76_tx_status_skb_done(mdev, skb, &list);
}
mt76_tx_status_unlock(mdev, &list);
return !!skb;
}
static void mt7615_mac_add_txs(struct mt7615_dev *dev, void *data)
{
struct ieee80211_tx_info info = {};
struct ieee80211_sta *sta = NULL;
struct mt7615_sta *msta = NULL;
struct mt76_wcid *wcid;
struct mt76_phy *mphy = &dev->mt76.phy;
__le32 *txs_data = data;
u8 wcidx;
u8 pid;
pid = le32_get_bits(txs_data[0], MT_TXS0_PID);
wcidx = le32_get_bits(txs_data[2], MT_TXS2_WCID);
if (pid == MT_PACKET_ID_NO_ACK)
return;
if (wcidx >= MT7615_WTBL_SIZE)
return;
rcu_read_lock();
wcid = rcu_dereference(dev->mt76.wcid[wcidx]);
if (!wcid)
goto out;
msta = container_of(wcid, struct mt7615_sta, wcid);
sta = wcid_to_sta(wcid);
spin_lock_bh(&dev->sta_poll_lock);
if (list_empty(&msta->poll_list))
list_add_tail(&msta->poll_list, &dev->sta_poll_list);
spin_unlock_bh(&dev->sta_poll_lock);
if (mt7615_mac_add_txs_skb(dev, msta, pid, txs_data))
goto out;
if (wcidx >= MT7615_WTBL_STA || !sta)
goto out;
if (wcid->phy_idx && dev->mt76.phys[MT_BAND1])
mphy = dev->mt76.phys[MT_BAND1];
if (mt7615_fill_txs(dev, msta, &info, txs_data)) {
spin_lock_bh(&dev->mt76.rx_lock);
ieee80211_tx_status_noskb(mphy->hw, sta, &info);
spin_unlock_bh(&dev->mt76.rx_lock);
}
out:
rcu_read_unlock();
}
static void
mt7615_txwi_free(struct mt7615_dev *dev, struct mt76_txwi_cache *txwi)
{
struct mt76_dev *mdev = &dev->mt76;
__le32 *txwi_data;
u32 val;
u8 wcid;
mt76_connac_txp_skb_unmap(mdev, txwi);
if (!txwi->skb)
goto out;
txwi_data = (__le32 *)mt76_get_txwi_ptr(mdev, txwi);
val = le32_to_cpu(txwi_data[1]);
wcid = FIELD_GET(MT_TXD1_WLAN_IDX, val);
mt76_tx_complete_skb(mdev, wcid, txwi->skb);
out:
txwi->skb = NULL;
mt76_put_txwi(mdev, txwi);
}
static void
mt7615_mac_tx_free_token(struct mt7615_dev *dev, u16 token)
{
struct mt76_dev *mdev = &dev->mt76;
struct mt76_txwi_cache *txwi;
trace_mac_tx_free(dev, token);
txwi = mt76_token_put(mdev, token);
if (!txwi)
return;
mt7615_txwi_free(dev, txwi);
}
static void mt7615_mac_tx_free(struct mt7615_dev *dev, void *data, int len)
{
struct mt76_connac_tx_free *free = data;
void *tx_token = data + sizeof(*free);
void *end = data + len;
u8 i, count;
mt76_queue_tx_cleanup(dev, dev->mphy.q_tx[MT_TXQ_PSD], false);
if (is_mt7615(&dev->mt76)) {
mt76_queue_tx_cleanup(dev, dev->mphy.q_tx[MT_TXQ_BE], false);
} else {
for (i = 0; i < IEEE80211_NUM_ACS; i++)
mt76_queue_tx_cleanup(dev, dev->mphy.q_tx[i], false);
}
count = le16_get_bits(free->ctrl, MT_TX_FREE_MSDU_ID_CNT);
if (is_mt7615(&dev->mt76)) {
__le16 *token = tx_token;
if (WARN_ON_ONCE((void *)&token[count] > end))
return;
for (i = 0; i < count; i++)
mt7615_mac_tx_free_token(dev, le16_to_cpu(token[i]));
} else {
__le32 *token = tx_token;
if (WARN_ON_ONCE((void *)&token[count] > end))
return;
for (i = 0; i < count; i++)
mt7615_mac_tx_free_token(dev, le32_to_cpu(token[i]));
}
rcu_read_lock();
mt7615_mac_sta_poll(dev);
rcu_read_unlock();
mt76_worker_schedule(&dev->mt76.tx_worker);
}
bool mt7615_rx_check(struct mt76_dev *mdev, void *data, int len)
{
struct mt7615_dev *dev = container_of(mdev, struct mt7615_dev, mt76);
__le32 *rxd = (__le32 *)data;
__le32 *end = (__le32 *)&rxd[len / 4];
enum rx_pkt_type type;
type = le32_get_bits(rxd[0], MT_RXD0_PKT_TYPE);
switch (type) {
case PKT_TYPE_TXRX_NOTIFY:
mt7615_mac_tx_free(dev, data, len);
return false;
case PKT_TYPE_TXS:
for (rxd++; rxd + 7 <= end; rxd += 7)
mt7615_mac_add_txs(dev, rxd);
return false;
default:
return true;
}
}
EXPORT_SYMBOL_GPL(mt7615_rx_check);
void mt7615_queue_rx_skb(struct mt76_dev *mdev, enum mt76_rxq_id q,
struct sk_buff *skb, u32 *info)
{
struct mt7615_dev *dev = container_of(mdev, struct mt7615_dev, mt76);
__le32 *rxd = (__le32 *)skb->data;
__le32 *end = (__le32 *)&skb->data[skb->len];
enum rx_pkt_type type;
u16 flag;
type = le32_get_bits(rxd[0], MT_RXD0_PKT_TYPE);
flag = le32_get_bits(rxd[0], MT_RXD0_PKT_FLAG);
if (type == PKT_TYPE_RX_EVENT && flag == 0x1)
type = PKT_TYPE_NORMAL_MCU;
switch (type) {
case PKT_TYPE_TXS:
for (rxd++; rxd + 7 <= end; rxd += 7)
mt7615_mac_add_txs(dev, rxd);
dev_kfree_skb(skb);
break;
case PKT_TYPE_TXRX_NOTIFY:
mt7615_mac_tx_free(dev, skb->data, skb->len);
dev_kfree_skb(skb);
break;
case PKT_TYPE_RX_EVENT:
mt7615_mcu_rx_event(dev, skb);
break;
case PKT_TYPE_NORMAL_MCU:
case PKT_TYPE_NORMAL:
if (!mt7615_mac_fill_rx(dev, skb)) {
mt76_rx(&dev->mt76, q, skb);
return;
}
fallthrough;
default:
dev_kfree_skb(skb);
break;
}
}
EXPORT_SYMBOL_GPL(mt7615_queue_rx_skb);
static void
mt7615_mac_set_sensitivity(struct mt7615_phy *phy, int val, bool ofdm)
{
struct mt7615_dev *dev = phy->dev;
bool ext_phy = phy != &dev->phy;
if (is_mt7663(&dev->mt76)) {
if (ofdm)
mt76_rmw(dev, MT7663_WF_PHY_MIN_PRI_PWR(ext_phy),
MT_WF_PHY_PD_OFDM_MASK(0),
MT_WF_PHY_PD_OFDM(0, val));
else
mt76_rmw(dev, MT7663_WF_PHY_RXTD_CCK_PD(ext_phy),
MT_WF_PHY_PD_CCK_MASK(ext_phy),
MT_WF_PHY_PD_CCK(ext_phy, val));
return;
}
if (ofdm)
mt76_rmw(dev, MT_WF_PHY_MIN_PRI_PWR(ext_phy),
MT_WF_PHY_PD_OFDM_MASK(ext_phy),
MT_WF_PHY_PD_OFDM(ext_phy, val));
else
mt76_rmw(dev, MT_WF_PHY_RXTD_CCK_PD(ext_phy),
MT_WF_PHY_PD_CCK_MASK(ext_phy),
MT_WF_PHY_PD_CCK(ext_phy, val));
}
static void
mt7615_mac_set_default_sensitivity(struct mt7615_phy *phy)
{
/* ofdm */
mt7615_mac_set_sensitivity(phy, 0x13c, true);
/* cck */
mt7615_mac_set_sensitivity(phy, 0x92, false);
phy->ofdm_sensitivity = -98;
phy->cck_sensitivity = -110;
phy->last_cca_adj = jiffies;
}
void mt7615_mac_set_scs(struct mt7615_phy *phy, bool enable)
{
struct mt7615_dev *dev = phy->dev;
bool ext_phy = phy != &dev->phy;
u32 reg, mask;
mt7615_mutex_acquire(dev);
if (phy->scs_en == enable)
goto out;
if (is_mt7663(&dev->mt76)) {
reg = MT7663_WF_PHY_MIN_PRI_PWR(ext_phy);
mask = MT_WF_PHY_PD_BLK(0);
} else {
reg = MT_WF_PHY_MIN_PRI_PWR(ext_phy);
mask = MT_WF_PHY_PD_BLK(ext_phy);
}
if (enable) {
mt76_set(dev, reg, mask);
if (is_mt7622(&dev->mt76)) {
mt76_set(dev, MT_MIB_M0_MISC_CR(0), 0x7 << 8);
mt76_set(dev, MT_MIB_M0_MISC_CR(0), 0x7);
}
} else {
mt76_clear(dev, reg, mask);
}
mt7615_mac_set_default_sensitivity(phy);
phy->scs_en = enable;
out:
mt7615_mutex_release(dev);
}
void mt7615_mac_enable_nf(struct mt7615_dev *dev, bool ext_phy)
{
u32 rxtd, reg;
if (is_mt7663(&dev->mt76))
reg = MT7663_WF_PHY_R0_PHYMUX_5;
else
reg = MT_WF_PHY_R0_PHYMUX_5(ext_phy);
if (ext_phy)
rxtd = MT_WF_PHY_RXTD2(10);
else
rxtd = MT_WF_PHY_RXTD(12);
mt76_set(dev, rxtd, BIT(18) | BIT(29));
mt76_set(dev, reg, 0x5 << 12);
}
void mt7615_mac_cca_stats_reset(struct mt7615_phy *phy)
{
struct mt7615_dev *dev = phy->dev;
bool ext_phy = phy != &dev->phy;
u32 reg;
if (is_mt7663(&dev->mt76))
reg = MT7663_WF_PHY_R0_PHYMUX_5;
else
reg = MT_WF_PHY_R0_PHYMUX_5(ext_phy);
/* reset PD and MDRDY counters */
mt76_clear(dev, reg, GENMASK(22, 20));
mt76_set(dev, reg, BIT(22) | BIT(20));
}
static void
mt7615_mac_adjust_sensitivity(struct mt7615_phy *phy,
u32 rts_err_rate, bool ofdm)
{
struct mt7615_dev *dev = phy->dev;
int false_cca = ofdm ? phy->false_cca_ofdm : phy->false_cca_cck;
bool ext_phy = phy != &dev->phy;
s16 def_th = ofdm ? -98 : -110;
bool update = false;
s8 *sensitivity;
int signal;
sensitivity = ofdm ? &phy->ofdm_sensitivity : &phy->cck_sensitivity;
signal = mt76_get_min_avg_rssi(&dev->mt76, ext_phy);
if (!signal) {
mt7615_mac_set_default_sensitivity(phy);
return;
}
signal = min(signal, -72);
if (false_cca > 500) {
if (rts_err_rate > MT_FRAC(40, 100))
return;
/* decrease coverage */
if (*sensitivity == def_th && signal > -90) {
*sensitivity = -90;
update = true;
} else if (*sensitivity + 2 < signal) {
*sensitivity += 2;
update = true;
}
} else if ((false_cca > 0 && false_cca < 50) ||
rts_err_rate > MT_FRAC(60, 100)) {
/* increase coverage */
if (*sensitivity - 2 >= def_th) {
*sensitivity -= 2;
update = true;
}
}
if (*sensitivity > signal) {
*sensitivity = signal;
update = true;
}
if (update) {
u16 val = ofdm ? *sensitivity * 2 + 512 : *sensitivity + 256;
mt7615_mac_set_sensitivity(phy, val, ofdm);
phy->last_cca_adj = jiffies;
}
}
static void
mt7615_mac_scs_check(struct mt7615_phy *phy)
{
struct mt7615_dev *dev = phy->dev;
struct mib_stats *mib = &phy->mib;
u32 val, rts_err_rate = 0;
u32 mdrdy_cck, mdrdy_ofdm, pd_cck, pd_ofdm;
bool ext_phy = phy != &dev->phy;
if (!phy->scs_en)
return;
if (is_mt7663(&dev->mt76))
val = mt76_rr(dev, MT7663_WF_PHY_R0_PHYCTRL_STS0(ext_phy));
else
val = mt76_rr(dev, MT_WF_PHY_R0_PHYCTRL_STS0(ext_phy));
pd_cck = FIELD_GET(MT_WF_PHYCTRL_STAT_PD_CCK, val);
pd_ofdm = FIELD_GET(MT_WF_PHYCTRL_STAT_PD_OFDM, val);
if (is_mt7663(&dev->mt76))
val = mt76_rr(dev, MT7663_WF_PHY_R0_PHYCTRL_STS5(ext_phy));
else
val = mt76_rr(dev, MT_WF_PHY_R0_PHYCTRL_STS5(ext_phy));
mdrdy_cck = FIELD_GET(MT_WF_PHYCTRL_STAT_MDRDY_CCK, val);
mdrdy_ofdm = FIELD_GET(MT_WF_PHYCTRL_STAT_MDRDY_OFDM, val);
phy->false_cca_ofdm = pd_ofdm - mdrdy_ofdm;
phy->false_cca_cck = pd_cck - mdrdy_cck;
mt7615_mac_cca_stats_reset(phy);
if (mib->rts_cnt + mib->rts_retries_cnt)
rts_err_rate = MT_FRAC(mib->rts_retries_cnt,
mib->rts_cnt + mib->rts_retries_cnt);
/* cck */
mt7615_mac_adjust_sensitivity(phy, rts_err_rate, false);
/* ofdm */
mt7615_mac_adjust_sensitivity(phy, rts_err_rate, true);
if (time_after(jiffies, phy->last_cca_adj + 10 * HZ))
mt7615_mac_set_default_sensitivity(phy);
}
static u8
mt7615_phy_get_nf(struct mt7615_dev *dev, int idx)
{
static const u8 nf_power[] = { 92, 89, 86, 83, 80, 75, 70, 65, 60, 55, 52 };
u32 reg, val, sum = 0, n = 0;
int i;
if (is_mt7663(&dev->mt76))
reg = MT7663_WF_PHY_RXTD(20);
else
reg = idx ? MT_WF_PHY_RXTD2(17) : MT_WF_PHY_RXTD(20);
for (i = 0; i < ARRAY_SIZE(nf_power); i++, reg += 4) {
val = mt76_rr(dev, reg);
sum += val * nf_power[i];
n += val;
}
if (!n)
return 0;
return sum / n;
}
static void
mt7615_phy_update_channel(struct mt76_phy *mphy, int idx)
{
struct mt7615_dev *dev = container_of(mphy->dev, struct mt7615_dev, mt76);
struct mt7615_phy *phy = mphy->priv;
struct mt76_channel_state *state;
u64 busy_time, tx_time, rx_time, obss_time;
u32 obss_reg = idx ? MT_WF_RMAC_MIB_TIME6 : MT_WF_RMAC_MIB_TIME5;
int nf;
busy_time = mt76_get_field(dev, MT_MIB_SDR9(idx),
MT_MIB_SDR9_BUSY_MASK);
tx_time = mt76_get_field(dev, MT_MIB_SDR36(idx),
MT_MIB_SDR36_TXTIME_MASK);
rx_time = mt76_get_field(dev, MT_MIB_SDR37(idx),
MT_MIB_SDR37_RXTIME_MASK);
obss_time = mt76_get_field(dev, obss_reg, MT_MIB_OBSSTIME_MASK);
nf = mt7615_phy_get_nf(dev, idx);
if (!phy->noise)
phy->noise = nf << 4;
else if (nf)
phy->noise += nf - (phy->noise >> 4);
state = mphy->chan_state;
state->cc_busy += busy_time;
state->cc_tx += tx_time;
state->cc_rx += rx_time + obss_time;
state->cc_bss_rx += rx_time;
state->noise = -(phy->noise >> 4);
}
static void mt7615_update_survey(struct mt7615_dev *dev)
{
struct mt76_dev *mdev = &dev->mt76;
struct mt76_phy *mphy_ext = mdev->phys[MT_BAND1];
ktime_t cur_time;
/* MT7615 can only update both phys simultaneously
* since some reisters are shared across bands.
*/
mt7615_phy_update_channel(&mdev->phy, 0);
if (mphy_ext)
mt7615_phy_update_channel(mphy_ext, 1);
cur_time = ktime_get_boottime();
mt76_update_survey_active_time(&mdev->phy, cur_time);
if (mphy_ext)
mt76_update_survey_active_time(mphy_ext, cur_time);
/* reset obss airtime */
mt76_set(dev, MT_WF_RMAC_MIB_TIME0, MT_WF_RMAC_MIB_RXTIME_CLR);
}
void mt7615_update_channel(struct mt76_phy *mphy)
{
struct mt7615_dev *dev = container_of(mphy->dev, struct mt7615_dev, mt76);
if (mt76_connac_pm_wake(&dev->mphy, &dev->pm))
return;
mt7615_update_survey(dev);
mt76_connac_power_save_sched(&dev->mphy, &dev->pm);
}
EXPORT_SYMBOL_GPL(mt7615_update_channel);
static void
mt7615_mac_update_mib_stats(struct mt7615_phy *phy)
{
struct mt7615_dev *dev = phy->dev;
struct mib_stats *mib = &phy->mib;
bool ext_phy = phy != &dev->phy;
int i, aggr = 0;
u32 val, val2;
mib->fcs_err_cnt += mt76_get_field(dev, MT_MIB_SDR3(ext_phy),
MT_MIB_SDR3_FCS_ERR_MASK);
val = mt76_get_field(dev, MT_MIB_SDR14(ext_phy),
MT_MIB_AMPDU_MPDU_COUNT);
if (val) {
val2 = mt76_get_field(dev, MT_MIB_SDR15(ext_phy),
MT_MIB_AMPDU_ACK_COUNT);
mib->aggr_per = 1000 * (val - val2) / val;
}
for (i = 0; i < 4; i++) {
val = mt76_rr(dev, MT_MIB_MB_SDR1(ext_phy, i));
mib->ba_miss_cnt += FIELD_GET(MT_MIB_BA_MISS_COUNT_MASK, val);
mib->ack_fail_cnt += FIELD_GET(MT_MIB_ACK_FAIL_COUNT_MASK,
val);
val = mt76_rr(dev, MT_MIB_MB_SDR0(ext_phy, i));
mib->rts_cnt += FIELD_GET(MT_MIB_RTS_COUNT_MASK, val);
mib->rts_retries_cnt += FIELD_GET(MT_MIB_RTS_RETRIES_COUNT_MASK,
val);
val = mt76_rr(dev, MT_TX_AGG_CNT(ext_phy, i));
phy->mt76->aggr_stats[aggr++] += val & 0xffff;
phy->mt76->aggr_stats[aggr++] += val >> 16;
}
}
void mt7615_pm_wake_work(struct work_struct *work)
{
struct mt7615_dev *dev;
struct mt76_phy *mphy;
dev = (struct mt7615_dev *)container_of(work, struct mt7615_dev,
pm.wake_work);
mphy = dev->phy.mt76;
if (!mt7615_mcu_set_drv_ctrl(dev)) {
struct mt76_dev *mdev = &dev->mt76;
int i;
if (mt76_is_sdio(mdev)) {
mt76_connac_pm_dequeue_skbs(mphy, &dev->pm);
mt76_worker_schedule(&mdev->sdio.txrx_worker);
} else {
local_bh_disable();
mt76_for_each_q_rx(mdev, i)
napi_schedule(&mdev->napi[i]);
local_bh_enable();
mt76_connac_pm_dequeue_skbs(mphy, &dev->pm);
mt76_queue_tx_cleanup(dev, mdev->q_mcu[MT_MCUQ_WM],
false);
}
if (test_bit(MT76_STATE_RUNNING, &mphy->state)) {
unsigned long timeout;
timeout = mt7615_get_macwork_timeout(dev);
ieee80211_queue_delayed_work(mphy->hw, &mphy->mac_work,
timeout);
}
}
ieee80211_wake_queues(mphy->hw);
wake_up(&dev->pm.wait);
}
void mt7615_pm_power_save_work(struct work_struct *work)
{
struct mt7615_dev *dev;
unsigned long delta;
dev = (struct mt7615_dev *)container_of(work, struct mt7615_dev,
pm.ps_work.work);
delta = dev->pm.idle_timeout;
if (test_bit(MT76_HW_SCANNING, &dev->mphy.state) ||
test_bit(MT76_HW_SCHED_SCANNING, &dev->mphy.state))
goto out;
if (mutex_is_locked(&dev->mt76.mutex))
/* if mt76 mutex is held we should not put the device
* to sleep since we are currently accessing device
* register map. We need to wait for the next power_save
* trigger.
*/
goto out;
if (time_is_after_jiffies(dev->pm.last_activity + delta)) {
delta = dev->pm.last_activity + delta - jiffies;
goto out;
}
if (!mt7615_mcu_set_fw_ctrl(dev))
return;
out:
queue_delayed_work(dev->mt76.wq, &dev->pm.ps_work, delta);
}
void mt7615_mac_work(struct work_struct *work)
{
struct mt7615_phy *phy;
struct mt76_phy *mphy;
unsigned long timeout;
mphy = (struct mt76_phy *)container_of(work, struct mt76_phy,
mac_work.work);
phy = mphy->priv;
mt7615_mutex_acquire(phy->dev);
mt7615_update_survey(phy->dev);
if (++mphy->mac_work_count == 5) {
mphy->mac_work_count = 0;
mt7615_mac_update_mib_stats(phy);
mt7615_mac_scs_check(phy);
}
mt7615_mutex_release(phy->dev);
mt76_tx_status_check(mphy->dev, false);
timeout = mt7615_get_macwork_timeout(phy->dev);
ieee80211_queue_delayed_work(mphy->hw, &mphy->mac_work, timeout);
}
void mt7615_tx_token_put(struct mt7615_dev *dev)
{
struct mt76_txwi_cache *txwi;
int id;
spin_lock_bh(&dev->mt76.token_lock);
idr_for_each_entry(&dev->mt76.token, txwi, id)
mt7615_txwi_free(dev, txwi);
spin_unlock_bh(&dev->mt76.token_lock);
idr_destroy(&dev->mt76.token);
}
EXPORT_SYMBOL_GPL(mt7615_tx_token_put);
static void mt7615_dfs_stop_radar_detector(struct mt7615_phy *phy)
{
struct mt7615_dev *dev = phy->dev;
if (phy->rdd_state & BIT(0))
mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_STOP, 0,
MT_RX_SEL0, 0);
if (phy->rdd_state & BIT(1))
mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_STOP, 1,
MT_RX_SEL0, 0);
}
static int mt7615_dfs_start_rdd(struct mt7615_dev *dev, int chain)
{
int err;
err = mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_START, chain,
MT_RX_SEL0, 0);
if (err < 0)
return err;
return mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_DET_MODE, chain,
MT_RX_SEL0, 1);
}
static int mt7615_dfs_start_radar_detector(struct mt7615_phy *phy)
{
struct cfg80211_chan_def *chandef = &phy->mt76->chandef;
struct mt7615_dev *dev = phy->dev;
bool ext_phy = phy != &dev->phy;
int err;
/* start CAC */
err = mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_CAC_START, ext_phy,
MT_RX_SEL0, 0);
if (err < 0)
return err;
err = mt7615_dfs_start_rdd(dev, ext_phy);
if (err < 0)
return err;
phy->rdd_state |= BIT(ext_phy);
if (chandef->width == NL80211_CHAN_WIDTH_160 ||
chandef->width == NL80211_CHAN_WIDTH_80P80) {
err = mt7615_dfs_start_rdd(dev, 1);
if (err < 0)
return err;
phy->rdd_state |= BIT(1);
}
return 0;
}
static int
mt7615_dfs_init_radar_specs(struct mt7615_phy *phy)
{
const struct mt7615_dfs_radar_spec *radar_specs;
struct mt7615_dev *dev = phy->dev;
int err, i, lpn = 500;
switch (dev->mt76.region) {
case NL80211_DFS_FCC:
radar_specs = &fcc_radar_specs;
lpn = 8;
break;
case NL80211_DFS_ETSI:
radar_specs = &etsi_radar_specs;
break;
case NL80211_DFS_JP:
radar_specs = &jp_radar_specs;
break;
default:
return -EINVAL;
}
/* avoid FCC radar detection in non-FCC region */
err = mt7615_mcu_set_fcc5_lpn(dev, lpn);
if (err < 0)
return err;
for (i = 0; i < ARRAY_SIZE(radar_specs->radar_pattern); i++) {
err = mt7615_mcu_set_radar_th(dev, i,
&radar_specs->radar_pattern[i]);
if (err < 0)
return err;
}
return mt7615_mcu_set_pulse_th(dev, &radar_specs->pulse_th);
}
int mt7615_dfs_init_radar_detector(struct mt7615_phy *phy)
{
struct cfg80211_chan_def *chandef = &phy->mt76->chandef;
struct mt7615_dev *dev = phy->dev;
bool ext_phy = phy != &dev->phy;
enum mt76_dfs_state dfs_state, prev_state;
int err;
if (is_mt7663(&dev->mt76))
return 0;
prev_state = phy->mt76->dfs_state;
dfs_state = mt76_phy_dfs_state(phy->mt76);
if ((chandef->chan->flags & IEEE80211_CHAN_RADAR) &&
dfs_state < MT_DFS_STATE_CAC)
dfs_state = MT_DFS_STATE_ACTIVE;
if (prev_state == dfs_state)
return 0;
if (dfs_state == MT_DFS_STATE_DISABLED)
goto stop;
if (prev_state <= MT_DFS_STATE_DISABLED) {
err = mt7615_dfs_init_radar_specs(phy);
if (err < 0)
return err;
err = mt7615_dfs_start_radar_detector(phy);
if (err < 0)
return err;
phy->mt76->dfs_state = MT_DFS_STATE_CAC;
}
if (dfs_state == MT_DFS_STATE_CAC)
return 0;
err = mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_CAC_END,
ext_phy, MT_RX_SEL0, 0);
if (err < 0) {
phy->mt76->dfs_state = MT_DFS_STATE_UNKNOWN;
return err;
}
phy->mt76->dfs_state = MT_DFS_STATE_ACTIVE;
return 0;
stop:
err = mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_NORMAL_START, ext_phy,
MT_RX_SEL0, 0);
if (err < 0)
return err;
mt7615_dfs_stop_radar_detector(phy);
phy->mt76->dfs_state = MT_DFS_STATE_DISABLED;
return 0;
}
int mt7615_mac_set_beacon_filter(struct mt7615_phy *phy,
struct ieee80211_vif *vif,
bool enable)
{
struct mt7615_dev *dev = phy->dev;
bool ext_phy = phy != &dev->phy;
int err;
if (!mt7615_firmware_offload(dev))
return -EOPNOTSUPP;
switch (vif->type) {
case NL80211_IFTYPE_MONITOR:
return 0;
case NL80211_IFTYPE_MESH_POINT:
case NL80211_IFTYPE_ADHOC:
case NL80211_IFTYPE_AP:
if (enable)
phy->n_beacon_vif++;
else
phy->n_beacon_vif--;
fallthrough;
default:
break;
}
err = mt7615_mcu_set_bss_pm(dev, vif, !phy->n_beacon_vif);
if (err)
return err;
if (phy->n_beacon_vif) {
vif->driver_flags &= ~IEEE80211_VIF_BEACON_FILTER;
mt76_clear(dev, MT_WF_RFCR(ext_phy),
MT_WF_RFCR_DROP_OTHER_BEACON);
} else {
vif->driver_flags |= IEEE80211_VIF_BEACON_FILTER;
mt76_set(dev, MT_WF_RFCR(ext_phy),
MT_WF_RFCR_DROP_OTHER_BEACON);
}
return 0;
}
void mt7615_coredump_work(struct work_struct *work)
{
struct mt7615_dev *dev;
char *dump, *data;
dev = (struct mt7615_dev *)container_of(work, struct mt7615_dev,
coredump.work.work);
if (time_is_after_jiffies(dev->coredump.last_activity +
4 * MT76_CONNAC_COREDUMP_TIMEOUT)) {
queue_delayed_work(dev->mt76.wq, &dev->coredump.work,
MT76_CONNAC_COREDUMP_TIMEOUT);
return;
}
dump = vzalloc(MT76_CONNAC_COREDUMP_SZ);
data = dump;
while (true) {
struct sk_buff *skb;
spin_lock_bh(&dev->mt76.lock);
skb = __skb_dequeue(&dev->coredump.msg_list);
spin_unlock_bh(&dev->mt76.lock);
if (!skb)
break;
skb_pull(skb, sizeof(struct mt7615_mcu_rxd));
if (!dump || data + skb->len - dump > MT76_CONNAC_COREDUMP_SZ) {
dev_kfree_skb(skb);
continue;
}
memcpy(data, skb->data, skb->len);
data += skb->len;
dev_kfree_skb(skb);
}
if (dump)
dev_coredumpv(dev->mt76.dev, dump, MT76_CONNAC_COREDUMP_SZ,
GFP_KERNEL);
}