linux-zen-server/drivers/nfc/fdp/fdp.c

765 lines
18 KiB
C
Raw Normal View History

2023-08-30 17:53:23 +02:00
// SPDX-License-Identifier: GPL-2.0-or-later
/* -------------------------------------------------------------------------
* Copyright (C) 2014-2016, Intel Corporation
*
* -------------------------------------------------------------------------
*/
#include <linux/module.h>
#include <linux/nfc.h>
#include <linux/i2c.h>
#include <linux/delay.h>
#include <linux/firmware.h>
#include <net/nfc/nci_core.h>
#include "fdp.h"
#define FDP_OTP_PATCH_NAME "otp.bin"
#define FDP_RAM_PATCH_NAME "ram.bin"
#define FDP_FW_HEADER_SIZE 576
#define FDP_FW_UPDATE_SLEEP 1000
#define NCI_GET_VERSION_TIMEOUT 8000
#define NCI_PATCH_REQUEST_TIMEOUT 8000
#define FDP_PATCH_CONN_DEST 0xC2
#define FDP_PATCH_CONN_PARAM_TYPE 0xA0
#define NCI_PATCH_TYPE_RAM 0x00
#define NCI_PATCH_TYPE_OTP 0x01
#define NCI_PATCH_TYPE_EOT 0xFF
#define NCI_PARAM_ID_FW_RAM_VERSION 0xA0
#define NCI_PARAM_ID_FW_OTP_VERSION 0xA1
#define NCI_PARAM_ID_OTP_LIMITED_VERSION 0xC5
#define NCI_PARAM_ID_KEY_INDEX_ID 0xC6
#define NCI_GID_PROP 0x0F
#define NCI_OP_PROP_PATCH_OID 0x08
#define NCI_OP_PROP_SET_PDATA_OID 0x23
struct fdp_nci_info {
const struct nfc_phy_ops *phy_ops;
struct fdp_i2c_phy *phy;
struct nci_dev *ndev;
const struct firmware *otp_patch;
const struct firmware *ram_patch;
u32 otp_patch_version;
u32 ram_patch_version;
u32 otp_version;
u32 ram_version;
u32 limited_otp_version;
u8 key_index;
const u8 *fw_vsc_cfg;
u8 clock_type;
u32 clock_freq;
atomic_t data_pkt_counter;
void (*data_pkt_counter_cb)(struct nci_dev *ndev);
u8 setup_patch_sent;
u8 setup_patch_ntf;
u8 setup_patch_status;
u8 setup_reset_ntf;
wait_queue_head_t setup_wq;
};
static const u8 nci_core_get_config_otp_ram_version[5] = {
0x04,
NCI_PARAM_ID_FW_RAM_VERSION,
NCI_PARAM_ID_FW_OTP_VERSION,
NCI_PARAM_ID_OTP_LIMITED_VERSION,
NCI_PARAM_ID_KEY_INDEX_ID
};
struct nci_core_get_config_rsp {
u8 status;
u8 count;
u8 data[];
};
static int fdp_nci_create_conn(struct nci_dev *ndev)
{
struct fdp_nci_info *info = nci_get_drvdata(ndev);
struct core_conn_create_dest_spec_params param;
int r;
/* proprietary destination specific paramerer without value */
param.type = FDP_PATCH_CONN_PARAM_TYPE;
param.length = 0x00;
r = nci_core_conn_create(info->ndev, FDP_PATCH_CONN_DEST, 1,
sizeof(param), &param);
if (r)
return r;
return nci_get_conn_info_by_dest_type_params(ndev,
FDP_PATCH_CONN_DEST, NULL);
}
static inline int fdp_nci_get_versions(struct nci_dev *ndev)
{
return nci_core_cmd(ndev, NCI_OP_CORE_GET_CONFIG_CMD,
sizeof(nci_core_get_config_otp_ram_version),
(__u8 *) &nci_core_get_config_otp_ram_version);
}
static inline int fdp_nci_patch_cmd(struct nci_dev *ndev, u8 type)
{
return nci_prop_cmd(ndev, NCI_OP_PROP_PATCH_OID, sizeof(type), &type);
}
static inline int fdp_nci_set_production_data(struct nci_dev *ndev, u8 len,
const char *data)
{
return nci_prop_cmd(ndev, NCI_OP_PROP_SET_PDATA_OID, len, data);
}
static int fdp_nci_set_clock(struct nci_dev *ndev, u8 clock_type,
u32 clock_freq)
{
u32 fc = 13560;
u32 nd, num, delta;
char data[9];
nd = (24 * fc) / clock_freq;
delta = 24 * fc - nd * clock_freq;
num = (32768 * delta) / clock_freq;
data[0] = 0x00;
data[1] = 0x00;
data[2] = 0x00;
data[3] = 0x10;
data[4] = 0x04;
data[5] = num & 0xFF;
data[6] = (num >> 8) & 0xff;
data[7] = nd;
data[8] = clock_type;
return fdp_nci_set_production_data(ndev, 9, data);
}
static void fdp_nci_send_patch_cb(struct nci_dev *ndev)
{
struct fdp_nci_info *info = nci_get_drvdata(ndev);
info->setup_patch_sent = 1;
wake_up(&info->setup_wq);
}
/*
* Register a packet sent counter and a callback
*
* We have no other way of knowing when all firmware packets were sent out
* on the i2c bus. We need to know that in order to close the connection and
* send the patch end message.
*/
static void fdp_nci_set_data_pkt_counter(struct nci_dev *ndev,
void (*cb)(struct nci_dev *ndev), int count)
{
struct fdp_nci_info *info = nci_get_drvdata(ndev);
struct device *dev = &info->phy->i2c_dev->dev;
dev_dbg(dev, "NCI data pkt counter %d\n", count);
atomic_set(&info->data_pkt_counter, count);
info->data_pkt_counter_cb = cb;
}
/*
* The device is expecting a stream of packets. All packets need to
* have the PBF flag set to 0x0 (last packet) even if the firmware
* file is segmented and there are multiple packets. If we give the
* whole firmware to nci_send_data it will segment it and it will set
* the PBF flag to 0x01 so we need to do the segmentation here.
*
* The firmware will be analyzed and applied when we send NCI_OP_PROP_PATCH_CMD
* command with NCI_PATCH_TYPE_EOT parameter. The device will send a
* NFCC_PATCH_NTF packet and a NCI_OP_CORE_RESET_NTF packet.
*/
static int fdp_nci_send_patch(struct nci_dev *ndev, u8 conn_id, u8 type)
{
struct fdp_nci_info *info = nci_get_drvdata(ndev);
const struct firmware *fw;
struct sk_buff *skb;
unsigned long len;
int max_size, payload_size;
int rc = 0;
if ((type == NCI_PATCH_TYPE_OTP && !info->otp_patch) ||
(type == NCI_PATCH_TYPE_RAM && !info->ram_patch))
return -EINVAL;
if (type == NCI_PATCH_TYPE_OTP)
fw = info->otp_patch;
else
fw = info->ram_patch;
max_size = nci_conn_max_data_pkt_payload_size(ndev, conn_id);
if (max_size <= 0)
return -EINVAL;
len = fw->size;
fdp_nci_set_data_pkt_counter(ndev, fdp_nci_send_patch_cb,
DIV_ROUND_UP(fw->size, max_size));
while (len) {
payload_size = min_t(unsigned long, max_size, len);
skb = nci_skb_alloc(ndev, (NCI_CTRL_HDR_SIZE + payload_size),
GFP_KERNEL);
if (!skb) {
fdp_nci_set_data_pkt_counter(ndev, NULL, 0);
return -ENOMEM;
}
skb_reserve(skb, NCI_CTRL_HDR_SIZE);
skb_put_data(skb, fw->data + (fw->size - len), payload_size);
rc = nci_send_data(ndev, conn_id, skb);
if (rc) {
fdp_nci_set_data_pkt_counter(ndev, NULL, 0);
return rc;
}
len -= payload_size;
}
return rc;
}
static int fdp_nci_open(struct nci_dev *ndev)
{
const struct fdp_nci_info *info = nci_get_drvdata(ndev);
return info->phy_ops->enable(info->phy);
}
static int fdp_nci_close(struct nci_dev *ndev)
{
return 0;
}
static int fdp_nci_send(struct nci_dev *ndev, struct sk_buff *skb)
{
struct fdp_nci_info *info = nci_get_drvdata(ndev);
int ret;
if (atomic_dec_and_test(&info->data_pkt_counter))
info->data_pkt_counter_cb(ndev);
ret = info->phy_ops->write(info->phy, skb);
if (ret < 0) {
kfree_skb(skb);
return ret;
}
consume_skb(skb);
return 0;
}
static int fdp_nci_request_firmware(struct nci_dev *ndev)
{
struct fdp_nci_info *info = nci_get_drvdata(ndev);
struct device *dev = &info->phy->i2c_dev->dev;
const u8 *data;
int r;
r = request_firmware(&info->ram_patch, FDP_RAM_PATCH_NAME, dev);
if (r < 0) {
nfc_err(dev, "RAM patch request error\n");
return r;
}
data = info->ram_patch->data;
info->ram_patch_version =
data[FDP_FW_HEADER_SIZE] |
(data[FDP_FW_HEADER_SIZE + 1] << 8) |
(data[FDP_FW_HEADER_SIZE + 2] << 16) |
(data[FDP_FW_HEADER_SIZE + 3] << 24);
dev_dbg(dev, "RAM patch version: %d, size: %zu\n",
info->ram_patch_version, info->ram_patch->size);
r = request_firmware(&info->otp_patch, FDP_OTP_PATCH_NAME, dev);
if (r < 0) {
nfc_err(dev, "OTP patch request error\n");
return 0;
}
data = (u8 *) info->otp_patch->data;
info->otp_patch_version =
data[FDP_FW_HEADER_SIZE] |
(data[FDP_FW_HEADER_SIZE + 1] << 8) |
(data[FDP_FW_HEADER_SIZE+2] << 16) |
(data[FDP_FW_HEADER_SIZE+3] << 24);
dev_dbg(dev, "OTP patch version: %d, size: %zu\n",
info->otp_patch_version, info->otp_patch->size);
return 0;
}
static void fdp_nci_release_firmware(struct nci_dev *ndev)
{
struct fdp_nci_info *info = nci_get_drvdata(ndev);
if (info->otp_patch) {
release_firmware(info->otp_patch);
info->otp_patch = NULL;
}
if (info->ram_patch) {
release_firmware(info->ram_patch);
info->ram_patch = NULL;
}
}
static int fdp_nci_patch_otp(struct nci_dev *ndev)
{
struct fdp_nci_info *info = nci_get_drvdata(ndev);
struct device *dev = &info->phy->i2c_dev->dev;
int conn_id;
int r = 0;
if (info->otp_version >= info->otp_patch_version)
return r;
info->setup_patch_sent = 0;
info->setup_reset_ntf = 0;
info->setup_patch_ntf = 0;
/* Patch init request */
r = fdp_nci_patch_cmd(ndev, NCI_PATCH_TYPE_OTP);
if (r)
return r;
/* Patch data connection creation */
conn_id = fdp_nci_create_conn(ndev);
if (conn_id < 0)
return conn_id;
/* Send the patch over the data connection */
r = fdp_nci_send_patch(ndev, conn_id, NCI_PATCH_TYPE_OTP);
if (r)
return r;
/* Wait for all the packets to be send over i2c */
wait_event_interruptible(info->setup_wq,
info->setup_patch_sent == 1);
/* make sure that the NFCC processed the last data packet */
msleep(FDP_FW_UPDATE_SLEEP);
/* Close the data connection */
r = nci_core_conn_close(info->ndev, conn_id);
if (r)
return r;
/* Patch finish message */
if (fdp_nci_patch_cmd(ndev, NCI_PATCH_TYPE_EOT)) {
nfc_err(dev, "OTP patch error 0x%x\n", r);
return -EINVAL;
}
/* If the patch notification didn't arrive yet, wait for it */
wait_event_interruptible(info->setup_wq, info->setup_patch_ntf);
/* Check if the patching was successful */
r = info->setup_patch_status;
if (r) {
nfc_err(dev, "OTP patch error 0x%x\n", r);
return -EINVAL;
}
/*
* We need to wait for the reset notification before we
* can continue
*/
wait_event_interruptible(info->setup_wq, info->setup_reset_ntf);
return r;
}
static int fdp_nci_patch_ram(struct nci_dev *ndev)
{
struct fdp_nci_info *info = nci_get_drvdata(ndev);
struct device *dev = &info->phy->i2c_dev->dev;
int conn_id;
int r = 0;
if (info->ram_version >= info->ram_patch_version)
return r;
info->setup_patch_sent = 0;
info->setup_reset_ntf = 0;
info->setup_patch_ntf = 0;
/* Patch init request */
r = fdp_nci_patch_cmd(ndev, NCI_PATCH_TYPE_RAM);
if (r)
return r;
/* Patch data connection creation */
conn_id = fdp_nci_create_conn(ndev);
if (conn_id < 0)
return conn_id;
/* Send the patch over the data connection */
r = fdp_nci_send_patch(ndev, conn_id, NCI_PATCH_TYPE_RAM);
if (r)
return r;
/* Wait for all the packets to be send over i2c */
wait_event_interruptible(info->setup_wq,
info->setup_patch_sent == 1);
/* make sure that the NFCC processed the last data packet */
msleep(FDP_FW_UPDATE_SLEEP);
/* Close the data connection */
r = nci_core_conn_close(info->ndev, conn_id);
if (r)
return r;
/* Patch finish message */
if (fdp_nci_patch_cmd(ndev, NCI_PATCH_TYPE_EOT)) {
nfc_err(dev, "RAM patch error 0x%x\n", r);
return -EINVAL;
}
/* If the patch notification didn't arrive yet, wait for it */
wait_event_interruptible(info->setup_wq, info->setup_patch_ntf);
/* Check if the patching was successful */
r = info->setup_patch_status;
if (r) {
nfc_err(dev, "RAM patch error 0x%x\n", r);
return -EINVAL;
}
/*
* We need to wait for the reset notification before we
* can continue
*/
wait_event_interruptible(info->setup_wq, info->setup_reset_ntf);
return r;
}
static int fdp_nci_setup(struct nci_dev *ndev)
{
/* Format: total length followed by an NCI packet */
struct fdp_nci_info *info = nci_get_drvdata(ndev);
struct device *dev = &info->phy->i2c_dev->dev;
int r;
u8 patched = 0;
r = nci_core_init(ndev);
if (r)
goto error;
/* Get RAM and OTP version */
r = fdp_nci_get_versions(ndev);
if (r)
goto error;
/* Load firmware from disk */
r = fdp_nci_request_firmware(ndev);
if (r)
goto error;
/* Update OTP */
if (info->otp_version < info->otp_patch_version) {
r = fdp_nci_patch_otp(ndev);
if (r)
goto error;
patched = 1;
}
/* Update RAM */
if (info->ram_version < info->ram_patch_version) {
r = fdp_nci_patch_ram(ndev);
if (r)
goto error;
patched = 1;
}
/* Release the firmware buffers */
fdp_nci_release_firmware(ndev);
/* If a patch was applied the new version is checked */
if (patched) {
r = nci_core_init(ndev);
if (r)
goto error;
r = fdp_nci_get_versions(ndev);
if (r)
goto error;
if (info->otp_version != info->otp_patch_version ||
info->ram_version != info->ram_patch_version) {
nfc_err(dev, "Firmware update failed");
r = -EINVAL;
goto error;
}
}
/*
* We initialized the devices but the NFC subsystem expects
* it to not be initialized.
*/
return nci_core_reset(ndev);
error:
fdp_nci_release_firmware(ndev);
nfc_err(dev, "Setup error %d\n", r);
return r;
}
static int fdp_nci_post_setup(struct nci_dev *ndev)
{
struct fdp_nci_info *info = nci_get_drvdata(ndev);
struct device *dev = &info->phy->i2c_dev->dev;
int r;
/* Check if the device has VSC */
if (info->fw_vsc_cfg && info->fw_vsc_cfg[0]) {
/* Set the vendor specific configuration */
r = fdp_nci_set_production_data(ndev, info->fw_vsc_cfg[3],
&info->fw_vsc_cfg[4]);
if (r) {
nfc_err(dev, "Vendor specific config set error %d\n",
r);
return r;
}
}
/* Set clock type and frequency */
r = fdp_nci_set_clock(ndev, info->clock_type, info->clock_freq);
if (r) {
nfc_err(dev, "Clock set error %d\n", r);
return r;
}
/*
* In order to apply the VSC FDP needs a reset
*/
r = nci_core_reset(ndev);
if (r)
return r;
/**
* The nci core was initialized when post setup was called
* so we leave it like that
*/
return nci_core_init(ndev);
}
static int fdp_nci_core_reset_ntf_packet(struct nci_dev *ndev,
struct sk_buff *skb)
{
struct fdp_nci_info *info = nci_get_drvdata(ndev);
info->setup_reset_ntf = 1;
wake_up(&info->setup_wq);
return 0;
}
static int fdp_nci_prop_patch_ntf_packet(struct nci_dev *ndev,
struct sk_buff *skb)
{
struct fdp_nci_info *info = nci_get_drvdata(ndev);
info->setup_patch_ntf = 1;
info->setup_patch_status = skb->data[0];
wake_up(&info->setup_wq);
return 0;
}
static int fdp_nci_prop_patch_rsp_packet(struct nci_dev *ndev,
struct sk_buff *skb)
{
struct fdp_nci_info *info = nci_get_drvdata(ndev);
struct device *dev = &info->phy->i2c_dev->dev;
u8 status = skb->data[0];
dev_dbg(dev, "%s: status 0x%x\n", __func__, status);
nci_req_complete(ndev, status);
return 0;
}
static int fdp_nci_prop_set_production_data_rsp_packet(struct nci_dev *ndev,
struct sk_buff *skb)
{
struct fdp_nci_info *info = nci_get_drvdata(ndev);
struct device *dev = &info->phy->i2c_dev->dev;
u8 status = skb->data[0];
dev_dbg(dev, "%s: status 0x%x\n", __func__, status);
nci_req_complete(ndev, status);
return 0;
}
static int fdp_nci_core_get_config_rsp_packet(struct nci_dev *ndev,
struct sk_buff *skb)
{
struct fdp_nci_info *info = nci_get_drvdata(ndev);
struct device *dev = &info->phy->i2c_dev->dev;
const struct nci_core_get_config_rsp *rsp = (void *) skb->data;
unsigned int i;
const u8 *p;
if (rsp->status == NCI_STATUS_OK) {
p = rsp->data;
for (i = 0; i < 4; i++) {
switch (*p++) {
case NCI_PARAM_ID_FW_RAM_VERSION:
p++;
info->ram_version = le32_to_cpup((__le32 *) p);
p += 4;
break;
case NCI_PARAM_ID_FW_OTP_VERSION:
p++;
info->otp_version = le32_to_cpup((__le32 *) p);
p += 4;
break;
case NCI_PARAM_ID_OTP_LIMITED_VERSION:
p++;
info->otp_version = le32_to_cpup((__le32 *) p);
p += 4;
break;
case NCI_PARAM_ID_KEY_INDEX_ID:
p++;
info->key_index = *p++;
}
}
}
dev_dbg(dev, "OTP version %d\n", info->otp_version);
dev_dbg(dev, "RAM version %d\n", info->ram_version);
dev_dbg(dev, "key index %d\n", info->key_index);
dev_dbg(dev, "%s: status 0x%x\n", __func__, rsp->status);
nci_req_complete(ndev, rsp->status);
return 0;
}
static const struct nci_driver_ops fdp_core_ops[] = {
{
.opcode = NCI_OP_CORE_GET_CONFIG_RSP,
.rsp = fdp_nci_core_get_config_rsp_packet,
},
{
.opcode = NCI_OP_CORE_RESET_NTF,
.ntf = fdp_nci_core_reset_ntf_packet,
},
};
static const struct nci_driver_ops fdp_prop_ops[] = {
{
.opcode = nci_opcode_pack(NCI_GID_PROP, NCI_OP_PROP_PATCH_OID),
.rsp = fdp_nci_prop_patch_rsp_packet,
.ntf = fdp_nci_prop_patch_ntf_packet,
},
{
.opcode = nci_opcode_pack(NCI_GID_PROP,
NCI_OP_PROP_SET_PDATA_OID),
.rsp = fdp_nci_prop_set_production_data_rsp_packet,
},
};
static const struct nci_ops nci_ops = {
.open = fdp_nci_open,
.close = fdp_nci_close,
.send = fdp_nci_send,
.setup = fdp_nci_setup,
.post_setup = fdp_nci_post_setup,
.prop_ops = fdp_prop_ops,
.n_prop_ops = ARRAY_SIZE(fdp_prop_ops),
.core_ops = fdp_core_ops,
.n_core_ops = ARRAY_SIZE(fdp_core_ops),
};
int fdp_nci_probe(struct fdp_i2c_phy *phy, const struct nfc_phy_ops *phy_ops,
struct nci_dev **ndevp, int tx_headroom,
int tx_tailroom, u8 clock_type, u32 clock_freq,
const u8 *fw_vsc_cfg)
{
struct device *dev = &phy->i2c_dev->dev;
struct fdp_nci_info *info;
struct nci_dev *ndev;
u32 protocols;
int r;
info = devm_kzalloc(dev, sizeof(struct fdp_nci_info), GFP_KERNEL);
if (!info)
return -ENOMEM;
info->phy = phy;
info->phy_ops = phy_ops;
info->clock_type = clock_type;
info->clock_freq = clock_freq;
info->fw_vsc_cfg = fw_vsc_cfg;
init_waitqueue_head(&info->setup_wq);
protocols = NFC_PROTO_JEWEL_MASK |
NFC_PROTO_MIFARE_MASK |
NFC_PROTO_FELICA_MASK |
NFC_PROTO_ISO14443_MASK |
NFC_PROTO_ISO14443_B_MASK |
NFC_PROTO_NFC_DEP_MASK |
NFC_PROTO_ISO15693_MASK;
BUILD_BUG_ON(ARRAY_SIZE(fdp_prop_ops) > NCI_MAX_PROPRIETARY_CMD);
ndev = nci_allocate_device(&nci_ops, protocols, tx_headroom,
tx_tailroom);
if (!ndev) {
nfc_err(dev, "Cannot allocate nfc ndev\n");
return -ENOMEM;
}
r = nci_register_device(ndev);
if (r)
goto err_regdev;
*ndevp = ndev;
info->ndev = ndev;
nci_set_drvdata(ndev, info);
return 0;
err_regdev:
nci_free_device(ndev);
return r;
}
EXPORT_SYMBOL(fdp_nci_probe);
void fdp_nci_remove(struct nci_dev *ndev)
{
nci_unregister_device(ndev);
nci_free_device(ndev);
}
EXPORT_SYMBOL(fdp_nci_remove);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("NFC NCI driver for Intel Fields Peak NFC controller");
MODULE_AUTHOR("Robert Dolca <robert.dolca@intel.com>");