linux-zen-server/drivers/phy/freescale/phy-fsl-lynx-28g.c

624 lines
17 KiB
C
Raw Normal View History

2023-08-30 17:53:23 +02:00
// SPDX-License-Identifier: GPL-2.0+
/* Copyright (c) 2021-2022 NXP. */
#include <linux/module.h>
#include <linux/phy.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/workqueue.h>
#define LYNX_28G_NUM_LANE 8
#define LYNX_28G_NUM_PLL 2
/* General registers per SerDes block */
#define LYNX_28G_PCC8 0x10a0
#define LYNX_28G_PCC8_SGMII 0x1
#define LYNX_28G_PCC8_SGMII_DIS 0x0
#define LYNX_28G_PCCC 0x10b0
#define LYNX_28G_PCCC_10GBASER 0x9
#define LYNX_28G_PCCC_USXGMII 0x1
#define LYNX_28G_PCCC_SXGMII_DIS 0x0
#define LYNX_28G_LNa_PCC_OFFSET(lane) (4 * (LYNX_28G_NUM_LANE - (lane->id) - 1))
/* Per PLL registers */
#define LYNX_28G_PLLnRSTCTL(pll) (0x400 + (pll) * 0x100 + 0x0)
#define LYNX_28G_PLLnRSTCTL_DIS(rstctl) (((rstctl) & BIT(24)) >> 24)
#define LYNX_28G_PLLnRSTCTL_LOCK(rstctl) (((rstctl) & BIT(23)) >> 23)
#define LYNX_28G_PLLnCR0(pll) (0x400 + (pll) * 0x100 + 0x4)
#define LYNX_28G_PLLnCR0_REFCLK_SEL(cr0) (((cr0) & GENMASK(20, 16)))
#define LYNX_28G_PLLnCR0_REFCLK_SEL_100MHZ 0x0
#define LYNX_28G_PLLnCR0_REFCLK_SEL_125MHZ 0x10000
#define LYNX_28G_PLLnCR0_REFCLK_SEL_156MHZ 0x20000
#define LYNX_28G_PLLnCR0_REFCLK_SEL_150MHZ 0x30000
#define LYNX_28G_PLLnCR0_REFCLK_SEL_161MHZ 0x40000
#define LYNX_28G_PLLnCR1(pll) (0x400 + (pll) * 0x100 + 0x8)
#define LYNX_28G_PLLnCR1_FRATE_SEL(cr1) (((cr1) & GENMASK(28, 24)))
#define LYNX_28G_PLLnCR1_FRATE_5G_10GVCO 0x0
#define LYNX_28G_PLLnCR1_FRATE_5G_25GVCO 0x10000000
#define LYNX_28G_PLLnCR1_FRATE_10G_20GVCO 0x6000000
/* Per SerDes lane registers */
/* Lane a General Control Register */
#define LYNX_28G_LNaGCR0(lane) (0x800 + (lane) * 0x100 + 0x0)
#define LYNX_28G_LNaGCR0_PROTO_SEL_MSK GENMASK(7, 3)
#define LYNX_28G_LNaGCR0_PROTO_SEL_SGMII 0x8
#define LYNX_28G_LNaGCR0_PROTO_SEL_XFI 0x50
#define LYNX_28G_LNaGCR0_IF_WIDTH_MSK GENMASK(2, 0)
#define LYNX_28G_LNaGCR0_IF_WIDTH_10_BIT 0x0
#define LYNX_28G_LNaGCR0_IF_WIDTH_20_BIT 0x2
/* Lane a Tx Reset Control Register */
#define LYNX_28G_LNaTRSTCTL(lane) (0x800 + (lane) * 0x100 + 0x20)
#define LYNX_28G_LNaTRSTCTL_HLT_REQ BIT(27)
#define LYNX_28G_LNaTRSTCTL_RST_DONE BIT(30)
#define LYNX_28G_LNaTRSTCTL_RST_REQ BIT(31)
/* Lane a Tx General Control Register */
#define LYNX_28G_LNaTGCR0(lane) (0x800 + (lane) * 0x100 + 0x24)
#define LYNX_28G_LNaTGCR0_USE_PLLF 0x0
#define LYNX_28G_LNaTGCR0_USE_PLLS BIT(28)
#define LYNX_28G_LNaTGCR0_USE_PLL_MSK BIT(28)
#define LYNX_28G_LNaTGCR0_N_RATE_FULL 0x0
#define LYNX_28G_LNaTGCR0_N_RATE_HALF 0x1000000
#define LYNX_28G_LNaTGCR0_N_RATE_QUARTER 0x2000000
#define LYNX_28G_LNaTGCR0_N_RATE_MSK GENMASK(26, 24)
#define LYNX_28G_LNaTECR0(lane) (0x800 + (lane) * 0x100 + 0x30)
/* Lane a Rx Reset Control Register */
#define LYNX_28G_LNaRRSTCTL(lane) (0x800 + (lane) * 0x100 + 0x40)
#define LYNX_28G_LNaRRSTCTL_HLT_REQ BIT(27)
#define LYNX_28G_LNaRRSTCTL_RST_DONE BIT(30)
#define LYNX_28G_LNaRRSTCTL_RST_REQ BIT(31)
#define LYNX_28G_LNaRRSTCTL_CDR_LOCK BIT(12)
/* Lane a Rx General Control Register */
#define LYNX_28G_LNaRGCR0(lane) (0x800 + (lane) * 0x100 + 0x44)
#define LYNX_28G_LNaRGCR0_USE_PLLF 0x0
#define LYNX_28G_LNaRGCR0_USE_PLLS BIT(28)
#define LYNX_28G_LNaRGCR0_USE_PLL_MSK BIT(28)
#define LYNX_28G_LNaRGCR0_N_RATE_MSK GENMASK(26, 24)
#define LYNX_28G_LNaRGCR0_N_RATE_FULL 0x0
#define LYNX_28G_LNaRGCR0_N_RATE_HALF 0x1000000
#define LYNX_28G_LNaRGCR0_N_RATE_QUARTER 0x2000000
#define LYNX_28G_LNaRGCR0_N_RATE_MSK GENMASK(26, 24)
#define LYNX_28G_LNaRGCR1(lane) (0x800 + (lane) * 0x100 + 0x48)
#define LYNX_28G_LNaRECR0(lane) (0x800 + (lane) * 0x100 + 0x50)
#define LYNX_28G_LNaRECR1(lane) (0x800 + (lane) * 0x100 + 0x54)
#define LYNX_28G_LNaRECR2(lane) (0x800 + (lane) * 0x100 + 0x58)
#define LYNX_28G_LNaRSCCR0(lane) (0x800 + (lane) * 0x100 + 0x74)
#define LYNX_28G_LNaPSS(lane) (0x1000 + (lane) * 0x4)
#define LYNX_28G_LNaPSS_TYPE(pss) (((pss) & GENMASK(30, 24)) >> 24)
#define LYNX_28G_LNaPSS_TYPE_SGMII 0x4
#define LYNX_28G_LNaPSS_TYPE_XFI 0x28
#define LYNX_28G_SGMIIaCR1(lane) (0x1804 + (lane) * 0x10)
#define LYNX_28G_SGMIIaCR1_SGPCS_EN BIT(11)
#define LYNX_28G_SGMIIaCR1_SGPCS_DIS 0x0
#define LYNX_28G_SGMIIaCR1_SGPCS_MSK BIT(11)
struct lynx_28g_priv;
struct lynx_28g_pll {
struct lynx_28g_priv *priv;
u32 rstctl, cr0, cr1;
int id;
DECLARE_PHY_INTERFACE_MASK(supported);
};
struct lynx_28g_lane {
struct lynx_28g_priv *priv;
struct phy *phy;
bool powered_up;
bool init;
unsigned int id;
phy_interface_t interface;
};
struct lynx_28g_priv {
void __iomem *base;
struct device *dev;
struct lynx_28g_pll pll[LYNX_28G_NUM_PLL];
struct lynx_28g_lane lane[LYNX_28G_NUM_LANE];
struct delayed_work cdr_check;
};
static void lynx_28g_rmw(struct lynx_28g_priv *priv, unsigned long off,
u32 val, u32 mask)
{
void __iomem *reg = priv->base + off;
u32 orig, tmp;
orig = ioread32(reg);
tmp = orig & ~mask;
tmp |= val;
iowrite32(tmp, reg);
}
#define lynx_28g_lane_rmw(lane, reg, val, mask) \
lynx_28g_rmw((lane)->priv, LYNX_28G_##reg(lane->id), \
LYNX_28G_##reg##_##val, LYNX_28G_##reg##_##mask)
#define lynx_28g_lane_read(lane, reg) \
ioread32((lane)->priv->base + LYNX_28G_##reg((lane)->id))
#define lynx_28g_pll_read(pll, reg) \
ioread32((pll)->priv->base + LYNX_28G_##reg((pll)->id))
static bool lynx_28g_supports_interface(struct lynx_28g_priv *priv, int intf)
{
int i;
for (i = 0; i < LYNX_28G_NUM_PLL; i++) {
if (LYNX_28G_PLLnRSTCTL_DIS(priv->pll[i].rstctl))
continue;
if (test_bit(intf, priv->pll[i].supported))
return true;
}
return false;
}
static struct lynx_28g_pll *lynx_28g_pll_get(struct lynx_28g_priv *priv,
phy_interface_t intf)
{
struct lynx_28g_pll *pll;
int i;
for (i = 0; i < LYNX_28G_NUM_PLL; i++) {
pll = &priv->pll[i];
if (LYNX_28G_PLLnRSTCTL_DIS(pll->rstctl))
continue;
if (test_bit(intf, pll->supported))
return pll;
}
return NULL;
}
static void lynx_28g_lane_set_nrate(struct lynx_28g_lane *lane,
struct lynx_28g_pll *pll,
phy_interface_t intf)
{
switch (LYNX_28G_PLLnCR1_FRATE_SEL(pll->cr1)) {
case LYNX_28G_PLLnCR1_FRATE_5G_10GVCO:
case LYNX_28G_PLLnCR1_FRATE_5G_25GVCO:
switch (intf) {
case PHY_INTERFACE_MODE_SGMII:
case PHY_INTERFACE_MODE_1000BASEX:
lynx_28g_lane_rmw(lane, LNaTGCR0, N_RATE_QUARTER, N_RATE_MSK);
lynx_28g_lane_rmw(lane, LNaRGCR0, N_RATE_QUARTER, N_RATE_MSK);
break;
default:
break;
}
break;
case LYNX_28G_PLLnCR1_FRATE_10G_20GVCO:
switch (intf) {
case PHY_INTERFACE_MODE_10GBASER:
case PHY_INTERFACE_MODE_USXGMII:
lynx_28g_lane_rmw(lane, LNaTGCR0, N_RATE_FULL, N_RATE_MSK);
lynx_28g_lane_rmw(lane, LNaRGCR0, N_RATE_FULL, N_RATE_MSK);
break;
default:
break;
}
break;
default:
break;
}
}
static void lynx_28g_lane_set_pll(struct lynx_28g_lane *lane,
struct lynx_28g_pll *pll)
{
if (pll->id == 0) {
lynx_28g_lane_rmw(lane, LNaTGCR0, USE_PLLF, USE_PLL_MSK);
lynx_28g_lane_rmw(lane, LNaRGCR0, USE_PLLF, USE_PLL_MSK);
} else {
lynx_28g_lane_rmw(lane, LNaTGCR0, USE_PLLS, USE_PLL_MSK);
lynx_28g_lane_rmw(lane, LNaRGCR0, USE_PLLS, USE_PLL_MSK);
}
}
static void lynx_28g_cleanup_lane(struct lynx_28g_lane *lane)
{
u32 lane_offset = LYNX_28G_LNa_PCC_OFFSET(lane);
struct lynx_28g_priv *priv = lane->priv;
/* Cleanup the protocol configuration registers of the current protocol */
switch (lane->interface) {
case PHY_INTERFACE_MODE_10GBASER:
lynx_28g_rmw(priv, LYNX_28G_PCCC,
LYNX_28G_PCCC_SXGMII_DIS << lane_offset,
GENMASK(3, 0) << lane_offset);
break;
case PHY_INTERFACE_MODE_SGMII:
case PHY_INTERFACE_MODE_1000BASEX:
lynx_28g_rmw(priv, LYNX_28G_PCC8,
LYNX_28G_PCC8_SGMII_DIS << lane_offset,
GENMASK(3, 0) << lane_offset);
break;
default:
break;
}
}
static void lynx_28g_lane_set_sgmii(struct lynx_28g_lane *lane)
{
u32 lane_offset = LYNX_28G_LNa_PCC_OFFSET(lane);
struct lynx_28g_priv *priv = lane->priv;
struct lynx_28g_pll *pll;
lynx_28g_cleanup_lane(lane);
/* Setup the lane to run in SGMII */
lynx_28g_rmw(priv, LYNX_28G_PCC8,
LYNX_28G_PCC8_SGMII << lane_offset,
GENMASK(3, 0) << lane_offset);
/* Setup the protocol select and SerDes parallel interface width */
lynx_28g_lane_rmw(lane, LNaGCR0, PROTO_SEL_SGMII, PROTO_SEL_MSK);
lynx_28g_lane_rmw(lane, LNaGCR0, IF_WIDTH_10_BIT, IF_WIDTH_MSK);
/* Switch to the PLL that works with this interface type */
pll = lynx_28g_pll_get(priv, PHY_INTERFACE_MODE_SGMII);
lynx_28g_lane_set_pll(lane, pll);
/* Choose the portion of clock net to be used on this lane */
lynx_28g_lane_set_nrate(lane, pll, PHY_INTERFACE_MODE_SGMII);
/* Enable the SGMII PCS */
lynx_28g_lane_rmw(lane, SGMIIaCR1, SGPCS_EN, SGPCS_MSK);
/* Configure the appropriate equalization parameters for the protocol */
iowrite32(0x00808006, priv->base + LYNX_28G_LNaTECR0(lane->id));
iowrite32(0x04310000, priv->base + LYNX_28G_LNaRGCR1(lane->id));
iowrite32(0x9f800000, priv->base + LYNX_28G_LNaRECR0(lane->id));
iowrite32(0x001f0000, priv->base + LYNX_28G_LNaRECR1(lane->id));
iowrite32(0x00000000, priv->base + LYNX_28G_LNaRECR2(lane->id));
iowrite32(0x00000000, priv->base + LYNX_28G_LNaRSCCR0(lane->id));
}
static void lynx_28g_lane_set_10gbaser(struct lynx_28g_lane *lane)
{
u32 lane_offset = LYNX_28G_LNa_PCC_OFFSET(lane);
struct lynx_28g_priv *priv = lane->priv;
struct lynx_28g_pll *pll;
lynx_28g_cleanup_lane(lane);
/* Enable the SXGMII lane */
lynx_28g_rmw(priv, LYNX_28G_PCCC,
LYNX_28G_PCCC_10GBASER << lane_offset,
GENMASK(3, 0) << lane_offset);
/* Setup the protocol select and SerDes parallel interface width */
lynx_28g_lane_rmw(lane, LNaGCR0, PROTO_SEL_XFI, PROTO_SEL_MSK);
lynx_28g_lane_rmw(lane, LNaGCR0, IF_WIDTH_20_BIT, IF_WIDTH_MSK);
/* Switch to the PLL that works with this interface type */
pll = lynx_28g_pll_get(priv, PHY_INTERFACE_MODE_10GBASER);
lynx_28g_lane_set_pll(lane, pll);
/* Choose the portion of clock net to be used on this lane */
lynx_28g_lane_set_nrate(lane, pll, PHY_INTERFACE_MODE_10GBASER);
/* Disable the SGMII PCS */
lynx_28g_lane_rmw(lane, SGMIIaCR1, SGPCS_DIS, SGPCS_MSK);
/* Configure the appropriate equalization parameters for the protocol */
iowrite32(0x10808307, priv->base + LYNX_28G_LNaTECR0(lane->id));
iowrite32(0x10000000, priv->base + LYNX_28G_LNaRGCR1(lane->id));
iowrite32(0x00000000, priv->base + LYNX_28G_LNaRECR0(lane->id));
iowrite32(0x001f0000, priv->base + LYNX_28G_LNaRECR1(lane->id));
iowrite32(0x81000020, priv->base + LYNX_28G_LNaRECR2(lane->id));
iowrite32(0x00002000, priv->base + LYNX_28G_LNaRSCCR0(lane->id));
}
static int lynx_28g_power_off(struct phy *phy)
{
struct lynx_28g_lane *lane = phy_get_drvdata(phy);
u32 trstctl, rrstctl;
if (!lane->powered_up)
return 0;
/* Issue a halt request */
lynx_28g_lane_rmw(lane, LNaTRSTCTL, HLT_REQ, HLT_REQ);
lynx_28g_lane_rmw(lane, LNaRRSTCTL, HLT_REQ, HLT_REQ);
/* Wait until the halting process is complete */
do {
trstctl = lynx_28g_lane_read(lane, LNaTRSTCTL);
rrstctl = lynx_28g_lane_read(lane, LNaRRSTCTL);
} while ((trstctl & LYNX_28G_LNaTRSTCTL_HLT_REQ) ||
(rrstctl & LYNX_28G_LNaRRSTCTL_HLT_REQ));
lane->powered_up = false;
return 0;
}
static int lynx_28g_power_on(struct phy *phy)
{
struct lynx_28g_lane *lane = phy_get_drvdata(phy);
u32 trstctl, rrstctl;
if (lane->powered_up)
return 0;
/* Issue a reset request on the lane */
lynx_28g_lane_rmw(lane, LNaTRSTCTL, RST_REQ, RST_REQ);
lynx_28g_lane_rmw(lane, LNaRRSTCTL, RST_REQ, RST_REQ);
/* Wait until the reset sequence is completed */
do {
trstctl = lynx_28g_lane_read(lane, LNaTRSTCTL);
rrstctl = lynx_28g_lane_read(lane, LNaRRSTCTL);
} while (!(trstctl & LYNX_28G_LNaTRSTCTL_RST_DONE) ||
!(rrstctl & LYNX_28G_LNaRRSTCTL_RST_DONE));
lane->powered_up = true;
return 0;
}
static int lynx_28g_set_mode(struct phy *phy, enum phy_mode mode, int submode)
{
struct lynx_28g_lane *lane = phy_get_drvdata(phy);
struct lynx_28g_priv *priv = lane->priv;
int powered_up = lane->powered_up;
int err = 0;
if (mode != PHY_MODE_ETHERNET)
return -EOPNOTSUPP;
if (lane->interface == PHY_INTERFACE_MODE_NA)
return -EOPNOTSUPP;
if (!lynx_28g_supports_interface(priv, submode))
return -EOPNOTSUPP;
/* If the lane is powered up, put the lane into the halt state while
* the reconfiguration is being done.
*/
if (powered_up)
lynx_28g_power_off(phy);
switch (submode) {
case PHY_INTERFACE_MODE_SGMII:
case PHY_INTERFACE_MODE_1000BASEX:
lynx_28g_lane_set_sgmii(lane);
break;
case PHY_INTERFACE_MODE_10GBASER:
lynx_28g_lane_set_10gbaser(lane);
break;
default:
err = -EOPNOTSUPP;
goto out;
}
lane->interface = submode;
out:
/* Power up the lane if necessary */
if (powered_up)
lynx_28g_power_on(phy);
return err;
}
static int lynx_28g_validate(struct phy *phy, enum phy_mode mode, int submode,
union phy_configure_opts *opts __always_unused)
{
struct lynx_28g_lane *lane = phy_get_drvdata(phy);
struct lynx_28g_priv *priv = lane->priv;
if (mode != PHY_MODE_ETHERNET)
return -EOPNOTSUPP;
if (!lynx_28g_supports_interface(priv, submode))
return -EOPNOTSUPP;
return 0;
}
static int lynx_28g_init(struct phy *phy)
{
struct lynx_28g_lane *lane = phy_get_drvdata(phy);
/* Mark the fact that the lane was init */
lane->init = true;
/* SerDes lanes are powered on at boot time. Any lane that is managed
* by this driver will get powered down at init time aka at dpaa2-eth
* probe time.
*/
lane->powered_up = true;
lynx_28g_power_off(phy);
return 0;
}
static const struct phy_ops lynx_28g_ops = {
.init = lynx_28g_init,
.power_on = lynx_28g_power_on,
.power_off = lynx_28g_power_off,
.set_mode = lynx_28g_set_mode,
.validate = lynx_28g_validate,
.owner = THIS_MODULE,
};
static void lynx_28g_pll_read_configuration(struct lynx_28g_priv *priv)
{
struct lynx_28g_pll *pll;
int i;
for (i = 0; i < LYNX_28G_NUM_PLL; i++) {
pll = &priv->pll[i];
pll->priv = priv;
pll->id = i;
pll->rstctl = lynx_28g_pll_read(pll, PLLnRSTCTL);
pll->cr0 = lynx_28g_pll_read(pll, PLLnCR0);
pll->cr1 = lynx_28g_pll_read(pll, PLLnCR1);
if (LYNX_28G_PLLnRSTCTL_DIS(pll->rstctl))
continue;
switch (LYNX_28G_PLLnCR1_FRATE_SEL(pll->cr1)) {
case LYNX_28G_PLLnCR1_FRATE_5G_10GVCO:
case LYNX_28G_PLLnCR1_FRATE_5G_25GVCO:
/* 5GHz clock net */
__set_bit(PHY_INTERFACE_MODE_1000BASEX, pll->supported);
__set_bit(PHY_INTERFACE_MODE_SGMII, pll->supported);
break;
case LYNX_28G_PLLnCR1_FRATE_10G_20GVCO:
/* 10.3125GHz clock net */
__set_bit(PHY_INTERFACE_MODE_10GBASER, pll->supported);
break;
default:
/* 6GHz, 12.890625GHz, 8GHz */
break;
}
}
}
#define work_to_lynx(w) container_of((w), struct lynx_28g_priv, cdr_check.work)
static void lynx_28g_cdr_lock_check(struct work_struct *work)
{
struct lynx_28g_priv *priv = work_to_lynx(work);
struct lynx_28g_lane *lane;
u32 rrstctl;
int i;
for (i = 0; i < LYNX_28G_NUM_LANE; i++) {
lane = &priv->lane[i];
if (!lane->init)
continue;
if (!lane->powered_up)
continue;
rrstctl = lynx_28g_lane_read(lane, LNaRRSTCTL);
if (!(rrstctl & LYNX_28G_LNaRRSTCTL_CDR_LOCK)) {
lynx_28g_lane_rmw(lane, LNaRRSTCTL, RST_REQ, RST_REQ);
do {
rrstctl = lynx_28g_lane_read(lane, LNaRRSTCTL);
} while (!(rrstctl & LYNX_28G_LNaRRSTCTL_RST_DONE));
}
}
queue_delayed_work(system_power_efficient_wq, &priv->cdr_check,
msecs_to_jiffies(1000));
}
static void lynx_28g_lane_read_configuration(struct lynx_28g_lane *lane)
{
u32 pss, protocol;
pss = lynx_28g_lane_read(lane, LNaPSS);
protocol = LYNX_28G_LNaPSS_TYPE(pss);
switch (protocol) {
case LYNX_28G_LNaPSS_TYPE_SGMII:
lane->interface = PHY_INTERFACE_MODE_SGMII;
break;
case LYNX_28G_LNaPSS_TYPE_XFI:
lane->interface = PHY_INTERFACE_MODE_10GBASER;
break;
default:
lane->interface = PHY_INTERFACE_MODE_NA;
}
}
static struct phy *lynx_28g_xlate(struct device *dev,
struct of_phandle_args *args)
{
struct lynx_28g_priv *priv = dev_get_drvdata(dev);
int idx = args->args[0];
if (WARN_ON(idx >= LYNX_28G_NUM_LANE))
return ERR_PTR(-EINVAL);
return priv->lane[idx].phy;
}
static int lynx_28g_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct phy_provider *provider;
struct lynx_28g_priv *priv;
int i;
priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->dev = &pdev->dev;
priv->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(priv->base))
return PTR_ERR(priv->base);
lynx_28g_pll_read_configuration(priv);
for (i = 0; i < LYNX_28G_NUM_LANE; i++) {
struct lynx_28g_lane *lane = &priv->lane[i];
struct phy *phy;
memset(lane, 0, sizeof(*lane));
phy = devm_phy_create(&pdev->dev, NULL, &lynx_28g_ops);
if (IS_ERR(phy))
return PTR_ERR(phy);
lane->priv = priv;
lane->phy = phy;
lane->id = i;
phy_set_drvdata(phy, lane);
lynx_28g_lane_read_configuration(lane);
}
dev_set_drvdata(dev, priv);
INIT_DELAYED_WORK(&priv->cdr_check, lynx_28g_cdr_lock_check);
queue_delayed_work(system_power_efficient_wq, &priv->cdr_check,
msecs_to_jiffies(1000));
dev_set_drvdata(&pdev->dev, priv);
provider = devm_of_phy_provider_register(&pdev->dev, lynx_28g_xlate);
return PTR_ERR_OR_ZERO(provider);
}
static const struct of_device_id lynx_28g_of_match_table[] = {
{ .compatible = "fsl,lynx-28g" },
{ },
};
MODULE_DEVICE_TABLE(of, lynx_28g_of_match_table);
static struct platform_driver lynx_28g_driver = {
.probe = lynx_28g_probe,
.driver = {
.name = "lynx-28g",
.of_match_table = lynx_28g_of_match_table,
},
};
module_platform_driver(lynx_28g_driver);
MODULE_AUTHOR("Ioana Ciornei <ioana.ciornei@nxp.com>");
MODULE_DESCRIPTION("Lynx 28G SerDes PHY driver for Layerscape SoCs");
MODULE_LICENSE("GPL v2");