linux-zen-server/drivers/soc/qcom/cpr.c

1758 lines
44 KiB
C
Raw Normal View History

2023-08-30 17:53:23 +02:00
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2013-2015, The Linux Foundation. All rights reserved.
* Copyright (c) 2019, Linaro Limited
*/
#include <linux/module.h>
#include <linux/err.h>
#include <linux/debugfs.h>
#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_domain.h>
#include <linux/pm_opp.h>
#include <linux/interrupt.h>
#include <linux/regmap.h>
#include <linux/mfd/syscon.h>
#include <linux/regulator/consumer.h>
#include <linux/clk.h>
#include <linux/nvmem-consumer.h>
/* Register Offsets for RB-CPR and Bit Definitions */
/* RBCPR Version Register */
#define REG_RBCPR_VERSION 0
#define RBCPR_VER_2 0x02
#define FLAGS_IGNORE_1ST_IRQ_STATUS BIT(0)
/* RBCPR Gate Count and Target Registers */
#define REG_RBCPR_GCNT_TARGET(n) (0x60 + 4 * (n))
#define RBCPR_GCNT_TARGET_TARGET_SHIFT 0
#define RBCPR_GCNT_TARGET_TARGET_MASK GENMASK(11, 0)
#define RBCPR_GCNT_TARGET_GCNT_SHIFT 12
#define RBCPR_GCNT_TARGET_GCNT_MASK GENMASK(9, 0)
/* RBCPR Timer Control */
#define REG_RBCPR_TIMER_INTERVAL 0x44
#define REG_RBIF_TIMER_ADJUST 0x4c
#define RBIF_TIMER_ADJ_CONS_UP_MASK GENMASK(3, 0)
#define RBIF_TIMER_ADJ_CONS_UP_SHIFT 0
#define RBIF_TIMER_ADJ_CONS_DOWN_MASK GENMASK(3, 0)
#define RBIF_TIMER_ADJ_CONS_DOWN_SHIFT 4
#define RBIF_TIMER_ADJ_CLAMP_INT_MASK GENMASK(7, 0)
#define RBIF_TIMER_ADJ_CLAMP_INT_SHIFT 8
/* RBCPR Config Register */
#define REG_RBIF_LIMIT 0x48
#define RBIF_LIMIT_CEILING_MASK GENMASK(5, 0)
#define RBIF_LIMIT_CEILING_SHIFT 6
#define RBIF_LIMIT_FLOOR_BITS 6
#define RBIF_LIMIT_FLOOR_MASK GENMASK(5, 0)
#define RBIF_LIMIT_CEILING_DEFAULT RBIF_LIMIT_CEILING_MASK
#define RBIF_LIMIT_FLOOR_DEFAULT 0
#define REG_RBIF_SW_VLEVEL 0x94
#define RBIF_SW_VLEVEL_DEFAULT 0x20
#define REG_RBCPR_STEP_QUOT 0x80
#define RBCPR_STEP_QUOT_STEPQUOT_MASK GENMASK(7, 0)
#define RBCPR_STEP_QUOT_IDLE_CLK_MASK GENMASK(3, 0)
#define RBCPR_STEP_QUOT_IDLE_CLK_SHIFT 8
/* RBCPR Control Register */
#define REG_RBCPR_CTL 0x90
#define RBCPR_CTL_LOOP_EN BIT(0)
#define RBCPR_CTL_TIMER_EN BIT(3)
#define RBCPR_CTL_SW_AUTO_CONT_ACK_EN BIT(5)
#define RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN BIT(6)
#define RBCPR_CTL_COUNT_MODE BIT(10)
#define RBCPR_CTL_UP_THRESHOLD_MASK GENMASK(3, 0)
#define RBCPR_CTL_UP_THRESHOLD_SHIFT 24
#define RBCPR_CTL_DN_THRESHOLD_MASK GENMASK(3, 0)
#define RBCPR_CTL_DN_THRESHOLD_SHIFT 28
/* RBCPR Ack/Nack Response */
#define REG_RBIF_CONT_ACK_CMD 0x98
#define REG_RBIF_CONT_NACK_CMD 0x9c
/* RBCPR Result status Register */
#define REG_RBCPR_RESULT_0 0xa0
#define RBCPR_RESULT0_BUSY_SHIFT 19
#define RBCPR_RESULT0_BUSY_MASK BIT(RBCPR_RESULT0_BUSY_SHIFT)
#define RBCPR_RESULT0_ERROR_LT0_SHIFT 18
#define RBCPR_RESULT0_ERROR_SHIFT 6
#define RBCPR_RESULT0_ERROR_MASK GENMASK(11, 0)
#define RBCPR_RESULT0_ERROR_STEPS_SHIFT 2
#define RBCPR_RESULT0_ERROR_STEPS_MASK GENMASK(3, 0)
#define RBCPR_RESULT0_STEP_UP_SHIFT 1
/* RBCPR Interrupt Control Register */
#define REG_RBIF_IRQ_EN(n) (0x100 + 4 * (n))
#define REG_RBIF_IRQ_CLEAR 0x110
#define REG_RBIF_IRQ_STATUS 0x114
#define CPR_INT_DONE BIT(0)
#define CPR_INT_MIN BIT(1)
#define CPR_INT_DOWN BIT(2)
#define CPR_INT_MID BIT(3)
#define CPR_INT_UP BIT(4)
#define CPR_INT_MAX BIT(5)
#define CPR_INT_CLAMP BIT(6)
#define CPR_INT_ALL (CPR_INT_DONE | CPR_INT_MIN | CPR_INT_DOWN | \
CPR_INT_MID | CPR_INT_UP | CPR_INT_MAX | CPR_INT_CLAMP)
#define CPR_INT_DEFAULT (CPR_INT_UP | CPR_INT_DOWN)
#define CPR_NUM_RING_OSC 8
/* CPR eFuse parameters */
#define CPR_FUSE_TARGET_QUOT_BITS_MASK GENMASK(11, 0)
#define CPR_FUSE_MIN_QUOT_DIFF 50
#define FUSE_REVISION_UNKNOWN (-1)
enum voltage_change_dir {
NO_CHANGE,
DOWN,
UP,
};
struct cpr_fuse {
char *ring_osc;
char *init_voltage;
char *quotient;
char *quotient_offset;
};
struct fuse_corner_data {
int ref_uV;
int max_uV;
int min_uV;
int max_volt_scale;
int max_quot_scale;
/* fuse quot */
int quot_offset;
int quot_scale;
int quot_adjust;
/* fuse quot_offset */
int quot_offset_scale;
int quot_offset_adjust;
};
struct cpr_fuses {
int init_voltage_step;
int init_voltage_width;
struct fuse_corner_data *fuse_corner_data;
};
struct corner_data {
unsigned int fuse_corner;
unsigned long freq;
};
struct cpr_desc {
unsigned int num_fuse_corners;
int min_diff_quot;
int *step_quot;
unsigned int timer_delay_us;
unsigned int timer_cons_up;
unsigned int timer_cons_down;
unsigned int up_threshold;
unsigned int down_threshold;
unsigned int idle_clocks;
unsigned int gcnt_us;
unsigned int vdd_apc_step_up_limit;
unsigned int vdd_apc_step_down_limit;
unsigned int clamp_timer_interval;
struct cpr_fuses cpr_fuses;
bool reduce_to_fuse_uV;
bool reduce_to_corner_uV;
};
struct acc_desc {
unsigned int enable_reg;
u32 enable_mask;
struct reg_sequence *config;
struct reg_sequence *settings;
int num_regs_per_fuse;
};
struct cpr_acc_desc {
const struct cpr_desc *cpr_desc;
const struct acc_desc *acc_desc;
};
struct fuse_corner {
int min_uV;
int max_uV;
int uV;
int quot;
int step_quot;
const struct reg_sequence *accs;
int num_accs;
unsigned long max_freq;
u8 ring_osc_idx;
};
struct corner {
int min_uV;
int max_uV;
int uV;
int last_uV;
int quot_adjust;
u32 save_ctl;
u32 save_irq;
unsigned long freq;
struct fuse_corner *fuse_corner;
};
struct cpr_drv {
unsigned int num_corners;
unsigned int ref_clk_khz;
struct generic_pm_domain pd;
struct device *dev;
struct device *attached_cpu_dev;
struct mutex lock;
void __iomem *base;
struct corner *corner;
struct regulator *vdd_apc;
struct clk *cpu_clk;
struct regmap *tcsr;
bool loop_disabled;
u32 gcnt;
unsigned long flags;
struct fuse_corner *fuse_corners;
struct corner *corners;
const struct cpr_desc *desc;
const struct acc_desc *acc_desc;
const struct cpr_fuse *cpr_fuses;
struct dentry *debugfs;
};
static bool cpr_is_allowed(struct cpr_drv *drv)
{
return !drv->loop_disabled;
}
static void cpr_write(struct cpr_drv *drv, u32 offset, u32 value)
{
writel_relaxed(value, drv->base + offset);
}
static u32 cpr_read(struct cpr_drv *drv, u32 offset)
{
return readl_relaxed(drv->base + offset);
}
static void
cpr_masked_write(struct cpr_drv *drv, u32 offset, u32 mask, u32 value)
{
u32 val;
val = readl_relaxed(drv->base + offset);
val &= ~mask;
val |= value & mask;
writel_relaxed(val, drv->base + offset);
}
static void cpr_irq_clr(struct cpr_drv *drv)
{
cpr_write(drv, REG_RBIF_IRQ_CLEAR, CPR_INT_ALL);
}
static void cpr_irq_clr_nack(struct cpr_drv *drv)
{
cpr_irq_clr(drv);
cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1);
}
static void cpr_irq_clr_ack(struct cpr_drv *drv)
{
cpr_irq_clr(drv);
cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1);
}
static void cpr_irq_set(struct cpr_drv *drv, u32 int_bits)
{
cpr_write(drv, REG_RBIF_IRQ_EN(0), int_bits);
}
static void cpr_ctl_modify(struct cpr_drv *drv, u32 mask, u32 value)
{
cpr_masked_write(drv, REG_RBCPR_CTL, mask, value);
}
static void cpr_ctl_enable(struct cpr_drv *drv, struct corner *corner)
{
u32 val, mask;
const struct cpr_desc *desc = drv->desc;
/* Program Consecutive Up & Down */
val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT;
val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT;
mask = RBIF_TIMER_ADJ_CONS_UP_MASK | RBIF_TIMER_ADJ_CONS_DOWN_MASK;
cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST, mask, val);
cpr_masked_write(drv, REG_RBCPR_CTL,
RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN |
RBCPR_CTL_SW_AUTO_CONT_ACK_EN,
corner->save_ctl);
cpr_irq_set(drv, corner->save_irq);
if (cpr_is_allowed(drv) && corner->max_uV > corner->min_uV)
val = RBCPR_CTL_LOOP_EN;
else
val = 0;
cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, val);
}
static void cpr_ctl_disable(struct cpr_drv *drv)
{
cpr_irq_set(drv, 0);
cpr_ctl_modify(drv, RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN |
RBCPR_CTL_SW_AUTO_CONT_ACK_EN, 0);
cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST,
RBIF_TIMER_ADJ_CONS_UP_MASK |
RBIF_TIMER_ADJ_CONS_DOWN_MASK, 0);
cpr_irq_clr(drv);
cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1);
cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1);
cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, 0);
}
static bool cpr_ctl_is_enabled(struct cpr_drv *drv)
{
u32 reg_val;
reg_val = cpr_read(drv, REG_RBCPR_CTL);
return reg_val & RBCPR_CTL_LOOP_EN;
}
static bool cpr_ctl_is_busy(struct cpr_drv *drv)
{
u32 reg_val;
reg_val = cpr_read(drv, REG_RBCPR_RESULT_0);
return reg_val & RBCPR_RESULT0_BUSY_MASK;
}
static void cpr_corner_save(struct cpr_drv *drv, struct corner *corner)
{
corner->save_ctl = cpr_read(drv, REG_RBCPR_CTL);
corner->save_irq = cpr_read(drv, REG_RBIF_IRQ_EN(0));
}
static void cpr_corner_restore(struct cpr_drv *drv, struct corner *corner)
{
u32 gcnt, ctl, irq, ro_sel, step_quot;
struct fuse_corner *fuse = corner->fuse_corner;
const struct cpr_desc *desc = drv->desc;
int i;
ro_sel = fuse->ring_osc_idx;
gcnt = drv->gcnt;
gcnt |= fuse->quot - corner->quot_adjust;
/* Program the step quotient and idle clocks */
step_quot = desc->idle_clocks << RBCPR_STEP_QUOT_IDLE_CLK_SHIFT;
step_quot |= fuse->step_quot & RBCPR_STEP_QUOT_STEPQUOT_MASK;
cpr_write(drv, REG_RBCPR_STEP_QUOT, step_quot);
/* Clear the target quotient value and gate count of all ROs */
for (i = 0; i < CPR_NUM_RING_OSC; i++)
cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0);
cpr_write(drv, REG_RBCPR_GCNT_TARGET(ro_sel), gcnt);
ctl = corner->save_ctl;
cpr_write(drv, REG_RBCPR_CTL, ctl);
irq = corner->save_irq;
cpr_irq_set(drv, irq);
dev_dbg(drv->dev, "gcnt = %#08x, ctl = %#08x, irq = %#08x\n", gcnt,
ctl, irq);
}
static void cpr_set_acc(struct regmap *tcsr, struct fuse_corner *f,
struct fuse_corner *end)
{
if (f == end)
return;
if (f < end) {
for (f += 1; f <= end; f++)
regmap_multi_reg_write(tcsr, f->accs, f->num_accs);
} else {
for (f -= 1; f >= end; f--)
regmap_multi_reg_write(tcsr, f->accs, f->num_accs);
}
}
static int cpr_pre_voltage(struct cpr_drv *drv,
struct fuse_corner *fuse_corner,
enum voltage_change_dir dir)
{
struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner;
if (drv->tcsr && dir == DOWN)
cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner);
return 0;
}
static int cpr_post_voltage(struct cpr_drv *drv,
struct fuse_corner *fuse_corner,
enum voltage_change_dir dir)
{
struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner;
if (drv->tcsr && dir == UP)
cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner);
return 0;
}
static int cpr_scale_voltage(struct cpr_drv *drv, struct corner *corner,
int new_uV, enum voltage_change_dir dir)
{
int ret;
struct fuse_corner *fuse_corner = corner->fuse_corner;
ret = cpr_pre_voltage(drv, fuse_corner, dir);
if (ret)
return ret;
ret = regulator_set_voltage(drv->vdd_apc, new_uV, new_uV);
if (ret) {
dev_err_ratelimited(drv->dev, "failed to set apc voltage %d\n",
new_uV);
return ret;
}
ret = cpr_post_voltage(drv, fuse_corner, dir);
if (ret)
return ret;
return 0;
}
static unsigned int cpr_get_cur_perf_state(struct cpr_drv *drv)
{
return drv->corner ? drv->corner - drv->corners + 1 : 0;
}
static int cpr_scale(struct cpr_drv *drv, enum voltage_change_dir dir)
{
u32 val, error_steps, reg_mask;
int last_uV, new_uV, step_uV, ret;
struct corner *corner;
const struct cpr_desc *desc = drv->desc;
if (dir != UP && dir != DOWN)
return 0;
step_uV = regulator_get_linear_step(drv->vdd_apc);
if (!step_uV)
return -EINVAL;
corner = drv->corner;
val = cpr_read(drv, REG_RBCPR_RESULT_0);
error_steps = val >> RBCPR_RESULT0_ERROR_STEPS_SHIFT;
error_steps &= RBCPR_RESULT0_ERROR_STEPS_MASK;
last_uV = corner->last_uV;
if (dir == UP) {
if (desc->clamp_timer_interval &&
error_steps < desc->up_threshold) {
/*
* Handle the case where another measurement started
* after the interrupt was triggered due to a core
* exiting from power collapse.
*/
error_steps = max(desc->up_threshold,
desc->vdd_apc_step_up_limit);
}
if (last_uV >= corner->max_uV) {
cpr_irq_clr_nack(drv);
/* Maximize the UP threshold */
reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK;
reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
val = reg_mask;
cpr_ctl_modify(drv, reg_mask, val);
/* Disable UP interrupt */
cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_UP);
return 0;
}
if (error_steps > desc->vdd_apc_step_up_limit)
error_steps = desc->vdd_apc_step_up_limit;
/* Calculate new voltage */
new_uV = last_uV + error_steps * step_uV;
new_uV = min(new_uV, corner->max_uV);
dev_dbg(drv->dev,
"UP: -> new_uV: %d last_uV: %d perf state: %u\n",
new_uV, last_uV, cpr_get_cur_perf_state(drv));
} else {
if (desc->clamp_timer_interval &&
error_steps < desc->down_threshold) {
/*
* Handle the case where another measurement started
* after the interrupt was triggered due to a core
* exiting from power collapse.
*/
error_steps = max(desc->down_threshold,
desc->vdd_apc_step_down_limit);
}
if (last_uV <= corner->min_uV) {
cpr_irq_clr_nack(drv);
/* Enable auto nack down */
reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
val = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
cpr_ctl_modify(drv, reg_mask, val);
/* Disable DOWN interrupt */
cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_DOWN);
return 0;
}
if (error_steps > desc->vdd_apc_step_down_limit)
error_steps = desc->vdd_apc_step_down_limit;
/* Calculate new voltage */
new_uV = last_uV - error_steps * step_uV;
new_uV = max(new_uV, corner->min_uV);
dev_dbg(drv->dev,
"DOWN: -> new_uV: %d last_uV: %d perf state: %u\n",
new_uV, last_uV, cpr_get_cur_perf_state(drv));
}
ret = cpr_scale_voltage(drv, corner, new_uV, dir);
if (ret) {
cpr_irq_clr_nack(drv);
return ret;
}
drv->corner->last_uV = new_uV;
if (dir == UP) {
/* Disable auto nack down */
reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
val = 0;
} else {
/* Restore default threshold for UP */
reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK;
reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
val = desc->up_threshold;
val <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
}
cpr_ctl_modify(drv, reg_mask, val);
/* Re-enable default interrupts */
cpr_irq_set(drv, CPR_INT_DEFAULT);
/* Ack */
cpr_irq_clr_ack(drv);
return 0;
}
static irqreturn_t cpr_irq_handler(int irq, void *dev)
{
struct cpr_drv *drv = dev;
const struct cpr_desc *desc = drv->desc;
irqreturn_t ret = IRQ_HANDLED;
u32 val;
mutex_lock(&drv->lock);
val = cpr_read(drv, REG_RBIF_IRQ_STATUS);
if (drv->flags & FLAGS_IGNORE_1ST_IRQ_STATUS)
val = cpr_read(drv, REG_RBIF_IRQ_STATUS);
dev_dbg(drv->dev, "IRQ_STATUS = %#02x\n", val);
if (!cpr_ctl_is_enabled(drv)) {
dev_dbg(drv->dev, "CPR is disabled\n");
ret = IRQ_NONE;
} else if (cpr_ctl_is_busy(drv) && !desc->clamp_timer_interval) {
dev_dbg(drv->dev, "CPR measurement is not ready\n");
} else if (!cpr_is_allowed(drv)) {
val = cpr_read(drv, REG_RBCPR_CTL);
dev_err_ratelimited(drv->dev,
"Interrupt broken? RBCPR_CTL = %#02x\n",
val);
ret = IRQ_NONE;
} else {
/*
* Following sequence of handling is as per each IRQ's
* priority
*/
if (val & CPR_INT_UP) {
cpr_scale(drv, UP);
} else if (val & CPR_INT_DOWN) {
cpr_scale(drv, DOWN);
} else if (val & CPR_INT_MIN) {
cpr_irq_clr_nack(drv);
} else if (val & CPR_INT_MAX) {
cpr_irq_clr_nack(drv);
} else if (val & CPR_INT_MID) {
/* RBCPR_CTL_SW_AUTO_CONT_ACK_EN is enabled */
dev_dbg(drv->dev, "IRQ occurred for Mid Flag\n");
} else {
dev_dbg(drv->dev,
"IRQ occurred for unknown flag (%#08x)\n", val);
}
/* Save register values for the corner */
cpr_corner_save(drv, drv->corner);
}
mutex_unlock(&drv->lock);
return ret;
}
static int cpr_enable(struct cpr_drv *drv)
{
int ret;
ret = regulator_enable(drv->vdd_apc);
if (ret)
return ret;
mutex_lock(&drv->lock);
if (cpr_is_allowed(drv) && drv->corner) {
cpr_irq_clr(drv);
cpr_corner_restore(drv, drv->corner);
cpr_ctl_enable(drv, drv->corner);
}
mutex_unlock(&drv->lock);
return 0;
}
static int cpr_disable(struct cpr_drv *drv)
{
mutex_lock(&drv->lock);
if (cpr_is_allowed(drv)) {
cpr_ctl_disable(drv);
cpr_irq_clr(drv);
}
mutex_unlock(&drv->lock);
return regulator_disable(drv->vdd_apc);
}
static int cpr_config(struct cpr_drv *drv)
{
int i;
u32 val, gcnt;
struct corner *corner;
const struct cpr_desc *desc = drv->desc;
/* Disable interrupt and CPR */
cpr_write(drv, REG_RBIF_IRQ_EN(0), 0);
cpr_write(drv, REG_RBCPR_CTL, 0);
/* Program the default HW ceiling, floor and vlevel */
val = (RBIF_LIMIT_CEILING_DEFAULT & RBIF_LIMIT_CEILING_MASK)
<< RBIF_LIMIT_CEILING_SHIFT;
val |= RBIF_LIMIT_FLOOR_DEFAULT & RBIF_LIMIT_FLOOR_MASK;
cpr_write(drv, REG_RBIF_LIMIT, val);
cpr_write(drv, REG_RBIF_SW_VLEVEL, RBIF_SW_VLEVEL_DEFAULT);
/*
* Clear the target quotient value and gate count of all
* ring oscillators
*/
for (i = 0; i < CPR_NUM_RING_OSC; i++)
cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0);
/* Init and save gcnt */
gcnt = (drv->ref_clk_khz * desc->gcnt_us) / 1000;
gcnt = gcnt & RBCPR_GCNT_TARGET_GCNT_MASK;
gcnt <<= RBCPR_GCNT_TARGET_GCNT_SHIFT;
drv->gcnt = gcnt;
/* Program the delay count for the timer */
val = (drv->ref_clk_khz * desc->timer_delay_us) / 1000;
cpr_write(drv, REG_RBCPR_TIMER_INTERVAL, val);
dev_dbg(drv->dev, "Timer count: %#0x (for %d us)\n", val,
desc->timer_delay_us);
/* Program Consecutive Up & Down */
val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT;
val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT;
val |= desc->clamp_timer_interval << RBIF_TIMER_ADJ_CLAMP_INT_SHIFT;
cpr_write(drv, REG_RBIF_TIMER_ADJUST, val);
/* Program the control register */
val = desc->up_threshold << RBCPR_CTL_UP_THRESHOLD_SHIFT;
val |= desc->down_threshold << RBCPR_CTL_DN_THRESHOLD_SHIFT;
val |= RBCPR_CTL_TIMER_EN | RBCPR_CTL_COUNT_MODE;
val |= RBCPR_CTL_SW_AUTO_CONT_ACK_EN;
cpr_write(drv, REG_RBCPR_CTL, val);
for (i = 0; i < drv->num_corners; i++) {
corner = &drv->corners[i];
corner->save_ctl = val;
corner->save_irq = CPR_INT_DEFAULT;
}
cpr_irq_set(drv, CPR_INT_DEFAULT);
val = cpr_read(drv, REG_RBCPR_VERSION);
if (val <= RBCPR_VER_2)
drv->flags |= FLAGS_IGNORE_1ST_IRQ_STATUS;
return 0;
}
static int cpr_set_performance_state(struct generic_pm_domain *domain,
unsigned int state)
{
struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
struct corner *corner, *end;
enum voltage_change_dir dir;
int ret = 0, new_uV;
mutex_lock(&drv->lock);
dev_dbg(drv->dev, "%s: setting perf state: %u (prev state: %u)\n",
__func__, state, cpr_get_cur_perf_state(drv));
/*
* Determine new corner we're going to.
* Remove one since lowest performance state is 1.
*/
corner = drv->corners + state - 1;
end = &drv->corners[drv->num_corners - 1];
if (corner > end || corner < drv->corners) {
ret = -EINVAL;
goto unlock;
}
/* Determine direction */
if (drv->corner > corner)
dir = DOWN;
else if (drv->corner < corner)
dir = UP;
else
dir = NO_CHANGE;
if (cpr_is_allowed(drv))
new_uV = corner->last_uV;
else
new_uV = corner->uV;
if (cpr_is_allowed(drv))
cpr_ctl_disable(drv);
ret = cpr_scale_voltage(drv, corner, new_uV, dir);
if (ret)
goto unlock;
if (cpr_is_allowed(drv)) {
cpr_irq_clr(drv);
if (drv->corner != corner)
cpr_corner_restore(drv, corner);
cpr_ctl_enable(drv, corner);
}
drv->corner = corner;
unlock:
mutex_unlock(&drv->lock);
return ret;
}
static int
cpr_populate_ring_osc_idx(struct cpr_drv *drv)
{
struct fuse_corner *fuse = drv->fuse_corners;
struct fuse_corner *end = fuse + drv->desc->num_fuse_corners;
const struct cpr_fuse *fuses = drv->cpr_fuses;
u32 data;
int ret;
for (; fuse < end; fuse++, fuses++) {
ret = nvmem_cell_read_variable_le_u32(drv->dev, fuses->ring_osc, &data);
if (ret)
return ret;
fuse->ring_osc_idx = data;
}
return 0;
}
static int cpr_read_fuse_uV(const struct cpr_desc *desc,
const struct fuse_corner_data *fdata,
const char *init_v_efuse,
int step_volt,
struct cpr_drv *drv)
{
int step_size_uV, steps, uV;
u32 bits = 0;
int ret;
ret = nvmem_cell_read_variable_le_u32(drv->dev, init_v_efuse, &bits);
if (ret)
return ret;
steps = bits & ~BIT(desc->cpr_fuses.init_voltage_width - 1);
/* Not two's complement.. instead highest bit is sign bit */
if (bits & BIT(desc->cpr_fuses.init_voltage_width - 1))
steps = -steps;
step_size_uV = desc->cpr_fuses.init_voltage_step;
uV = fdata->ref_uV + steps * step_size_uV;
return DIV_ROUND_UP(uV, step_volt) * step_volt;
}
static int cpr_fuse_corner_init(struct cpr_drv *drv)
{
const struct cpr_desc *desc = drv->desc;
const struct cpr_fuse *fuses = drv->cpr_fuses;
const struct acc_desc *acc_desc = drv->acc_desc;
int i;
unsigned int step_volt;
struct fuse_corner_data *fdata;
struct fuse_corner *fuse, *end;
int uV;
const struct reg_sequence *accs;
int ret;
accs = acc_desc->settings;
step_volt = regulator_get_linear_step(drv->vdd_apc);
if (!step_volt)
return -EINVAL;
/* Populate fuse_corner members */
fuse = drv->fuse_corners;
end = &fuse[desc->num_fuse_corners - 1];
fdata = desc->cpr_fuses.fuse_corner_data;
for (i = 0; fuse <= end; fuse++, fuses++, i++, fdata++) {
/*
* Update SoC voltages: platforms might choose a different
* regulators than the one used to characterize the algorithms
* (ie, init_voltage_step).
*/
fdata->min_uV = roundup(fdata->min_uV, step_volt);
fdata->max_uV = roundup(fdata->max_uV, step_volt);
/* Populate uV */
uV = cpr_read_fuse_uV(desc, fdata, fuses->init_voltage,
step_volt, drv);
if (uV < 0)
return uV;
fuse->min_uV = fdata->min_uV;
fuse->max_uV = fdata->max_uV;
fuse->uV = clamp(uV, fuse->min_uV, fuse->max_uV);
if (fuse == end) {
/*
* Allow the highest fuse corner's PVS voltage to
* define the ceiling voltage for that corner in order
* to support SoC's in which variable ceiling values
* are required.
*/
end->max_uV = max(end->max_uV, end->uV);
}
/* Populate target quotient by scaling */
ret = nvmem_cell_read_variable_le_u32(drv->dev, fuses->quotient, &fuse->quot);
if (ret)
return ret;
fuse->quot *= fdata->quot_scale;
fuse->quot += fdata->quot_offset;
fuse->quot += fdata->quot_adjust;
fuse->step_quot = desc->step_quot[fuse->ring_osc_idx];
/* Populate acc settings */
fuse->accs = accs;
fuse->num_accs = acc_desc->num_regs_per_fuse;
accs += acc_desc->num_regs_per_fuse;
}
/*
* Restrict all fuse corner PVS voltages based upon per corner
* ceiling and floor voltages.
*/
for (fuse = drv->fuse_corners, i = 0; fuse <= end; fuse++, i++) {
if (fuse->uV > fuse->max_uV)
fuse->uV = fuse->max_uV;
else if (fuse->uV < fuse->min_uV)
fuse->uV = fuse->min_uV;
ret = regulator_is_supported_voltage(drv->vdd_apc,
fuse->min_uV,
fuse->min_uV);
if (!ret) {
dev_err(drv->dev,
"min uV: %d (fuse corner: %d) not supported by regulator\n",
fuse->min_uV, i);
return -EINVAL;
}
ret = regulator_is_supported_voltage(drv->vdd_apc,
fuse->max_uV,
fuse->max_uV);
if (!ret) {
dev_err(drv->dev,
"max uV: %d (fuse corner: %d) not supported by regulator\n",
fuse->max_uV, i);
return -EINVAL;
}
dev_dbg(drv->dev,
"fuse corner %d: [%d %d %d] RO%hhu quot %d squot %d\n",
i, fuse->min_uV, fuse->uV, fuse->max_uV,
fuse->ring_osc_idx, fuse->quot, fuse->step_quot);
}
return 0;
}
static int cpr_calculate_scaling(const char *quot_offset,
struct cpr_drv *drv,
const struct fuse_corner_data *fdata,
const struct corner *corner)
{
u32 quot_diff = 0;
unsigned long freq_diff;
int scaling;
const struct fuse_corner *fuse, *prev_fuse;
int ret;
fuse = corner->fuse_corner;
prev_fuse = fuse - 1;
if (quot_offset) {
ret = nvmem_cell_read_variable_le_u32(drv->dev, quot_offset, &quot_diff);
if (ret)
return ret;
quot_diff *= fdata->quot_offset_scale;
quot_diff += fdata->quot_offset_adjust;
} else {
quot_diff = fuse->quot - prev_fuse->quot;
}
freq_diff = fuse->max_freq - prev_fuse->max_freq;
freq_diff /= 1000000; /* Convert to MHz */
scaling = 1000 * quot_diff / freq_diff;
return min(scaling, fdata->max_quot_scale);
}
static int cpr_interpolate(const struct corner *corner, int step_volt,
const struct fuse_corner_data *fdata)
{
unsigned long f_high, f_low, f_diff;
int uV_high, uV_low, uV;
u64 temp, temp_limit;
const struct fuse_corner *fuse, *prev_fuse;
fuse = corner->fuse_corner;
prev_fuse = fuse - 1;
f_high = fuse->max_freq;
f_low = prev_fuse->max_freq;
uV_high = fuse->uV;
uV_low = prev_fuse->uV;
f_diff = fuse->max_freq - corner->freq;
/*
* Don't interpolate in the wrong direction. This could happen
* if the adjusted fuse voltage overlaps with the previous fuse's
* adjusted voltage.
*/
if (f_high <= f_low || uV_high <= uV_low || f_high <= corner->freq)
return corner->uV;
temp = f_diff * (uV_high - uV_low);
temp = div64_ul(temp, f_high - f_low);
/*
* max_volt_scale has units of uV/MHz while freq values
* have units of Hz. Divide by 1000000 to convert to.
*/
temp_limit = f_diff * fdata->max_volt_scale;
do_div(temp_limit, 1000000);
uV = uV_high - min(temp, temp_limit);
return roundup(uV, step_volt);
}
static unsigned int cpr_get_fuse_corner(struct dev_pm_opp *opp)
{
struct device_node *np;
unsigned int fuse_corner = 0;
np = dev_pm_opp_get_of_node(opp);
if (of_property_read_u32(np, "qcom,opp-fuse-level", &fuse_corner))
pr_err("%s: missing 'qcom,opp-fuse-level' property\n",
__func__);
of_node_put(np);
return fuse_corner;
}
static unsigned long cpr_get_opp_hz_for_req(struct dev_pm_opp *ref,
struct device *cpu_dev)
{
u64 rate = 0;
struct device_node *ref_np;
struct device_node *desc_np;
struct device_node *child_np = NULL;
struct device_node *child_req_np = NULL;
desc_np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
if (!desc_np)
return 0;
ref_np = dev_pm_opp_get_of_node(ref);
if (!ref_np)
goto out_ref;
do {
of_node_put(child_req_np);
child_np = of_get_next_available_child(desc_np, child_np);
child_req_np = of_parse_phandle(child_np, "required-opps", 0);
} while (child_np && child_req_np != ref_np);
if (child_np && child_req_np == ref_np)
of_property_read_u64(child_np, "opp-hz", &rate);
of_node_put(child_req_np);
of_node_put(child_np);
of_node_put(ref_np);
out_ref:
of_node_put(desc_np);
return (unsigned long) rate;
}
static int cpr_corner_init(struct cpr_drv *drv)
{
const struct cpr_desc *desc = drv->desc;
const struct cpr_fuse *fuses = drv->cpr_fuses;
int i, level, scaling = 0;
unsigned int fnum, fc;
const char *quot_offset;
struct fuse_corner *fuse, *prev_fuse;
struct corner *corner, *end;
struct corner_data *cdata;
const struct fuse_corner_data *fdata;
bool apply_scaling;
unsigned long freq_diff, freq_diff_mhz;
unsigned long freq;
int step_volt = regulator_get_linear_step(drv->vdd_apc);
struct dev_pm_opp *opp;
if (!step_volt)
return -EINVAL;
corner = drv->corners;
end = &corner[drv->num_corners - 1];
cdata = devm_kcalloc(drv->dev, drv->num_corners,
sizeof(struct corner_data),
GFP_KERNEL);
if (!cdata)
return -ENOMEM;
/*
* Store maximum frequency for each fuse corner based on the frequency
* plan
*/
for (level = 1; level <= drv->num_corners; level++) {
opp = dev_pm_opp_find_level_exact(&drv->pd.dev, level);
if (IS_ERR(opp))
return -EINVAL;
fc = cpr_get_fuse_corner(opp);
if (!fc) {
dev_pm_opp_put(opp);
return -EINVAL;
}
fnum = fc - 1;
freq = cpr_get_opp_hz_for_req(opp, drv->attached_cpu_dev);
if (!freq) {
dev_pm_opp_put(opp);
return -EINVAL;
}
cdata[level - 1].fuse_corner = fnum;
cdata[level - 1].freq = freq;
fuse = &drv->fuse_corners[fnum];
dev_dbg(drv->dev, "freq: %lu level: %u fuse level: %u\n",
freq, dev_pm_opp_get_level(opp) - 1, fnum);
if (freq > fuse->max_freq)
fuse->max_freq = freq;
dev_pm_opp_put(opp);
}
/*
* Get the quotient adjustment scaling factor, according to:
*
* scaling = min(1000 * (QUOT(corner_N) - QUOT(corner_N-1))
* / (freq(corner_N) - freq(corner_N-1)), max_factor)
*
* QUOT(corner_N): quotient read from fuse for fuse corner N
* QUOT(corner_N-1): quotient read from fuse for fuse corner (N - 1)
* freq(corner_N): max frequency in MHz supported by fuse corner N
* freq(corner_N-1): max frequency in MHz supported by fuse corner
* (N - 1)
*
* Then walk through the corners mapped to each fuse corner
* and calculate the quotient adjustment for each one using the
* following formula:
*
* quot_adjust = (freq_max - freq_corner) * scaling / 1000
*
* freq_max: max frequency in MHz supported by the fuse corner
* freq_corner: frequency in MHz corresponding to the corner
* scaling: calculated from above equation
*
*
* + +
* | v |
* q | f c o | f c
* u | c l | c
* o | f t | f
* t | c a | c
* | c f g | c f
* | e |
* +--------------- +----------------
* 0 1 2 3 4 5 6 0 1 2 3 4 5 6
* corner corner
*
* c = corner
* f = fuse corner
*
*/
for (apply_scaling = false, i = 0; corner <= end; corner++, i++) {
fnum = cdata[i].fuse_corner;
fdata = &desc->cpr_fuses.fuse_corner_data[fnum];
quot_offset = fuses[fnum].quotient_offset;
fuse = &drv->fuse_corners[fnum];
if (fnum)
prev_fuse = &drv->fuse_corners[fnum - 1];
else
prev_fuse = NULL;
corner->fuse_corner = fuse;
corner->freq = cdata[i].freq;
corner->uV = fuse->uV;
if (prev_fuse && cdata[i - 1].freq == prev_fuse->max_freq) {
scaling = cpr_calculate_scaling(quot_offset, drv,
fdata, corner);
if (scaling < 0)
return scaling;
apply_scaling = true;
} else if (corner->freq == fuse->max_freq) {
/* This is a fuse corner; don't scale anything */
apply_scaling = false;
}
if (apply_scaling) {
freq_diff = fuse->max_freq - corner->freq;
freq_diff_mhz = freq_diff / 1000000;
corner->quot_adjust = scaling * freq_diff_mhz / 1000;
corner->uV = cpr_interpolate(corner, step_volt, fdata);
}
corner->max_uV = fuse->max_uV;
corner->min_uV = fuse->min_uV;
corner->uV = clamp(corner->uV, corner->min_uV, corner->max_uV);
corner->last_uV = corner->uV;
/* Reduce the ceiling voltage if needed */
if (desc->reduce_to_corner_uV && corner->uV < corner->max_uV)
corner->max_uV = corner->uV;
else if (desc->reduce_to_fuse_uV && fuse->uV < corner->max_uV)
corner->max_uV = max(corner->min_uV, fuse->uV);
dev_dbg(drv->dev, "corner %d: [%d %d %d] quot %d\n", i,
corner->min_uV, corner->uV, corner->max_uV,
fuse->quot - corner->quot_adjust);
}
return 0;
}
static const struct cpr_fuse *cpr_get_fuses(struct cpr_drv *drv)
{
const struct cpr_desc *desc = drv->desc;
struct cpr_fuse *fuses;
int i;
fuses = devm_kcalloc(drv->dev, desc->num_fuse_corners,
sizeof(struct cpr_fuse),
GFP_KERNEL);
if (!fuses)
return ERR_PTR(-ENOMEM);
for (i = 0; i < desc->num_fuse_corners; i++) {
char tbuf[32];
snprintf(tbuf, 32, "cpr_ring_osc%d", i + 1);
fuses[i].ring_osc = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL);
if (!fuses[i].ring_osc)
return ERR_PTR(-ENOMEM);
snprintf(tbuf, 32, "cpr_init_voltage%d", i + 1);
fuses[i].init_voltage = devm_kstrdup(drv->dev, tbuf,
GFP_KERNEL);
if (!fuses[i].init_voltage)
return ERR_PTR(-ENOMEM);
snprintf(tbuf, 32, "cpr_quotient%d", i + 1);
fuses[i].quotient = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL);
if (!fuses[i].quotient)
return ERR_PTR(-ENOMEM);
snprintf(tbuf, 32, "cpr_quotient_offset%d", i + 1);
fuses[i].quotient_offset = devm_kstrdup(drv->dev, tbuf,
GFP_KERNEL);
if (!fuses[i].quotient_offset)
return ERR_PTR(-ENOMEM);
}
return fuses;
}
static void cpr_set_loop_allowed(struct cpr_drv *drv)
{
drv->loop_disabled = false;
}
static int cpr_init_parameters(struct cpr_drv *drv)
{
const struct cpr_desc *desc = drv->desc;
struct clk *clk;
clk = clk_get(drv->dev, "ref");
if (IS_ERR(clk))
return PTR_ERR(clk);
drv->ref_clk_khz = clk_get_rate(clk) / 1000;
clk_put(clk);
if (desc->timer_cons_up > RBIF_TIMER_ADJ_CONS_UP_MASK ||
desc->timer_cons_down > RBIF_TIMER_ADJ_CONS_DOWN_MASK ||
desc->up_threshold > RBCPR_CTL_UP_THRESHOLD_MASK ||
desc->down_threshold > RBCPR_CTL_DN_THRESHOLD_MASK ||
desc->idle_clocks > RBCPR_STEP_QUOT_IDLE_CLK_MASK ||
desc->clamp_timer_interval > RBIF_TIMER_ADJ_CLAMP_INT_MASK)
return -EINVAL;
dev_dbg(drv->dev, "up threshold = %u, down threshold = %u\n",
desc->up_threshold, desc->down_threshold);
return 0;
}
static int cpr_find_initial_corner(struct cpr_drv *drv)
{
unsigned long rate;
const struct corner *end;
struct corner *iter;
unsigned int i = 0;
if (!drv->cpu_clk) {
dev_err(drv->dev, "cannot get rate from NULL clk\n");
return -EINVAL;
}
end = &drv->corners[drv->num_corners - 1];
rate = clk_get_rate(drv->cpu_clk);
/*
* Some bootloaders set a CPU clock frequency that is not defined
* in the OPP table. When running at an unlisted frequency,
* cpufreq_online() will change to the OPP which has the lowest
* frequency, at or above the unlisted frequency.
* Since cpufreq_online() always "rounds up" in the case of an
* unlisted frequency, this function always "rounds down" in case
* of an unlisted frequency. That way, when cpufreq_online()
* triggers the first ever call to cpr_set_performance_state(),
* it will correctly determine the direction as UP.
*/
for (iter = drv->corners; iter <= end; iter++) {
if (iter->freq > rate)
break;
i++;
if (iter->freq == rate) {
drv->corner = iter;
break;
}
if (iter->freq < rate)
drv->corner = iter;
}
if (!drv->corner) {
dev_err(drv->dev, "boot up corner not found\n");
return -EINVAL;
}
dev_dbg(drv->dev, "boot up perf state: %u\n", i);
return 0;
}
static const struct cpr_desc qcs404_cpr_desc = {
.num_fuse_corners = 3,
.min_diff_quot = CPR_FUSE_MIN_QUOT_DIFF,
.step_quot = (int []){ 25, 25, 25, },
.timer_delay_us = 5000,
.timer_cons_up = 0,
.timer_cons_down = 2,
.up_threshold = 1,
.down_threshold = 3,
.idle_clocks = 15,
.gcnt_us = 1,
.vdd_apc_step_up_limit = 1,
.vdd_apc_step_down_limit = 1,
.cpr_fuses = {
.init_voltage_step = 8000,
.init_voltage_width = 6,
.fuse_corner_data = (struct fuse_corner_data[]){
/* fuse corner 0 */
{
.ref_uV = 1224000,
.max_uV = 1224000,
.min_uV = 1048000,
.max_volt_scale = 0,
.max_quot_scale = 0,
.quot_offset = 0,
.quot_scale = 1,
.quot_adjust = 0,
.quot_offset_scale = 5,
.quot_offset_adjust = 0,
},
/* fuse corner 1 */
{
.ref_uV = 1288000,
.max_uV = 1288000,
.min_uV = 1048000,
.max_volt_scale = 2000,
.max_quot_scale = 1400,
.quot_offset = 0,
.quot_scale = 1,
.quot_adjust = -20,
.quot_offset_scale = 5,
.quot_offset_adjust = 0,
},
/* fuse corner 2 */
{
.ref_uV = 1352000,
.max_uV = 1384000,
.min_uV = 1088000,
.max_volt_scale = 2000,
.max_quot_scale = 1400,
.quot_offset = 0,
.quot_scale = 1,
.quot_adjust = 0,
.quot_offset_scale = 5,
.quot_offset_adjust = 0,
},
},
},
};
static const struct acc_desc qcs404_acc_desc = {
.settings = (struct reg_sequence[]){
{ 0xb120, 0x1041040 },
{ 0xb124, 0x41 },
{ 0xb120, 0x0 },
{ 0xb124, 0x0 },
{ 0xb120, 0x0 },
{ 0xb124, 0x0 },
},
.config = (struct reg_sequence[]){
{ 0xb138, 0xff },
{ 0xb130, 0x5555 },
},
.num_regs_per_fuse = 2,
};
static const struct cpr_acc_desc qcs404_cpr_acc_desc = {
.cpr_desc = &qcs404_cpr_desc,
.acc_desc = &qcs404_acc_desc,
};
static unsigned int cpr_get_performance_state(struct generic_pm_domain *genpd,
struct dev_pm_opp *opp)
{
return dev_pm_opp_get_level(opp);
}
static int cpr_power_off(struct generic_pm_domain *domain)
{
struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
return cpr_disable(drv);
}
static int cpr_power_on(struct generic_pm_domain *domain)
{
struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
return cpr_enable(drv);
}
static int cpr_pd_attach_dev(struct generic_pm_domain *domain,
struct device *dev)
{
struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
const struct acc_desc *acc_desc = drv->acc_desc;
int ret = 0;
mutex_lock(&drv->lock);
dev_dbg(drv->dev, "attach callback for: %s\n", dev_name(dev));
/*
* This driver only supports scaling voltage for a CPU cluster
* where all CPUs in the cluster share a single regulator.
* Therefore, save the struct device pointer only for the first
* CPU device that gets attached. There is no need to do any
* additional initialization when further CPUs get attached.
*/
if (drv->attached_cpu_dev)
goto unlock;
/*
* cpr_scale_voltage() requires the direction (if we are changing
* to a higher or lower OPP). The first time
* cpr_set_performance_state() is called, there is no previous
* performance state defined. Therefore, we call
* cpr_find_initial_corner() that gets the CPU clock frequency
* set by the bootloader, so that we can determine the direction
* the first time cpr_set_performance_state() is called.
*/
drv->cpu_clk = devm_clk_get(dev, NULL);
if (IS_ERR(drv->cpu_clk)) {
ret = PTR_ERR(drv->cpu_clk);
if (ret != -EPROBE_DEFER)
dev_err(drv->dev, "could not get cpu clk: %d\n", ret);
goto unlock;
}
drv->attached_cpu_dev = dev;
dev_dbg(drv->dev, "using cpu clk from: %s\n",
dev_name(drv->attached_cpu_dev));
/*
* Everything related to (virtual) corners has to be initialized
* here, when attaching to the power domain, since we need to know
* the maximum frequency for each fuse corner, and this is only
* available after the cpufreq driver has attached to us.
* The reason for this is that we need to know the highest
* frequency associated with each fuse corner.
*/
ret = dev_pm_opp_get_opp_count(&drv->pd.dev);
if (ret < 0) {
dev_err(drv->dev, "could not get OPP count\n");
goto unlock;
}
drv->num_corners = ret;
if (drv->num_corners < 2) {
dev_err(drv->dev, "need at least 2 OPPs to use CPR\n");
ret = -EINVAL;
goto unlock;
}
drv->corners = devm_kcalloc(drv->dev, drv->num_corners,
sizeof(*drv->corners),
GFP_KERNEL);
if (!drv->corners) {
ret = -ENOMEM;
goto unlock;
}
ret = cpr_corner_init(drv);
if (ret)
goto unlock;
cpr_set_loop_allowed(drv);
ret = cpr_init_parameters(drv);
if (ret)
goto unlock;
/* Configure CPR HW but keep it disabled */
ret = cpr_config(drv);
if (ret)
goto unlock;
ret = cpr_find_initial_corner(drv);
if (ret)
goto unlock;
if (acc_desc->config)
regmap_multi_reg_write(drv->tcsr, acc_desc->config,
acc_desc->num_regs_per_fuse);
/* Enable ACC if required */
if (acc_desc->enable_mask)
regmap_update_bits(drv->tcsr, acc_desc->enable_reg,
acc_desc->enable_mask,
acc_desc->enable_mask);
dev_info(drv->dev, "driver initialized with %u OPPs\n",
drv->num_corners);
unlock:
mutex_unlock(&drv->lock);
return ret;
}
static int cpr_debug_info_show(struct seq_file *s, void *unused)
{
u32 gcnt, ro_sel, ctl, irq_status, reg, error_steps;
u32 step_dn, step_up, error, error_lt0, busy;
struct cpr_drv *drv = s->private;
struct fuse_corner *fuse_corner;
struct corner *corner;
corner = drv->corner;
fuse_corner = corner->fuse_corner;
seq_printf(s, "corner, current_volt = %d uV\n",
corner->last_uV);
ro_sel = fuse_corner->ring_osc_idx;
gcnt = cpr_read(drv, REG_RBCPR_GCNT_TARGET(ro_sel));
seq_printf(s, "rbcpr_gcnt_target (%u) = %#02X\n", ro_sel, gcnt);
ctl = cpr_read(drv, REG_RBCPR_CTL);
seq_printf(s, "rbcpr_ctl = %#02X\n", ctl);
irq_status = cpr_read(drv, REG_RBIF_IRQ_STATUS);
seq_printf(s, "rbcpr_irq_status = %#02X\n", irq_status);
reg = cpr_read(drv, REG_RBCPR_RESULT_0);
seq_printf(s, "rbcpr_result_0 = %#02X\n", reg);
step_dn = reg & 0x01;
step_up = (reg >> RBCPR_RESULT0_STEP_UP_SHIFT) & 0x01;
seq_printf(s, " [step_dn = %u", step_dn);
seq_printf(s, ", step_up = %u", step_up);
error_steps = (reg >> RBCPR_RESULT0_ERROR_STEPS_SHIFT)
& RBCPR_RESULT0_ERROR_STEPS_MASK;
seq_printf(s, ", error_steps = %u", error_steps);
error = (reg >> RBCPR_RESULT0_ERROR_SHIFT) & RBCPR_RESULT0_ERROR_MASK;
seq_printf(s, ", error = %u", error);
error_lt0 = (reg >> RBCPR_RESULT0_ERROR_LT0_SHIFT) & 0x01;
seq_printf(s, ", error_lt_0 = %u", error_lt0);
busy = (reg >> RBCPR_RESULT0_BUSY_SHIFT) & 0x01;
seq_printf(s, ", busy = %u]\n", busy);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(cpr_debug_info);
static void cpr_debugfs_init(struct cpr_drv *drv)
{
drv->debugfs = debugfs_create_dir("qcom_cpr", NULL);
debugfs_create_file("debug_info", 0444, drv->debugfs,
drv, &cpr_debug_info_fops);
}
static int cpr_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct cpr_drv *drv;
int irq, ret;
const struct cpr_acc_desc *data;
struct device_node *np;
u32 cpr_rev = FUSE_REVISION_UNKNOWN;
data = of_device_get_match_data(dev);
if (!data || !data->cpr_desc || !data->acc_desc)
return -EINVAL;
drv = devm_kzalloc(dev, sizeof(*drv), GFP_KERNEL);
if (!drv)
return -ENOMEM;
drv->dev = dev;
drv->desc = data->cpr_desc;
drv->acc_desc = data->acc_desc;
drv->fuse_corners = devm_kcalloc(dev, drv->desc->num_fuse_corners,
sizeof(*drv->fuse_corners),
GFP_KERNEL);
if (!drv->fuse_corners)
return -ENOMEM;
np = of_parse_phandle(dev->of_node, "acc-syscon", 0);
if (!np)
return -ENODEV;
drv->tcsr = syscon_node_to_regmap(np);
of_node_put(np);
if (IS_ERR(drv->tcsr))
return PTR_ERR(drv->tcsr);
drv->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(drv->base))
return PTR_ERR(drv->base);
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return -EINVAL;
drv->vdd_apc = devm_regulator_get(dev, "vdd-apc");
if (IS_ERR(drv->vdd_apc))
return PTR_ERR(drv->vdd_apc);
/*
* Initialize fuse corners, since it simply depends
* on data in efuses.
* Everything related to (virtual) corners has to be
* initialized after attaching to the power domain,
* since it depends on the CPU's OPP table.
*/
ret = nvmem_cell_read_variable_le_u32(dev, "cpr_fuse_revision", &cpr_rev);
if (ret)
return ret;
drv->cpr_fuses = cpr_get_fuses(drv);
if (IS_ERR(drv->cpr_fuses))
return PTR_ERR(drv->cpr_fuses);
ret = cpr_populate_ring_osc_idx(drv);
if (ret)
return ret;
ret = cpr_fuse_corner_init(drv);
if (ret)
return ret;
mutex_init(&drv->lock);
ret = devm_request_threaded_irq(dev, irq, NULL,
cpr_irq_handler,
IRQF_ONESHOT | IRQF_TRIGGER_RISING,
"cpr", drv);
if (ret)
return ret;
drv->pd.name = devm_kstrdup_const(dev, dev->of_node->full_name,
GFP_KERNEL);
if (!drv->pd.name)
return -EINVAL;
drv->pd.power_off = cpr_power_off;
drv->pd.power_on = cpr_power_on;
drv->pd.set_performance_state = cpr_set_performance_state;
drv->pd.opp_to_performance_state = cpr_get_performance_state;
drv->pd.attach_dev = cpr_pd_attach_dev;
ret = pm_genpd_init(&drv->pd, NULL, true);
if (ret)
return ret;
ret = of_genpd_add_provider_simple(dev->of_node, &drv->pd);
if (ret)
goto err_remove_genpd;
platform_set_drvdata(pdev, drv);
cpr_debugfs_init(drv);
return 0;
err_remove_genpd:
pm_genpd_remove(&drv->pd);
return ret;
}
static int cpr_remove(struct platform_device *pdev)
{
struct cpr_drv *drv = platform_get_drvdata(pdev);
if (cpr_is_allowed(drv)) {
cpr_ctl_disable(drv);
cpr_irq_set(drv, 0);
}
of_genpd_del_provider(pdev->dev.of_node);
pm_genpd_remove(&drv->pd);
debugfs_remove_recursive(drv->debugfs);
return 0;
}
static const struct of_device_id cpr_match_table[] = {
{ .compatible = "qcom,qcs404-cpr", .data = &qcs404_cpr_acc_desc },
{ }
};
MODULE_DEVICE_TABLE(of, cpr_match_table);
static struct platform_driver cpr_driver = {
.probe = cpr_probe,
.remove = cpr_remove,
.driver = {
.name = "qcom-cpr",
.of_match_table = cpr_match_table,
},
};
module_platform_driver(cpr_driver);
MODULE_DESCRIPTION("Core Power Reduction (CPR) driver");
MODULE_LICENSE("GPL v2");