1225 lines
32 KiB
C
1225 lines
32 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-only
|
||
|
/*
|
||
|
* Copyright (c) 2023 MediaTek Inc.
|
||
|
* Author: Balsam CHIHI <bchihi@baylibre.com>
|
||
|
*/
|
||
|
|
||
|
#include <linux/clk.h>
|
||
|
#include <linux/clk-provider.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/debugfs.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/interrupt.h>
|
||
|
#include <linux/iopoll.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/nvmem-consumer.h>
|
||
|
#include <linux/of_device.h>
|
||
|
#include <linux/platform_device.h>
|
||
|
#include <linux/reset.h>
|
||
|
#include <linux/thermal.h>
|
||
|
#include <dt-bindings/thermal/mediatek,lvts-thermal.h>
|
||
|
|
||
|
#define LVTS_MONCTL0(__base) (__base + 0x0000)
|
||
|
#define LVTS_MONCTL1(__base) (__base + 0x0004)
|
||
|
#define LVTS_MONCTL2(__base) (__base + 0x0008)
|
||
|
#define LVTS_MONINT(__base) (__base + 0x000C)
|
||
|
#define LVTS_MONINTSTS(__base) (__base + 0x0010)
|
||
|
#define LVTS_MONIDET0(__base) (__base + 0x0014)
|
||
|
#define LVTS_MONIDET1(__base) (__base + 0x0018)
|
||
|
#define LVTS_MONIDET2(__base) (__base + 0x001C)
|
||
|
#define LVTS_MONIDET3(__base) (__base + 0x0020)
|
||
|
#define LVTS_H2NTHRE(__base) (__base + 0x0024)
|
||
|
#define LVTS_HTHRE(__base) (__base + 0x0028)
|
||
|
#define LVTS_OFFSETH(__base) (__base + 0x0030)
|
||
|
#define LVTS_OFFSETL(__base) (__base + 0x0034)
|
||
|
#define LVTS_MSRCTL0(__base) (__base + 0x0038)
|
||
|
#define LVTS_MSRCTL1(__base) (__base + 0x003C)
|
||
|
#define LVTS_TSSEL(__base) (__base + 0x0040)
|
||
|
#define LVTS_CALSCALE(__base) (__base + 0x0048)
|
||
|
#define LVTS_ID(__base) (__base + 0x004C)
|
||
|
#define LVTS_CONFIG(__base) (__base + 0x0050)
|
||
|
#define LVTS_EDATA00(__base) (__base + 0x0054)
|
||
|
#define LVTS_EDATA01(__base) (__base + 0x0058)
|
||
|
#define LVTS_EDATA02(__base) (__base + 0x005C)
|
||
|
#define LVTS_EDATA03(__base) (__base + 0x0060)
|
||
|
#define LVTS_MSR0(__base) (__base + 0x0090)
|
||
|
#define LVTS_MSR1(__base) (__base + 0x0094)
|
||
|
#define LVTS_MSR2(__base) (__base + 0x0098)
|
||
|
#define LVTS_MSR3(__base) (__base + 0x009C)
|
||
|
#define LVTS_IMMD0(__base) (__base + 0x00A0)
|
||
|
#define LVTS_IMMD1(__base) (__base + 0x00A4)
|
||
|
#define LVTS_IMMD2(__base) (__base + 0x00A8)
|
||
|
#define LVTS_IMMD3(__base) (__base + 0x00AC)
|
||
|
#define LVTS_PROTCTL(__base) (__base + 0x00C0)
|
||
|
#define LVTS_PROTTA(__base) (__base + 0x00C4)
|
||
|
#define LVTS_PROTTB(__base) (__base + 0x00C8)
|
||
|
#define LVTS_PROTTC(__base) (__base + 0x00CC)
|
||
|
#define LVTS_CLKEN(__base) (__base + 0x00E4)
|
||
|
|
||
|
#define LVTS_PERIOD_UNIT ((118 * 1000) / (256 * 38))
|
||
|
#define LVTS_GROUP_INTERVAL 1
|
||
|
#define LVTS_FILTER_INTERVAL 1
|
||
|
#define LVTS_SENSOR_INTERVAL 1
|
||
|
#define LVTS_HW_FILTER 0x2
|
||
|
#define LVTS_TSSEL_CONF 0x13121110
|
||
|
#define LVTS_CALSCALE_CONF 0x300
|
||
|
#define LVTS_MONINT_CONF 0x9FBF7BDE
|
||
|
|
||
|
#define LVTS_INT_SENSOR0 0x0009001F
|
||
|
#define LVTS_INT_SENSOR1 0x001203E0
|
||
|
#define LVTS_INT_SENSOR2 0x00247C00
|
||
|
#define LVTS_INT_SENSOR3 0x1FC00000
|
||
|
|
||
|
#define LVTS_SENSOR_MAX 4
|
||
|
#define LVTS_GOLDEN_TEMP_MAX 62
|
||
|
#define LVTS_GOLDEN_TEMP_DEFAULT 50
|
||
|
#define LVTS_COEFF_A -250460
|
||
|
#define LVTS_COEFF_B 250460
|
||
|
|
||
|
#define LVTS_MSR_IMMEDIATE_MODE 0
|
||
|
#define LVTS_MSR_FILTERED_MODE 1
|
||
|
|
||
|
#define LVTS_HW_SHUTDOWN_MT8195 105000
|
||
|
|
||
|
static int golden_temp = LVTS_GOLDEN_TEMP_DEFAULT;
|
||
|
static int coeff_b = LVTS_COEFF_B;
|
||
|
|
||
|
struct lvts_sensor_data {
|
||
|
int dt_id;
|
||
|
};
|
||
|
|
||
|
struct lvts_ctrl_data {
|
||
|
struct lvts_sensor_data lvts_sensor[LVTS_SENSOR_MAX];
|
||
|
int cal_offset[LVTS_SENSOR_MAX];
|
||
|
int hw_tshut_temp;
|
||
|
int num_lvts_sensor;
|
||
|
int offset;
|
||
|
int mode;
|
||
|
};
|
||
|
|
||
|
struct lvts_data {
|
||
|
const struct lvts_ctrl_data *lvts_ctrl;
|
||
|
int num_lvts_ctrl;
|
||
|
};
|
||
|
|
||
|
struct lvts_sensor {
|
||
|
struct thermal_zone_device *tz;
|
||
|
void __iomem *msr;
|
||
|
void __iomem *base;
|
||
|
int id;
|
||
|
int dt_id;
|
||
|
};
|
||
|
|
||
|
struct lvts_ctrl {
|
||
|
struct lvts_sensor sensors[LVTS_SENSOR_MAX];
|
||
|
u32 calibration[LVTS_SENSOR_MAX];
|
||
|
u32 hw_tshut_raw_temp;
|
||
|
int num_lvts_sensor;
|
||
|
int mode;
|
||
|
void __iomem *base;
|
||
|
};
|
||
|
|
||
|
struct lvts_domain {
|
||
|
struct lvts_ctrl *lvts_ctrl;
|
||
|
struct reset_control *reset;
|
||
|
struct clk *clk;
|
||
|
int num_lvts_ctrl;
|
||
|
void __iomem *base;
|
||
|
size_t calib_len;
|
||
|
u8 *calib;
|
||
|
#ifdef CONFIG_DEBUG_FS
|
||
|
struct dentry *dom_dentry;
|
||
|
#endif
|
||
|
};
|
||
|
|
||
|
#ifdef CONFIG_MTK_LVTS_THERMAL_DEBUGFS
|
||
|
|
||
|
#define LVTS_DEBUG_FS_REGS(__reg) \
|
||
|
{ \
|
||
|
.name = __stringify(__reg), \
|
||
|
.offset = __reg(0), \
|
||
|
}
|
||
|
|
||
|
static const struct debugfs_reg32 lvts_regs[] = {
|
||
|
LVTS_DEBUG_FS_REGS(LVTS_MONCTL0),
|
||
|
LVTS_DEBUG_FS_REGS(LVTS_MONCTL1),
|
||
|
LVTS_DEBUG_FS_REGS(LVTS_MONCTL2),
|
||
|
LVTS_DEBUG_FS_REGS(LVTS_MONINT),
|
||
|
LVTS_DEBUG_FS_REGS(LVTS_MONINTSTS),
|
||
|
LVTS_DEBUG_FS_REGS(LVTS_MONIDET0),
|
||
|
LVTS_DEBUG_FS_REGS(LVTS_MONIDET1),
|
||
|
LVTS_DEBUG_FS_REGS(LVTS_MONIDET2),
|
||
|
LVTS_DEBUG_FS_REGS(LVTS_MONIDET3),
|
||
|
LVTS_DEBUG_FS_REGS(LVTS_H2NTHRE),
|
||
|
LVTS_DEBUG_FS_REGS(LVTS_HTHRE),
|
||
|
LVTS_DEBUG_FS_REGS(LVTS_OFFSETH),
|
||
|
LVTS_DEBUG_FS_REGS(LVTS_OFFSETL),
|
||
|
LVTS_DEBUG_FS_REGS(LVTS_MSRCTL0),
|
||
|
LVTS_DEBUG_FS_REGS(LVTS_MSRCTL1),
|
||
|
LVTS_DEBUG_FS_REGS(LVTS_TSSEL),
|
||
|
LVTS_DEBUG_FS_REGS(LVTS_CALSCALE),
|
||
|
LVTS_DEBUG_FS_REGS(LVTS_ID),
|
||
|
LVTS_DEBUG_FS_REGS(LVTS_CONFIG),
|
||
|
LVTS_DEBUG_FS_REGS(LVTS_EDATA00),
|
||
|
LVTS_DEBUG_FS_REGS(LVTS_EDATA01),
|
||
|
LVTS_DEBUG_FS_REGS(LVTS_EDATA02),
|
||
|
LVTS_DEBUG_FS_REGS(LVTS_EDATA03),
|
||
|
LVTS_DEBUG_FS_REGS(LVTS_MSR0),
|
||
|
LVTS_DEBUG_FS_REGS(LVTS_MSR1),
|
||
|
LVTS_DEBUG_FS_REGS(LVTS_MSR2),
|
||
|
LVTS_DEBUG_FS_REGS(LVTS_MSR3),
|
||
|
LVTS_DEBUG_FS_REGS(LVTS_IMMD0),
|
||
|
LVTS_DEBUG_FS_REGS(LVTS_IMMD1),
|
||
|
LVTS_DEBUG_FS_REGS(LVTS_IMMD2),
|
||
|
LVTS_DEBUG_FS_REGS(LVTS_IMMD3),
|
||
|
LVTS_DEBUG_FS_REGS(LVTS_PROTCTL),
|
||
|
LVTS_DEBUG_FS_REGS(LVTS_PROTTA),
|
||
|
LVTS_DEBUG_FS_REGS(LVTS_PROTTB),
|
||
|
LVTS_DEBUG_FS_REGS(LVTS_PROTTC),
|
||
|
LVTS_DEBUG_FS_REGS(LVTS_CLKEN),
|
||
|
};
|
||
|
|
||
|
static int lvts_debugfs_init(struct device *dev, struct lvts_domain *lvts_td)
|
||
|
{
|
||
|
struct debugfs_regset32 *regset;
|
||
|
struct lvts_ctrl *lvts_ctrl;
|
||
|
struct dentry *dentry;
|
||
|
char name[64];
|
||
|
int i;
|
||
|
|
||
|
lvts_td->dom_dentry = debugfs_create_dir(dev_name(dev), NULL);
|
||
|
if (!lvts_td->dom_dentry)
|
||
|
return 0;
|
||
|
|
||
|
for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
|
||
|
|
||
|
lvts_ctrl = &lvts_td->lvts_ctrl[i];
|
||
|
|
||
|
sprintf(name, "controller%d", i);
|
||
|
dentry = debugfs_create_dir(name, lvts_td->dom_dentry);
|
||
|
if (!dentry)
|
||
|
continue;
|
||
|
|
||
|
regset = devm_kzalloc(dev, sizeof(*regset), GFP_KERNEL);
|
||
|
if (!regset)
|
||
|
continue;
|
||
|
|
||
|
regset->base = lvts_ctrl->base;
|
||
|
regset->regs = lvts_regs;
|
||
|
regset->nregs = ARRAY_SIZE(lvts_regs);
|
||
|
|
||
|
debugfs_create_regset32("registers", 0400, dentry, regset);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void lvts_debugfs_exit(struct lvts_domain *lvts_td)
|
||
|
{
|
||
|
debugfs_remove_recursive(lvts_td->dom_dentry);
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
|
||
|
static inline int lvts_debugfs_init(struct device *dev,
|
||
|
struct lvts_domain *lvts_td)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void lvts_debugfs_exit(struct lvts_domain *lvts_td) { }
|
||
|
|
||
|
#endif
|
||
|
|
||
|
static int lvts_raw_to_temp(u32 raw_temp)
|
||
|
{
|
||
|
int temperature;
|
||
|
|
||
|
temperature = ((s64)(raw_temp & 0xFFFF) * LVTS_COEFF_A) >> 14;
|
||
|
temperature += coeff_b;
|
||
|
|
||
|
return temperature;
|
||
|
}
|
||
|
|
||
|
static u32 lvts_temp_to_raw(int temperature)
|
||
|
{
|
||
|
u32 raw_temp = ((s64)(coeff_b - temperature)) << 14;
|
||
|
|
||
|
raw_temp = div_s64(raw_temp, -LVTS_COEFF_A);
|
||
|
|
||
|
return raw_temp;
|
||
|
}
|
||
|
|
||
|
static int lvts_get_temp(struct thermal_zone_device *tz, int *temp)
|
||
|
{
|
||
|
struct lvts_sensor *lvts_sensor = tz->devdata;
|
||
|
void __iomem *msr = lvts_sensor->msr;
|
||
|
u32 value;
|
||
|
|
||
|
/*
|
||
|
* Measurement registers:
|
||
|
*
|
||
|
* LVTS_MSR[0-3] / LVTS_IMMD[0-3]
|
||
|
*
|
||
|
* Bits:
|
||
|
*
|
||
|
* 32-17: Unused
|
||
|
* 16 : Valid temperature
|
||
|
* 15-0 : Raw temperature
|
||
|
*/
|
||
|
value = readl(msr);
|
||
|
|
||
|
/*
|
||
|
* As the thermal zone temperature will read before the
|
||
|
* hardware sensor is fully initialized, we have to check the
|
||
|
* validity of the temperature returned when reading the
|
||
|
* measurement register. The thermal controller will set the
|
||
|
* valid bit temperature only when it is totally initialized.
|
||
|
*
|
||
|
* Otherwise, we may end up with garbage values out of the
|
||
|
* functionning temperature and directly jump to a system
|
||
|
* shutdown.
|
||
|
*/
|
||
|
if (!(value & BIT(16)))
|
||
|
return -EAGAIN;
|
||
|
|
||
|
*temp = lvts_raw_to_temp(value & 0xFFFF);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int lvts_set_trips(struct thermal_zone_device *tz, int low, int high)
|
||
|
{
|
||
|
struct lvts_sensor *lvts_sensor = tz->devdata;
|
||
|
void __iomem *base = lvts_sensor->base;
|
||
|
u32 raw_low = lvts_temp_to_raw(low);
|
||
|
u32 raw_high = lvts_temp_to_raw(high);
|
||
|
|
||
|
/*
|
||
|
* Hot to normal temperature threshold
|
||
|
*
|
||
|
* LVTS_H2NTHRE
|
||
|
*
|
||
|
* Bits:
|
||
|
*
|
||
|
* 14-0 : Raw temperature for threshold
|
||
|
*/
|
||
|
if (low != -INT_MAX) {
|
||
|
dev_dbg(&tz->device, "Setting low limit temperature interrupt: %d\n", low);
|
||
|
writel(raw_low, LVTS_H2NTHRE(base));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Hot temperature threshold
|
||
|
*
|
||
|
* LVTS_HTHRE
|
||
|
*
|
||
|
* Bits:
|
||
|
*
|
||
|
* 14-0 : Raw temperature for threshold
|
||
|
*/
|
||
|
dev_dbg(&tz->device, "Setting high limit temperature interrupt: %d\n", high);
|
||
|
writel(raw_high, LVTS_HTHRE(base));
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static irqreturn_t lvts_ctrl_irq_handler(struct lvts_ctrl *lvts_ctrl)
|
||
|
{
|
||
|
irqreturn_t iret = IRQ_NONE;
|
||
|
u32 value;
|
||
|
u32 masks[] = {
|
||
|
LVTS_INT_SENSOR0,
|
||
|
LVTS_INT_SENSOR1,
|
||
|
LVTS_INT_SENSOR2,
|
||
|
LVTS_INT_SENSOR3
|
||
|
};
|
||
|
int i;
|
||
|
|
||
|
/*
|
||
|
* Interrupt monitoring status
|
||
|
*
|
||
|
* LVTS_MONINTST
|
||
|
*
|
||
|
* Bits:
|
||
|
*
|
||
|
* 31 : Interrupt for stage 3
|
||
|
* 30 : Interrupt for stage 2
|
||
|
* 29 : Interrupt for state 1
|
||
|
* 28 : Interrupt using filter on sensor 3
|
||
|
*
|
||
|
* 27 : Interrupt using immediate on sensor 3
|
||
|
* 26 : Interrupt normal to hot on sensor 3
|
||
|
* 25 : Interrupt high offset on sensor 3
|
||
|
* 24 : Interrupt low offset on sensor 3
|
||
|
*
|
||
|
* 23 : Interrupt hot threshold on sensor 3
|
||
|
* 22 : Interrupt cold threshold on sensor 3
|
||
|
* 21 : Interrupt using filter on sensor 2
|
||
|
* 20 : Interrupt using filter on sensor 1
|
||
|
*
|
||
|
* 19 : Interrupt using filter on sensor 0
|
||
|
* 18 : Interrupt using immediate on sensor 2
|
||
|
* 17 : Interrupt using immediate on sensor 1
|
||
|
* 16 : Interrupt using immediate on sensor 0
|
||
|
*
|
||
|
* 15 : Interrupt device access timeout interrupt
|
||
|
* 14 : Interrupt normal to hot on sensor 2
|
||
|
* 13 : Interrupt high offset interrupt on sensor 2
|
||
|
* 12 : Interrupt low offset interrupt on sensor 2
|
||
|
*
|
||
|
* 11 : Interrupt hot threshold on sensor 2
|
||
|
* 10 : Interrupt cold threshold on sensor 2
|
||
|
* 9 : Interrupt normal to hot on sensor 1
|
||
|
* 8 : Interrupt high offset interrupt on sensor 1
|
||
|
*
|
||
|
* 7 : Interrupt low offset interrupt on sensor 1
|
||
|
* 6 : Interrupt hot threshold on sensor 1
|
||
|
* 5 : Interrupt cold threshold on sensor 1
|
||
|
* 4 : Interrupt normal to hot on sensor 0
|
||
|
*
|
||
|
* 3 : Interrupt high offset interrupt on sensor 0
|
||
|
* 2 : Interrupt low offset interrupt on sensor 0
|
||
|
* 1 : Interrupt hot threshold on sensor 0
|
||
|
* 0 : Interrupt cold threshold on sensor 0
|
||
|
*
|
||
|
* We are interested in the sensor(s) responsible of the
|
||
|
* interrupt event. We update the thermal framework with the
|
||
|
* thermal zone associated with the sensor. The framework will
|
||
|
* take care of the rest whatever the kind of interrupt, we
|
||
|
* are only interested in which sensor raised the interrupt.
|
||
|
*
|
||
|
* sensor 3 interrupt: 0001 1111 1100 0000 0000 0000 0000 0000
|
||
|
* => 0x1FC00000
|
||
|
* sensor 2 interrupt: 0000 0000 0010 0100 0111 1100 0000 0000
|
||
|
* => 0x00247C00
|
||
|
* sensor 1 interrupt: 0000 0000 0001 0010 0000 0011 1110 0000
|
||
|
* => 0X001203E0
|
||
|
* sensor 0 interrupt: 0000 0000 0000 1001 0000 0000 0001 1111
|
||
|
* => 0x0009001F
|
||
|
*/
|
||
|
value = readl(LVTS_MONINTSTS(lvts_ctrl->base));
|
||
|
|
||
|
/*
|
||
|
* Let's figure out which sensors raised the interrupt
|
||
|
*
|
||
|
* NOTE: the masks array must be ordered with the index
|
||
|
* corresponding to the sensor id eg. index=0, mask for
|
||
|
* sensor0.
|
||
|
*/
|
||
|
for (i = 0; i < ARRAY_SIZE(masks); i++) {
|
||
|
|
||
|
if (!(value & masks[i]))
|
||
|
continue;
|
||
|
|
||
|
thermal_zone_device_update(lvts_ctrl->sensors[i].tz,
|
||
|
THERMAL_TRIP_VIOLATED);
|
||
|
iret = IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Write back to clear the interrupt status (W1C)
|
||
|
*/
|
||
|
writel(value, LVTS_MONINTSTS(lvts_ctrl->base));
|
||
|
|
||
|
return iret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Temperature interrupt handler. Even if the driver supports more
|
||
|
* interrupt modes, we use the interrupt when the temperature crosses
|
||
|
* the hot threshold the way up and the way down (modulo the
|
||
|
* hysteresis).
|
||
|
*
|
||
|
* Each thermal domain has a couple of interrupts, one for hardware
|
||
|
* reset and another one for all the thermal events happening on the
|
||
|
* different sensors.
|
||
|
*
|
||
|
* The interrupt is configured for thermal events when crossing the
|
||
|
* hot temperature limit. At each interrupt, we check in every
|
||
|
* controller if there is an interrupt pending.
|
||
|
*/
|
||
|
static irqreturn_t lvts_irq_handler(int irq, void *data)
|
||
|
{
|
||
|
struct lvts_domain *lvts_td = data;
|
||
|
irqreturn_t aux, iret = IRQ_NONE;
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
|
||
|
|
||
|
aux = lvts_ctrl_irq_handler(lvts_td->lvts_ctrl);
|
||
|
if (aux != IRQ_HANDLED)
|
||
|
continue;
|
||
|
|
||
|
iret = IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
return iret;
|
||
|
}
|
||
|
|
||
|
static struct thermal_zone_device_ops lvts_ops = {
|
||
|
.get_temp = lvts_get_temp,
|
||
|
.set_trips = lvts_set_trips,
|
||
|
};
|
||
|
|
||
|
static int lvts_sensor_init(struct device *dev, struct lvts_ctrl *lvts_ctrl,
|
||
|
const struct lvts_ctrl_data *lvts_ctrl_data)
|
||
|
{
|
||
|
struct lvts_sensor *lvts_sensor = lvts_ctrl->sensors;
|
||
|
void __iomem *msr_regs[] = {
|
||
|
LVTS_MSR0(lvts_ctrl->base),
|
||
|
LVTS_MSR1(lvts_ctrl->base),
|
||
|
LVTS_MSR2(lvts_ctrl->base),
|
||
|
LVTS_MSR3(lvts_ctrl->base)
|
||
|
};
|
||
|
|
||
|
void __iomem *imm_regs[] = {
|
||
|
LVTS_IMMD0(lvts_ctrl->base),
|
||
|
LVTS_IMMD1(lvts_ctrl->base),
|
||
|
LVTS_IMMD2(lvts_ctrl->base),
|
||
|
LVTS_IMMD3(lvts_ctrl->base)
|
||
|
};
|
||
|
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < lvts_ctrl_data->num_lvts_sensor; i++) {
|
||
|
|
||
|
int dt_id = lvts_ctrl_data->lvts_sensor[i].dt_id;
|
||
|
|
||
|
/*
|
||
|
* At this point, we don't know which id matches which
|
||
|
* sensor. Let's set arbitrally the id from the index.
|
||
|
*/
|
||
|
lvts_sensor[i].id = i;
|
||
|
|
||
|
/*
|
||
|
* The thermal zone registration will set the trip
|
||
|
* point interrupt in the thermal controller
|
||
|
* register. But this one will be reset in the
|
||
|
* initialization after. So we need to post pone the
|
||
|
* thermal zone creation after the controller is
|
||
|
* setup. For this reason, we store the device tree
|
||
|
* node id from the data in the sensor structure
|
||
|
*/
|
||
|
lvts_sensor[i].dt_id = dt_id;
|
||
|
|
||
|
/*
|
||
|
* We assign the base address of the thermal
|
||
|
* controller as a back pointer. So it will be
|
||
|
* accessible from the different thermal framework ops
|
||
|
* as we pass the lvts_sensor pointer as thermal zone
|
||
|
* private data.
|
||
|
*/
|
||
|
lvts_sensor[i].base = lvts_ctrl->base;
|
||
|
|
||
|
/*
|
||
|
* Each sensor has its own register address to read from.
|
||
|
*/
|
||
|
lvts_sensor[i].msr = lvts_ctrl_data->mode == LVTS_MSR_IMMEDIATE_MODE ?
|
||
|
imm_regs[i] : msr_regs[i];
|
||
|
};
|
||
|
|
||
|
lvts_ctrl->num_lvts_sensor = lvts_ctrl_data->num_lvts_sensor;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The efuse blob values follows the sensor enumeration per thermal
|
||
|
* controller. The decoding of the stream is as follow:
|
||
|
*
|
||
|
* <--?-> <----big0 ???---> <-sensor0-> <-0->
|
||
|
* ------------------------------------------
|
||
|
* index in the stream: : | 0x0 | 0x1 | 0x2 | 0x3 | 0x4 | 0x5 | 0x6 |
|
||
|
* ------------------------------------------
|
||
|
*
|
||
|
* <--sensor1--><-0-> <----big1 ???---> <-sen
|
||
|
* ------------------------------------------
|
||
|
* | 0x7 | 0x8 | 0x9 | 0xA | 0xB | OxC | OxD |
|
||
|
* ------------------------------------------
|
||
|
*
|
||
|
* sor0-> <-0-> <-sensor1-> <-0-> ..........
|
||
|
* ------------------------------------------
|
||
|
* | 0x7 | 0x8 | 0x9 | 0xA | 0xB | OxC | OxD |
|
||
|
* ------------------------------------------
|
||
|
*
|
||
|
* And so on ...
|
||
|
*
|
||
|
* The data description gives the offset of the calibration data in
|
||
|
* this bytes stream for each sensor.
|
||
|
*
|
||
|
* Each thermal controller can handle up to 4 sensors max, we don't
|
||
|
* care if there are less as the array of calibration is sized to 4
|
||
|
* anyway. The unused sensor slot will be zeroed.
|
||
|
*/
|
||
|
static int lvts_calibration_init(struct device *dev, struct lvts_ctrl *lvts_ctrl,
|
||
|
const struct lvts_ctrl_data *lvts_ctrl_data,
|
||
|
u8 *efuse_calibration)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < lvts_ctrl_data->num_lvts_sensor; i++)
|
||
|
memcpy(&lvts_ctrl->calibration[i],
|
||
|
efuse_calibration + lvts_ctrl_data->cal_offset[i], 2);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The efuse bytes stream can be split into different chunk of
|
||
|
* nvmems. This function reads and concatenate those into a single
|
||
|
* buffer so it can be read sequentially when initializing the
|
||
|
* calibration data.
|
||
|
*/
|
||
|
static int lvts_calibration_read(struct device *dev, struct lvts_domain *lvts_td,
|
||
|
const struct lvts_data *lvts_data)
|
||
|
{
|
||
|
struct device_node *np = dev_of_node(dev);
|
||
|
struct nvmem_cell *cell;
|
||
|
struct property *prop;
|
||
|
const char *cell_name;
|
||
|
|
||
|
of_property_for_each_string(np, "nvmem-cell-names", prop, cell_name) {
|
||
|
size_t len;
|
||
|
u8 *efuse;
|
||
|
|
||
|
cell = of_nvmem_cell_get(np, cell_name);
|
||
|
if (IS_ERR(cell)) {
|
||
|
dev_err(dev, "Failed to get cell '%s'\n", cell_name);
|
||
|
return PTR_ERR(cell);
|
||
|
}
|
||
|
|
||
|
efuse = nvmem_cell_read(cell, &len);
|
||
|
|
||
|
nvmem_cell_put(cell);
|
||
|
|
||
|
if (IS_ERR(efuse)) {
|
||
|
dev_err(dev, "Failed to read cell '%s'\n", cell_name);
|
||
|
return PTR_ERR(efuse);
|
||
|
}
|
||
|
|
||
|
lvts_td->calib = devm_krealloc(dev, lvts_td->calib,
|
||
|
lvts_td->calib_len + len, GFP_KERNEL);
|
||
|
if (!lvts_td->calib)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
memcpy(lvts_td->calib + lvts_td->calib_len, efuse, len);
|
||
|
|
||
|
lvts_td->calib_len += len;
|
||
|
|
||
|
kfree(efuse);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int lvts_golden_temp_init(struct device *dev, u32 *value)
|
||
|
{
|
||
|
u32 gt;
|
||
|
|
||
|
gt = (*value) >> 24;
|
||
|
|
||
|
if (gt && gt < LVTS_GOLDEN_TEMP_MAX)
|
||
|
golden_temp = gt;
|
||
|
|
||
|
coeff_b = golden_temp * 500 + LVTS_COEFF_B;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int lvts_ctrl_init(struct device *dev, struct lvts_domain *lvts_td,
|
||
|
const struct lvts_data *lvts_data)
|
||
|
{
|
||
|
size_t size = sizeof(*lvts_td->lvts_ctrl) * lvts_data->num_lvts_ctrl;
|
||
|
struct lvts_ctrl *lvts_ctrl;
|
||
|
int i, ret;
|
||
|
|
||
|
/*
|
||
|
* Create the calibration bytes stream from efuse data
|
||
|
*/
|
||
|
ret = lvts_calibration_read(dev, lvts_td, lvts_data);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
/*
|
||
|
* The golden temp information is contained in the first chunk
|
||
|
* of efuse data.
|
||
|
*/
|
||
|
ret = lvts_golden_temp_init(dev, (u32 *)lvts_td->calib);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
lvts_ctrl = devm_kzalloc(dev, size, GFP_KERNEL);
|
||
|
if (!lvts_ctrl)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
for (i = 0; i < lvts_data->num_lvts_ctrl; i++) {
|
||
|
|
||
|
lvts_ctrl[i].base = lvts_td->base + lvts_data->lvts_ctrl[i].offset;
|
||
|
|
||
|
ret = lvts_sensor_init(dev, &lvts_ctrl[i],
|
||
|
&lvts_data->lvts_ctrl[i]);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
ret = lvts_calibration_init(dev, &lvts_ctrl[i],
|
||
|
&lvts_data->lvts_ctrl[i],
|
||
|
lvts_td->calib);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
/*
|
||
|
* The mode the ctrl will use to read the temperature
|
||
|
* (filtered or immediate)
|
||
|
*/
|
||
|
lvts_ctrl[i].mode = lvts_data->lvts_ctrl[i].mode;
|
||
|
|
||
|
/*
|
||
|
* The temperature to raw temperature must be done
|
||
|
* after initializing the calibration.
|
||
|
*/
|
||
|
lvts_ctrl[i].hw_tshut_raw_temp =
|
||
|
lvts_temp_to_raw(lvts_data->lvts_ctrl[i].hw_tshut_temp);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We no longer need the efuse bytes stream, let's free it
|
||
|
*/
|
||
|
devm_kfree(dev, lvts_td->calib);
|
||
|
|
||
|
lvts_td->lvts_ctrl = lvts_ctrl;
|
||
|
lvts_td->num_lvts_ctrl = lvts_data->num_lvts_ctrl;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* At this point the configuration register is the only place in the
|
||
|
* driver where we write multiple values. Per hardware constraint,
|
||
|
* each write in the configuration register must be separated by a
|
||
|
* delay of 2 us.
|
||
|
*/
|
||
|
static void lvts_write_config(struct lvts_ctrl *lvts_ctrl, u32 *cmds, int nr_cmds)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
/*
|
||
|
* Configuration register
|
||
|
*/
|
||
|
for (i = 0; i < nr_cmds; i++) {
|
||
|
writel(cmds[i], LVTS_CONFIG(lvts_ctrl->base));
|
||
|
usleep_range(2, 4);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int lvts_irq_init(struct lvts_ctrl *lvts_ctrl)
|
||
|
{
|
||
|
/*
|
||
|
* LVTS_PROTCTL : Thermal Protection Sensor Selection
|
||
|
*
|
||
|
* Bits:
|
||
|
*
|
||
|
* 19-18 : Sensor to base the protection on
|
||
|
* 17-16 : Strategy:
|
||
|
* 00 : Average of 4 sensors
|
||
|
* 01 : Max of 4 sensors
|
||
|
* 10 : Selected sensor with bits 19-18
|
||
|
* 11 : Reserved
|
||
|
*/
|
||
|
writel(BIT(16), LVTS_PROTCTL(lvts_ctrl->base));
|
||
|
|
||
|
/*
|
||
|
* LVTS_PROTTA : Stage 1 temperature threshold
|
||
|
* LVTS_PROTTB : Stage 2 temperature threshold
|
||
|
* LVTS_PROTTC : Stage 3 temperature threshold
|
||
|
*
|
||
|
* Bits:
|
||
|
*
|
||
|
* 14-0: Raw temperature threshold
|
||
|
*
|
||
|
* writel(0x0, LVTS_PROTTA(lvts_ctrl->base));
|
||
|
* writel(0x0, LVTS_PROTTB(lvts_ctrl->base));
|
||
|
*/
|
||
|
writel(lvts_ctrl->hw_tshut_raw_temp, LVTS_PROTTC(lvts_ctrl->base));
|
||
|
|
||
|
/*
|
||
|
* LVTS_MONINT : Interrupt configuration register
|
||
|
*
|
||
|
* The LVTS_MONINT register layout is the same as the LVTS_MONINTSTS
|
||
|
* register, except we set the bits to enable the interrupt.
|
||
|
*/
|
||
|
writel(LVTS_MONINT_CONF, LVTS_MONINT(lvts_ctrl->base));
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int lvts_domain_reset(struct device *dev, struct reset_control *reset)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
ret = reset_control_assert(reset);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
return reset_control_deassert(reset);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Enable or disable the clocks of a specified thermal controller
|
||
|
*/
|
||
|
static int lvts_ctrl_set_enable(struct lvts_ctrl *lvts_ctrl, int enable)
|
||
|
{
|
||
|
/*
|
||
|
* LVTS_CLKEN : Internal LVTS clock
|
||
|
*
|
||
|
* Bits:
|
||
|
*
|
||
|
* 0 : enable / disable clock
|
||
|
*/
|
||
|
writel(enable, LVTS_CLKEN(lvts_ctrl->base));
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int lvts_ctrl_connect(struct device *dev, struct lvts_ctrl *lvts_ctrl)
|
||
|
{
|
||
|
u32 id, cmds[] = { 0xC103FFFF, 0xC502FF55 };
|
||
|
|
||
|
lvts_write_config(lvts_ctrl, cmds, ARRAY_SIZE(cmds));
|
||
|
|
||
|
/*
|
||
|
* LVTS_ID : Get ID and status of the thermal controller
|
||
|
*
|
||
|
* Bits:
|
||
|
*
|
||
|
* 0-5 : thermal controller id
|
||
|
* 7 : thermal controller connection is valid
|
||
|
*/
|
||
|
id = readl(LVTS_ID(lvts_ctrl->base));
|
||
|
if (!(id & BIT(7)))
|
||
|
return -EIO;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int lvts_ctrl_initialize(struct device *dev, struct lvts_ctrl *lvts_ctrl)
|
||
|
{
|
||
|
/*
|
||
|
* Write device mask: 0xC1030000
|
||
|
*/
|
||
|
u32 cmds[] = {
|
||
|
0xC1030E01, 0xC1030CFC, 0xC1030A8C, 0xC103098D, 0xC10308F1,
|
||
|
0xC10307A6, 0xC10306B8, 0xC1030500, 0xC1030420, 0xC1030300,
|
||
|
0xC1030030, 0xC10300F6, 0xC1030050, 0xC1030060, 0xC10300AC,
|
||
|
0xC10300FC, 0xC103009D, 0xC10300F1, 0xC10300E1
|
||
|
};
|
||
|
|
||
|
lvts_write_config(lvts_ctrl, cmds, ARRAY_SIZE(cmds));
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int lvts_ctrl_calibrate(struct device *dev, struct lvts_ctrl *lvts_ctrl)
|
||
|
{
|
||
|
int i;
|
||
|
void __iomem *lvts_edata[] = {
|
||
|
LVTS_EDATA00(lvts_ctrl->base),
|
||
|
LVTS_EDATA01(lvts_ctrl->base),
|
||
|
LVTS_EDATA02(lvts_ctrl->base),
|
||
|
LVTS_EDATA03(lvts_ctrl->base)
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* LVTS_EDATA0X : Efuse calibration reference value for sensor X
|
||
|
*
|
||
|
* Bits:
|
||
|
*
|
||
|
* 20-0 : Efuse value for normalization data
|
||
|
*/
|
||
|
for (i = 0; i < LVTS_SENSOR_MAX; i++)
|
||
|
writel(lvts_ctrl->calibration[i], lvts_edata[i]);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int lvts_ctrl_configure(struct device *dev, struct lvts_ctrl *lvts_ctrl)
|
||
|
{
|
||
|
u32 value;
|
||
|
|
||
|
/*
|
||
|
* LVTS_TSSEL : Sensing point index numbering
|
||
|
*
|
||
|
* Bits:
|
||
|
*
|
||
|
* 31-24: ADC Sense 3
|
||
|
* 23-16: ADC Sense 2
|
||
|
* 15-8 : ADC Sense 1
|
||
|
* 7-0 : ADC Sense 0
|
||
|
*/
|
||
|
value = LVTS_TSSEL_CONF;
|
||
|
writel(value, LVTS_TSSEL(lvts_ctrl->base));
|
||
|
|
||
|
/*
|
||
|
* LVTS_CALSCALE : ADC voltage round
|
||
|
*/
|
||
|
value = 0x300;
|
||
|
value = LVTS_CALSCALE_CONF;
|
||
|
|
||
|
/*
|
||
|
* LVTS_MSRCTL0 : Sensor filtering strategy
|
||
|
*
|
||
|
* Filters:
|
||
|
*
|
||
|
* 000 : One sample
|
||
|
* 001 : Avg 2 samples
|
||
|
* 010 : 4 samples, drop min and max, avg 2 samples
|
||
|
* 011 : 6 samples, drop min and max, avg 4 samples
|
||
|
* 100 : 10 samples, drop min and max, avg 8 samples
|
||
|
* 101 : 18 samples, drop min and max, avg 16 samples
|
||
|
*
|
||
|
* Bits:
|
||
|
*
|
||
|
* 0-2 : Sensor0 filter
|
||
|
* 3-5 : Sensor1 filter
|
||
|
* 6-8 : Sensor2 filter
|
||
|
* 9-11 : Sensor3 filter
|
||
|
*/
|
||
|
value = LVTS_HW_FILTER << 9 | LVTS_HW_FILTER << 6 |
|
||
|
LVTS_HW_FILTER << 3 | LVTS_HW_FILTER;
|
||
|
writel(value, LVTS_MSRCTL0(lvts_ctrl->base));
|
||
|
|
||
|
/*
|
||
|
* LVTS_MSRCTL1 : Measurement control
|
||
|
*
|
||
|
* Bits:
|
||
|
*
|
||
|
* 9: Ignore MSRCTL0 config and do immediate measurement on sensor3
|
||
|
* 6: Ignore MSRCTL0 config and do immediate measurement on sensor2
|
||
|
* 5: Ignore MSRCTL0 config and do immediate measurement on sensor1
|
||
|
* 4: Ignore MSRCTL0 config and do immediate measurement on sensor0
|
||
|
*
|
||
|
* That configuration will ignore the filtering and the delays
|
||
|
* introduced below in MONCTL1 and MONCTL2
|
||
|
*/
|
||
|
if (lvts_ctrl->mode == LVTS_MSR_IMMEDIATE_MODE) {
|
||
|
value = BIT(9) | BIT(6) | BIT(5) | BIT(4);
|
||
|
writel(value, LVTS_MSRCTL1(lvts_ctrl->base));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* LVTS_MONCTL1 : Period unit and group interval configuration
|
||
|
*
|
||
|
* The clock source of LVTS thermal controller is 26MHz.
|
||
|
*
|
||
|
* The period unit is a time base for all the interval delays
|
||
|
* specified in the registers. By default we use 12. The time
|
||
|
* conversion is done by multiplying by 256 and 1/26.10^6
|
||
|
*
|
||
|
* An interval delay multiplied by the period unit gives the
|
||
|
* duration in seconds.
|
||
|
*
|
||
|
* - Filter interval delay is a delay between two samples of
|
||
|
* the same sensor.
|
||
|
*
|
||
|
* - Sensor interval delay is a delay between two samples of
|
||
|
* different sensors.
|
||
|
*
|
||
|
* - Group interval delay is a delay between different rounds.
|
||
|
*
|
||
|
* For example:
|
||
|
* If Period unit = C, filter delay = 1, sensor delay = 2, group delay = 1,
|
||
|
* and two sensors, TS1 and TS2, are in a LVTS thermal controller
|
||
|
* and then
|
||
|
* Period unit time = C * 1/26M * 256 = 12 * 38.46ns * 256 = 118.149us
|
||
|
* Filter interval delay = 1 * Period unit = 118.149us
|
||
|
* Sensor interval delay = 2 * Period unit = 236.298us
|
||
|
* Group interval delay = 1 * Period unit = 118.149us
|
||
|
*
|
||
|
* TS1 TS1 ... TS1 TS2 TS2 ... TS2 TS1...
|
||
|
* <--> Filter interval delay
|
||
|
* <--> Sensor interval delay
|
||
|
* <--> Group interval delay
|
||
|
* Bits:
|
||
|
* 29 - 20 : Group interval
|
||
|
* 16 - 13 : Send a single interrupt when crossing the hot threshold (1)
|
||
|
* or an interrupt everytime the hot threshold is crossed (0)
|
||
|
* 9 - 0 : Period unit
|
||
|
*
|
||
|
*/
|
||
|
value = LVTS_GROUP_INTERVAL << 20 | LVTS_PERIOD_UNIT;
|
||
|
writel(value, LVTS_MONCTL1(lvts_ctrl->base));
|
||
|
|
||
|
/*
|
||
|
* LVTS_MONCTL2 : Filtering and sensor interval
|
||
|
*
|
||
|
* Bits:
|
||
|
*
|
||
|
* 25-16 : Interval unit in PERIOD_UNIT between sample on
|
||
|
* the same sensor, filter interval
|
||
|
* 9-0 : Interval unit in PERIOD_UNIT between each sensor
|
||
|
*
|
||
|
*/
|
||
|
value = LVTS_FILTER_INTERVAL << 16 | LVTS_SENSOR_INTERVAL;
|
||
|
writel(value, LVTS_MONCTL2(lvts_ctrl->base));
|
||
|
|
||
|
return lvts_irq_init(lvts_ctrl);
|
||
|
}
|
||
|
|
||
|
static int lvts_ctrl_start(struct device *dev, struct lvts_ctrl *lvts_ctrl)
|
||
|
{
|
||
|
struct lvts_sensor *lvts_sensors = lvts_ctrl->sensors;
|
||
|
struct thermal_zone_device *tz;
|
||
|
u32 sensor_map = 0;
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < lvts_ctrl->num_lvts_sensor; i++) {
|
||
|
|
||
|
int dt_id = lvts_sensors[i].dt_id;
|
||
|
|
||
|
tz = devm_thermal_of_zone_register(dev, dt_id, &lvts_sensors[i],
|
||
|
&lvts_ops);
|
||
|
if (IS_ERR(tz)) {
|
||
|
/*
|
||
|
* This thermal zone is not described in the
|
||
|
* device tree. It is not an error from the
|
||
|
* thermal OF code POV, we just continue.
|
||
|
*/
|
||
|
if (PTR_ERR(tz) == -ENODEV)
|
||
|
continue;
|
||
|
|
||
|
return PTR_ERR(tz);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The thermal zone pointer will be needed in the
|
||
|
* interrupt handler, we store it in the sensor
|
||
|
* structure. The thermal domain structure will be
|
||
|
* passed to the interrupt handler private data as the
|
||
|
* interrupt is shared for all the controller
|
||
|
* belonging to the thermal domain.
|
||
|
*/
|
||
|
lvts_sensors[i].tz = tz;
|
||
|
|
||
|
/*
|
||
|
* This sensor was correctly associated with a thermal
|
||
|
* zone, let's set the corresponding bit in the sensor
|
||
|
* map, so we can enable the temperature monitoring in
|
||
|
* the hardware thermal controller.
|
||
|
*/
|
||
|
sensor_map |= BIT(i);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Bits:
|
||
|
* 9: Single point access flow
|
||
|
* 0-3: Enable sensing point 0-3
|
||
|
*
|
||
|
* The initialization of the thermal zones give us
|
||
|
* which sensor point to enable. If any thermal zone
|
||
|
* was not described in the device tree, it won't be
|
||
|
* enabled here in the sensor map.
|
||
|
*/
|
||
|
writel(sensor_map | BIT(9), LVTS_MONCTL0(lvts_ctrl->base));
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int lvts_domain_init(struct device *dev, struct lvts_domain *lvts_td,
|
||
|
const struct lvts_data *lvts_data)
|
||
|
{
|
||
|
struct lvts_ctrl *lvts_ctrl;
|
||
|
int i, ret;
|
||
|
|
||
|
ret = lvts_ctrl_init(dev, lvts_td, lvts_data);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
ret = lvts_domain_reset(dev, lvts_td->reset);
|
||
|
if (ret) {
|
||
|
dev_dbg(dev, "Failed to reset domain");
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
|
||
|
|
||
|
lvts_ctrl = &lvts_td->lvts_ctrl[i];
|
||
|
|
||
|
/*
|
||
|
* Initialization steps:
|
||
|
*
|
||
|
* - Enable the clock
|
||
|
* - Connect to the LVTS
|
||
|
* - Initialize the LVTS
|
||
|
* - Prepare the calibration data
|
||
|
* - Select monitored sensors
|
||
|
* [ Configure sampling ]
|
||
|
* [ Configure the interrupt ]
|
||
|
* - Start measurement
|
||
|
*/
|
||
|
ret = lvts_ctrl_set_enable(lvts_ctrl, true);
|
||
|
if (ret) {
|
||
|
dev_dbg(dev, "Failed to enable LVTS clock");
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
ret = lvts_ctrl_connect(dev, lvts_ctrl);
|
||
|
if (ret) {
|
||
|
dev_dbg(dev, "Failed to connect to LVTS controller");
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
ret = lvts_ctrl_initialize(dev, lvts_ctrl);
|
||
|
if (ret) {
|
||
|
dev_dbg(dev, "Failed to initialize controller");
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
ret = lvts_ctrl_calibrate(dev, lvts_ctrl);
|
||
|
if (ret) {
|
||
|
dev_dbg(dev, "Failed to calibrate controller");
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
ret = lvts_ctrl_configure(dev, lvts_ctrl);
|
||
|
if (ret) {
|
||
|
dev_dbg(dev, "Failed to configure controller");
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
ret = lvts_ctrl_start(dev, lvts_ctrl);
|
||
|
if (ret) {
|
||
|
dev_dbg(dev, "Failed to start controller");
|
||
|
return ret;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return lvts_debugfs_init(dev, lvts_td);
|
||
|
}
|
||
|
|
||
|
static int lvts_probe(struct platform_device *pdev)
|
||
|
{
|
||
|
const struct lvts_data *lvts_data;
|
||
|
struct lvts_domain *lvts_td;
|
||
|
struct device *dev = &pdev->dev;
|
||
|
struct resource *res;
|
||
|
int irq, ret;
|
||
|
|
||
|
lvts_td = devm_kzalloc(dev, sizeof(*lvts_td), GFP_KERNEL);
|
||
|
if (!lvts_td)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
lvts_data = of_device_get_match_data(dev);
|
||
|
|
||
|
lvts_td->clk = devm_clk_get_enabled(dev, NULL);
|
||
|
if (IS_ERR(lvts_td->clk))
|
||
|
return dev_err_probe(dev, PTR_ERR(lvts_td->clk), "Failed to retrieve clock\n");
|
||
|
|
||
|
res = platform_get_mem_or_io(pdev, 0);
|
||
|
if (!res)
|
||
|
return dev_err_probe(dev, (-ENXIO), "No IO resource\n");
|
||
|
|
||
|
lvts_td->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
|
||
|
if (IS_ERR(lvts_td->base))
|
||
|
return dev_err_probe(dev, PTR_ERR(lvts_td->base), "Failed to map io resource\n");
|
||
|
|
||
|
lvts_td->reset = devm_reset_control_get_by_index(dev, 0);
|
||
|
if (IS_ERR(lvts_td->reset))
|
||
|
return dev_err_probe(dev, PTR_ERR(lvts_td->reset), "Failed to get reset control\n");
|
||
|
|
||
|
irq = platform_get_irq(pdev, 0);
|
||
|
if (irq < 0)
|
||
|
return dev_err_probe(dev, irq, "No irq resource\n");
|
||
|
|
||
|
ret = lvts_domain_init(dev, lvts_td, lvts_data);
|
||
|
if (ret)
|
||
|
return dev_err_probe(dev, ret, "Failed to initialize the lvts domain\n");
|
||
|
|
||
|
/*
|
||
|
* At this point the LVTS is initialized and enabled. We can
|
||
|
* safely enable the interrupt.
|
||
|
*/
|
||
|
ret = devm_request_threaded_irq(dev, irq, NULL, lvts_irq_handler,
|
||
|
IRQF_ONESHOT, dev_name(dev), lvts_td);
|
||
|
if (ret)
|
||
|
return dev_err_probe(dev, ret, "Failed to request interrupt\n");
|
||
|
|
||
|
platform_set_drvdata(pdev, lvts_td);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int lvts_remove(struct platform_device *pdev)
|
||
|
{
|
||
|
struct lvts_domain *lvts_td;
|
||
|
int i;
|
||
|
|
||
|
lvts_td = platform_get_drvdata(pdev);
|
||
|
|
||
|
for (i = 0; i < lvts_td->num_lvts_ctrl; i++)
|
||
|
lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], false);
|
||
|
|
||
|
lvts_debugfs_exit(lvts_td);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static const struct lvts_ctrl_data mt8195_lvts_data_ctrl[] = {
|
||
|
{
|
||
|
.cal_offset = { 0x04, 0x07 },
|
||
|
.lvts_sensor = {
|
||
|
{ .dt_id = MT8195_MCU_BIG_CPU0 },
|
||
|
{ .dt_id = MT8195_MCU_BIG_CPU1 }
|
||
|
},
|
||
|
.num_lvts_sensor = 2,
|
||
|
.offset = 0x0,
|
||
|
.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
|
||
|
},
|
||
|
{
|
||
|
.cal_offset = { 0x0d, 0x10 },
|
||
|
.lvts_sensor = {
|
||
|
{ .dt_id = MT8195_MCU_BIG_CPU2 },
|
||
|
{ .dt_id = MT8195_MCU_BIG_CPU3 }
|
||
|
},
|
||
|
.num_lvts_sensor = 2,
|
||
|
.offset = 0x100,
|
||
|
.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
|
||
|
},
|
||
|
{
|
||
|
.cal_offset = { 0x16, 0x19, 0x1c, 0x1f },
|
||
|
.lvts_sensor = {
|
||
|
{ .dt_id = MT8195_MCU_LITTLE_CPU0 },
|
||
|
{ .dt_id = MT8195_MCU_LITTLE_CPU1 },
|
||
|
{ .dt_id = MT8195_MCU_LITTLE_CPU2 },
|
||
|
{ .dt_id = MT8195_MCU_LITTLE_CPU3 }
|
||
|
},
|
||
|
.num_lvts_sensor = 4,
|
||
|
.offset = 0x200,
|
||
|
.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
|
||
|
}
|
||
|
};
|
||
|
|
||
|
static const struct lvts_data mt8195_lvts_mcu_data = {
|
||
|
.lvts_ctrl = mt8195_lvts_data_ctrl,
|
||
|
.num_lvts_ctrl = ARRAY_SIZE(mt8195_lvts_data_ctrl),
|
||
|
};
|
||
|
|
||
|
static const struct of_device_id lvts_of_match[] = {
|
||
|
{ .compatible = "mediatek,mt8195-lvts-mcu", .data = &mt8195_lvts_mcu_data },
|
||
|
{},
|
||
|
};
|
||
|
MODULE_DEVICE_TABLE(of, lvts_of_match);
|
||
|
|
||
|
static struct platform_driver lvts_driver = {
|
||
|
.probe = lvts_probe,
|
||
|
.remove = lvts_remove,
|
||
|
.driver = {
|
||
|
.name = "mtk-lvts-thermal",
|
||
|
.of_match_table = lvts_of_match,
|
||
|
},
|
||
|
};
|
||
|
module_platform_driver(lvts_driver);
|
||
|
|
||
|
MODULE_AUTHOR("Balsam CHIHI <bchihi@baylibre.com>");
|
||
|
MODULE_DESCRIPTION("MediaTek LVTS Thermal Driver");
|
||
|
MODULE_LICENSE("GPL");
|