linux-zen-server/sound/soc/atmel/mchp-pdmc.c

1178 lines
30 KiB
C
Raw Normal View History

2023-08-30 17:53:23 +02:00
// SPDX-License-Identifier: GPL-2.0
//
// Driver for Microchip Pulse Density Microphone Controller (PDMC) interfaces
//
// Copyright (C) 2019-2022 Microchip Technology Inc. and its subsidiaries
//
// Author: Codrin Ciubotariu <codrin.ciubotariu@microchip.com>
#include <dt-bindings/sound/microchip,pdmc.h>
#include <linux/clk.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <sound/core.h>
#include <sound/dmaengine_pcm.h>
#include <sound/pcm_params.h>
#include <sound/tlv.h>
/*
* ---- PDMC Register map ----
*/
#define MCHP_PDMC_CR 0x00 /* Control Register */
#define MCHP_PDMC_MR 0x04 /* Mode Register */
#define MCHP_PDMC_CFGR 0x08 /* Configuration Register */
#define MCHP_PDMC_RHR 0x0C /* Receive Holding Register */
#define MCHP_PDMC_IER 0x14 /* Interrupt Enable Register */
#define MCHP_PDMC_IDR 0x18 /* Interrupt Disable Register */
#define MCHP_PDMC_IMR 0x1C /* Interrupt Mask Register */
#define MCHP_PDMC_ISR 0x20 /* Interrupt Status Register */
#define MCHP_PDMC_VER 0x50 /* Version Register */
/*
* ---- Control Register (Write-only) ----
*/
#define MCHP_PDMC_CR_SWRST BIT(0) /* Software Reset */
/*
* ---- Mode Register (Read/Write) ----
*/
#define MCHP_PDMC_MR_PDMCEN_MASK GENMASK(3, 0)
#define MCHP_PDMC_MR_PDMCEN(ch) (BIT(ch) & MCHP_PDMC_MR_PDMCEN_MASK)
#define MCHP_PDMC_MR_OSR_MASK GENMASK(17, 16)
#define MCHP_PDMC_MR_OSR64 (1 << 16)
#define MCHP_PDMC_MR_OSR128 (2 << 16)
#define MCHP_PDMC_MR_OSR256 (3 << 16)
#define MCHP_PDMC_MR_SINCORDER_MASK GENMASK(23, 20)
#define MCHP_PDMC_MR_SINCORDER(order) (((order) << 20) & \
MCHP_PDMC_MR_SINCORDER_MASK)
#define MCHP_PDMC_MR_SINC_OSR_MASK GENMASK(27, 24)
#define MCHP_PDMC_MR_SINC_OSR_DIS (0 << 24)
#define MCHP_PDMC_MR_SINC_OSR_8 (1 << 24)
#define MCHP_PDMC_MR_SINC_OSR_16 (2 << 24)
#define MCHP_PDMC_MR_SINC_OSR_32 (3 << 24)
#define MCHP_PDMC_MR_SINC_OSR_64 (4 << 24)
#define MCHP_PDMC_MR_SINC_OSR_128 (5 << 24)
#define MCHP_PDMC_MR_SINC_OSR_256 (6 << 24)
#define MCHP_PDMC_MR_CHUNK_MASK GENMASK(31, 28)
#define MCHP_PDMC_MR_CHUNK(chunk) (((chunk) << 28) & \
MCHP_PDMC_MR_CHUNK_MASK)
/*
* ---- Configuration Register (Read/Write) ----
*/
#define MCHP_PDMC_CFGR_BSSEL_MASK (BIT(0) | BIT(2) | BIT(4) | BIT(6))
#define MCHP_PDMC_CFGR_BSSEL(ch) BIT((ch) * 2)
#define MCHP_PDMC_CFGR_PDMSEL_MASK (BIT(16) | BIT(18) | BIT(20) | BIT(22))
#define MCHP_PDMC_CFGR_PDMSEL(ch) BIT((ch) * 2 + 16)
/*
* ---- Interrupt Enable/Disable/Mask/Status Registers ----
*/
#define MCHP_PDMC_IR_RXRDY BIT(0)
#define MCHP_PDMC_IR_RXEMPTY BIT(1)
#define MCHP_PDMC_IR_RXFULL BIT(2)
#define MCHP_PDMC_IR_RXCHUNK BIT(3)
#define MCHP_PDMC_IR_RXUDR BIT(4)
#define MCHP_PDMC_IR_RXOVR BIT(5)
/*
* ---- Version Register (Read-only) ----
*/
#define MCHP_PDMC_VER_VERSION GENMASK(11, 0)
#define MCHP_PDMC_MAX_CHANNELS 4
#define MCHP_PDMC_DS_NO 2
#define MCHP_PDMC_EDGE_NO 2
struct mic_map {
int ds_pos;
int clk_edge;
};
struct mchp_pdmc_chmap {
struct snd_pcm_chmap_elem *chmap;
struct mchp_pdmc *dd;
struct snd_pcm *pcm;
struct snd_kcontrol *kctl;
};
struct mchp_pdmc {
struct mic_map channel_mic_map[MCHP_PDMC_MAX_CHANNELS];
struct device *dev;
struct snd_dmaengine_dai_dma_data addr;
struct regmap *regmap;
struct clk *pclk;
struct clk *gclk;
u32 pdmcen;
u32 suspend_irq;
u32 startup_delay_us;
int mic_no;
int sinc_order;
bool audio_filter_en;
};
static const char *const mchp_pdmc_sinc_filter_order_text[] = {
"1", "2", "3", "4", "5"
};
static const unsigned int mchp_pdmc_sinc_filter_order_values[] = {
1, 2, 3, 4, 5,
};
static const struct soc_enum mchp_pdmc_sinc_filter_order_enum = {
.items = ARRAY_SIZE(mchp_pdmc_sinc_filter_order_text),
.texts = mchp_pdmc_sinc_filter_order_text,
.values = mchp_pdmc_sinc_filter_order_values,
};
static int mchp_pdmc_sinc_order_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *uvalue)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct mchp_pdmc *dd = snd_soc_component_get_drvdata(component);
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
unsigned int item;
item = snd_soc_enum_val_to_item(e, dd->sinc_order);
uvalue->value.enumerated.item[0] = item;
return 0;
}
static int mchp_pdmc_sinc_order_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *uvalue)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct mchp_pdmc *dd = snd_soc_component_get_drvdata(component);
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
unsigned int *item = uvalue->value.enumerated.item;
unsigned int val;
if (item[0] >= e->items)
return -EINVAL;
val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
if (val == dd->sinc_order)
return 0;
dd->sinc_order = val;
return 1;
}
static int mchp_pdmc_af_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *uvalue)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct mchp_pdmc *dd = snd_soc_component_get_drvdata(component);
uvalue->value.integer.value[0] = !!dd->audio_filter_en;
return 0;
}
static int mchp_pdmc_af_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *uvalue)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct mchp_pdmc *dd = snd_soc_component_get_drvdata(component);
bool af = uvalue->value.integer.value[0] ? true : false;
if (dd->audio_filter_en == af)
return 0;
dd->audio_filter_en = af;
return 1;
}
static int mchp_pdmc_chmap_ctl_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
struct mchp_pdmc_chmap *info = snd_kcontrol_chip(kcontrol);
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = info->dd->mic_no;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = SNDRV_CHMAP_RR; /* maxmimum 4 channels */
return 0;
}
static inline struct snd_pcm_substream *
mchp_pdmc_chmap_substream(struct mchp_pdmc_chmap *info, unsigned int idx)
{
struct snd_pcm_substream *s;
for (s = info->pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream; s; s = s->next)
if (s->number == idx)
return s;
return NULL;
}
static struct snd_pcm_chmap_elem *mchp_pdmc_chmap_get(struct snd_pcm_substream *substream,
struct mchp_pdmc_chmap *ch_info)
{
struct snd_pcm_chmap_elem *map;
for (map = ch_info->chmap; map->channels; map++) {
if (map->channels == substream->runtime->channels)
return map;
}
return NULL;
}
static int mchp_pdmc_chmap_ctl_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct mchp_pdmc_chmap *info = snd_kcontrol_chip(kcontrol);
struct mchp_pdmc *dd = info->dd;
unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
struct snd_pcm_substream *substream;
const struct snd_pcm_chmap_elem *map;
int i;
u32 cfgr_val = 0;
if (!info->chmap)
return -EINVAL;
substream = mchp_pdmc_chmap_substream(info, idx);
if (!substream)
return -ENODEV;
memset(ucontrol->value.integer.value, 0, sizeof(long) * info->dd->mic_no);
if (!substream->runtime)
return 0; /* no channels set */
map = mchp_pdmc_chmap_get(substream, info);
if (!map)
return -EINVAL;
for (i = 0; i < map->channels; i++) {
int map_idx = map->channels == 1 ? map->map[i] - SNDRV_CHMAP_MONO :
map->map[i] - SNDRV_CHMAP_FL;
/* make sure the reported channel map is the real one, so write the map */
if (dd->channel_mic_map[map_idx].ds_pos)
cfgr_val |= MCHP_PDMC_CFGR_PDMSEL(i);
if (dd->channel_mic_map[map_idx].clk_edge)
cfgr_val |= MCHP_PDMC_CFGR_BSSEL(i);
ucontrol->value.integer.value[i] = map->map[i];
}
regmap_write(dd->regmap, MCHP_PDMC_CFGR, cfgr_val);
return 0;
}
static int mchp_pdmc_chmap_ctl_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct mchp_pdmc_chmap *info = snd_kcontrol_chip(kcontrol);
struct mchp_pdmc *dd = info->dd;
unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
struct snd_pcm_substream *substream;
struct snd_pcm_chmap_elem *map;
u32 cfgr_val = 0;
int i;
if (!info->chmap)
return -EINVAL;
substream = mchp_pdmc_chmap_substream(info, idx);
if (!substream)
return -ENODEV;
map = mchp_pdmc_chmap_get(substream, info);
if (!map)
return -EINVAL;
for (i = 0; i < map->channels; i++) {
int map_idx;
map->map[i] = ucontrol->value.integer.value[i];
map_idx = map->channels == 1 ? map->map[i] - SNDRV_CHMAP_MONO :
map->map[i] - SNDRV_CHMAP_FL;
/* configure IP for the desired channel map */
if (dd->channel_mic_map[map_idx].ds_pos)
cfgr_val |= MCHP_PDMC_CFGR_PDMSEL(i);
if (dd->channel_mic_map[map_idx].clk_edge)
cfgr_val |= MCHP_PDMC_CFGR_BSSEL(i);
}
regmap_write(dd->regmap, MCHP_PDMC_CFGR, cfgr_val);
return 0;
}
static void mchp_pdmc_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
{
struct mchp_pdmc_chmap *info = snd_kcontrol_chip(kcontrol);
info->pcm->streams[SNDRV_PCM_STREAM_CAPTURE].chmap_kctl = NULL;
kfree(info);
}
static int mchp_pdmc_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
unsigned int size, unsigned int __user *tlv)
{
struct mchp_pdmc_chmap *info = snd_kcontrol_chip(kcontrol);
const struct snd_pcm_chmap_elem *map;
unsigned int __user *dst;
int c, count = 0;
if (!info->chmap)
return -EINVAL;
if (size < 8)
return -ENOMEM;
if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
return -EFAULT;
size -= 8;
dst = tlv + 2;
for (map = info->chmap; map->channels; map++) {
int chs_bytes = map->channels * 4;
if (size < 8)
return -ENOMEM;
if (put_user(SNDRV_CTL_TLVT_CHMAP_VAR, dst) ||
put_user(chs_bytes, dst + 1))
return -EFAULT;
dst += 2;
size -= 8;
count += 8;
if (size < chs_bytes)
return -ENOMEM;
size -= chs_bytes;
count += chs_bytes;
for (c = 0; c < map->channels; c++) {
if (put_user(map->map[c], dst))
return -EFAULT;
dst++;
}
}
if (put_user(count, tlv + 1))
return -EFAULT;
return 0;
}
static const struct snd_kcontrol_new mchp_pdmc_snd_controls[] = {
SOC_SINGLE_BOOL_EXT("Audio Filter", 0, &mchp_pdmc_af_get, &mchp_pdmc_af_put),
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "SINC Filter Order",
.info = snd_soc_info_enum_double,
.get = mchp_pdmc_sinc_order_get,
.put = mchp_pdmc_sinc_order_put,
.private_value = (unsigned long)&mchp_pdmc_sinc_filter_order_enum,
},
};
static int mchp_pdmc_close(struct snd_soc_component *component,
struct snd_pcm_substream *substream)
{
return snd_soc_add_component_controls(component, mchp_pdmc_snd_controls,
ARRAY_SIZE(mchp_pdmc_snd_controls));
}
static int mchp_pdmc_open(struct snd_soc_component *component,
struct snd_pcm_substream *substream)
{
int i;
/* remove controls that can't be changed at runtime */
for (i = 0; i < ARRAY_SIZE(mchp_pdmc_snd_controls); i++) {
const struct snd_kcontrol_new *control = &mchp_pdmc_snd_controls[i];
struct snd_ctl_elem_id id;
struct snd_kcontrol *kctl;
int err;
if (component->name_prefix)
snprintf(id.name, sizeof(id.name), "%s %s", component->name_prefix,
control->name);
else
strscpy(id.name, control->name, sizeof(id.name));
id.numid = 0;
id.iface = control->iface;
id.device = control->device;
id.subdevice = control->subdevice;
id.index = control->index;
kctl = snd_ctl_find_id(component->card->snd_card, &id);
if (!kctl) {
dev_err(component->dev, "Failed to find %s\n", control->name);
continue;
}
err = snd_ctl_remove(component->card->snd_card, kctl);
if (err < 0) {
dev_err(component->dev, "%d: Failed to remove %s\n", err,
control->name);
continue;
}
}
return 0;
}
static const struct snd_soc_component_driver mchp_pdmc_dai_component = {
.name = "mchp-pdmc",
.controls = mchp_pdmc_snd_controls,
.num_controls = ARRAY_SIZE(mchp_pdmc_snd_controls),
.open = &mchp_pdmc_open,
.close = &mchp_pdmc_close,
.legacy_dai_naming = 1,
.start_dma_last = 1,
};
static const unsigned int mchp_pdmc_1mic[] = {1};
static const unsigned int mchp_pdmc_2mic[] = {1, 2};
static const unsigned int mchp_pdmc_3mic[] = {1, 2, 3};
static const unsigned int mchp_pdmc_4mic[] = {1, 2, 3, 4};
static const struct snd_pcm_hw_constraint_list mchp_pdmc_chan_constr[] = {
{
.list = mchp_pdmc_1mic,
.count = ARRAY_SIZE(mchp_pdmc_1mic),
},
{
.list = mchp_pdmc_2mic,
.count = ARRAY_SIZE(mchp_pdmc_2mic),
},
{
.list = mchp_pdmc_3mic,
.count = ARRAY_SIZE(mchp_pdmc_3mic),
},
{
.list = mchp_pdmc_4mic,
.count = ARRAY_SIZE(mchp_pdmc_4mic),
},
};
static int mchp_pdmc_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct mchp_pdmc *dd = snd_soc_dai_get_drvdata(dai);
regmap_write(dd->regmap, MCHP_PDMC_CR, MCHP_PDMC_CR_SWRST);
snd_pcm_hw_constraint_list(substream->runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
&mchp_pdmc_chan_constr[dd->mic_no - 1]);
return 0;
}
static int mchp_pdmc_dai_probe(struct snd_soc_dai *dai)
{
struct mchp_pdmc *dd = snd_soc_dai_get_drvdata(dai);
snd_soc_dai_init_dma_data(dai, NULL, &dd->addr);
return 0;
}
static int mchp_pdmc_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
{
unsigned int fmt_master = fmt & SND_SOC_DAIFMT_MASTER_MASK;
unsigned int fmt_format = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
/* IP needs to be bitclock master */
if (fmt_master != SND_SOC_DAIFMT_BP_FP &&
fmt_master != SND_SOC_DAIFMT_BP_FC)
return -EINVAL;
/* IP supports only PDM interface */
if (fmt_format != SND_SOC_DAIFMT_PDM)
return -EINVAL;
return 0;
}
static u32 mchp_pdmc_mr_set_osr(int audio_filter_en, unsigned int osr)
{
if (audio_filter_en) {
switch (osr) {
case 64:
return MCHP_PDMC_MR_OSR64;
case 128:
return MCHP_PDMC_MR_OSR128;
case 256:
return MCHP_PDMC_MR_OSR256;
}
} else {
switch (osr) {
case 8:
return MCHP_PDMC_MR_SINC_OSR_8;
case 16:
return MCHP_PDMC_MR_SINC_OSR_16;
case 32:
return MCHP_PDMC_MR_SINC_OSR_32;
case 64:
return MCHP_PDMC_MR_SINC_OSR_64;
case 128:
return MCHP_PDMC_MR_SINC_OSR_128;
case 256:
return MCHP_PDMC_MR_SINC_OSR_256;
}
}
return 0;
}
static inline int mchp_pdmc_period_to_maxburst(int period_size)
{
if (!(period_size % 8))
return 8;
if (!(period_size % 4))
return 4;
if (!(period_size % 2))
return 2;
return 1;
}
static struct snd_pcm_chmap_elem mchp_pdmc_std_chmaps[] = {
{ .channels = 1,
.map = { SNDRV_CHMAP_MONO } },
{ .channels = 2,
.map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
{ .channels = 3,
.map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
SNDRV_CHMAP_RL } },
{ .channels = 4,
.map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
{ }
};
static int mchp_pdmc_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct mchp_pdmc *dd = snd_soc_dai_get_drvdata(dai);
struct snd_soc_component *comp = dai->component;
unsigned long gclk_rate = 0;
unsigned long best_diff_rate = ~0UL;
unsigned int channels = params_channels(params);
unsigned int osr = 0, osr_start;
unsigned int fs = params_rate(params);
u32 mr_val = 0;
u32 cfgr_val = 0;
int i;
int ret;
dev_dbg(comp->dev, "%s() rate=%u format=%#x width=%u channels=%u\n",
__func__, params_rate(params), params_format(params),
params_width(params), params_channels(params));
if (channels > dd->mic_no) {
dev_err(comp->dev, "more channels %u than microphones %d\n",
channels, dd->mic_no);
return -EINVAL;
}
dd->pdmcen = 0;
for (i = 0; i < channels; i++) {
dd->pdmcen |= MCHP_PDMC_MR_PDMCEN(i);
if (dd->channel_mic_map[i].ds_pos)
cfgr_val |= MCHP_PDMC_CFGR_PDMSEL(i);
if (dd->channel_mic_map[i].clk_edge)
cfgr_val |= MCHP_PDMC_CFGR_BSSEL(i);
}
for (osr_start = dd->audio_filter_en ? 64 : 8;
osr_start <= 256 && best_diff_rate; osr_start *= 2) {
long round_rate;
unsigned long diff_rate;
round_rate = clk_round_rate(dd->gclk,
(unsigned long)fs * 16 * osr_start);
if (round_rate < 0)
continue;
diff_rate = abs((fs * 16 * osr_start) - round_rate);
if (diff_rate < best_diff_rate) {
best_diff_rate = diff_rate;
osr = osr_start;
gclk_rate = fs * 16 * osr;
}
}
if (!gclk_rate) {
dev_err(comp->dev, "invalid sampling rate: %u\n", fs);
return -EINVAL;
}
/* CLK is enabled by runtime PM. */
clk_disable_unprepare(dd->gclk);
/* set the rate */
ret = clk_set_rate(dd->gclk, gclk_rate);
clk_prepare_enable(dd->gclk);
if (ret) {
dev_err(comp->dev, "unable to set rate %lu to GCLK: %d\n",
gclk_rate, ret);
return ret;
}
mr_val |= mchp_pdmc_mr_set_osr(dd->audio_filter_en, osr);
mr_val |= MCHP_PDMC_MR_SINCORDER(dd->sinc_order);
dd->addr.maxburst = mchp_pdmc_period_to_maxburst(snd_pcm_lib_period_bytes(substream));
mr_val |= MCHP_PDMC_MR_CHUNK(dd->addr.maxburst);
dev_dbg(comp->dev, "maxburst set to %d\n", dd->addr.maxburst);
snd_soc_component_update_bits(comp, MCHP_PDMC_MR,
MCHP_PDMC_MR_OSR_MASK |
MCHP_PDMC_MR_SINCORDER_MASK |
MCHP_PDMC_MR_SINC_OSR_MASK |
MCHP_PDMC_MR_CHUNK_MASK, mr_val);
snd_soc_component_write(comp, MCHP_PDMC_CFGR, cfgr_val);
return 0;
}
static void mchp_pdmc_noise_filter_workaround(struct mchp_pdmc *dd)
{
u32 tmp, steps = 16;
/*
* PDMC doesn't wait for microphones' startup time thus the acquisition
* may start before the microphones are ready leading to poc noises at
* the beginning of capture. To avoid this, we need to wait 50ms (in
* normal startup procedure) or 150 ms (worst case after resume from sleep
* states) after microphones are enabled and then clear the FIFOs (by
* reading the RHR 16 times) and possible interrupts before continuing.
* Also, for this to work the DMA needs to be started after interrupts
* are enabled.
*/
usleep_range(dd->startup_delay_us, dd->startup_delay_us + 5);
while (steps--)
regmap_read(dd->regmap, MCHP_PDMC_RHR, &tmp);
/* Clear interrupts. */
regmap_read(dd->regmap, MCHP_PDMC_ISR, &tmp);
}
static int mchp_pdmc_trigger(struct snd_pcm_substream *substream,
int cmd, struct snd_soc_dai *dai)
{
struct mchp_pdmc *dd = snd_soc_dai_get_drvdata(dai);
struct snd_soc_component *cpu = dai->component;
#ifdef DEBUG
u32 val;
#endif
switch (cmd) {
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
snd_soc_component_update_bits(cpu, MCHP_PDMC_MR,
MCHP_PDMC_MR_PDMCEN_MASK,
dd->pdmcen);
mchp_pdmc_noise_filter_workaround(dd);
/* Enable interrupts. */
regmap_write(dd->regmap, MCHP_PDMC_IER, dd->suspend_irq |
MCHP_PDMC_IR_RXOVR | MCHP_PDMC_IR_RXUDR);
dd->suspend_irq = 0;
break;
case SNDRV_PCM_TRIGGER_SUSPEND:
regmap_read(dd->regmap, MCHP_PDMC_IMR, &dd->suspend_irq);
fallthrough;
case SNDRV_PCM_TRIGGER_STOP:
/* Disable overrun and underrun error interrupts */
regmap_write(dd->regmap, MCHP_PDMC_IDR, dd->suspend_irq |
MCHP_PDMC_IR_RXOVR | MCHP_PDMC_IR_RXUDR);
fallthrough;
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
snd_soc_component_update_bits(cpu, MCHP_PDMC_MR,
MCHP_PDMC_MR_PDMCEN_MASK, 0);
break;
default:
return -EINVAL;
}
#ifdef DEBUG
regmap_read(dd->regmap, MCHP_PDMC_MR, &val);
dev_dbg(dd->dev, "MR (0x%02x): 0x%08x\n", MCHP_PDMC_MR, val);
regmap_read(dd->regmap, MCHP_PDMC_CFGR, &val);
dev_dbg(dd->dev, "CFGR (0x%02x): 0x%08x\n", MCHP_PDMC_CFGR, val);
regmap_read(dd->regmap, MCHP_PDMC_IMR, &val);
dev_dbg(dd->dev, "IMR (0x%02x): 0x%08x\n", MCHP_PDMC_IMR, val);
#endif
return 0;
}
static const struct snd_soc_dai_ops mchp_pdmc_dai_ops = {
.set_fmt = mchp_pdmc_set_fmt,
.startup = mchp_pdmc_startup,
.hw_params = mchp_pdmc_hw_params,
.trigger = mchp_pdmc_trigger,
};
static int mchp_pdmc_add_chmap_ctls(struct snd_pcm *pcm, struct mchp_pdmc *dd)
{
struct mchp_pdmc_chmap *info;
struct snd_kcontrol_new knew = {
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
SNDRV_CTL_ELEM_ACCESS_TLV_READ |
SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
.info = mchp_pdmc_chmap_ctl_info,
.get = mchp_pdmc_chmap_ctl_get,
.put = mchp_pdmc_chmap_ctl_put,
.tlv.c = mchp_pdmc_chmap_ctl_tlv,
};
int err;
if (WARN_ON(pcm->streams[SNDRV_PCM_STREAM_CAPTURE].chmap_kctl))
return -EBUSY;
info = kzalloc(sizeof(*info), GFP_KERNEL);
if (!info)
return -ENOMEM;
info->pcm = pcm;
info->dd = dd;
info->chmap = mchp_pdmc_std_chmaps;
knew.name = "Capture Channel Map";
knew.device = pcm->device;
knew.count = pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream_count;
info->kctl = snd_ctl_new1(&knew, info);
if (!info->kctl) {
kfree(info);
return -ENOMEM;
}
info->kctl->private_free = mchp_pdmc_chmap_ctl_private_free;
err = snd_ctl_add(pcm->card, info->kctl);
if (err < 0)
return err;
pcm->streams[SNDRV_PCM_STREAM_CAPTURE].chmap_kctl = info->kctl;
return 0;
}
static int mchp_pdmc_pcm_new(struct snd_soc_pcm_runtime *rtd,
struct snd_soc_dai *dai)
{
struct mchp_pdmc *dd = snd_soc_dai_get_drvdata(dai);
int ret;
ret = mchp_pdmc_add_chmap_ctls(rtd->pcm, dd);
if (ret < 0) {
dev_err(dd->dev, "failed to add channel map controls: %d\n", ret);
return ret;
}
return 0;
}
static struct snd_soc_dai_driver mchp_pdmc_dai = {
.probe = mchp_pdmc_dai_probe,
.capture = {
.stream_name = "Capture",
.channels_min = 1,
.channels_max = 4,
.rate_min = 8000,
.rate_max = 192000,
.rates = SNDRV_PCM_RATE_KNOT,
.formats = SNDRV_PCM_FMTBIT_S24_LE,
},
.ops = &mchp_pdmc_dai_ops,
.pcm_new = &mchp_pdmc_pcm_new,
};
/* PDMC interrupt handler */
static irqreturn_t mchp_pdmc_interrupt(int irq, void *dev_id)
{
struct mchp_pdmc *dd = (struct mchp_pdmc *)dev_id;
u32 isr, msr, pending;
irqreturn_t ret = IRQ_NONE;
regmap_read(dd->regmap, MCHP_PDMC_ISR, &isr);
regmap_read(dd->regmap, MCHP_PDMC_IMR, &msr);
pending = isr & msr;
dev_dbg(dd->dev, "ISR (0x%02x): 0x%08x, IMR (0x%02x): 0x%08x, pending: 0x%08x\n",
MCHP_PDMC_ISR, isr, MCHP_PDMC_IMR, msr, pending);
if (!pending)
return IRQ_NONE;
if (pending & MCHP_PDMC_IR_RXUDR) {
dev_warn(dd->dev, "underrun detected\n");
regmap_write(dd->regmap, MCHP_PDMC_IDR, MCHP_PDMC_IR_RXUDR);
ret = IRQ_HANDLED;
}
if (pending & MCHP_PDMC_IR_RXOVR) {
dev_warn(dd->dev, "overrun detected\n");
regmap_write(dd->regmap, MCHP_PDMC_IDR, MCHP_PDMC_IR_RXOVR);
ret = IRQ_HANDLED;
}
return ret;
}
/* regmap configuration */
static bool mchp_pdmc_readable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case MCHP_PDMC_MR:
case MCHP_PDMC_CFGR:
case MCHP_PDMC_IMR:
case MCHP_PDMC_ISR:
case MCHP_PDMC_RHR:
case MCHP_PDMC_VER:
return true;
default:
return false;
}
}
static bool mchp_pdmc_writeable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case MCHP_PDMC_CR:
case MCHP_PDMC_MR:
case MCHP_PDMC_CFGR:
case MCHP_PDMC_IER:
case MCHP_PDMC_IDR:
return true;
default:
return false;
}
}
static bool mchp_pdmc_volatile_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case MCHP_PDMC_ISR:
case MCHP_PDMC_RHR:
return true;
default:
return false;
}
}
static bool mchp_pdmc_precious_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case MCHP_PDMC_RHR:
case MCHP_PDMC_ISR:
return true;
default:
return false;
}
}
static const struct regmap_config mchp_pdmc_regmap_config = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.max_register = MCHP_PDMC_VER,
.readable_reg = mchp_pdmc_readable_reg,
.writeable_reg = mchp_pdmc_writeable_reg,
.precious_reg = mchp_pdmc_precious_reg,
.volatile_reg = mchp_pdmc_volatile_reg,
.cache_type = REGCACHE_FLAT,
};
static int mchp_pdmc_dt_init(struct mchp_pdmc *dd)
{
struct device_node *np = dd->dev->of_node;
bool mic_ch[MCHP_PDMC_DS_NO][MCHP_PDMC_EDGE_NO] = {0};
int i;
int ret;
if (!np) {
dev_err(dd->dev, "device node not found\n");
return -EINVAL;
}
dd->mic_no = of_property_count_u32_elems(np, "microchip,mic-pos");
if (dd->mic_no < 0) {
dev_err(dd->dev, "failed to get microchip,mic-pos: %d",
dd->mic_no);
return dd->mic_no;
}
if (!dd->mic_no || dd->mic_no % 2 ||
dd->mic_no / 2 > MCHP_PDMC_MAX_CHANNELS) {
dev_err(dd->dev, "invalid array length for microchip,mic-pos: %d",
dd->mic_no);
return -EINVAL;
}
dd->mic_no /= 2;
dev_info(dd->dev, "%d PDM microphones declared\n", dd->mic_no);
/*
* by default, we consider the order of microphones in
* microchip,mic-pos to be the same with the channel mapping;
* 1st microphone channel 0, 2nd microphone channel 1, etc.
*/
for (i = 0; i < dd->mic_no; i++) {
int ds;
int edge;
ret = of_property_read_u32_index(np, "microchip,mic-pos", i * 2,
&ds);
if (ret) {
dev_err(dd->dev,
"failed to get value no %d value from microchip,mic-pos: %d",
i * 2, ret);
return ret;
}
if (ds >= MCHP_PDMC_DS_NO) {
dev_err(dd->dev,
"invalid DS index in microchip,mic-pos array: %d",
ds);
return -EINVAL;
}
ret = of_property_read_u32_index(np, "microchip,mic-pos", i * 2 + 1,
&edge);
if (ret) {
dev_err(dd->dev,
"failed to get value no %d value from microchip,mic-pos: %d",
i * 2 + 1, ret);
return ret;
}
if (edge != MCHP_PDMC_CLK_POSITIVE &&
edge != MCHP_PDMC_CLK_NEGATIVE) {
dev_err(dd->dev,
"invalid edge in microchip,mic-pos array: %d", edge);
return -EINVAL;
}
if (mic_ch[ds][edge]) {
dev_err(dd->dev,
"duplicated mic (DS %d, edge %d) in microchip,mic-pos array",
ds, edge);
return -EINVAL;
}
mic_ch[ds][edge] = true;
dd->channel_mic_map[i].ds_pos = ds;
dd->channel_mic_map[i].clk_edge = edge;
}
dd->startup_delay_us = 150000;
of_property_read_u32(np, "microchip,startup-delay-us", &dd->startup_delay_us);
return 0;
}
/* used to clean the channel index found on RHR's MSB */
static int mchp_pdmc_process(struct snd_pcm_substream *substream,
int channel, unsigned long hwoff,
void *buf, unsigned long bytes)
{
struct snd_pcm_runtime *runtime = substream->runtime;
u8 *dma_ptr = runtime->dma_area + hwoff +
channel * (runtime->dma_bytes / runtime->channels);
u8 *dma_ptr_end = dma_ptr + bytes;
unsigned int sample_size = samples_to_bytes(runtime, 1);
for (; dma_ptr < dma_ptr_end; dma_ptr += sample_size)
*dma_ptr = 0;
return 0;
}
static struct snd_dmaengine_pcm_config mchp_pdmc_config = {
.process = mchp_pdmc_process,
.prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
};
static int mchp_pdmc_runtime_suspend(struct device *dev)
{
struct mchp_pdmc *dd = dev_get_drvdata(dev);
regcache_cache_only(dd->regmap, true);
clk_disable_unprepare(dd->gclk);
clk_disable_unprepare(dd->pclk);
return 0;
}
static int mchp_pdmc_runtime_resume(struct device *dev)
{
struct mchp_pdmc *dd = dev_get_drvdata(dev);
int ret;
ret = clk_prepare_enable(dd->pclk);
if (ret) {
dev_err(dd->dev,
"failed to enable the peripheral clock: %d\n", ret);
return ret;
}
ret = clk_prepare_enable(dd->gclk);
if (ret) {
dev_err(dd->dev,
"failed to enable generic clock: %d\n", ret);
goto disable_pclk;
}
regcache_cache_only(dd->regmap, false);
regcache_mark_dirty(dd->regmap);
ret = regcache_sync(dd->regmap);
if (ret) {
regcache_cache_only(dd->regmap, true);
clk_disable_unprepare(dd->gclk);
disable_pclk:
clk_disable_unprepare(dd->pclk);
}
return ret;
}
static int mchp_pdmc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct mchp_pdmc *dd;
struct resource *res;
void __iomem *io_base;
u32 version;
int irq;
int ret;
dd = devm_kzalloc(dev, sizeof(*dd), GFP_KERNEL);
if (!dd)
return -ENOMEM;
dd->dev = &pdev->dev;
ret = mchp_pdmc_dt_init(dd);
if (ret < 0)
return ret;
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
dd->pclk = devm_clk_get(dev, "pclk");
if (IS_ERR(dd->pclk)) {
ret = PTR_ERR(dd->pclk);
dev_err(dev, "failed to get peripheral clock: %d\n", ret);
return ret;
}
dd->gclk = devm_clk_get(dev, "gclk");
if (IS_ERR(dd->gclk)) {
ret = PTR_ERR(dd->gclk);
dev_err(dev, "failed to get GCK: %d\n", ret);
return ret;
}
io_base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
if (IS_ERR(io_base)) {
ret = PTR_ERR(io_base);
dev_err(dev, "failed to remap register memory: %d\n", ret);
return ret;
}
dd->regmap = devm_regmap_init_mmio(dev, io_base,
&mchp_pdmc_regmap_config);
if (IS_ERR(dd->regmap)) {
ret = PTR_ERR(dd->regmap);
dev_err(dev, "failed to init register map: %d\n", ret);
return ret;
}
ret = devm_request_irq(dev, irq, mchp_pdmc_interrupt, 0,
dev_name(&pdev->dev), (void *)dd);
if (ret < 0) {
dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n",
irq, ret);
return ret;
}
/* by default audio filter is enabled and the SINC Filter order
* will be set to the recommended value, 3
*/
dd->audio_filter_en = true;
dd->sinc_order = 3;
dd->addr.addr = (dma_addr_t)res->start + MCHP_PDMC_RHR;
platform_set_drvdata(pdev, dd);
pm_runtime_enable(dd->dev);
if (!pm_runtime_enabled(dd->dev)) {
ret = mchp_pdmc_runtime_resume(dd->dev);
if (ret)
return ret;
}
/* register platform */
ret = devm_snd_dmaengine_pcm_register(dev, &mchp_pdmc_config, 0);
if (ret) {
dev_err(dev, "could not register platform: %d\n", ret);
goto pm_runtime_suspend;
}
ret = devm_snd_soc_register_component(dev, &mchp_pdmc_dai_component,
&mchp_pdmc_dai, 1);
if (ret) {
dev_err(dev, "could not register CPU DAI: %d\n", ret);
goto pm_runtime_suspend;
}
/* print IP version */
regmap_read(dd->regmap, MCHP_PDMC_VER, &version);
dev_info(dd->dev, "hw version: %#lx\n",
version & MCHP_PDMC_VER_VERSION);
return 0;
pm_runtime_suspend:
if (!pm_runtime_status_suspended(dd->dev))
mchp_pdmc_runtime_suspend(dd->dev);
pm_runtime_disable(dd->dev);
return ret;
}
static int mchp_pdmc_remove(struct platform_device *pdev)
{
struct mchp_pdmc *dd = platform_get_drvdata(pdev);
if (!pm_runtime_status_suspended(dd->dev))
mchp_pdmc_runtime_suspend(dd->dev);
pm_runtime_disable(dd->dev);
return 0;
}
static const struct of_device_id mchp_pdmc_of_match[] = {
{
.compatible = "microchip,sama7g5-pdmc",
}, {
/* sentinel */
}
};
MODULE_DEVICE_TABLE(of, mchp_pdmc_of_match);
static const struct dev_pm_ops mchp_pdmc_pm_ops = {
SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume)
RUNTIME_PM_OPS(mchp_pdmc_runtime_suspend, mchp_pdmc_runtime_resume,
NULL)
};
static struct platform_driver mchp_pdmc_driver = {
.driver = {
.name = "mchp-pdmc",
.of_match_table = of_match_ptr(mchp_pdmc_of_match),
.pm = pm_ptr(&mchp_pdmc_pm_ops),
},
.probe = mchp_pdmc_probe,
.remove = mchp_pdmc_remove,
};
module_platform_driver(mchp_pdmc_driver);
MODULE_DESCRIPTION("Microchip PDMC driver under ALSA SoC architecture");
MODULE_AUTHOR("Codrin Ciubotariu <codrin.ciubotariu@microchip.com>");
MODULE_LICENSE("GPL v2");