linux-zen-server/tools/include/linux/rbtree.h

346 lines
9.3 KiB
C
Raw Normal View History

2023-08-30 17:53:23 +02:00
/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
Red Black Trees
(C) 1999 Andrea Arcangeli <andrea@suse.de>
linux/include/linux/rbtree.h
To use rbtrees you'll have to implement your own insert and search cores.
This will avoid us to use callbacks and to drop drammatically performances.
I know it's not the cleaner way, but in C (not in C++) to get
performances and genericity...
See Documentation/core-api/rbtree.rst for documentation and samples.
*/
#ifndef __TOOLS_LINUX_PERF_RBTREE_H
#define __TOOLS_LINUX_PERF_RBTREE_H
#include <linux/kernel.h>
#include <linux/stddef.h>
struct rb_node {
unsigned long __rb_parent_color;
struct rb_node *rb_right;
struct rb_node *rb_left;
} __attribute__((aligned(sizeof(long))));
/* The alignment might seem pointless, but allegedly CRIS needs it */
struct rb_root {
struct rb_node *rb_node;
};
#define rb_parent(r) ((struct rb_node *)((r)->__rb_parent_color & ~3))
#define RB_ROOT (struct rb_root) { NULL, }
#define rb_entry(ptr, type, member) container_of(ptr, type, member)
#define RB_EMPTY_ROOT(root) (READ_ONCE((root)->rb_node) == NULL)
/* 'empty' nodes are nodes that are known not to be inserted in an rbtree */
#define RB_EMPTY_NODE(node) \
((node)->__rb_parent_color == (unsigned long)(node))
#define RB_CLEAR_NODE(node) \
((node)->__rb_parent_color = (unsigned long)(node))
extern void rb_insert_color(struct rb_node *, struct rb_root *);
extern void rb_erase(struct rb_node *, struct rb_root *);
/* Find logical next and previous nodes in a tree */
extern struct rb_node *rb_next(const struct rb_node *);
extern struct rb_node *rb_prev(const struct rb_node *);
extern struct rb_node *rb_first(const struct rb_root *);
extern struct rb_node *rb_last(const struct rb_root *);
/* Postorder iteration - always visit the parent after its children */
extern struct rb_node *rb_first_postorder(const struct rb_root *);
extern struct rb_node *rb_next_postorder(const struct rb_node *);
/* Fast replacement of a single node without remove/rebalance/add/rebalance */
extern void rb_replace_node(struct rb_node *victim, struct rb_node *new,
struct rb_root *root);
static inline void rb_link_node(struct rb_node *node, struct rb_node *parent,
struct rb_node **rb_link)
{
node->__rb_parent_color = (unsigned long)parent;
node->rb_left = node->rb_right = NULL;
*rb_link = node;
}
#define rb_entry_safe(ptr, type, member) \
({ typeof(ptr) ____ptr = (ptr); \
____ptr ? rb_entry(____ptr, type, member) : NULL; \
})
/**
* rbtree_postorder_for_each_entry_safe - iterate in post-order over rb_root of
* given type allowing the backing memory of @pos to be invalidated
*
* @pos: the 'type *' to use as a loop cursor.
* @n: another 'type *' to use as temporary storage
* @root: 'rb_root *' of the rbtree.
* @field: the name of the rb_node field within 'type'.
*
* rbtree_postorder_for_each_entry_safe() provides a similar guarantee as
* list_for_each_entry_safe() and allows the iteration to continue independent
* of changes to @pos by the body of the loop.
*
* Note, however, that it cannot handle other modifications that re-order the
* rbtree it is iterating over. This includes calling rb_erase() on @pos, as
* rb_erase() may rebalance the tree, causing us to miss some nodes.
*/
#define rbtree_postorder_for_each_entry_safe(pos, n, root, field) \
for (pos = rb_entry_safe(rb_first_postorder(root), typeof(*pos), field); \
pos && ({ n = rb_entry_safe(rb_next_postorder(&pos->field), \
typeof(*pos), field); 1; }); \
pos = n)
static inline void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
rb_erase(n, root);
RB_CLEAR_NODE(n);
}
/*
* Leftmost-cached rbtrees.
*
* We do not cache the rightmost node based on footprint
* size vs number of potential users that could benefit
* from O(1) rb_last(). Just not worth it, users that want
* this feature can always implement the logic explicitly.
* Furthermore, users that want to cache both pointers may
* find it a bit asymmetric, but that's ok.
*/
struct rb_root_cached {
struct rb_root rb_root;
struct rb_node *rb_leftmost;
};
#define RB_ROOT_CACHED (struct rb_root_cached) { {NULL, }, NULL }
/* Same as rb_first(), but O(1) */
#define rb_first_cached(root) (root)->rb_leftmost
static inline void rb_insert_color_cached(struct rb_node *node,
struct rb_root_cached *root,
bool leftmost)
{
if (leftmost)
root->rb_leftmost = node;
rb_insert_color(node, &root->rb_root);
}
static inline void rb_erase_cached(struct rb_node *node,
struct rb_root_cached *root)
{
if (root->rb_leftmost == node)
root->rb_leftmost = rb_next(node);
rb_erase(node, &root->rb_root);
}
static inline void rb_replace_node_cached(struct rb_node *victim,
struct rb_node *new,
struct rb_root_cached *root)
{
if (root->rb_leftmost == victim)
root->rb_leftmost = new;
rb_replace_node(victim, new, &root->rb_root);
}
/*
* The below helper functions use 2 operators with 3 different
* calling conventions. The operators are related like:
*
* comp(a->key,b) < 0 := less(a,b)
* comp(a->key,b) > 0 := less(b,a)
* comp(a->key,b) == 0 := !less(a,b) && !less(b,a)
*
* If these operators define a partial order on the elements we make no
* guarantee on which of the elements matching the key is found. See
* rb_find().
*
* The reason for this is to allow the find() interface without requiring an
* on-stack dummy object, which might not be feasible due to object size.
*/
/**
* rb_add_cached() - insert @node into the leftmost cached tree @tree
* @node: node to insert
* @tree: leftmost cached tree to insert @node into
* @less: operator defining the (partial) node order
*/
static __always_inline void
rb_add_cached(struct rb_node *node, struct rb_root_cached *tree,
bool (*less)(struct rb_node *, const struct rb_node *))
{
struct rb_node **link = &tree->rb_root.rb_node;
struct rb_node *parent = NULL;
bool leftmost = true;
while (*link) {
parent = *link;
if (less(node, parent)) {
link = &parent->rb_left;
} else {
link = &parent->rb_right;
leftmost = false;
}
}
rb_link_node(node, parent, link);
rb_insert_color_cached(node, tree, leftmost);
}
/**
* rb_add() - insert @node into @tree
* @node: node to insert
* @tree: tree to insert @node into
* @less: operator defining the (partial) node order
*/
static __always_inline void
rb_add(struct rb_node *node, struct rb_root *tree,
bool (*less)(struct rb_node *, const struct rb_node *))
{
struct rb_node **link = &tree->rb_node;
struct rb_node *parent = NULL;
while (*link) {
parent = *link;
if (less(node, parent))
link = &parent->rb_left;
else
link = &parent->rb_right;
}
rb_link_node(node, parent, link);
rb_insert_color(node, tree);
}
/**
* rb_find_add() - find equivalent @node in @tree, or add @node
* @node: node to look-for / insert
* @tree: tree to search / modify
* @cmp: operator defining the node order
*
* Returns the rb_node matching @node, or NULL when no match is found and @node
* is inserted.
*/
static __always_inline struct rb_node *
rb_find_add(struct rb_node *node, struct rb_root *tree,
int (*cmp)(struct rb_node *, const struct rb_node *))
{
struct rb_node **link = &tree->rb_node;
struct rb_node *parent = NULL;
int c;
while (*link) {
parent = *link;
c = cmp(node, parent);
if (c < 0)
link = &parent->rb_left;
else if (c > 0)
link = &parent->rb_right;
else
return parent;
}
rb_link_node(node, parent, link);
rb_insert_color(node, tree);
return NULL;
}
/**
* rb_find() - find @key in tree @tree
* @key: key to match
* @tree: tree to search
* @cmp: operator defining the node order
*
* Returns the rb_node matching @key or NULL.
*/
static __always_inline struct rb_node *
rb_find(const void *key, const struct rb_root *tree,
int (*cmp)(const void *key, const struct rb_node *))
{
struct rb_node *node = tree->rb_node;
while (node) {
int c = cmp(key, node);
if (c < 0)
node = node->rb_left;
else if (c > 0)
node = node->rb_right;
else
return node;
}
return NULL;
}
/**
* rb_find_first() - find the first @key in @tree
* @key: key to match
* @tree: tree to search
* @cmp: operator defining node order
*
* Returns the leftmost node matching @key, or NULL.
*/
static __always_inline struct rb_node *
rb_find_first(const void *key, const struct rb_root *tree,
int (*cmp)(const void *key, const struct rb_node *))
{
struct rb_node *node = tree->rb_node;
struct rb_node *match = NULL;
while (node) {
int c = cmp(key, node);
if (c <= 0) {
if (!c)
match = node;
node = node->rb_left;
} else if (c > 0) {
node = node->rb_right;
}
}
return match;
}
/**
* rb_next_match() - find the next @key in @tree
* @key: key to match
* @tree: tree to search
* @cmp: operator defining node order
*
* Returns the next node matching @key, or NULL.
*/
static __always_inline struct rb_node *
rb_next_match(const void *key, struct rb_node *node,
int (*cmp)(const void *key, const struct rb_node *))
{
node = rb_next(node);
if (node && cmp(key, node))
node = NULL;
return node;
}
/**
* rb_for_each() - iterates a subtree matching @key
* @node: iterator
* @key: key to match
* @tree: tree to search
* @cmp: operator defining node order
*/
#define rb_for_each(node, key, tree, cmp) \
for ((node) = rb_find_first((key), (tree), (cmp)); \
(node); (node) = rb_next_match((key), (node), (cmp)))
#endif /* __TOOLS_LINUX_PERF_RBTREE_H */