linux-zen-server/tools/testing/selftests/cgroup/test_kmem.c

457 lines
9.6 KiB
C
Raw Normal View History

2023-08-30 17:53:23 +02:00
// SPDX-License-Identifier: GPL-2.0
#define _GNU_SOURCE
#include <linux/limits.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <sys/wait.h>
#include <errno.h>
#include <sys/sysinfo.h>
#include <pthread.h>
#include "../kselftest.h"
#include "cgroup_util.h"
/*
* Memory cgroup charging is performed using percpu batches 64 pages
* big (look at MEMCG_CHARGE_BATCH), whereas memory.stat is exact. So
* the maximum discrepancy between charge and vmstat entries is number
* of cpus multiplied by 64 pages.
*/
#define MAX_VMSTAT_ERROR (4096 * 64 * get_nprocs())
static int alloc_dcache(const char *cgroup, void *arg)
{
unsigned long i;
struct stat st;
char buf[128];
for (i = 0; i < (unsigned long)arg; i++) {
snprintf(buf, sizeof(buf),
"/something-non-existent-with-a-long-name-%64lu-%d",
i, getpid());
stat(buf, &st);
}
return 0;
}
/*
* This test allocates 100000 of negative dentries with long names.
* Then it checks that "slab" in memory.stat is larger than 1M.
* Then it sets memory.high to 1M and checks that at least 1/2
* of slab memory has been reclaimed.
*/
static int test_kmem_basic(const char *root)
{
int ret = KSFT_FAIL;
char *cg = NULL;
long slab0, slab1, current;
cg = cg_name(root, "kmem_basic_test");
if (!cg)
goto cleanup;
if (cg_create(cg))
goto cleanup;
if (cg_run(cg, alloc_dcache, (void *)100000))
goto cleanup;
slab0 = cg_read_key_long(cg, "memory.stat", "slab ");
if (slab0 < (1 << 20))
goto cleanup;
cg_write(cg, "memory.high", "1M");
slab1 = cg_read_key_long(cg, "memory.stat", "slab ");
if (slab1 <= 0)
goto cleanup;
current = cg_read_long(cg, "memory.current");
if (current <= 0)
goto cleanup;
if (slab1 < slab0 / 2 && current < slab0 / 2)
ret = KSFT_PASS;
cleanup:
cg_destroy(cg);
free(cg);
return ret;
}
static void *alloc_kmem_fn(void *arg)
{
alloc_dcache(NULL, (void *)100);
return NULL;
}
static int alloc_kmem_smp(const char *cgroup, void *arg)
{
int nr_threads = 2 * get_nprocs();
pthread_t *tinfo;
unsigned long i;
int ret = -1;
tinfo = calloc(nr_threads, sizeof(pthread_t));
if (tinfo == NULL)
return -1;
for (i = 0; i < nr_threads; i++) {
if (pthread_create(&tinfo[i], NULL, &alloc_kmem_fn,
(void *)i)) {
free(tinfo);
return -1;
}
}
for (i = 0; i < nr_threads; i++) {
ret = pthread_join(tinfo[i], NULL);
if (ret)
break;
}
free(tinfo);
return ret;
}
static int cg_run_in_subcgroups(const char *parent,
int (*fn)(const char *cgroup, void *arg),
void *arg, int times)
{
char *child;
int i;
for (i = 0; i < times; i++) {
child = cg_name_indexed(parent, "child", i);
if (!child)
return -1;
if (cg_create(child)) {
cg_destroy(child);
free(child);
return -1;
}
if (cg_run(child, fn, NULL)) {
cg_destroy(child);
free(child);
return -1;
}
cg_destroy(child);
free(child);
}
return 0;
}
/*
* The test creates and destroys a large number of cgroups. In each cgroup it
* allocates some slab memory (mostly negative dentries) using 2 * NR_CPUS
* threads. Then it checks the sanity of numbers on the parent level:
* the total size of the cgroups should be roughly equal to
* anon + file + slab + kernel_stack.
*/
static int test_kmem_memcg_deletion(const char *root)
{
long current, slab, anon, file, kernel_stack, pagetables, percpu, sock, sum;
int ret = KSFT_FAIL;
char *parent;
parent = cg_name(root, "kmem_memcg_deletion_test");
if (!parent)
goto cleanup;
if (cg_create(parent))
goto cleanup;
if (cg_write(parent, "cgroup.subtree_control", "+memory"))
goto cleanup;
if (cg_run_in_subcgroups(parent, alloc_kmem_smp, NULL, 100))
goto cleanup;
current = cg_read_long(parent, "memory.current");
slab = cg_read_key_long(parent, "memory.stat", "slab ");
anon = cg_read_key_long(parent, "memory.stat", "anon ");
file = cg_read_key_long(parent, "memory.stat", "file ");
kernel_stack = cg_read_key_long(parent, "memory.stat", "kernel_stack ");
pagetables = cg_read_key_long(parent, "memory.stat", "pagetables ");
percpu = cg_read_key_long(parent, "memory.stat", "percpu ");
sock = cg_read_key_long(parent, "memory.stat", "sock ");
if (current < 0 || slab < 0 || anon < 0 || file < 0 ||
kernel_stack < 0 || pagetables < 0 || percpu < 0 || sock < 0)
goto cleanup;
sum = slab + anon + file + kernel_stack + pagetables + percpu + sock;
if (abs(sum - current) < MAX_VMSTAT_ERROR) {
ret = KSFT_PASS;
} else {
printf("memory.current = %ld\n", current);
printf("slab + anon + file + kernel_stack = %ld\n", sum);
printf("slab = %ld\n", slab);
printf("anon = %ld\n", anon);
printf("file = %ld\n", file);
printf("kernel_stack = %ld\n", kernel_stack);
printf("pagetables = %ld\n", pagetables);
printf("percpu = %ld\n", percpu);
printf("sock = %ld\n", sock);
}
cleanup:
cg_destroy(parent);
free(parent);
return ret;
}
/*
* The test reads the entire /proc/kpagecgroup. If the operation went
* successfully (and the kernel didn't panic), the test is treated as passed.
*/
static int test_kmem_proc_kpagecgroup(const char *root)
{
unsigned long buf[128];
int ret = KSFT_FAIL;
ssize_t len;
int fd;
fd = open("/proc/kpagecgroup", O_RDONLY);
if (fd < 0)
return ret;
do {
len = read(fd, buf, sizeof(buf));
} while (len > 0);
if (len == 0)
ret = KSFT_PASS;
close(fd);
return ret;
}
static void *pthread_wait_fn(void *arg)
{
sleep(100);
return NULL;
}
static int spawn_1000_threads(const char *cgroup, void *arg)
{
int nr_threads = 1000;
pthread_t *tinfo;
unsigned long i;
long stack;
int ret = -1;
tinfo = calloc(nr_threads, sizeof(pthread_t));
if (tinfo == NULL)
return -1;
for (i = 0; i < nr_threads; i++) {
if (pthread_create(&tinfo[i], NULL, &pthread_wait_fn,
(void *)i)) {
free(tinfo);
return(-1);
}
}
stack = cg_read_key_long(cgroup, "memory.stat", "kernel_stack ");
if (stack >= 4096 * 1000)
ret = 0;
free(tinfo);
return ret;
}
/*
* The test spawns a process, which spawns 1000 threads. Then it checks
* that memory.stat's kernel_stack is at least 1000 pages large.
*/
static int test_kmem_kernel_stacks(const char *root)
{
int ret = KSFT_FAIL;
char *cg = NULL;
cg = cg_name(root, "kmem_kernel_stacks_test");
if (!cg)
goto cleanup;
if (cg_create(cg))
goto cleanup;
if (cg_run(cg, spawn_1000_threads, NULL))
goto cleanup;
ret = KSFT_PASS;
cleanup:
cg_destroy(cg);
free(cg);
return ret;
}
/*
* This test sequentionally creates 30 child cgroups, allocates some
* kernel memory in each of them, and deletes them. Then it checks
* that the number of dying cgroups on the parent level is 0.
*/
static int test_kmem_dead_cgroups(const char *root)
{
int ret = KSFT_FAIL;
char *parent;
long dead;
int i;
parent = cg_name(root, "kmem_dead_cgroups_test");
if (!parent)
goto cleanup;
if (cg_create(parent))
goto cleanup;
if (cg_write(parent, "cgroup.subtree_control", "+memory"))
goto cleanup;
if (cg_run_in_subcgroups(parent, alloc_dcache, (void *)100, 30))
goto cleanup;
for (i = 0; i < 5; i++) {
dead = cg_read_key_long(parent, "cgroup.stat",
"nr_dying_descendants ");
if (dead == 0) {
ret = KSFT_PASS;
break;
}
/*
* Reclaiming cgroups might take some time,
* let's wait a bit and repeat.
*/
sleep(1);
}
cleanup:
cg_destroy(parent);
free(parent);
return ret;
}
/*
* This test creates a sub-tree with 1000 memory cgroups.
* Then it checks that the memory.current on the parent level
* is greater than 0 and approximates matches the percpu value
* from memory.stat.
*/
static int test_percpu_basic(const char *root)
{
int ret = KSFT_FAIL;
char *parent, *child;
long current, percpu;
int i;
parent = cg_name(root, "percpu_basic_test");
if (!parent)
goto cleanup;
if (cg_create(parent))
goto cleanup;
if (cg_write(parent, "cgroup.subtree_control", "+memory"))
goto cleanup;
for (i = 0; i < 1000; i++) {
child = cg_name_indexed(parent, "child", i);
if (!child)
return -1;
if (cg_create(child))
goto cleanup_children;
free(child);
}
current = cg_read_long(parent, "memory.current");
percpu = cg_read_key_long(parent, "memory.stat", "percpu ");
if (current > 0 && percpu > 0 && abs(current - percpu) <
MAX_VMSTAT_ERROR)
ret = KSFT_PASS;
else
printf("memory.current %ld\npercpu %ld\n",
current, percpu);
cleanup_children:
for (i = 0; i < 1000; i++) {
child = cg_name_indexed(parent, "child", i);
cg_destroy(child);
free(child);
}
cleanup:
cg_destroy(parent);
free(parent);
return ret;
}
#define T(x) { x, #x }
struct kmem_test {
int (*fn)(const char *root);
const char *name;
} tests[] = {
T(test_kmem_basic),
T(test_kmem_memcg_deletion),
T(test_kmem_proc_kpagecgroup),
T(test_kmem_kernel_stacks),
T(test_kmem_dead_cgroups),
T(test_percpu_basic),
};
#undef T
int main(int argc, char **argv)
{
char root[PATH_MAX];
int i, ret = EXIT_SUCCESS;
if (cg_find_unified_root(root, sizeof(root)))
ksft_exit_skip("cgroup v2 isn't mounted\n");
/*
* Check that memory controller is available:
* memory is listed in cgroup.controllers
*/
if (cg_read_strstr(root, "cgroup.controllers", "memory"))
ksft_exit_skip("memory controller isn't available\n");
if (cg_read_strstr(root, "cgroup.subtree_control", "memory"))
if (cg_write(root, "cgroup.subtree_control", "+memory"))
ksft_exit_skip("Failed to set memory controller\n");
for (i = 0; i < ARRAY_SIZE(tests); i++) {
switch (tests[i].fn(root)) {
case KSFT_PASS:
ksft_test_result_pass("%s\n", tests[i].name);
break;
case KSFT_SKIP:
ksft_test_result_skip("%s\n", tests[i].name);
break;
default:
ret = EXIT_FAILURE;
ksft_test_result_fail("%s\n", tests[i].name);
break;
}
}
return ret;
}