1135 lines
34 KiB
C
1135 lines
34 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
/*
|
||
|
* page_fault_test.c - Test stage 2 faults.
|
||
|
*
|
||
|
* This test tries different combinations of guest accesses (e.g., write,
|
||
|
* S1PTW), backing source type (e.g., anon) and types of faults (e.g., read on
|
||
|
* hugetlbfs with a hole). It checks that the expected handling method is
|
||
|
* called (e.g., uffd faults with the right address and write/read flag).
|
||
|
*/
|
||
|
|
||
|
#define _GNU_SOURCE
|
||
|
#include <linux/bitmap.h>
|
||
|
#include <fcntl.h>
|
||
|
#include <test_util.h>
|
||
|
#include <kvm_util.h>
|
||
|
#include <processor.h>
|
||
|
#include <asm/sysreg.h>
|
||
|
#include <linux/bitfield.h>
|
||
|
#include "guest_modes.h"
|
||
|
#include "userfaultfd_util.h"
|
||
|
|
||
|
/* Guest virtual addresses that point to the test page and its PTE. */
|
||
|
#define TEST_GVA 0xc0000000
|
||
|
#define TEST_EXEC_GVA (TEST_GVA + 0x8)
|
||
|
#define TEST_PTE_GVA 0xb0000000
|
||
|
#define TEST_DATA 0x0123456789ABCDEF
|
||
|
|
||
|
static uint64_t *guest_test_memory = (uint64_t *)TEST_GVA;
|
||
|
|
||
|
#define CMD_NONE (0)
|
||
|
#define CMD_SKIP_TEST (1ULL << 1)
|
||
|
#define CMD_HOLE_PT (1ULL << 2)
|
||
|
#define CMD_HOLE_DATA (1ULL << 3)
|
||
|
#define CMD_CHECK_WRITE_IN_DIRTY_LOG (1ULL << 4)
|
||
|
#define CMD_CHECK_S1PTW_WR_IN_DIRTY_LOG (1ULL << 5)
|
||
|
#define CMD_CHECK_NO_WRITE_IN_DIRTY_LOG (1ULL << 6)
|
||
|
#define CMD_CHECK_NO_S1PTW_WR_IN_DIRTY_LOG (1ULL << 7)
|
||
|
#define CMD_SET_PTE_AF (1ULL << 8)
|
||
|
|
||
|
#define PREPARE_FN_NR 10
|
||
|
#define CHECK_FN_NR 10
|
||
|
|
||
|
static struct event_cnt {
|
||
|
int mmio_exits;
|
||
|
int fail_vcpu_runs;
|
||
|
int uffd_faults;
|
||
|
/* uffd_faults is incremented from multiple threads. */
|
||
|
pthread_mutex_t uffd_faults_mutex;
|
||
|
} events;
|
||
|
|
||
|
struct test_desc {
|
||
|
const char *name;
|
||
|
uint64_t mem_mark_cmd;
|
||
|
/* Skip the test if any prepare function returns false */
|
||
|
bool (*guest_prepare[PREPARE_FN_NR])(void);
|
||
|
void (*guest_test)(void);
|
||
|
void (*guest_test_check[CHECK_FN_NR])(void);
|
||
|
uffd_handler_t uffd_pt_handler;
|
||
|
uffd_handler_t uffd_data_handler;
|
||
|
void (*dabt_handler)(struct ex_regs *regs);
|
||
|
void (*iabt_handler)(struct ex_regs *regs);
|
||
|
void (*mmio_handler)(struct kvm_vm *vm, struct kvm_run *run);
|
||
|
void (*fail_vcpu_run_handler)(int ret);
|
||
|
uint32_t pt_memslot_flags;
|
||
|
uint32_t data_memslot_flags;
|
||
|
bool skip;
|
||
|
struct event_cnt expected_events;
|
||
|
};
|
||
|
|
||
|
struct test_params {
|
||
|
enum vm_mem_backing_src_type src_type;
|
||
|
struct test_desc *test_desc;
|
||
|
};
|
||
|
|
||
|
static inline void flush_tlb_page(uint64_t vaddr)
|
||
|
{
|
||
|
uint64_t page = vaddr >> 12;
|
||
|
|
||
|
dsb(ishst);
|
||
|
asm volatile("tlbi vaae1is, %0" :: "r" (page));
|
||
|
dsb(ish);
|
||
|
isb();
|
||
|
}
|
||
|
|
||
|
static void guest_write64(void)
|
||
|
{
|
||
|
uint64_t val;
|
||
|
|
||
|
WRITE_ONCE(*guest_test_memory, TEST_DATA);
|
||
|
val = READ_ONCE(*guest_test_memory);
|
||
|
GUEST_ASSERT_EQ(val, TEST_DATA);
|
||
|
}
|
||
|
|
||
|
/* Check the system for atomic instructions. */
|
||
|
static bool guest_check_lse(void)
|
||
|
{
|
||
|
uint64_t isar0 = read_sysreg(id_aa64isar0_el1);
|
||
|
uint64_t atomic;
|
||
|
|
||
|
atomic = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64ISAR0_ATOMICS), isar0);
|
||
|
return atomic >= 2;
|
||
|
}
|
||
|
|
||
|
static bool guest_check_dc_zva(void)
|
||
|
{
|
||
|
uint64_t dczid = read_sysreg(dczid_el0);
|
||
|
uint64_t dzp = FIELD_GET(ARM64_FEATURE_MASK(DCZID_DZP), dczid);
|
||
|
|
||
|
return dzp == 0;
|
||
|
}
|
||
|
|
||
|
/* Compare and swap instruction. */
|
||
|
static void guest_cas(void)
|
||
|
{
|
||
|
uint64_t val;
|
||
|
|
||
|
GUEST_ASSERT(guest_check_lse());
|
||
|
asm volatile(".arch_extension lse\n"
|
||
|
"casal %0, %1, [%2]\n"
|
||
|
:: "r" (0ul), "r" (TEST_DATA), "r" (guest_test_memory));
|
||
|
val = READ_ONCE(*guest_test_memory);
|
||
|
GUEST_ASSERT_EQ(val, TEST_DATA);
|
||
|
}
|
||
|
|
||
|
static void guest_read64(void)
|
||
|
{
|
||
|
uint64_t val;
|
||
|
|
||
|
val = READ_ONCE(*guest_test_memory);
|
||
|
GUEST_ASSERT_EQ(val, 0);
|
||
|
}
|
||
|
|
||
|
/* Address translation instruction */
|
||
|
static void guest_at(void)
|
||
|
{
|
||
|
uint64_t par;
|
||
|
|
||
|
asm volatile("at s1e1r, %0" :: "r" (guest_test_memory));
|
||
|
par = read_sysreg(par_el1);
|
||
|
isb();
|
||
|
|
||
|
/* Bit 1 indicates whether the AT was successful */
|
||
|
GUEST_ASSERT_EQ(par & 1, 0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The size of the block written by "dc zva" is guaranteed to be between (2 <<
|
||
|
* 0) and (2 << 9), which is safe in our case as we need the write to happen
|
||
|
* for at least a word, and not more than a page.
|
||
|
*/
|
||
|
static void guest_dc_zva(void)
|
||
|
{
|
||
|
uint16_t val;
|
||
|
|
||
|
asm volatile("dc zva, %0" :: "r" (guest_test_memory));
|
||
|
dsb(ish);
|
||
|
val = READ_ONCE(*guest_test_memory);
|
||
|
GUEST_ASSERT_EQ(val, 0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Pre-indexing loads and stores don't have a valid syndrome (ESR_EL2.ISV==0).
|
||
|
* And that's special because KVM must take special care with those: they
|
||
|
* should still count as accesses for dirty logging or user-faulting, but
|
||
|
* should be handled differently on mmio.
|
||
|
*/
|
||
|
static void guest_ld_preidx(void)
|
||
|
{
|
||
|
uint64_t val;
|
||
|
uint64_t addr = TEST_GVA - 8;
|
||
|
|
||
|
/*
|
||
|
* This ends up accessing "TEST_GVA + 8 - 8", where "TEST_GVA - 8" is
|
||
|
* in a gap between memslots not backing by anything.
|
||
|
*/
|
||
|
asm volatile("ldr %0, [%1, #8]!"
|
||
|
: "=r" (val), "+r" (addr));
|
||
|
GUEST_ASSERT_EQ(val, 0);
|
||
|
GUEST_ASSERT_EQ(addr, TEST_GVA);
|
||
|
}
|
||
|
|
||
|
static void guest_st_preidx(void)
|
||
|
{
|
||
|
uint64_t val = TEST_DATA;
|
||
|
uint64_t addr = TEST_GVA - 8;
|
||
|
|
||
|
asm volatile("str %0, [%1, #8]!"
|
||
|
: "+r" (val), "+r" (addr));
|
||
|
|
||
|
GUEST_ASSERT_EQ(addr, TEST_GVA);
|
||
|
val = READ_ONCE(*guest_test_memory);
|
||
|
}
|
||
|
|
||
|
static bool guest_set_ha(void)
|
||
|
{
|
||
|
uint64_t mmfr1 = read_sysreg(id_aa64mmfr1_el1);
|
||
|
uint64_t hadbs, tcr;
|
||
|
|
||
|
/* Skip if HA is not supported. */
|
||
|
hadbs = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64MMFR1_HADBS), mmfr1);
|
||
|
if (hadbs == 0)
|
||
|
return false;
|
||
|
|
||
|
tcr = read_sysreg(tcr_el1) | TCR_EL1_HA;
|
||
|
write_sysreg(tcr, tcr_el1);
|
||
|
isb();
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static bool guest_clear_pte_af(void)
|
||
|
{
|
||
|
*((uint64_t *)TEST_PTE_GVA) &= ~PTE_AF;
|
||
|
flush_tlb_page(TEST_GVA);
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static void guest_check_pte_af(void)
|
||
|
{
|
||
|
dsb(ish);
|
||
|
GUEST_ASSERT_EQ(*((uint64_t *)TEST_PTE_GVA) & PTE_AF, PTE_AF);
|
||
|
}
|
||
|
|
||
|
static void guest_check_write_in_dirty_log(void)
|
||
|
{
|
||
|
GUEST_SYNC(CMD_CHECK_WRITE_IN_DIRTY_LOG);
|
||
|
}
|
||
|
|
||
|
static void guest_check_no_write_in_dirty_log(void)
|
||
|
{
|
||
|
GUEST_SYNC(CMD_CHECK_NO_WRITE_IN_DIRTY_LOG);
|
||
|
}
|
||
|
|
||
|
static void guest_check_s1ptw_wr_in_dirty_log(void)
|
||
|
{
|
||
|
GUEST_SYNC(CMD_CHECK_S1PTW_WR_IN_DIRTY_LOG);
|
||
|
}
|
||
|
|
||
|
static void guest_check_no_s1ptw_wr_in_dirty_log(void)
|
||
|
{
|
||
|
GUEST_SYNC(CMD_CHECK_NO_S1PTW_WR_IN_DIRTY_LOG);
|
||
|
}
|
||
|
|
||
|
static void guest_exec(void)
|
||
|
{
|
||
|
int (*code)(void) = (int (*)(void))TEST_EXEC_GVA;
|
||
|
int ret;
|
||
|
|
||
|
ret = code();
|
||
|
GUEST_ASSERT_EQ(ret, 0x77);
|
||
|
}
|
||
|
|
||
|
static bool guest_prepare(struct test_desc *test)
|
||
|
{
|
||
|
bool (*prepare_fn)(void);
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < PREPARE_FN_NR; i++) {
|
||
|
prepare_fn = test->guest_prepare[i];
|
||
|
if (prepare_fn && !prepare_fn())
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static void guest_test_check(struct test_desc *test)
|
||
|
{
|
||
|
void (*check_fn)(void);
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < CHECK_FN_NR; i++) {
|
||
|
check_fn = test->guest_test_check[i];
|
||
|
if (check_fn)
|
||
|
check_fn();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void guest_code(struct test_desc *test)
|
||
|
{
|
||
|
if (!guest_prepare(test))
|
||
|
GUEST_SYNC(CMD_SKIP_TEST);
|
||
|
|
||
|
GUEST_SYNC(test->mem_mark_cmd);
|
||
|
|
||
|
if (test->guest_test)
|
||
|
test->guest_test();
|
||
|
|
||
|
guest_test_check(test);
|
||
|
GUEST_DONE();
|
||
|
}
|
||
|
|
||
|
static void no_dabt_handler(struct ex_regs *regs)
|
||
|
{
|
||
|
GUEST_ASSERT_1(false, read_sysreg(far_el1));
|
||
|
}
|
||
|
|
||
|
static void no_iabt_handler(struct ex_regs *regs)
|
||
|
{
|
||
|
GUEST_ASSERT_1(false, regs->pc);
|
||
|
}
|
||
|
|
||
|
static struct uffd_args {
|
||
|
char *copy;
|
||
|
void *hva;
|
||
|
uint64_t paging_size;
|
||
|
} pt_args, data_args;
|
||
|
|
||
|
/* Returns true to continue the test, and false if it should be skipped. */
|
||
|
static int uffd_generic_handler(int uffd_mode, int uffd, struct uffd_msg *msg,
|
||
|
struct uffd_args *args)
|
||
|
{
|
||
|
uint64_t addr = msg->arg.pagefault.address;
|
||
|
uint64_t flags = msg->arg.pagefault.flags;
|
||
|
struct uffdio_copy copy;
|
||
|
int ret;
|
||
|
|
||
|
TEST_ASSERT(uffd_mode == UFFDIO_REGISTER_MODE_MISSING,
|
||
|
"The only expected UFFD mode is MISSING");
|
||
|
ASSERT_EQ(addr, (uint64_t)args->hva);
|
||
|
|
||
|
pr_debug("uffd fault: addr=%p write=%d\n",
|
||
|
(void *)addr, !!(flags & UFFD_PAGEFAULT_FLAG_WRITE));
|
||
|
|
||
|
copy.src = (uint64_t)args->copy;
|
||
|
copy.dst = addr;
|
||
|
copy.len = args->paging_size;
|
||
|
copy.mode = 0;
|
||
|
|
||
|
ret = ioctl(uffd, UFFDIO_COPY, ©);
|
||
|
if (ret == -1) {
|
||
|
pr_info("Failed UFFDIO_COPY in 0x%lx with errno: %d\n",
|
||
|
addr, errno);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
pthread_mutex_lock(&events.uffd_faults_mutex);
|
||
|
events.uffd_faults += 1;
|
||
|
pthread_mutex_unlock(&events.uffd_faults_mutex);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int uffd_pt_handler(int mode, int uffd, struct uffd_msg *msg)
|
||
|
{
|
||
|
return uffd_generic_handler(mode, uffd, msg, &pt_args);
|
||
|
}
|
||
|
|
||
|
static int uffd_data_handler(int mode, int uffd, struct uffd_msg *msg)
|
||
|
{
|
||
|
return uffd_generic_handler(mode, uffd, msg, &data_args);
|
||
|
}
|
||
|
|
||
|
static void setup_uffd_args(struct userspace_mem_region *region,
|
||
|
struct uffd_args *args)
|
||
|
{
|
||
|
args->hva = (void *)region->region.userspace_addr;
|
||
|
args->paging_size = region->region.memory_size;
|
||
|
|
||
|
args->copy = malloc(args->paging_size);
|
||
|
TEST_ASSERT(args->copy, "Failed to allocate data copy.");
|
||
|
memcpy(args->copy, args->hva, args->paging_size);
|
||
|
}
|
||
|
|
||
|
static void setup_uffd(struct kvm_vm *vm, struct test_params *p,
|
||
|
struct uffd_desc **pt_uffd, struct uffd_desc **data_uffd)
|
||
|
{
|
||
|
struct test_desc *test = p->test_desc;
|
||
|
int uffd_mode = UFFDIO_REGISTER_MODE_MISSING;
|
||
|
|
||
|
setup_uffd_args(vm_get_mem_region(vm, MEM_REGION_PT), &pt_args);
|
||
|
setup_uffd_args(vm_get_mem_region(vm, MEM_REGION_TEST_DATA), &data_args);
|
||
|
|
||
|
*pt_uffd = NULL;
|
||
|
if (test->uffd_pt_handler)
|
||
|
*pt_uffd = uffd_setup_demand_paging(uffd_mode, 0,
|
||
|
pt_args.hva,
|
||
|
pt_args.paging_size,
|
||
|
test->uffd_pt_handler);
|
||
|
|
||
|
*data_uffd = NULL;
|
||
|
if (test->uffd_data_handler)
|
||
|
*data_uffd = uffd_setup_demand_paging(uffd_mode, 0,
|
||
|
data_args.hva,
|
||
|
data_args.paging_size,
|
||
|
test->uffd_data_handler);
|
||
|
}
|
||
|
|
||
|
static void free_uffd(struct test_desc *test, struct uffd_desc *pt_uffd,
|
||
|
struct uffd_desc *data_uffd)
|
||
|
{
|
||
|
if (test->uffd_pt_handler)
|
||
|
uffd_stop_demand_paging(pt_uffd);
|
||
|
if (test->uffd_data_handler)
|
||
|
uffd_stop_demand_paging(data_uffd);
|
||
|
|
||
|
free(pt_args.copy);
|
||
|
free(data_args.copy);
|
||
|
}
|
||
|
|
||
|
static int uffd_no_handler(int mode, int uffd, struct uffd_msg *msg)
|
||
|
{
|
||
|
TEST_FAIL("There was no UFFD fault expected.");
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
/* Returns false if the test should be skipped. */
|
||
|
static bool punch_hole_in_backing_store(struct kvm_vm *vm,
|
||
|
struct userspace_mem_region *region)
|
||
|
{
|
||
|
void *hva = (void *)region->region.userspace_addr;
|
||
|
uint64_t paging_size = region->region.memory_size;
|
||
|
int ret, fd = region->fd;
|
||
|
|
||
|
if (fd != -1) {
|
||
|
ret = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
|
||
|
0, paging_size);
|
||
|
TEST_ASSERT(ret == 0, "fallocate failed\n");
|
||
|
} else {
|
||
|
ret = madvise(hva, paging_size, MADV_DONTNEED);
|
||
|
TEST_ASSERT(ret == 0, "madvise failed\n");
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static void mmio_on_test_gpa_handler(struct kvm_vm *vm, struct kvm_run *run)
|
||
|
{
|
||
|
struct userspace_mem_region *region;
|
||
|
void *hva;
|
||
|
|
||
|
region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
|
||
|
hva = (void *)region->region.userspace_addr;
|
||
|
|
||
|
ASSERT_EQ(run->mmio.phys_addr, region->region.guest_phys_addr);
|
||
|
|
||
|
memcpy(hva, run->mmio.data, run->mmio.len);
|
||
|
events.mmio_exits += 1;
|
||
|
}
|
||
|
|
||
|
static void mmio_no_handler(struct kvm_vm *vm, struct kvm_run *run)
|
||
|
{
|
||
|
uint64_t data;
|
||
|
|
||
|
memcpy(&data, run->mmio.data, sizeof(data));
|
||
|
pr_debug("addr=%lld len=%d w=%d data=%lx\n",
|
||
|
run->mmio.phys_addr, run->mmio.len,
|
||
|
run->mmio.is_write, data);
|
||
|
TEST_FAIL("There was no MMIO exit expected.");
|
||
|
}
|
||
|
|
||
|
static bool check_write_in_dirty_log(struct kvm_vm *vm,
|
||
|
struct userspace_mem_region *region,
|
||
|
uint64_t host_pg_nr)
|
||
|
{
|
||
|
unsigned long *bmap;
|
||
|
bool first_page_dirty;
|
||
|
uint64_t size = region->region.memory_size;
|
||
|
|
||
|
/* getpage_size() is not always equal to vm->page_size */
|
||
|
bmap = bitmap_zalloc(size / getpagesize());
|
||
|
kvm_vm_get_dirty_log(vm, region->region.slot, bmap);
|
||
|
first_page_dirty = test_bit(host_pg_nr, bmap);
|
||
|
free(bmap);
|
||
|
return first_page_dirty;
|
||
|
}
|
||
|
|
||
|
/* Returns true to continue the test, and false if it should be skipped. */
|
||
|
static bool handle_cmd(struct kvm_vm *vm, int cmd)
|
||
|
{
|
||
|
struct userspace_mem_region *data_region, *pt_region;
|
||
|
bool continue_test = true;
|
||
|
uint64_t pte_gpa, pte_pg;
|
||
|
|
||
|
data_region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
|
||
|
pt_region = vm_get_mem_region(vm, MEM_REGION_PT);
|
||
|
pte_gpa = addr_hva2gpa(vm, virt_get_pte_hva(vm, TEST_GVA));
|
||
|
pte_pg = (pte_gpa - pt_region->region.guest_phys_addr) / getpagesize();
|
||
|
|
||
|
if (cmd == CMD_SKIP_TEST)
|
||
|
continue_test = false;
|
||
|
|
||
|
if (cmd & CMD_HOLE_PT)
|
||
|
continue_test = punch_hole_in_backing_store(vm, pt_region);
|
||
|
if (cmd & CMD_HOLE_DATA)
|
||
|
continue_test = punch_hole_in_backing_store(vm, data_region);
|
||
|
if (cmd & CMD_CHECK_WRITE_IN_DIRTY_LOG)
|
||
|
TEST_ASSERT(check_write_in_dirty_log(vm, data_region, 0),
|
||
|
"Missing write in dirty log");
|
||
|
if (cmd & CMD_CHECK_S1PTW_WR_IN_DIRTY_LOG)
|
||
|
TEST_ASSERT(check_write_in_dirty_log(vm, pt_region, pte_pg),
|
||
|
"Missing s1ptw write in dirty log");
|
||
|
if (cmd & CMD_CHECK_NO_WRITE_IN_DIRTY_LOG)
|
||
|
TEST_ASSERT(!check_write_in_dirty_log(vm, data_region, 0),
|
||
|
"Unexpected write in dirty log");
|
||
|
if (cmd & CMD_CHECK_NO_S1PTW_WR_IN_DIRTY_LOG)
|
||
|
TEST_ASSERT(!check_write_in_dirty_log(vm, pt_region, pte_pg),
|
||
|
"Unexpected s1ptw write in dirty log");
|
||
|
|
||
|
return continue_test;
|
||
|
}
|
||
|
|
||
|
void fail_vcpu_run_no_handler(int ret)
|
||
|
{
|
||
|
TEST_FAIL("Unexpected vcpu run failure\n");
|
||
|
}
|
||
|
|
||
|
void fail_vcpu_run_mmio_no_syndrome_handler(int ret)
|
||
|
{
|
||
|
TEST_ASSERT(errno == ENOSYS,
|
||
|
"The mmio handler should have returned not implemented.");
|
||
|
events.fail_vcpu_runs += 1;
|
||
|
}
|
||
|
|
||
|
typedef uint32_t aarch64_insn_t;
|
||
|
extern aarch64_insn_t __exec_test[2];
|
||
|
|
||
|
noinline void __return_0x77(void)
|
||
|
{
|
||
|
asm volatile("__exec_test: mov x0, #0x77\n"
|
||
|
"ret\n");
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Note that this function runs on the host before the test VM starts: there's
|
||
|
* no need to sync the D$ and I$ caches.
|
||
|
*/
|
||
|
static void load_exec_code_for_test(struct kvm_vm *vm)
|
||
|
{
|
||
|
uint64_t *code;
|
||
|
struct userspace_mem_region *region;
|
||
|
void *hva;
|
||
|
|
||
|
region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
|
||
|
hva = (void *)region->region.userspace_addr;
|
||
|
|
||
|
assert(TEST_EXEC_GVA > TEST_GVA);
|
||
|
code = hva + TEST_EXEC_GVA - TEST_GVA;
|
||
|
memcpy(code, __exec_test, sizeof(__exec_test));
|
||
|
}
|
||
|
|
||
|
static void setup_abort_handlers(struct kvm_vm *vm, struct kvm_vcpu *vcpu,
|
||
|
struct test_desc *test)
|
||
|
{
|
||
|
vm_init_descriptor_tables(vm);
|
||
|
vcpu_init_descriptor_tables(vcpu);
|
||
|
|
||
|
vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT,
|
||
|
ESR_EC_DABT, no_dabt_handler);
|
||
|
vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT,
|
||
|
ESR_EC_IABT, no_iabt_handler);
|
||
|
}
|
||
|
|
||
|
static void setup_gva_maps(struct kvm_vm *vm)
|
||
|
{
|
||
|
struct userspace_mem_region *region;
|
||
|
uint64_t pte_gpa;
|
||
|
|
||
|
region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
|
||
|
/* Map TEST_GVA first. This will install a new PTE. */
|
||
|
virt_pg_map(vm, TEST_GVA, region->region.guest_phys_addr);
|
||
|
/* Then map TEST_PTE_GVA to the above PTE. */
|
||
|
pte_gpa = addr_hva2gpa(vm, virt_get_pte_hva(vm, TEST_GVA));
|
||
|
virt_pg_map(vm, TEST_PTE_GVA, pte_gpa);
|
||
|
}
|
||
|
|
||
|
enum pf_test_memslots {
|
||
|
CODE_AND_DATA_MEMSLOT,
|
||
|
PAGE_TABLE_MEMSLOT,
|
||
|
TEST_DATA_MEMSLOT,
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Create a memslot for code and data at pfn=0, and test-data and PT ones
|
||
|
* at max_gfn.
|
||
|
*/
|
||
|
static void setup_memslots(struct kvm_vm *vm, struct test_params *p)
|
||
|
{
|
||
|
uint64_t backing_src_pagesz = get_backing_src_pagesz(p->src_type);
|
||
|
uint64_t guest_page_size = vm->page_size;
|
||
|
uint64_t max_gfn = vm_compute_max_gfn(vm);
|
||
|
/* Enough for 2M of code when using 4K guest pages. */
|
||
|
uint64_t code_npages = 512;
|
||
|
uint64_t pt_size, data_size, data_gpa;
|
||
|
|
||
|
/*
|
||
|
* This test requires 1 pgd, 2 pud, 4 pmd, and 6 pte pages when using
|
||
|
* VM_MODE_P48V48_4K. Note that the .text takes ~1.6MBs. That's 13
|
||
|
* pages. VM_MODE_P48V48_4K is the mode with most PT pages; let's use
|
||
|
* twice that just in case.
|
||
|
*/
|
||
|
pt_size = 26 * guest_page_size;
|
||
|
|
||
|
/* memslot sizes and gpa's must be aligned to the backing page size */
|
||
|
pt_size = align_up(pt_size, backing_src_pagesz);
|
||
|
data_size = align_up(guest_page_size, backing_src_pagesz);
|
||
|
data_gpa = (max_gfn * guest_page_size) - data_size;
|
||
|
data_gpa = align_down(data_gpa, backing_src_pagesz);
|
||
|
|
||
|
vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0,
|
||
|
CODE_AND_DATA_MEMSLOT, code_npages, 0);
|
||
|
vm->memslots[MEM_REGION_CODE] = CODE_AND_DATA_MEMSLOT;
|
||
|
vm->memslots[MEM_REGION_DATA] = CODE_AND_DATA_MEMSLOT;
|
||
|
|
||
|
vm_userspace_mem_region_add(vm, p->src_type, data_gpa - pt_size,
|
||
|
PAGE_TABLE_MEMSLOT, pt_size / guest_page_size,
|
||
|
p->test_desc->pt_memslot_flags);
|
||
|
vm->memslots[MEM_REGION_PT] = PAGE_TABLE_MEMSLOT;
|
||
|
|
||
|
vm_userspace_mem_region_add(vm, p->src_type, data_gpa, TEST_DATA_MEMSLOT,
|
||
|
data_size / guest_page_size,
|
||
|
p->test_desc->data_memslot_flags);
|
||
|
vm->memslots[MEM_REGION_TEST_DATA] = TEST_DATA_MEMSLOT;
|
||
|
}
|
||
|
|
||
|
static void setup_ucall(struct kvm_vm *vm)
|
||
|
{
|
||
|
struct userspace_mem_region *region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
|
||
|
|
||
|
ucall_init(vm, region->region.guest_phys_addr + region->region.memory_size);
|
||
|
}
|
||
|
|
||
|
static void setup_default_handlers(struct test_desc *test)
|
||
|
{
|
||
|
if (!test->mmio_handler)
|
||
|
test->mmio_handler = mmio_no_handler;
|
||
|
|
||
|
if (!test->fail_vcpu_run_handler)
|
||
|
test->fail_vcpu_run_handler = fail_vcpu_run_no_handler;
|
||
|
}
|
||
|
|
||
|
static void check_event_counts(struct test_desc *test)
|
||
|
{
|
||
|
ASSERT_EQ(test->expected_events.uffd_faults, events.uffd_faults);
|
||
|
ASSERT_EQ(test->expected_events.mmio_exits, events.mmio_exits);
|
||
|
ASSERT_EQ(test->expected_events.fail_vcpu_runs, events.fail_vcpu_runs);
|
||
|
}
|
||
|
|
||
|
static void print_test_banner(enum vm_guest_mode mode, struct test_params *p)
|
||
|
{
|
||
|
struct test_desc *test = p->test_desc;
|
||
|
|
||
|
pr_debug("Test: %s\n", test->name);
|
||
|
pr_debug("Testing guest mode: %s\n", vm_guest_mode_string(mode));
|
||
|
pr_debug("Testing memory backing src type: %s\n",
|
||
|
vm_mem_backing_src_alias(p->src_type)->name);
|
||
|
}
|
||
|
|
||
|
static void reset_event_counts(void)
|
||
|
{
|
||
|
memset(&events, 0, sizeof(events));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This function either succeeds, skips the test (after setting test->skip), or
|
||
|
* fails with a TEST_FAIL that aborts all tests.
|
||
|
*/
|
||
|
static void vcpu_run_loop(struct kvm_vm *vm, struct kvm_vcpu *vcpu,
|
||
|
struct test_desc *test)
|
||
|
{
|
||
|
struct kvm_run *run;
|
||
|
struct ucall uc;
|
||
|
int ret;
|
||
|
|
||
|
run = vcpu->run;
|
||
|
|
||
|
for (;;) {
|
||
|
ret = _vcpu_run(vcpu);
|
||
|
if (ret) {
|
||
|
test->fail_vcpu_run_handler(ret);
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
switch (get_ucall(vcpu, &uc)) {
|
||
|
case UCALL_SYNC:
|
||
|
if (!handle_cmd(vm, uc.args[1])) {
|
||
|
test->skip = true;
|
||
|
goto done;
|
||
|
}
|
||
|
break;
|
||
|
case UCALL_ABORT:
|
||
|
REPORT_GUEST_ASSERT_2(uc, "values: %#lx, %#lx");
|
||
|
break;
|
||
|
case UCALL_DONE:
|
||
|
goto done;
|
||
|
case UCALL_NONE:
|
||
|
if (run->exit_reason == KVM_EXIT_MMIO)
|
||
|
test->mmio_handler(vm, run);
|
||
|
break;
|
||
|
default:
|
||
|
TEST_FAIL("Unknown ucall %lu", uc.cmd);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
done:
|
||
|
pr_debug(test->skip ? "Skipped.\n" : "Done.\n");
|
||
|
}
|
||
|
|
||
|
static void run_test(enum vm_guest_mode mode, void *arg)
|
||
|
{
|
||
|
struct test_params *p = (struct test_params *)arg;
|
||
|
struct test_desc *test = p->test_desc;
|
||
|
struct kvm_vm *vm;
|
||
|
struct kvm_vcpu *vcpu;
|
||
|
struct uffd_desc *pt_uffd, *data_uffd;
|
||
|
|
||
|
print_test_banner(mode, p);
|
||
|
|
||
|
vm = ____vm_create(mode);
|
||
|
setup_memslots(vm, p);
|
||
|
kvm_vm_elf_load(vm, program_invocation_name);
|
||
|
setup_ucall(vm);
|
||
|
vcpu = vm_vcpu_add(vm, 0, guest_code);
|
||
|
|
||
|
setup_gva_maps(vm);
|
||
|
|
||
|
reset_event_counts();
|
||
|
|
||
|
/*
|
||
|
* Set some code in the data memslot for the guest to execute (only
|
||
|
* applicable to the EXEC tests). This has to be done before
|
||
|
* setup_uffd() as that function copies the memslot data for the uffd
|
||
|
* handler.
|
||
|
*/
|
||
|
load_exec_code_for_test(vm);
|
||
|
setup_uffd(vm, p, &pt_uffd, &data_uffd);
|
||
|
setup_abort_handlers(vm, vcpu, test);
|
||
|
setup_default_handlers(test);
|
||
|
vcpu_args_set(vcpu, 1, test);
|
||
|
|
||
|
vcpu_run_loop(vm, vcpu, test);
|
||
|
|
||
|
kvm_vm_free(vm);
|
||
|
free_uffd(test, pt_uffd, data_uffd);
|
||
|
|
||
|
/*
|
||
|
* Make sure we check the events after the uffd threads have exited,
|
||
|
* which means they updated their respective event counters.
|
||
|
*/
|
||
|
if (!test->skip)
|
||
|
check_event_counts(test);
|
||
|
}
|
||
|
|
||
|
static void help(char *name)
|
||
|
{
|
||
|
puts("");
|
||
|
printf("usage: %s [-h] [-s mem-type]\n", name);
|
||
|
puts("");
|
||
|
guest_modes_help();
|
||
|
backing_src_help("-s");
|
||
|
puts("");
|
||
|
}
|
||
|
|
||
|
#define SNAME(s) #s
|
||
|
#define SCAT2(a, b) SNAME(a ## _ ## b)
|
||
|
#define SCAT3(a, b, c) SCAT2(a, SCAT2(b, c))
|
||
|
#define SCAT4(a, b, c, d) SCAT2(a, SCAT3(b, c, d))
|
||
|
|
||
|
#define _CHECK(_test) _CHECK_##_test
|
||
|
#define _PREPARE(_test) _PREPARE_##_test
|
||
|
#define _PREPARE_guest_read64 NULL
|
||
|
#define _PREPARE_guest_ld_preidx NULL
|
||
|
#define _PREPARE_guest_write64 NULL
|
||
|
#define _PREPARE_guest_st_preidx NULL
|
||
|
#define _PREPARE_guest_exec NULL
|
||
|
#define _PREPARE_guest_at NULL
|
||
|
#define _PREPARE_guest_dc_zva guest_check_dc_zva
|
||
|
#define _PREPARE_guest_cas guest_check_lse
|
||
|
|
||
|
/* With or without access flag checks */
|
||
|
#define _PREPARE_with_af guest_set_ha, guest_clear_pte_af
|
||
|
#define _PREPARE_no_af NULL
|
||
|
#define _CHECK_with_af guest_check_pte_af
|
||
|
#define _CHECK_no_af NULL
|
||
|
|
||
|
/* Performs an access and checks that no faults were triggered. */
|
||
|
#define TEST_ACCESS(_access, _with_af, _mark_cmd) \
|
||
|
{ \
|
||
|
.name = SCAT3(_access, _with_af, #_mark_cmd), \
|
||
|
.guest_prepare = { _PREPARE(_with_af), \
|
||
|
_PREPARE(_access) }, \
|
||
|
.mem_mark_cmd = _mark_cmd, \
|
||
|
.guest_test = _access, \
|
||
|
.guest_test_check = { _CHECK(_with_af) }, \
|
||
|
.expected_events = { 0 }, \
|
||
|
}
|
||
|
|
||
|
#define TEST_UFFD(_access, _with_af, _mark_cmd, \
|
||
|
_uffd_data_handler, _uffd_pt_handler, _uffd_faults) \
|
||
|
{ \
|
||
|
.name = SCAT4(uffd, _access, _with_af, #_mark_cmd), \
|
||
|
.guest_prepare = { _PREPARE(_with_af), \
|
||
|
_PREPARE(_access) }, \
|
||
|
.guest_test = _access, \
|
||
|
.mem_mark_cmd = _mark_cmd, \
|
||
|
.guest_test_check = { _CHECK(_with_af) }, \
|
||
|
.uffd_data_handler = _uffd_data_handler, \
|
||
|
.uffd_pt_handler = _uffd_pt_handler, \
|
||
|
.expected_events = { .uffd_faults = _uffd_faults, }, \
|
||
|
}
|
||
|
|
||
|
#define TEST_DIRTY_LOG(_access, _with_af, _test_check, _pt_check) \
|
||
|
{ \
|
||
|
.name = SCAT3(dirty_log, _access, _with_af), \
|
||
|
.data_memslot_flags = KVM_MEM_LOG_DIRTY_PAGES, \
|
||
|
.pt_memslot_flags = KVM_MEM_LOG_DIRTY_PAGES, \
|
||
|
.guest_prepare = { _PREPARE(_with_af), \
|
||
|
_PREPARE(_access) }, \
|
||
|
.guest_test = _access, \
|
||
|
.guest_test_check = { _CHECK(_with_af), _test_check, _pt_check }, \
|
||
|
.expected_events = { 0 }, \
|
||
|
}
|
||
|
|
||
|
#define TEST_UFFD_AND_DIRTY_LOG(_access, _with_af, _uffd_data_handler, \
|
||
|
_uffd_faults, _test_check, _pt_check) \
|
||
|
{ \
|
||
|
.name = SCAT3(uffd_and_dirty_log, _access, _with_af), \
|
||
|
.data_memslot_flags = KVM_MEM_LOG_DIRTY_PAGES, \
|
||
|
.pt_memslot_flags = KVM_MEM_LOG_DIRTY_PAGES, \
|
||
|
.guest_prepare = { _PREPARE(_with_af), \
|
||
|
_PREPARE(_access) }, \
|
||
|
.guest_test = _access, \
|
||
|
.mem_mark_cmd = CMD_HOLE_DATA | CMD_HOLE_PT, \
|
||
|
.guest_test_check = { _CHECK(_with_af), _test_check, _pt_check }, \
|
||
|
.uffd_data_handler = _uffd_data_handler, \
|
||
|
.uffd_pt_handler = uffd_pt_handler, \
|
||
|
.expected_events = { .uffd_faults = _uffd_faults, }, \
|
||
|
}
|
||
|
|
||
|
#define TEST_RO_MEMSLOT(_access, _mmio_handler, _mmio_exits) \
|
||
|
{ \
|
||
|
.name = SCAT2(ro_memslot, _access), \
|
||
|
.data_memslot_flags = KVM_MEM_READONLY, \
|
||
|
.pt_memslot_flags = KVM_MEM_READONLY, \
|
||
|
.guest_prepare = { _PREPARE(_access) }, \
|
||
|
.guest_test = _access, \
|
||
|
.mmio_handler = _mmio_handler, \
|
||
|
.expected_events = { .mmio_exits = _mmio_exits }, \
|
||
|
}
|
||
|
|
||
|
#define TEST_RO_MEMSLOT_NO_SYNDROME(_access) \
|
||
|
{ \
|
||
|
.name = SCAT2(ro_memslot_no_syndrome, _access), \
|
||
|
.data_memslot_flags = KVM_MEM_READONLY, \
|
||
|
.pt_memslot_flags = KVM_MEM_READONLY, \
|
||
|
.guest_test = _access, \
|
||
|
.fail_vcpu_run_handler = fail_vcpu_run_mmio_no_syndrome_handler, \
|
||
|
.expected_events = { .fail_vcpu_runs = 1 }, \
|
||
|
}
|
||
|
|
||
|
#define TEST_RO_MEMSLOT_AND_DIRTY_LOG(_access, _mmio_handler, _mmio_exits, \
|
||
|
_test_check) \
|
||
|
{ \
|
||
|
.name = SCAT2(ro_memslot, _access), \
|
||
|
.data_memslot_flags = KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES, \
|
||
|
.pt_memslot_flags = KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES, \
|
||
|
.guest_prepare = { _PREPARE(_access) }, \
|
||
|
.guest_test = _access, \
|
||
|
.guest_test_check = { _test_check }, \
|
||
|
.mmio_handler = _mmio_handler, \
|
||
|
.expected_events = { .mmio_exits = _mmio_exits}, \
|
||
|
}
|
||
|
|
||
|
#define TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(_access, _test_check) \
|
||
|
{ \
|
||
|
.name = SCAT2(ro_memslot_no_syn_and_dlog, _access), \
|
||
|
.data_memslot_flags = KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES, \
|
||
|
.pt_memslot_flags = KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES, \
|
||
|
.guest_test = _access, \
|
||
|
.guest_test_check = { _test_check }, \
|
||
|
.fail_vcpu_run_handler = fail_vcpu_run_mmio_no_syndrome_handler, \
|
||
|
.expected_events = { .fail_vcpu_runs = 1 }, \
|
||
|
}
|
||
|
|
||
|
#define TEST_RO_MEMSLOT_AND_UFFD(_access, _mmio_handler, _mmio_exits, \
|
||
|
_uffd_data_handler, _uffd_faults) \
|
||
|
{ \
|
||
|
.name = SCAT2(ro_memslot_uffd, _access), \
|
||
|
.data_memslot_flags = KVM_MEM_READONLY, \
|
||
|
.pt_memslot_flags = KVM_MEM_READONLY, \
|
||
|
.mem_mark_cmd = CMD_HOLE_DATA | CMD_HOLE_PT, \
|
||
|
.guest_prepare = { _PREPARE(_access) }, \
|
||
|
.guest_test = _access, \
|
||
|
.uffd_data_handler = _uffd_data_handler, \
|
||
|
.uffd_pt_handler = uffd_pt_handler, \
|
||
|
.mmio_handler = _mmio_handler, \
|
||
|
.expected_events = { .mmio_exits = _mmio_exits, \
|
||
|
.uffd_faults = _uffd_faults }, \
|
||
|
}
|
||
|
|
||
|
#define TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(_access, _uffd_data_handler, \
|
||
|
_uffd_faults) \
|
||
|
{ \
|
||
|
.name = SCAT2(ro_memslot_no_syndrome, _access), \
|
||
|
.data_memslot_flags = KVM_MEM_READONLY, \
|
||
|
.pt_memslot_flags = KVM_MEM_READONLY, \
|
||
|
.mem_mark_cmd = CMD_HOLE_DATA | CMD_HOLE_PT, \
|
||
|
.guest_test = _access, \
|
||
|
.uffd_data_handler = _uffd_data_handler, \
|
||
|
.uffd_pt_handler = uffd_pt_handler, \
|
||
|
.fail_vcpu_run_handler = fail_vcpu_run_mmio_no_syndrome_handler, \
|
||
|
.expected_events = { .fail_vcpu_runs = 1, \
|
||
|
.uffd_faults = _uffd_faults }, \
|
||
|
}
|
||
|
|
||
|
static struct test_desc tests[] = {
|
||
|
|
||
|
/* Check that HW is setting the Access Flag (AF) (sanity checks). */
|
||
|
TEST_ACCESS(guest_read64, with_af, CMD_NONE),
|
||
|
TEST_ACCESS(guest_ld_preidx, with_af, CMD_NONE),
|
||
|
TEST_ACCESS(guest_cas, with_af, CMD_NONE),
|
||
|
TEST_ACCESS(guest_write64, with_af, CMD_NONE),
|
||
|
TEST_ACCESS(guest_st_preidx, with_af, CMD_NONE),
|
||
|
TEST_ACCESS(guest_dc_zva, with_af, CMD_NONE),
|
||
|
TEST_ACCESS(guest_exec, with_af, CMD_NONE),
|
||
|
|
||
|
/*
|
||
|
* Punch a hole in the data backing store, and then try multiple
|
||
|
* accesses: reads should rturn zeroes, and writes should
|
||
|
* re-populate the page. Moreover, the test also check that no
|
||
|
* exception was generated in the guest. Note that this
|
||
|
* reading/writing behavior is the same as reading/writing a
|
||
|
* punched page (with fallocate(FALLOC_FL_PUNCH_HOLE)) from
|
||
|
* userspace.
|
||
|
*/
|
||
|
TEST_ACCESS(guest_read64, no_af, CMD_HOLE_DATA),
|
||
|
TEST_ACCESS(guest_cas, no_af, CMD_HOLE_DATA),
|
||
|
TEST_ACCESS(guest_ld_preidx, no_af, CMD_HOLE_DATA),
|
||
|
TEST_ACCESS(guest_write64, no_af, CMD_HOLE_DATA),
|
||
|
TEST_ACCESS(guest_st_preidx, no_af, CMD_HOLE_DATA),
|
||
|
TEST_ACCESS(guest_at, no_af, CMD_HOLE_DATA),
|
||
|
TEST_ACCESS(guest_dc_zva, no_af, CMD_HOLE_DATA),
|
||
|
|
||
|
/*
|
||
|
* Punch holes in the data and PT backing stores and mark them for
|
||
|
* userfaultfd handling. This should result in 2 faults: the access
|
||
|
* on the data backing store, and its respective S1 page table walk
|
||
|
* (S1PTW).
|
||
|
*/
|
||
|
TEST_UFFD(guest_read64, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
|
||
|
uffd_data_handler, uffd_pt_handler, 2),
|
||
|
TEST_UFFD(guest_read64, no_af, CMD_HOLE_DATA | CMD_HOLE_PT,
|
||
|
uffd_data_handler, uffd_pt_handler, 2),
|
||
|
TEST_UFFD(guest_cas, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
|
||
|
uffd_data_handler, uffd_pt_handler, 2),
|
||
|
/*
|
||
|
* Can't test guest_at with_af as it's IMPDEF whether the AF is set.
|
||
|
* The S1PTW fault should still be marked as a write.
|
||
|
*/
|
||
|
TEST_UFFD(guest_at, no_af, CMD_HOLE_DATA | CMD_HOLE_PT,
|
||
|
uffd_no_handler, uffd_pt_handler, 1),
|
||
|
TEST_UFFD(guest_ld_preidx, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
|
||
|
uffd_data_handler, uffd_pt_handler, 2),
|
||
|
TEST_UFFD(guest_write64, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
|
||
|
uffd_data_handler, uffd_pt_handler, 2),
|
||
|
TEST_UFFD(guest_dc_zva, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
|
||
|
uffd_data_handler, uffd_pt_handler, 2),
|
||
|
TEST_UFFD(guest_st_preidx, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
|
||
|
uffd_data_handler, uffd_pt_handler, 2),
|
||
|
TEST_UFFD(guest_exec, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
|
||
|
uffd_data_handler, uffd_pt_handler, 2),
|
||
|
|
||
|
/*
|
||
|
* Try accesses when the data and PT memory regions are both
|
||
|
* tracked for dirty logging.
|
||
|
*/
|
||
|
TEST_DIRTY_LOG(guest_read64, with_af, guest_check_no_write_in_dirty_log,
|
||
|
guest_check_s1ptw_wr_in_dirty_log),
|
||
|
TEST_DIRTY_LOG(guest_read64, no_af, guest_check_no_write_in_dirty_log,
|
||
|
guest_check_no_s1ptw_wr_in_dirty_log),
|
||
|
TEST_DIRTY_LOG(guest_ld_preidx, with_af,
|
||
|
guest_check_no_write_in_dirty_log,
|
||
|
guest_check_s1ptw_wr_in_dirty_log),
|
||
|
TEST_DIRTY_LOG(guest_at, no_af, guest_check_no_write_in_dirty_log,
|
||
|
guest_check_no_s1ptw_wr_in_dirty_log),
|
||
|
TEST_DIRTY_LOG(guest_exec, with_af, guest_check_no_write_in_dirty_log,
|
||
|
guest_check_s1ptw_wr_in_dirty_log),
|
||
|
TEST_DIRTY_LOG(guest_write64, with_af, guest_check_write_in_dirty_log,
|
||
|
guest_check_s1ptw_wr_in_dirty_log),
|
||
|
TEST_DIRTY_LOG(guest_cas, with_af, guest_check_write_in_dirty_log,
|
||
|
guest_check_s1ptw_wr_in_dirty_log),
|
||
|
TEST_DIRTY_LOG(guest_dc_zva, with_af, guest_check_write_in_dirty_log,
|
||
|
guest_check_s1ptw_wr_in_dirty_log),
|
||
|
TEST_DIRTY_LOG(guest_st_preidx, with_af, guest_check_write_in_dirty_log,
|
||
|
guest_check_s1ptw_wr_in_dirty_log),
|
||
|
|
||
|
/*
|
||
|
* Access when the data and PT memory regions are both marked for
|
||
|
* dirty logging and UFFD at the same time. The expected result is
|
||
|
* that writes should mark the dirty log and trigger a userfaultfd
|
||
|
* write fault. Reads/execs should result in a read userfaultfd
|
||
|
* fault, and nothing in the dirty log. Any S1PTW should result in
|
||
|
* a write in the dirty log and a userfaultfd write.
|
||
|
*/
|
||
|
TEST_UFFD_AND_DIRTY_LOG(guest_read64, with_af,
|
||
|
uffd_data_handler, 2,
|
||
|
guest_check_no_write_in_dirty_log,
|
||
|
guest_check_s1ptw_wr_in_dirty_log),
|
||
|
TEST_UFFD_AND_DIRTY_LOG(guest_read64, no_af,
|
||
|
uffd_data_handler, 2,
|
||
|
guest_check_no_write_in_dirty_log,
|
||
|
guest_check_no_s1ptw_wr_in_dirty_log),
|
||
|
TEST_UFFD_AND_DIRTY_LOG(guest_ld_preidx, with_af,
|
||
|
uffd_data_handler,
|
||
|
2, guest_check_no_write_in_dirty_log,
|
||
|
guest_check_s1ptw_wr_in_dirty_log),
|
||
|
TEST_UFFD_AND_DIRTY_LOG(guest_at, with_af, uffd_no_handler, 1,
|
||
|
guest_check_no_write_in_dirty_log,
|
||
|
guest_check_s1ptw_wr_in_dirty_log),
|
||
|
TEST_UFFD_AND_DIRTY_LOG(guest_exec, with_af,
|
||
|
uffd_data_handler, 2,
|
||
|
guest_check_no_write_in_dirty_log,
|
||
|
guest_check_s1ptw_wr_in_dirty_log),
|
||
|
TEST_UFFD_AND_DIRTY_LOG(guest_write64, with_af,
|
||
|
uffd_data_handler,
|
||
|
2, guest_check_write_in_dirty_log,
|
||
|
guest_check_s1ptw_wr_in_dirty_log),
|
||
|
TEST_UFFD_AND_DIRTY_LOG(guest_cas, with_af,
|
||
|
uffd_data_handler, 2,
|
||
|
guest_check_write_in_dirty_log,
|
||
|
guest_check_s1ptw_wr_in_dirty_log),
|
||
|
TEST_UFFD_AND_DIRTY_LOG(guest_dc_zva, with_af,
|
||
|
uffd_data_handler,
|
||
|
2, guest_check_write_in_dirty_log,
|
||
|
guest_check_s1ptw_wr_in_dirty_log),
|
||
|
TEST_UFFD_AND_DIRTY_LOG(guest_st_preidx, with_af,
|
||
|
uffd_data_handler, 2,
|
||
|
guest_check_write_in_dirty_log,
|
||
|
guest_check_s1ptw_wr_in_dirty_log),
|
||
|
/*
|
||
|
* Access when both the PT and data regions are marked read-only
|
||
|
* (with KVM_MEM_READONLY). Writes with a syndrome result in an
|
||
|
* MMIO exit, writes with no syndrome (e.g., CAS) result in a
|
||
|
* failed vcpu run, and reads/execs with and without syndroms do
|
||
|
* not fault.
|
||
|
*/
|
||
|
TEST_RO_MEMSLOT(guest_read64, 0, 0),
|
||
|
TEST_RO_MEMSLOT(guest_ld_preidx, 0, 0),
|
||
|
TEST_RO_MEMSLOT(guest_at, 0, 0),
|
||
|
TEST_RO_MEMSLOT(guest_exec, 0, 0),
|
||
|
TEST_RO_MEMSLOT(guest_write64, mmio_on_test_gpa_handler, 1),
|
||
|
TEST_RO_MEMSLOT_NO_SYNDROME(guest_dc_zva),
|
||
|
TEST_RO_MEMSLOT_NO_SYNDROME(guest_cas),
|
||
|
TEST_RO_MEMSLOT_NO_SYNDROME(guest_st_preidx),
|
||
|
|
||
|
/*
|
||
|
* The PT and data regions are both read-only and marked
|
||
|
* for dirty logging at the same time. The expected result is that
|
||
|
* for writes there should be no write in the dirty log. The
|
||
|
* readonly handling is the same as if the memslot was not marked
|
||
|
* for dirty logging: writes with a syndrome result in an MMIO
|
||
|
* exit, and writes with no syndrome result in a failed vcpu run.
|
||
|
*/
|
||
|
TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_read64, 0, 0,
|
||
|
guest_check_no_write_in_dirty_log),
|
||
|
TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_ld_preidx, 0, 0,
|
||
|
guest_check_no_write_in_dirty_log),
|
||
|
TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_at, 0, 0,
|
||
|
guest_check_no_write_in_dirty_log),
|
||
|
TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_exec, 0, 0,
|
||
|
guest_check_no_write_in_dirty_log),
|
||
|
TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_write64, mmio_on_test_gpa_handler,
|
||
|
1, guest_check_no_write_in_dirty_log),
|
||
|
TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(guest_dc_zva,
|
||
|
guest_check_no_write_in_dirty_log),
|
||
|
TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(guest_cas,
|
||
|
guest_check_no_write_in_dirty_log),
|
||
|
TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(guest_st_preidx,
|
||
|
guest_check_no_write_in_dirty_log),
|
||
|
|
||
|
/*
|
||
|
* The PT and data regions are both read-only and punched with
|
||
|
* holes tracked with userfaultfd. The expected result is the
|
||
|
* union of both userfaultfd and read-only behaviors. For example,
|
||
|
* write accesses result in a userfaultfd write fault and an MMIO
|
||
|
* exit. Writes with no syndrome result in a failed vcpu run and
|
||
|
* no userfaultfd write fault. Reads result in userfaultfd getting
|
||
|
* triggered.
|
||
|
*/
|
||
|
TEST_RO_MEMSLOT_AND_UFFD(guest_read64, 0, 0, uffd_data_handler, 2),
|
||
|
TEST_RO_MEMSLOT_AND_UFFD(guest_ld_preidx, 0, 0, uffd_data_handler, 2),
|
||
|
TEST_RO_MEMSLOT_AND_UFFD(guest_at, 0, 0, uffd_no_handler, 1),
|
||
|
TEST_RO_MEMSLOT_AND_UFFD(guest_exec, 0, 0, uffd_data_handler, 2),
|
||
|
TEST_RO_MEMSLOT_AND_UFFD(guest_write64, mmio_on_test_gpa_handler, 1,
|
||
|
uffd_data_handler, 2),
|
||
|
TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(guest_cas, uffd_data_handler, 2),
|
||
|
TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(guest_dc_zva, uffd_no_handler, 1),
|
||
|
TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(guest_st_preidx, uffd_no_handler, 1),
|
||
|
|
||
|
{ 0 }
|
||
|
};
|
||
|
|
||
|
static void for_each_test_and_guest_mode(enum vm_mem_backing_src_type src_type)
|
||
|
{
|
||
|
struct test_desc *t;
|
||
|
|
||
|
for (t = &tests[0]; t->name; t++) {
|
||
|
if (t->skip)
|
||
|
continue;
|
||
|
|
||
|
struct test_params p = {
|
||
|
.src_type = src_type,
|
||
|
.test_desc = t,
|
||
|
};
|
||
|
|
||
|
for_each_guest_mode(run_test, &p);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int main(int argc, char *argv[])
|
||
|
{
|
||
|
enum vm_mem_backing_src_type src_type;
|
||
|
int opt;
|
||
|
|
||
|
src_type = DEFAULT_VM_MEM_SRC;
|
||
|
|
||
|
while ((opt = getopt(argc, argv, "hm:s:")) != -1) {
|
||
|
switch (opt) {
|
||
|
case 'm':
|
||
|
guest_modes_cmdline(optarg);
|
||
|
break;
|
||
|
case 's':
|
||
|
src_type = parse_backing_src_type(optarg);
|
||
|
break;
|
||
|
case 'h':
|
||
|
default:
|
||
|
help(argv[0]);
|
||
|
exit(0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for_each_test_and_guest_mode(src_type);
|
||
|
return 0;
|
||
|
}
|