// SPDX-License-Identifier: GPL-2.0+ /* * caam - Freescale FSL CAAM support for crypto API * * Copyright 2008-2011 Freescale Semiconductor, Inc. * Copyright 2016-2019 NXP * * Based on talitos crypto API driver. * * relationship of job descriptors to shared descriptors (SteveC Dec 10 2008): * * --------------- --------------- * | JobDesc #1 |-------------------->| ShareDesc | * | *(packet 1) | | (PDB) | * --------------- |------------->| (hashKey) | * . | | (cipherKey) | * . | |-------->| (operation) | * --------------- | | --------------- * | JobDesc #2 |------| | * | *(packet 2) | | * --------------- | * . | * . | * --------------- | * | JobDesc #3 |------------ * | *(packet 3) | * --------------- * * The SharedDesc never changes for a connection unless rekeyed, but * each packet will likely be in a different place. So all we need * to know to process the packet is where the input is, where the * output goes, and what context we want to process with. Context is * in the SharedDesc, packet references in the JobDesc. * * So, a job desc looks like: * * --------------------- * | Header | * | ShareDesc Pointer | * | SEQ_OUT_PTR | * | (output buffer) | * | (output length) | * | SEQ_IN_PTR | * | (input buffer) | * | (input length) | * --------------------- */ #include "compat.h" #include "regs.h" #include "intern.h" #include "desc_constr.h" #include "jr.h" #include "error.h" #include "sg_sw_sec4.h" #include "key_gen.h" #include "caamalg_desc.h" #include #include #include #include #include #include #include #include #include /* * crypto alg */ #define CAAM_CRA_PRIORITY 3000 /* max key is sum of AES_MAX_KEY_SIZE, max split key size */ #define CAAM_MAX_KEY_SIZE (AES_MAX_KEY_SIZE + \ CTR_RFC3686_NONCE_SIZE + \ SHA512_DIGEST_SIZE * 2) #define AEAD_DESC_JOB_IO_LEN (DESC_JOB_IO_LEN + CAAM_CMD_SZ * 2) #define GCM_DESC_JOB_IO_LEN (AEAD_DESC_JOB_IO_LEN + \ CAAM_CMD_SZ * 4) #define AUTHENC_DESC_JOB_IO_LEN (AEAD_DESC_JOB_IO_LEN + \ CAAM_CMD_SZ * 5) #define CHACHAPOLY_DESC_JOB_IO_LEN (AEAD_DESC_JOB_IO_LEN + CAAM_CMD_SZ * 6) #define DESC_MAX_USED_BYTES (CAAM_DESC_BYTES_MAX - DESC_JOB_IO_LEN_MIN) #define DESC_MAX_USED_LEN (DESC_MAX_USED_BYTES / CAAM_CMD_SZ) struct caam_alg_entry { int class1_alg_type; int class2_alg_type; bool rfc3686; bool geniv; bool nodkp; }; struct caam_aead_alg { struct aead_alg aead; struct caam_alg_entry caam; bool registered; }; struct caam_skcipher_alg { struct skcipher_alg skcipher; struct caam_alg_entry caam; bool registered; }; /* * per-session context */ struct caam_ctx { struct crypto_engine_ctx enginectx; u32 sh_desc_enc[DESC_MAX_USED_LEN]; u32 sh_desc_dec[DESC_MAX_USED_LEN]; u8 key[CAAM_MAX_KEY_SIZE]; dma_addr_t sh_desc_enc_dma; dma_addr_t sh_desc_dec_dma; dma_addr_t key_dma; enum dma_data_direction dir; struct device *jrdev; struct alginfo adata; struct alginfo cdata; unsigned int authsize; bool xts_key_fallback; struct crypto_skcipher *fallback; }; struct caam_skcipher_req_ctx { struct skcipher_edesc *edesc; struct skcipher_request fallback_req; }; struct caam_aead_req_ctx { struct aead_edesc *edesc; }; static int aead_null_set_sh_desc(struct crypto_aead *aead) { struct caam_ctx *ctx = crypto_aead_ctx_dma(aead); struct device *jrdev = ctx->jrdev; struct caam_drv_private *ctrlpriv = dev_get_drvdata(jrdev->parent); u32 *desc; int rem_bytes = CAAM_DESC_BYTES_MAX - AEAD_DESC_JOB_IO_LEN - ctx->adata.keylen_pad; /* * Job Descriptor and Shared Descriptors * must all fit into the 64-word Descriptor h/w Buffer */ if (rem_bytes >= DESC_AEAD_NULL_ENC_LEN) { ctx->adata.key_inline = true; ctx->adata.key_virt = ctx->key; } else { ctx->adata.key_inline = false; ctx->adata.key_dma = ctx->key_dma; } /* aead_encrypt shared descriptor */ desc = ctx->sh_desc_enc; cnstr_shdsc_aead_null_encap(desc, &ctx->adata, ctx->authsize, ctrlpriv->era); dma_sync_single_for_device(jrdev, ctx->sh_desc_enc_dma, desc_bytes(desc), ctx->dir); /* * Job Descriptor and Shared Descriptors * must all fit into the 64-word Descriptor h/w Buffer */ if (rem_bytes >= DESC_AEAD_NULL_DEC_LEN) { ctx->adata.key_inline = true; ctx->adata.key_virt = ctx->key; } else { ctx->adata.key_inline = false; ctx->adata.key_dma = ctx->key_dma; } /* aead_decrypt shared descriptor */ desc = ctx->sh_desc_dec; cnstr_shdsc_aead_null_decap(desc, &ctx->adata, ctx->authsize, ctrlpriv->era); dma_sync_single_for_device(jrdev, ctx->sh_desc_dec_dma, desc_bytes(desc), ctx->dir); return 0; } static int aead_set_sh_desc(struct crypto_aead *aead) { struct caam_aead_alg *alg = container_of(crypto_aead_alg(aead), struct caam_aead_alg, aead); unsigned int ivsize = crypto_aead_ivsize(aead); struct caam_ctx *ctx = crypto_aead_ctx_dma(aead); struct device *jrdev = ctx->jrdev; struct caam_drv_private *ctrlpriv = dev_get_drvdata(jrdev->parent); u32 ctx1_iv_off = 0; u32 *desc, *nonce = NULL; u32 inl_mask; unsigned int data_len[2]; const bool ctr_mode = ((ctx->cdata.algtype & OP_ALG_AAI_MASK) == OP_ALG_AAI_CTR_MOD128); const bool is_rfc3686 = alg->caam.rfc3686; if (!ctx->authsize) return 0; /* NULL encryption / decryption */ if (!ctx->cdata.keylen) return aead_null_set_sh_desc(aead); /* * AES-CTR needs to load IV in CONTEXT1 reg * at an offset of 128bits (16bytes) * CONTEXT1[255:128] = IV */ if (ctr_mode) ctx1_iv_off = 16; /* * RFC3686 specific: * CONTEXT1[255:128] = {NONCE, IV, COUNTER} */ if (is_rfc3686) { ctx1_iv_off = 16 + CTR_RFC3686_NONCE_SIZE; nonce = (u32 *)((void *)ctx->key + ctx->adata.keylen_pad + ctx->cdata.keylen - CTR_RFC3686_NONCE_SIZE); } /* * In case |user key| > |derived key|, using DKP * would result in invalid opcodes (last bytes of user key) in * the resulting descriptor. Use DKP instead => both * virtual and dma key addresses are needed. */ ctx->adata.key_virt = ctx->key; ctx->adata.key_dma = ctx->key_dma; ctx->cdata.key_virt = ctx->key + ctx->adata.keylen_pad; ctx->cdata.key_dma = ctx->key_dma + ctx->adata.keylen_pad; data_len[0] = ctx->adata.keylen_pad; data_len[1] = ctx->cdata.keylen; if (alg->caam.geniv) goto skip_enc; /* * Job Descriptor and Shared Descriptors * must all fit into the 64-word Descriptor h/w Buffer */ if (desc_inline_query(DESC_AEAD_ENC_LEN + (is_rfc3686 ? DESC_AEAD_CTR_RFC3686_LEN : 0), AUTHENC_DESC_JOB_IO_LEN, data_len, &inl_mask, ARRAY_SIZE(data_len)) < 0) return -EINVAL; ctx->adata.key_inline = !!(inl_mask & 1); ctx->cdata.key_inline = !!(inl_mask & 2); /* aead_encrypt shared descriptor */ desc = ctx->sh_desc_enc; cnstr_shdsc_aead_encap(desc, &ctx->cdata, &ctx->adata, ivsize, ctx->authsize, is_rfc3686, nonce, ctx1_iv_off, false, ctrlpriv->era); dma_sync_single_for_device(jrdev, ctx->sh_desc_enc_dma, desc_bytes(desc), ctx->dir); skip_enc: /* * Job Descriptor and Shared Descriptors * must all fit into the 64-word Descriptor h/w Buffer */ if (desc_inline_query(DESC_AEAD_DEC_LEN + (is_rfc3686 ? DESC_AEAD_CTR_RFC3686_LEN : 0), AUTHENC_DESC_JOB_IO_LEN, data_len, &inl_mask, ARRAY_SIZE(data_len)) < 0) return -EINVAL; ctx->adata.key_inline = !!(inl_mask & 1); ctx->cdata.key_inline = !!(inl_mask & 2); /* aead_decrypt shared descriptor */ desc = ctx->sh_desc_dec; cnstr_shdsc_aead_decap(desc, &ctx->cdata, &ctx->adata, ivsize, ctx->authsize, alg->caam.geniv, is_rfc3686, nonce, ctx1_iv_off, false, ctrlpriv->era); dma_sync_single_for_device(jrdev, ctx->sh_desc_dec_dma, desc_bytes(desc), ctx->dir); if (!alg->caam.geniv) goto skip_givenc; /* * Job Descriptor and Shared Descriptors * must all fit into the 64-word Descriptor h/w Buffer */ if (desc_inline_query(DESC_AEAD_GIVENC_LEN + (is_rfc3686 ? DESC_AEAD_CTR_RFC3686_LEN : 0), AUTHENC_DESC_JOB_IO_LEN, data_len, &inl_mask, ARRAY_SIZE(data_len)) < 0) return -EINVAL; ctx->adata.key_inline = !!(inl_mask & 1); ctx->cdata.key_inline = !!(inl_mask & 2); /* aead_givencrypt shared descriptor */ desc = ctx->sh_desc_enc; cnstr_shdsc_aead_givencap(desc, &ctx->cdata, &ctx->adata, ivsize, ctx->authsize, is_rfc3686, nonce, ctx1_iv_off, false, ctrlpriv->era); dma_sync_single_for_device(jrdev, ctx->sh_desc_enc_dma, desc_bytes(desc), ctx->dir); skip_givenc: return 0; } static int aead_setauthsize(struct crypto_aead *authenc, unsigned int authsize) { struct caam_ctx *ctx = crypto_aead_ctx_dma(authenc); ctx->authsize = authsize; aead_set_sh_desc(authenc); return 0; } static int gcm_set_sh_desc(struct crypto_aead *aead) { struct caam_ctx *ctx = crypto_aead_ctx_dma(aead); struct device *jrdev = ctx->jrdev; unsigned int ivsize = crypto_aead_ivsize(aead); u32 *desc; int rem_bytes = CAAM_DESC_BYTES_MAX - GCM_DESC_JOB_IO_LEN - ctx->cdata.keylen; if (!ctx->cdata.keylen || !ctx->authsize) return 0; /* * AES GCM encrypt shared descriptor * Job Descriptor and Shared Descriptor * must fit into the 64-word Descriptor h/w Buffer */ if (rem_bytes >= DESC_GCM_ENC_LEN) { ctx->cdata.key_inline = true; ctx->cdata.key_virt = ctx->key; } else { ctx->cdata.key_inline = false; ctx->cdata.key_dma = ctx->key_dma; } desc = ctx->sh_desc_enc; cnstr_shdsc_gcm_encap(desc, &ctx->cdata, ivsize, ctx->authsize, false); dma_sync_single_for_device(jrdev, ctx->sh_desc_enc_dma, desc_bytes(desc), ctx->dir); /* * Job Descriptor and Shared Descriptors * must all fit into the 64-word Descriptor h/w Buffer */ if (rem_bytes >= DESC_GCM_DEC_LEN) { ctx->cdata.key_inline = true; ctx->cdata.key_virt = ctx->key; } else { ctx->cdata.key_inline = false; ctx->cdata.key_dma = ctx->key_dma; } desc = ctx->sh_desc_dec; cnstr_shdsc_gcm_decap(desc, &ctx->cdata, ivsize, ctx->authsize, false); dma_sync_single_for_device(jrdev, ctx->sh_desc_dec_dma, desc_bytes(desc), ctx->dir); return 0; } static int gcm_setauthsize(struct crypto_aead *authenc, unsigned int authsize) { struct caam_ctx *ctx = crypto_aead_ctx_dma(authenc); int err; err = crypto_gcm_check_authsize(authsize); if (err) return err; ctx->authsize = authsize; gcm_set_sh_desc(authenc); return 0; } static int rfc4106_set_sh_desc(struct crypto_aead *aead) { struct caam_ctx *ctx = crypto_aead_ctx_dma(aead); struct device *jrdev = ctx->jrdev; unsigned int ivsize = crypto_aead_ivsize(aead); u32 *desc; int rem_bytes = CAAM_DESC_BYTES_MAX - GCM_DESC_JOB_IO_LEN - ctx->cdata.keylen; if (!ctx->cdata.keylen || !ctx->authsize) return 0; /* * RFC4106 encrypt shared descriptor * Job Descriptor and Shared Descriptor * must fit into the 64-word Descriptor h/w Buffer */ if (rem_bytes >= DESC_RFC4106_ENC_LEN) { ctx->cdata.key_inline = true; ctx->cdata.key_virt = ctx->key; } else { ctx->cdata.key_inline = false; ctx->cdata.key_dma = ctx->key_dma; } desc = ctx->sh_desc_enc; cnstr_shdsc_rfc4106_encap(desc, &ctx->cdata, ivsize, ctx->authsize, false); dma_sync_single_for_device(jrdev, ctx->sh_desc_enc_dma, desc_bytes(desc), ctx->dir); /* * Job Descriptor and Shared Descriptors * must all fit into the 64-word Descriptor h/w Buffer */ if (rem_bytes >= DESC_RFC4106_DEC_LEN) { ctx->cdata.key_inline = true; ctx->cdata.key_virt = ctx->key; } else { ctx->cdata.key_inline = false; ctx->cdata.key_dma = ctx->key_dma; } desc = ctx->sh_desc_dec; cnstr_shdsc_rfc4106_decap(desc, &ctx->cdata, ivsize, ctx->authsize, false); dma_sync_single_for_device(jrdev, ctx->sh_desc_dec_dma, desc_bytes(desc), ctx->dir); return 0; } static int rfc4106_setauthsize(struct crypto_aead *authenc, unsigned int authsize) { struct caam_ctx *ctx = crypto_aead_ctx_dma(authenc); int err; err = crypto_rfc4106_check_authsize(authsize); if (err) return err; ctx->authsize = authsize; rfc4106_set_sh_desc(authenc); return 0; } static int rfc4543_set_sh_desc(struct crypto_aead *aead) { struct caam_ctx *ctx = crypto_aead_ctx_dma(aead); struct device *jrdev = ctx->jrdev; unsigned int ivsize = crypto_aead_ivsize(aead); u32 *desc; int rem_bytes = CAAM_DESC_BYTES_MAX - GCM_DESC_JOB_IO_LEN - ctx->cdata.keylen; if (!ctx->cdata.keylen || !ctx->authsize) return 0; /* * RFC4543 encrypt shared descriptor * Job Descriptor and Shared Descriptor * must fit into the 64-word Descriptor h/w Buffer */ if (rem_bytes >= DESC_RFC4543_ENC_LEN) { ctx->cdata.key_inline = true; ctx->cdata.key_virt = ctx->key; } else { ctx->cdata.key_inline = false; ctx->cdata.key_dma = ctx->key_dma; } desc = ctx->sh_desc_enc; cnstr_shdsc_rfc4543_encap(desc, &ctx->cdata, ivsize, ctx->authsize, false); dma_sync_single_for_device(jrdev, ctx->sh_desc_enc_dma, desc_bytes(desc), ctx->dir); /* * Job Descriptor and Shared Descriptors * must all fit into the 64-word Descriptor h/w Buffer */ if (rem_bytes >= DESC_RFC4543_DEC_LEN) { ctx->cdata.key_inline = true; ctx->cdata.key_virt = ctx->key; } else { ctx->cdata.key_inline = false; ctx->cdata.key_dma = ctx->key_dma; } desc = ctx->sh_desc_dec; cnstr_shdsc_rfc4543_decap(desc, &ctx->cdata, ivsize, ctx->authsize, false); dma_sync_single_for_device(jrdev, ctx->sh_desc_dec_dma, desc_bytes(desc), ctx->dir); return 0; } static int rfc4543_setauthsize(struct crypto_aead *authenc, unsigned int authsize) { struct caam_ctx *ctx = crypto_aead_ctx_dma(authenc); if (authsize != 16) return -EINVAL; ctx->authsize = authsize; rfc4543_set_sh_desc(authenc); return 0; } static int chachapoly_set_sh_desc(struct crypto_aead *aead) { struct caam_ctx *ctx = crypto_aead_ctx_dma(aead); struct device *jrdev = ctx->jrdev; unsigned int ivsize = crypto_aead_ivsize(aead); u32 *desc; if (!ctx->cdata.keylen || !ctx->authsize) return 0; desc = ctx->sh_desc_enc; cnstr_shdsc_chachapoly(desc, &ctx->cdata, &ctx->adata, ivsize, ctx->authsize, true, false); dma_sync_single_for_device(jrdev, ctx->sh_desc_enc_dma, desc_bytes(desc), ctx->dir); desc = ctx->sh_desc_dec; cnstr_shdsc_chachapoly(desc, &ctx->cdata, &ctx->adata, ivsize, ctx->authsize, false, false); dma_sync_single_for_device(jrdev, ctx->sh_desc_dec_dma, desc_bytes(desc), ctx->dir); return 0; } static int chachapoly_setauthsize(struct crypto_aead *aead, unsigned int authsize) { struct caam_ctx *ctx = crypto_aead_ctx_dma(aead); if (authsize != POLY1305_DIGEST_SIZE) return -EINVAL; ctx->authsize = authsize; return chachapoly_set_sh_desc(aead); } static int chachapoly_setkey(struct crypto_aead *aead, const u8 *key, unsigned int keylen) { struct caam_ctx *ctx = crypto_aead_ctx_dma(aead); unsigned int ivsize = crypto_aead_ivsize(aead); unsigned int saltlen = CHACHAPOLY_IV_SIZE - ivsize; if (keylen != CHACHA_KEY_SIZE + saltlen) return -EINVAL; ctx->cdata.key_virt = key; ctx->cdata.keylen = keylen - saltlen; return chachapoly_set_sh_desc(aead); } static int aead_setkey(struct crypto_aead *aead, const u8 *key, unsigned int keylen) { struct caam_ctx *ctx = crypto_aead_ctx_dma(aead); struct device *jrdev = ctx->jrdev; struct caam_drv_private *ctrlpriv = dev_get_drvdata(jrdev->parent); struct crypto_authenc_keys keys; int ret = 0; if (crypto_authenc_extractkeys(&keys, key, keylen) != 0) goto badkey; dev_dbg(jrdev, "keylen %d enckeylen %d authkeylen %d\n", keys.authkeylen + keys.enckeylen, keys.enckeylen, keys.authkeylen); print_hex_dump_debug("key in @"__stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1); /* * If DKP is supported, use it in the shared descriptor to generate * the split key. */ if (ctrlpriv->era >= 6) { ctx->adata.keylen = keys.authkeylen; ctx->adata.keylen_pad = split_key_len(ctx->adata.algtype & OP_ALG_ALGSEL_MASK); if (ctx->adata.keylen_pad + keys.enckeylen > CAAM_MAX_KEY_SIZE) goto badkey; memcpy(ctx->key, keys.authkey, keys.authkeylen); memcpy(ctx->key + ctx->adata.keylen_pad, keys.enckey, keys.enckeylen); dma_sync_single_for_device(jrdev, ctx->key_dma, ctx->adata.keylen_pad + keys.enckeylen, ctx->dir); goto skip_split_key; } ret = gen_split_key(ctx->jrdev, ctx->key, &ctx->adata, keys.authkey, keys.authkeylen, CAAM_MAX_KEY_SIZE - keys.enckeylen); if (ret) { goto badkey; } /* postpend encryption key to auth split key */ memcpy(ctx->key + ctx->adata.keylen_pad, keys.enckey, keys.enckeylen); dma_sync_single_for_device(jrdev, ctx->key_dma, ctx->adata.keylen_pad + keys.enckeylen, ctx->dir); print_hex_dump_debug("ctx.key@"__stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, ctx->key, ctx->adata.keylen_pad + keys.enckeylen, 1); skip_split_key: ctx->cdata.keylen = keys.enckeylen; memzero_explicit(&keys, sizeof(keys)); return aead_set_sh_desc(aead); badkey: memzero_explicit(&keys, sizeof(keys)); return -EINVAL; } static int des3_aead_setkey(struct crypto_aead *aead, const u8 *key, unsigned int keylen) { struct crypto_authenc_keys keys; int err; err = crypto_authenc_extractkeys(&keys, key, keylen); if (unlikely(err)) return err; err = verify_aead_des3_key(aead, keys.enckey, keys.enckeylen) ?: aead_setkey(aead, key, keylen); memzero_explicit(&keys, sizeof(keys)); return err; } static int gcm_setkey(struct crypto_aead *aead, const u8 *key, unsigned int keylen) { struct caam_ctx *ctx = crypto_aead_ctx_dma(aead); struct device *jrdev = ctx->jrdev; int err; err = aes_check_keylen(keylen); if (err) return err; print_hex_dump_debug("key in @"__stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1); memcpy(ctx->key, key, keylen); dma_sync_single_for_device(jrdev, ctx->key_dma, keylen, ctx->dir); ctx->cdata.keylen = keylen; return gcm_set_sh_desc(aead); } static int rfc4106_setkey(struct crypto_aead *aead, const u8 *key, unsigned int keylen) { struct caam_ctx *ctx = crypto_aead_ctx_dma(aead); struct device *jrdev = ctx->jrdev; int err; err = aes_check_keylen(keylen - 4); if (err) return err; print_hex_dump_debug("key in @"__stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1); memcpy(ctx->key, key, keylen); /* * The last four bytes of the key material are used as the salt value * in the nonce. Update the AES key length. */ ctx->cdata.keylen = keylen - 4; dma_sync_single_for_device(jrdev, ctx->key_dma, ctx->cdata.keylen, ctx->dir); return rfc4106_set_sh_desc(aead); } static int rfc4543_setkey(struct crypto_aead *aead, const u8 *key, unsigned int keylen) { struct caam_ctx *ctx = crypto_aead_ctx_dma(aead); struct device *jrdev = ctx->jrdev; int err; err = aes_check_keylen(keylen - 4); if (err) return err; print_hex_dump_debug("key in @"__stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1); memcpy(ctx->key, key, keylen); /* * The last four bytes of the key material are used as the salt value * in the nonce. Update the AES key length. */ ctx->cdata.keylen = keylen - 4; dma_sync_single_for_device(jrdev, ctx->key_dma, ctx->cdata.keylen, ctx->dir); return rfc4543_set_sh_desc(aead); } static int skcipher_setkey(struct crypto_skcipher *skcipher, const u8 *key, unsigned int keylen, const u32 ctx1_iv_off) { struct caam_ctx *ctx = crypto_skcipher_ctx_dma(skcipher); struct caam_skcipher_alg *alg = container_of(crypto_skcipher_alg(skcipher), typeof(*alg), skcipher); struct device *jrdev = ctx->jrdev; unsigned int ivsize = crypto_skcipher_ivsize(skcipher); u32 *desc; const bool is_rfc3686 = alg->caam.rfc3686; print_hex_dump_debug("key in @"__stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1); ctx->cdata.keylen = keylen; ctx->cdata.key_virt = key; ctx->cdata.key_inline = true; /* skcipher_encrypt shared descriptor */ desc = ctx->sh_desc_enc; cnstr_shdsc_skcipher_encap(desc, &ctx->cdata, ivsize, is_rfc3686, ctx1_iv_off); dma_sync_single_for_device(jrdev, ctx->sh_desc_enc_dma, desc_bytes(desc), ctx->dir); /* skcipher_decrypt shared descriptor */ desc = ctx->sh_desc_dec; cnstr_shdsc_skcipher_decap(desc, &ctx->cdata, ivsize, is_rfc3686, ctx1_iv_off); dma_sync_single_for_device(jrdev, ctx->sh_desc_dec_dma, desc_bytes(desc), ctx->dir); return 0; } static int aes_skcipher_setkey(struct crypto_skcipher *skcipher, const u8 *key, unsigned int keylen) { int err; err = aes_check_keylen(keylen); if (err) return err; return skcipher_setkey(skcipher, key, keylen, 0); } static int rfc3686_skcipher_setkey(struct crypto_skcipher *skcipher, const u8 *key, unsigned int keylen) { u32 ctx1_iv_off; int err; /* * RFC3686 specific: * | CONTEXT1[255:128] = {NONCE, IV, COUNTER} * | *key = {KEY, NONCE} */ ctx1_iv_off = 16 + CTR_RFC3686_NONCE_SIZE; keylen -= CTR_RFC3686_NONCE_SIZE; err = aes_check_keylen(keylen); if (err) return err; return skcipher_setkey(skcipher, key, keylen, ctx1_iv_off); } static int ctr_skcipher_setkey(struct crypto_skcipher *skcipher, const u8 *key, unsigned int keylen) { u32 ctx1_iv_off; int err; /* * AES-CTR needs to load IV in CONTEXT1 reg * at an offset of 128bits (16bytes) * CONTEXT1[255:128] = IV */ ctx1_iv_off = 16; err = aes_check_keylen(keylen); if (err) return err; return skcipher_setkey(skcipher, key, keylen, ctx1_iv_off); } static int des_skcipher_setkey(struct crypto_skcipher *skcipher, const u8 *key, unsigned int keylen) { return verify_skcipher_des_key(skcipher, key) ?: skcipher_setkey(skcipher, key, keylen, 0); } static int des3_skcipher_setkey(struct crypto_skcipher *skcipher, const u8 *key, unsigned int keylen) { return verify_skcipher_des3_key(skcipher, key) ?: skcipher_setkey(skcipher, key, keylen, 0); } static int xts_skcipher_setkey(struct crypto_skcipher *skcipher, const u8 *key, unsigned int keylen) { struct caam_ctx *ctx = crypto_skcipher_ctx_dma(skcipher); struct device *jrdev = ctx->jrdev; struct caam_drv_private *ctrlpriv = dev_get_drvdata(jrdev->parent); u32 *desc; int err; err = xts_verify_key(skcipher, key, keylen); if (err) { dev_dbg(jrdev, "key size mismatch\n"); return err; } if (keylen != 2 * AES_KEYSIZE_128 && keylen != 2 * AES_KEYSIZE_256) ctx->xts_key_fallback = true; if (ctrlpriv->era <= 8 || ctx->xts_key_fallback) { err = crypto_skcipher_setkey(ctx->fallback, key, keylen); if (err) return err; } ctx->cdata.keylen = keylen; ctx->cdata.key_virt = key; ctx->cdata.key_inline = true; /* xts_skcipher_encrypt shared descriptor */ desc = ctx->sh_desc_enc; cnstr_shdsc_xts_skcipher_encap(desc, &ctx->cdata); dma_sync_single_for_device(jrdev, ctx->sh_desc_enc_dma, desc_bytes(desc), ctx->dir); /* xts_skcipher_decrypt shared descriptor */ desc = ctx->sh_desc_dec; cnstr_shdsc_xts_skcipher_decap(desc, &ctx->cdata); dma_sync_single_for_device(jrdev, ctx->sh_desc_dec_dma, desc_bytes(desc), ctx->dir); return 0; } /* * aead_edesc - s/w-extended aead descriptor * @src_nents: number of segments in input s/w scatterlist * @dst_nents: number of segments in output s/w scatterlist * @mapped_src_nents: number of segments in input h/w link table * @mapped_dst_nents: number of segments in output h/w link table * @sec4_sg_bytes: length of dma mapped sec4_sg space * @bklog: stored to determine if the request needs backlog * @sec4_sg_dma: bus physical mapped address of h/w link table * @sec4_sg: pointer to h/w link table * @hw_desc: the h/w job descriptor followed by any referenced link tables */ struct aead_edesc { int src_nents; int dst_nents; int mapped_src_nents; int mapped_dst_nents; int sec4_sg_bytes; bool bklog; dma_addr_t sec4_sg_dma; struct sec4_sg_entry *sec4_sg; u32 hw_desc[]; }; /* * skcipher_edesc - s/w-extended skcipher descriptor * @src_nents: number of segments in input s/w scatterlist * @dst_nents: number of segments in output s/w scatterlist * @mapped_src_nents: number of segments in input h/w link table * @mapped_dst_nents: number of segments in output h/w link table * @iv_dma: dma address of iv for checking continuity and link table * @sec4_sg_bytes: length of dma mapped sec4_sg space * @bklog: stored to determine if the request needs backlog * @sec4_sg_dma: bus physical mapped address of h/w link table * @sec4_sg: pointer to h/w link table * @hw_desc: the h/w job descriptor followed by any referenced link tables * and IV */ struct skcipher_edesc { int src_nents; int dst_nents; int mapped_src_nents; int mapped_dst_nents; dma_addr_t iv_dma; int sec4_sg_bytes; bool bklog; dma_addr_t sec4_sg_dma; struct sec4_sg_entry *sec4_sg; u32 hw_desc[]; }; static void caam_unmap(struct device *dev, struct scatterlist *src, struct scatterlist *dst, int src_nents, int dst_nents, dma_addr_t iv_dma, int ivsize, dma_addr_t sec4_sg_dma, int sec4_sg_bytes) { if (dst != src) { if (src_nents) dma_unmap_sg(dev, src, src_nents, DMA_TO_DEVICE); if (dst_nents) dma_unmap_sg(dev, dst, dst_nents, DMA_FROM_DEVICE); } else { dma_unmap_sg(dev, src, src_nents, DMA_BIDIRECTIONAL); } if (iv_dma) dma_unmap_single(dev, iv_dma, ivsize, DMA_BIDIRECTIONAL); if (sec4_sg_bytes) dma_unmap_single(dev, sec4_sg_dma, sec4_sg_bytes, DMA_TO_DEVICE); } static void aead_unmap(struct device *dev, struct aead_edesc *edesc, struct aead_request *req) { caam_unmap(dev, req->src, req->dst, edesc->src_nents, edesc->dst_nents, 0, 0, edesc->sec4_sg_dma, edesc->sec4_sg_bytes); } static void skcipher_unmap(struct device *dev, struct skcipher_edesc *edesc, struct skcipher_request *req) { struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req); int ivsize = crypto_skcipher_ivsize(skcipher); caam_unmap(dev, req->src, req->dst, edesc->src_nents, edesc->dst_nents, edesc->iv_dma, ivsize, edesc->sec4_sg_dma, edesc->sec4_sg_bytes); } static void aead_crypt_done(struct device *jrdev, u32 *desc, u32 err, void *context) { struct aead_request *req = context; struct caam_aead_req_ctx *rctx = aead_request_ctx(req); struct caam_drv_private_jr *jrp = dev_get_drvdata(jrdev); struct aead_edesc *edesc; int ecode = 0; bool has_bklog; dev_dbg(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err); edesc = rctx->edesc; has_bklog = edesc->bklog; if (err) ecode = caam_jr_strstatus(jrdev, err); aead_unmap(jrdev, edesc, req); kfree(edesc); /* * If no backlog flag, the completion of the request is done * by CAAM, not crypto engine. */ if (!has_bklog) aead_request_complete(req, ecode); else crypto_finalize_aead_request(jrp->engine, req, ecode); } static inline u8 *skcipher_edesc_iv(struct skcipher_edesc *edesc) { return PTR_ALIGN((u8 *)edesc->sec4_sg + edesc->sec4_sg_bytes, dma_get_cache_alignment()); } static void skcipher_crypt_done(struct device *jrdev, u32 *desc, u32 err, void *context) { struct skcipher_request *req = context; struct skcipher_edesc *edesc; struct caam_skcipher_req_ctx *rctx = skcipher_request_ctx(req); struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req); struct caam_drv_private_jr *jrp = dev_get_drvdata(jrdev); int ivsize = crypto_skcipher_ivsize(skcipher); int ecode = 0; bool has_bklog; dev_dbg(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err); edesc = rctx->edesc; has_bklog = edesc->bklog; if (err) ecode = caam_jr_strstatus(jrdev, err); skcipher_unmap(jrdev, edesc, req); /* * The crypto API expects us to set the IV (req->iv) to the last * ciphertext block (CBC mode) or last counter (CTR mode). * This is used e.g. by the CTS mode. */ if (ivsize && !ecode) { memcpy(req->iv, skcipher_edesc_iv(edesc), ivsize); print_hex_dump_debug("dstiv @" __stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, req->iv, ivsize, 1); } caam_dump_sg("dst @" __stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, req->dst, edesc->dst_nents > 1 ? 100 : req->cryptlen, 1); kfree(edesc); /* * If no backlog flag, the completion of the request is done * by CAAM, not crypto engine. */ if (!has_bklog) skcipher_request_complete(req, ecode); else crypto_finalize_skcipher_request(jrp->engine, req, ecode); } /* * Fill in aead job descriptor */ static void init_aead_job(struct aead_request *req, struct aead_edesc *edesc, bool all_contig, bool encrypt) { struct crypto_aead *aead = crypto_aead_reqtfm(req); struct caam_ctx *ctx = crypto_aead_ctx_dma(aead); int authsize = ctx->authsize; u32 *desc = edesc->hw_desc; u32 out_options, in_options; dma_addr_t dst_dma, src_dma; int len, sec4_sg_index = 0; dma_addr_t ptr; u32 *sh_desc; sh_desc = encrypt ? ctx->sh_desc_enc : ctx->sh_desc_dec; ptr = encrypt ? ctx->sh_desc_enc_dma : ctx->sh_desc_dec_dma; len = desc_len(sh_desc); init_job_desc_shared(desc, ptr, len, HDR_SHARE_DEFER | HDR_REVERSE); if (all_contig) { src_dma = edesc->mapped_src_nents ? sg_dma_address(req->src) : 0; in_options = 0; } else { src_dma = edesc->sec4_sg_dma; sec4_sg_index += edesc->mapped_src_nents; in_options = LDST_SGF; } append_seq_in_ptr(desc, src_dma, req->assoclen + req->cryptlen, in_options); dst_dma = src_dma; out_options = in_options; if (unlikely(req->src != req->dst)) { if (!edesc->mapped_dst_nents) { dst_dma = 0; out_options = 0; } else if (edesc->mapped_dst_nents == 1) { dst_dma = sg_dma_address(req->dst); out_options = 0; } else { dst_dma = edesc->sec4_sg_dma + sec4_sg_index * sizeof(struct sec4_sg_entry); out_options = LDST_SGF; } } if (encrypt) append_seq_out_ptr(desc, dst_dma, req->assoclen + req->cryptlen + authsize, out_options); else append_seq_out_ptr(desc, dst_dma, req->assoclen + req->cryptlen - authsize, out_options); } static void init_gcm_job(struct aead_request *req, struct aead_edesc *edesc, bool all_contig, bool encrypt) { struct crypto_aead *aead = crypto_aead_reqtfm(req); struct caam_ctx *ctx = crypto_aead_ctx_dma(aead); unsigned int ivsize = crypto_aead_ivsize(aead); u32 *desc = edesc->hw_desc; bool generic_gcm = (ivsize == GCM_AES_IV_SIZE); unsigned int last; init_aead_job(req, edesc, all_contig, encrypt); append_math_add_imm_u32(desc, REG3, ZERO, IMM, req->assoclen); /* BUG This should not be specific to generic GCM. */ last = 0; if (encrypt && generic_gcm && !(req->assoclen + req->cryptlen)) last = FIFOLD_TYPE_LAST1; /* Read GCM IV */ append_cmd(desc, CMD_FIFO_LOAD | FIFOLD_CLASS_CLASS1 | IMMEDIATE | FIFOLD_TYPE_IV | FIFOLD_TYPE_FLUSH1 | GCM_AES_IV_SIZE | last); /* Append Salt */ if (!generic_gcm) append_data(desc, ctx->key + ctx->cdata.keylen, 4); /* Append IV */ append_data(desc, req->iv, ivsize); /* End of blank commands */ } static void init_chachapoly_job(struct aead_request *req, struct aead_edesc *edesc, bool all_contig, bool encrypt) { struct crypto_aead *aead = crypto_aead_reqtfm(req); unsigned int ivsize = crypto_aead_ivsize(aead); unsigned int assoclen = req->assoclen; u32 *desc = edesc->hw_desc; u32 ctx_iv_off = 4; init_aead_job(req, edesc, all_contig, encrypt); if (ivsize != CHACHAPOLY_IV_SIZE) { /* IPsec specific: CONTEXT1[223:128] = {NONCE, IV} */ ctx_iv_off += 4; /* * The associated data comes already with the IV but we need * to skip it when we authenticate or encrypt... */ assoclen -= ivsize; } append_math_add_imm_u32(desc, REG3, ZERO, IMM, assoclen); /* * For IPsec load the IV further in the same register. * For RFC7539 simply load the 12 bytes nonce in a single operation */ append_load_as_imm(desc, req->iv, ivsize, LDST_CLASS_1_CCB | LDST_SRCDST_BYTE_CONTEXT | ctx_iv_off << LDST_OFFSET_SHIFT); } static void init_authenc_job(struct aead_request *req, struct aead_edesc *edesc, bool all_contig, bool encrypt) { struct crypto_aead *aead = crypto_aead_reqtfm(req); struct caam_aead_alg *alg = container_of(crypto_aead_alg(aead), struct caam_aead_alg, aead); unsigned int ivsize = crypto_aead_ivsize(aead); struct caam_ctx *ctx = crypto_aead_ctx_dma(aead); struct caam_drv_private *ctrlpriv = dev_get_drvdata(ctx->jrdev->parent); const bool ctr_mode = ((ctx->cdata.algtype & OP_ALG_AAI_MASK) == OP_ALG_AAI_CTR_MOD128); const bool is_rfc3686 = alg->caam.rfc3686; u32 *desc = edesc->hw_desc; u32 ivoffset = 0; /* * AES-CTR needs to load IV in CONTEXT1 reg * at an offset of 128bits (16bytes) * CONTEXT1[255:128] = IV */ if (ctr_mode) ivoffset = 16; /* * RFC3686 specific: * CONTEXT1[255:128] = {NONCE, IV, COUNTER} */ if (is_rfc3686) ivoffset = 16 + CTR_RFC3686_NONCE_SIZE; init_aead_job(req, edesc, all_contig, encrypt); /* * {REG3, DPOVRD} = assoclen, depending on whether MATH command supports * having DPOVRD as destination. */ if (ctrlpriv->era < 3) append_math_add_imm_u32(desc, REG3, ZERO, IMM, req->assoclen); else append_math_add_imm_u32(desc, DPOVRD, ZERO, IMM, req->assoclen); if (ivsize && ((is_rfc3686 && encrypt) || !alg->caam.geniv)) append_load_as_imm(desc, req->iv, ivsize, LDST_CLASS_1_CCB | LDST_SRCDST_BYTE_CONTEXT | (ivoffset << LDST_OFFSET_SHIFT)); } /* * Fill in skcipher job descriptor */ static void init_skcipher_job(struct skcipher_request *req, struct skcipher_edesc *edesc, const bool encrypt) { struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req); struct caam_ctx *ctx = crypto_skcipher_ctx_dma(skcipher); struct device *jrdev = ctx->jrdev; int ivsize = crypto_skcipher_ivsize(skcipher); u32 *desc = edesc->hw_desc; u32 *sh_desc; u32 in_options = 0, out_options = 0; dma_addr_t src_dma, dst_dma, ptr; int len, sec4_sg_index = 0; print_hex_dump_debug("presciv@"__stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, req->iv, ivsize, 1); dev_dbg(jrdev, "asked=%d, cryptlen%d\n", (int)edesc->src_nents > 1 ? 100 : req->cryptlen, req->cryptlen); caam_dump_sg("src @" __stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, req->src, edesc->src_nents > 1 ? 100 : req->cryptlen, 1); sh_desc = encrypt ? ctx->sh_desc_enc : ctx->sh_desc_dec; ptr = encrypt ? ctx->sh_desc_enc_dma : ctx->sh_desc_dec_dma; len = desc_len(sh_desc); init_job_desc_shared(desc, ptr, len, HDR_SHARE_DEFER | HDR_REVERSE); if (ivsize || edesc->mapped_src_nents > 1) { src_dma = edesc->sec4_sg_dma; sec4_sg_index = edesc->mapped_src_nents + !!ivsize; in_options = LDST_SGF; } else { src_dma = sg_dma_address(req->src); } append_seq_in_ptr(desc, src_dma, req->cryptlen + ivsize, in_options); if (likely(req->src == req->dst)) { dst_dma = src_dma + !!ivsize * sizeof(struct sec4_sg_entry); out_options = in_options; } else if (!ivsize && edesc->mapped_dst_nents == 1) { dst_dma = sg_dma_address(req->dst); } else { dst_dma = edesc->sec4_sg_dma + sec4_sg_index * sizeof(struct sec4_sg_entry); out_options = LDST_SGF; } append_seq_out_ptr(desc, dst_dma, req->cryptlen + ivsize, out_options); } /* * allocate and map the aead extended descriptor */ static struct aead_edesc *aead_edesc_alloc(struct aead_request *req, int desc_bytes, bool *all_contig_ptr, bool encrypt) { struct crypto_aead *aead = crypto_aead_reqtfm(req); struct caam_ctx *ctx = crypto_aead_ctx_dma(aead); struct device *jrdev = ctx->jrdev; struct caam_aead_req_ctx *rctx = aead_request_ctx(req); gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL : GFP_ATOMIC; int src_nents, mapped_src_nents, dst_nents = 0, mapped_dst_nents = 0; int src_len, dst_len = 0; struct aead_edesc *edesc; int sec4_sg_index, sec4_sg_len, sec4_sg_bytes; unsigned int authsize = ctx->authsize; if (unlikely(req->dst != req->src)) { src_len = req->assoclen + req->cryptlen; dst_len = src_len + (encrypt ? authsize : (-authsize)); src_nents = sg_nents_for_len(req->src, src_len); if (unlikely(src_nents < 0)) { dev_err(jrdev, "Insufficient bytes (%d) in src S/G\n", src_len); return ERR_PTR(src_nents); } dst_nents = sg_nents_for_len(req->dst, dst_len); if (unlikely(dst_nents < 0)) { dev_err(jrdev, "Insufficient bytes (%d) in dst S/G\n", dst_len); return ERR_PTR(dst_nents); } } else { src_len = req->assoclen + req->cryptlen + (encrypt ? authsize : 0); src_nents = sg_nents_for_len(req->src, src_len); if (unlikely(src_nents < 0)) { dev_err(jrdev, "Insufficient bytes (%d) in src S/G\n", src_len); return ERR_PTR(src_nents); } } if (likely(req->src == req->dst)) { mapped_src_nents = dma_map_sg(jrdev, req->src, src_nents, DMA_BIDIRECTIONAL); if (unlikely(!mapped_src_nents)) { dev_err(jrdev, "unable to map source\n"); return ERR_PTR(-ENOMEM); } } else { /* Cover also the case of null (zero length) input data */ if (src_nents) { mapped_src_nents = dma_map_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE); if (unlikely(!mapped_src_nents)) { dev_err(jrdev, "unable to map source\n"); return ERR_PTR(-ENOMEM); } } else { mapped_src_nents = 0; } /* Cover also the case of null (zero length) output data */ if (dst_nents) { mapped_dst_nents = dma_map_sg(jrdev, req->dst, dst_nents, DMA_FROM_DEVICE); if (unlikely(!mapped_dst_nents)) { dev_err(jrdev, "unable to map destination\n"); dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE); return ERR_PTR(-ENOMEM); } } else { mapped_dst_nents = 0; } } /* * HW reads 4 S/G entries at a time; make sure the reads don't go beyond * the end of the table by allocating more S/G entries. */ sec4_sg_len = mapped_src_nents > 1 ? mapped_src_nents : 0; if (mapped_dst_nents > 1) sec4_sg_len += pad_sg_nents(mapped_dst_nents); else sec4_sg_len = pad_sg_nents(sec4_sg_len); sec4_sg_bytes = sec4_sg_len * sizeof(struct sec4_sg_entry); /* allocate space for base edesc and hw desc commands, link tables */ edesc = kzalloc(sizeof(*edesc) + desc_bytes + sec4_sg_bytes, flags); if (!edesc) { caam_unmap(jrdev, req->src, req->dst, src_nents, dst_nents, 0, 0, 0, 0); return ERR_PTR(-ENOMEM); } edesc->src_nents = src_nents; edesc->dst_nents = dst_nents; edesc->mapped_src_nents = mapped_src_nents; edesc->mapped_dst_nents = mapped_dst_nents; edesc->sec4_sg = (void *)edesc + sizeof(struct aead_edesc) + desc_bytes; rctx->edesc = edesc; *all_contig_ptr = !(mapped_src_nents > 1); sec4_sg_index = 0; if (mapped_src_nents > 1) { sg_to_sec4_sg_last(req->src, src_len, edesc->sec4_sg + sec4_sg_index, 0); sec4_sg_index += mapped_src_nents; } if (mapped_dst_nents > 1) { sg_to_sec4_sg_last(req->dst, dst_len, edesc->sec4_sg + sec4_sg_index, 0); } if (!sec4_sg_bytes) return edesc; edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg, sec4_sg_bytes, DMA_TO_DEVICE); if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) { dev_err(jrdev, "unable to map S/G table\n"); aead_unmap(jrdev, edesc, req); kfree(edesc); return ERR_PTR(-ENOMEM); } edesc->sec4_sg_bytes = sec4_sg_bytes; return edesc; } static int aead_enqueue_req(struct device *jrdev, struct aead_request *req) { struct caam_drv_private_jr *jrpriv = dev_get_drvdata(jrdev); struct caam_aead_req_ctx *rctx = aead_request_ctx(req); struct aead_edesc *edesc = rctx->edesc; u32 *desc = edesc->hw_desc; int ret; /* * Only the backlog request are sent to crypto-engine since the others * can be handled by CAAM, if free, especially since JR has up to 1024 * entries (more than the 10 entries from crypto-engine). */ if (req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG) ret = crypto_transfer_aead_request_to_engine(jrpriv->engine, req); else ret = caam_jr_enqueue(jrdev, desc, aead_crypt_done, req); if ((ret != -EINPROGRESS) && (ret != -EBUSY)) { aead_unmap(jrdev, edesc, req); kfree(rctx->edesc); } return ret; } static inline int chachapoly_crypt(struct aead_request *req, bool encrypt) { struct aead_edesc *edesc; struct crypto_aead *aead = crypto_aead_reqtfm(req); struct caam_ctx *ctx = crypto_aead_ctx_dma(aead); struct device *jrdev = ctx->jrdev; bool all_contig; u32 *desc; edesc = aead_edesc_alloc(req, CHACHAPOLY_DESC_JOB_IO_LEN, &all_contig, encrypt); if (IS_ERR(edesc)) return PTR_ERR(edesc); desc = edesc->hw_desc; init_chachapoly_job(req, edesc, all_contig, encrypt); print_hex_dump_debug("chachapoly jobdesc@" __stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1); return aead_enqueue_req(jrdev, req); } static int chachapoly_encrypt(struct aead_request *req) { return chachapoly_crypt(req, true); } static int chachapoly_decrypt(struct aead_request *req) { return chachapoly_crypt(req, false); } static inline int aead_crypt(struct aead_request *req, bool encrypt) { struct aead_edesc *edesc; struct crypto_aead *aead = crypto_aead_reqtfm(req); struct caam_ctx *ctx = crypto_aead_ctx_dma(aead); struct device *jrdev = ctx->jrdev; bool all_contig; /* allocate extended descriptor */ edesc = aead_edesc_alloc(req, AUTHENC_DESC_JOB_IO_LEN, &all_contig, encrypt); if (IS_ERR(edesc)) return PTR_ERR(edesc); /* Create and submit job descriptor */ init_authenc_job(req, edesc, all_contig, encrypt); print_hex_dump_debug("aead jobdesc@"__stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, edesc->hw_desc, desc_bytes(edesc->hw_desc), 1); return aead_enqueue_req(jrdev, req); } static int aead_encrypt(struct aead_request *req) { return aead_crypt(req, true); } static int aead_decrypt(struct aead_request *req) { return aead_crypt(req, false); } static int aead_do_one_req(struct crypto_engine *engine, void *areq) { struct aead_request *req = aead_request_cast(areq); struct caam_ctx *ctx = crypto_aead_ctx_dma(crypto_aead_reqtfm(req)); struct caam_aead_req_ctx *rctx = aead_request_ctx(req); u32 *desc = rctx->edesc->hw_desc; int ret; rctx->edesc->bklog = true; ret = caam_jr_enqueue(ctx->jrdev, desc, aead_crypt_done, req); if (ret == -ENOSPC && engine->retry_support) return ret; if (ret != -EINPROGRESS) { aead_unmap(ctx->jrdev, rctx->edesc, req); kfree(rctx->edesc); } else { ret = 0; } return ret; } static inline int gcm_crypt(struct aead_request *req, bool encrypt) { struct aead_edesc *edesc; struct crypto_aead *aead = crypto_aead_reqtfm(req); struct caam_ctx *ctx = crypto_aead_ctx_dma(aead); struct device *jrdev = ctx->jrdev; bool all_contig; /* allocate extended descriptor */ edesc = aead_edesc_alloc(req, GCM_DESC_JOB_IO_LEN, &all_contig, encrypt); if (IS_ERR(edesc)) return PTR_ERR(edesc); /* Create and submit job descriptor */ init_gcm_job(req, edesc, all_contig, encrypt); print_hex_dump_debug("aead jobdesc@"__stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, edesc->hw_desc, desc_bytes(edesc->hw_desc), 1); return aead_enqueue_req(jrdev, req); } static int gcm_encrypt(struct aead_request *req) { return gcm_crypt(req, true); } static int gcm_decrypt(struct aead_request *req) { return gcm_crypt(req, false); } static int ipsec_gcm_encrypt(struct aead_request *req) { return crypto_ipsec_check_assoclen(req->assoclen) ? : gcm_encrypt(req); } static int ipsec_gcm_decrypt(struct aead_request *req) { return crypto_ipsec_check_assoclen(req->assoclen) ? : gcm_decrypt(req); } /* * allocate and map the skcipher extended descriptor for skcipher */ static struct skcipher_edesc *skcipher_edesc_alloc(struct skcipher_request *req, int desc_bytes) { struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req); struct caam_ctx *ctx = crypto_skcipher_ctx_dma(skcipher); struct caam_skcipher_req_ctx *rctx = skcipher_request_ctx(req); struct device *jrdev = ctx->jrdev; gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL : GFP_ATOMIC; int src_nents, mapped_src_nents, dst_nents = 0, mapped_dst_nents = 0; struct skcipher_edesc *edesc; dma_addr_t iv_dma = 0; u8 *iv; int ivsize = crypto_skcipher_ivsize(skcipher); int dst_sg_idx, sec4_sg_ents, sec4_sg_bytes; unsigned int aligned_size; src_nents = sg_nents_for_len(req->src, req->cryptlen); if (unlikely(src_nents < 0)) { dev_err(jrdev, "Insufficient bytes (%d) in src S/G\n", req->cryptlen); return ERR_PTR(src_nents); } if (req->dst != req->src) { dst_nents = sg_nents_for_len(req->dst, req->cryptlen); if (unlikely(dst_nents < 0)) { dev_err(jrdev, "Insufficient bytes (%d) in dst S/G\n", req->cryptlen); return ERR_PTR(dst_nents); } } if (likely(req->src == req->dst)) { mapped_src_nents = dma_map_sg(jrdev, req->src, src_nents, DMA_BIDIRECTIONAL); if (unlikely(!mapped_src_nents)) { dev_err(jrdev, "unable to map source\n"); return ERR_PTR(-ENOMEM); } } else { mapped_src_nents = dma_map_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE); if (unlikely(!mapped_src_nents)) { dev_err(jrdev, "unable to map source\n"); return ERR_PTR(-ENOMEM); } mapped_dst_nents = dma_map_sg(jrdev, req->dst, dst_nents, DMA_FROM_DEVICE); if (unlikely(!mapped_dst_nents)) { dev_err(jrdev, "unable to map destination\n"); dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE); return ERR_PTR(-ENOMEM); } } if (!ivsize && mapped_src_nents == 1) sec4_sg_ents = 0; // no need for an input hw s/g table else sec4_sg_ents = mapped_src_nents + !!ivsize; dst_sg_idx = sec4_sg_ents; /* * Input, output HW S/G tables: [IV, src][dst, IV] * IV entries point to the same buffer * If src == dst, S/G entries are reused (S/G tables overlap) * * HW reads 4 S/G entries at a time; make sure the reads don't go beyond * the end of the table by allocating more S/G entries. Logic: * if (output S/G) * pad output S/G, if needed * else if (input S/G) ... * pad input S/G, if needed */ if (ivsize || mapped_dst_nents > 1) { if (req->src == req->dst) sec4_sg_ents = !!ivsize + pad_sg_nents(sec4_sg_ents); else sec4_sg_ents += pad_sg_nents(mapped_dst_nents + !!ivsize); } else { sec4_sg_ents = pad_sg_nents(sec4_sg_ents); } sec4_sg_bytes = sec4_sg_ents * sizeof(struct sec4_sg_entry); /* * allocate space for base edesc and hw desc commands, link tables, IV */ aligned_size = sizeof(*edesc) + desc_bytes + sec4_sg_bytes; aligned_size = ALIGN(aligned_size, dma_get_cache_alignment()); aligned_size += ~(ARCH_KMALLOC_MINALIGN - 1) & (dma_get_cache_alignment() - 1); aligned_size += ALIGN(ivsize, dma_get_cache_alignment()); edesc = kzalloc(aligned_size, flags); if (!edesc) { dev_err(jrdev, "could not allocate extended descriptor\n"); caam_unmap(jrdev, req->src, req->dst, src_nents, dst_nents, 0, 0, 0, 0); return ERR_PTR(-ENOMEM); } edesc->src_nents = src_nents; edesc->dst_nents = dst_nents; edesc->mapped_src_nents = mapped_src_nents; edesc->mapped_dst_nents = mapped_dst_nents; edesc->sec4_sg_bytes = sec4_sg_bytes; edesc->sec4_sg = (struct sec4_sg_entry *)((u8 *)edesc->hw_desc + desc_bytes); rctx->edesc = edesc; /* Make sure IV is located in a DMAable area */ if (ivsize) { iv = skcipher_edesc_iv(edesc); memcpy(iv, req->iv, ivsize); iv_dma = dma_map_single(jrdev, iv, ivsize, DMA_BIDIRECTIONAL); if (dma_mapping_error(jrdev, iv_dma)) { dev_err(jrdev, "unable to map IV\n"); caam_unmap(jrdev, req->src, req->dst, src_nents, dst_nents, 0, 0, 0, 0); kfree(edesc); return ERR_PTR(-ENOMEM); } dma_to_sec4_sg_one(edesc->sec4_sg, iv_dma, ivsize, 0); } if (dst_sg_idx) sg_to_sec4_sg(req->src, req->cryptlen, edesc->sec4_sg + !!ivsize, 0); if (req->src != req->dst && (ivsize || mapped_dst_nents > 1)) sg_to_sec4_sg(req->dst, req->cryptlen, edesc->sec4_sg + dst_sg_idx, 0); if (ivsize) dma_to_sec4_sg_one(edesc->sec4_sg + dst_sg_idx + mapped_dst_nents, iv_dma, ivsize, 0); if (ivsize || mapped_dst_nents > 1) sg_to_sec4_set_last(edesc->sec4_sg + dst_sg_idx + mapped_dst_nents - 1 + !!ivsize); if (sec4_sg_bytes) { edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg, sec4_sg_bytes, DMA_TO_DEVICE); if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) { dev_err(jrdev, "unable to map S/G table\n"); caam_unmap(jrdev, req->src, req->dst, src_nents, dst_nents, iv_dma, ivsize, 0, 0); kfree(edesc); return ERR_PTR(-ENOMEM); } } edesc->iv_dma = iv_dma; print_hex_dump_debug("skcipher sec4_sg@" __stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, edesc->sec4_sg, sec4_sg_bytes, 1); return edesc; } static int skcipher_do_one_req(struct crypto_engine *engine, void *areq) { struct skcipher_request *req = skcipher_request_cast(areq); struct caam_ctx *ctx = crypto_skcipher_ctx_dma(crypto_skcipher_reqtfm(req)); struct caam_skcipher_req_ctx *rctx = skcipher_request_ctx(req); u32 *desc = rctx->edesc->hw_desc; int ret; rctx->edesc->bklog = true; ret = caam_jr_enqueue(ctx->jrdev, desc, skcipher_crypt_done, req); if (ret == -ENOSPC && engine->retry_support) return ret; if (ret != -EINPROGRESS) { skcipher_unmap(ctx->jrdev, rctx->edesc, req); kfree(rctx->edesc); } else { ret = 0; } return ret; } static inline bool xts_skcipher_ivsize(struct skcipher_request *req) { struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req); unsigned int ivsize = crypto_skcipher_ivsize(skcipher); return !!get_unaligned((u64 *)(req->iv + (ivsize / 2))); } static inline int skcipher_crypt(struct skcipher_request *req, bool encrypt) { struct skcipher_edesc *edesc; struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req); struct caam_ctx *ctx = crypto_skcipher_ctx_dma(skcipher); struct device *jrdev = ctx->jrdev; struct caam_drv_private_jr *jrpriv = dev_get_drvdata(jrdev); struct caam_drv_private *ctrlpriv = dev_get_drvdata(jrdev->parent); u32 *desc; int ret = 0; /* * XTS is expected to return an error even for input length = 0 * Note that the case input length < block size will be caught during * HW offloading and return an error. */ if (!req->cryptlen && !ctx->fallback) return 0; if (ctx->fallback && ((ctrlpriv->era <= 8 && xts_skcipher_ivsize(req)) || ctx->xts_key_fallback)) { struct caam_skcipher_req_ctx *rctx = skcipher_request_ctx(req); skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback); skcipher_request_set_callback(&rctx->fallback_req, req->base.flags, req->base.complete, req->base.data); skcipher_request_set_crypt(&rctx->fallback_req, req->src, req->dst, req->cryptlen, req->iv); return encrypt ? crypto_skcipher_encrypt(&rctx->fallback_req) : crypto_skcipher_decrypt(&rctx->fallback_req); } /* allocate extended descriptor */ edesc = skcipher_edesc_alloc(req, DESC_JOB_IO_LEN * CAAM_CMD_SZ); if (IS_ERR(edesc)) return PTR_ERR(edesc); /* Create and submit job descriptor*/ init_skcipher_job(req, edesc, encrypt); print_hex_dump_debug("skcipher jobdesc@" __stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, edesc->hw_desc, desc_bytes(edesc->hw_desc), 1); desc = edesc->hw_desc; /* * Only the backlog request are sent to crypto-engine since the others * can be handled by CAAM, if free, especially since JR has up to 1024 * entries (more than the 10 entries from crypto-engine). */ if (req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG) ret = crypto_transfer_skcipher_request_to_engine(jrpriv->engine, req); else ret = caam_jr_enqueue(jrdev, desc, skcipher_crypt_done, req); if ((ret != -EINPROGRESS) && (ret != -EBUSY)) { skcipher_unmap(jrdev, edesc, req); kfree(edesc); } return ret; } static int skcipher_encrypt(struct skcipher_request *req) { return skcipher_crypt(req, true); } static int skcipher_decrypt(struct skcipher_request *req) { return skcipher_crypt(req, false); } static struct caam_skcipher_alg driver_algs[] = { { .skcipher = { .base = { .cra_name = "cbc(aes)", .cra_driver_name = "cbc-aes-caam", .cra_blocksize = AES_BLOCK_SIZE, }, .setkey = aes_skcipher_setkey, .encrypt = skcipher_encrypt, .decrypt = skcipher_decrypt, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, }, .caam.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, }, { .skcipher = { .base = { .cra_name = "cbc(des3_ede)", .cra_driver_name = "cbc-3des-caam", .cra_blocksize = DES3_EDE_BLOCK_SIZE, }, .setkey = des3_skcipher_setkey, .encrypt = skcipher_encrypt, .decrypt = skcipher_decrypt, .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, .ivsize = DES3_EDE_BLOCK_SIZE, }, .caam.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, }, { .skcipher = { .base = { .cra_name = "cbc(des)", .cra_driver_name = "cbc-des-caam", .cra_blocksize = DES_BLOCK_SIZE, }, .setkey = des_skcipher_setkey, .encrypt = skcipher_encrypt, .decrypt = skcipher_decrypt, .min_keysize = DES_KEY_SIZE, .max_keysize = DES_KEY_SIZE, .ivsize = DES_BLOCK_SIZE, }, .caam.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, }, { .skcipher = { .base = { .cra_name = "ctr(aes)", .cra_driver_name = "ctr-aes-caam", .cra_blocksize = 1, }, .setkey = ctr_skcipher_setkey, .encrypt = skcipher_encrypt, .decrypt = skcipher_decrypt, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .chunksize = AES_BLOCK_SIZE, }, .caam.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CTR_MOD128, }, { .skcipher = { .base = { .cra_name = "rfc3686(ctr(aes))", .cra_driver_name = "rfc3686-ctr-aes-caam", .cra_blocksize = 1, }, .setkey = rfc3686_skcipher_setkey, .encrypt = skcipher_encrypt, .decrypt = skcipher_decrypt, .min_keysize = AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE, .max_keysize = AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE, .ivsize = CTR_RFC3686_IV_SIZE, .chunksize = AES_BLOCK_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CTR_MOD128, .rfc3686 = true, }, }, { .skcipher = { .base = { .cra_name = "xts(aes)", .cra_driver_name = "xts-aes-caam", .cra_flags = CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = AES_BLOCK_SIZE, }, .setkey = xts_skcipher_setkey, .encrypt = skcipher_encrypt, .decrypt = skcipher_decrypt, .min_keysize = 2 * AES_MIN_KEY_SIZE, .max_keysize = 2 * AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, }, .caam.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_XTS, }, { .skcipher = { .base = { .cra_name = "ecb(des)", .cra_driver_name = "ecb-des-caam", .cra_blocksize = DES_BLOCK_SIZE, }, .setkey = des_skcipher_setkey, .encrypt = skcipher_encrypt, .decrypt = skcipher_decrypt, .min_keysize = DES_KEY_SIZE, .max_keysize = DES_KEY_SIZE, }, .caam.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_ECB, }, { .skcipher = { .base = { .cra_name = "ecb(aes)", .cra_driver_name = "ecb-aes-caam", .cra_blocksize = AES_BLOCK_SIZE, }, .setkey = aes_skcipher_setkey, .encrypt = skcipher_encrypt, .decrypt = skcipher_decrypt, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, }, .caam.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_ECB, }, { .skcipher = { .base = { .cra_name = "ecb(des3_ede)", .cra_driver_name = "ecb-des3-caam", .cra_blocksize = DES3_EDE_BLOCK_SIZE, }, .setkey = des3_skcipher_setkey, .encrypt = skcipher_encrypt, .decrypt = skcipher_decrypt, .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, }, .caam.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_ECB, }, }; static struct caam_aead_alg driver_aeads[] = { { .aead = { .base = { .cra_name = "rfc4106(gcm(aes))", .cra_driver_name = "rfc4106-gcm-aes-caam", .cra_blocksize = 1, }, .setkey = rfc4106_setkey, .setauthsize = rfc4106_setauthsize, .encrypt = ipsec_gcm_encrypt, .decrypt = ipsec_gcm_decrypt, .ivsize = GCM_RFC4106_IV_SIZE, .maxauthsize = AES_BLOCK_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_GCM, .nodkp = true, }, }, { .aead = { .base = { .cra_name = "rfc4543(gcm(aes))", .cra_driver_name = "rfc4543-gcm-aes-caam", .cra_blocksize = 1, }, .setkey = rfc4543_setkey, .setauthsize = rfc4543_setauthsize, .encrypt = ipsec_gcm_encrypt, .decrypt = ipsec_gcm_decrypt, .ivsize = GCM_RFC4543_IV_SIZE, .maxauthsize = AES_BLOCK_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_GCM, .nodkp = true, }, }, /* Galois Counter Mode */ { .aead = { .base = { .cra_name = "gcm(aes)", .cra_driver_name = "gcm-aes-caam", .cra_blocksize = 1, }, .setkey = gcm_setkey, .setauthsize = gcm_setauthsize, .encrypt = gcm_encrypt, .decrypt = gcm_decrypt, .ivsize = GCM_AES_IV_SIZE, .maxauthsize = AES_BLOCK_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_GCM, .nodkp = true, }, }, /* single-pass ipsec_esp descriptor */ { .aead = { .base = { .cra_name = "authenc(hmac(md5)," "ecb(cipher_null))", .cra_driver_name = "authenc-hmac-md5-" "ecb-cipher_null-caam", .cra_blocksize = NULL_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = NULL_IV_SIZE, .maxauthsize = MD5_DIGEST_SIZE, }, .caam = { .class2_alg_type = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC_PRECOMP, }, }, { .aead = { .base = { .cra_name = "authenc(hmac(sha1)," "ecb(cipher_null))", .cra_driver_name = "authenc-hmac-sha1-" "ecb-cipher_null-caam", .cra_blocksize = NULL_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = NULL_IV_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, .caam = { .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP, }, }, { .aead = { .base = { .cra_name = "authenc(hmac(sha224)," "ecb(cipher_null))", .cra_driver_name = "authenc-hmac-sha224-" "ecb-cipher_null-caam", .cra_blocksize = NULL_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = NULL_IV_SIZE, .maxauthsize = SHA224_DIGEST_SIZE, }, .caam = { .class2_alg_type = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC_PRECOMP, }, }, { .aead = { .base = { .cra_name = "authenc(hmac(sha256)," "ecb(cipher_null))", .cra_driver_name = "authenc-hmac-sha256-" "ecb-cipher_null-caam", .cra_blocksize = NULL_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = NULL_IV_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, .caam = { .class2_alg_type = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC_PRECOMP, }, }, { .aead = { .base = { .cra_name = "authenc(hmac(sha384)," "ecb(cipher_null))", .cra_driver_name = "authenc-hmac-sha384-" "ecb-cipher_null-caam", .cra_blocksize = NULL_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = NULL_IV_SIZE, .maxauthsize = SHA384_DIGEST_SIZE, }, .caam = { .class2_alg_type = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC_PRECOMP, }, }, { .aead = { .base = { .cra_name = "authenc(hmac(sha512)," "ecb(cipher_null))", .cra_driver_name = "authenc-hmac-sha512-" "ecb-cipher_null-caam", .cra_blocksize = NULL_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = NULL_IV_SIZE, .maxauthsize = SHA512_DIGEST_SIZE, }, .caam = { .class2_alg_type = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC_PRECOMP, }, }, { .aead = { .base = { .cra_name = "authenc(hmac(md5),cbc(aes))", .cra_driver_name = "authenc-hmac-md5-" "cbc-aes-caam", .cra_blocksize = AES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = MD5_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC_PRECOMP, }, }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(md5)," "cbc(aes)))", .cra_driver_name = "echainiv-authenc-hmac-md5-" "cbc-aes-caam", .cra_blocksize = AES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = MD5_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, }, }, { .aead = { .base = { .cra_name = "authenc(hmac(sha1),cbc(aes))", .cra_driver_name = "authenc-hmac-sha1-" "cbc-aes-caam", .cra_blocksize = AES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP, }, }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(sha1)," "cbc(aes)))", .cra_driver_name = "echainiv-authenc-" "hmac-sha1-cbc-aes-caam", .cra_blocksize = AES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, }, }, { .aead = { .base = { .cra_name = "authenc(hmac(sha224),cbc(aes))", .cra_driver_name = "authenc-hmac-sha224-" "cbc-aes-caam", .cra_blocksize = AES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA224_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC_PRECOMP, }, }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(sha224)," "cbc(aes)))", .cra_driver_name = "echainiv-authenc-" "hmac-sha224-cbc-aes-caam", .cra_blocksize = AES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA224_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, }, }, { .aead = { .base = { .cra_name = "authenc(hmac(sha256),cbc(aes))", .cra_driver_name = "authenc-hmac-sha256-" "cbc-aes-caam", .cra_blocksize = AES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC_PRECOMP, }, }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(sha256)," "cbc(aes)))", .cra_driver_name = "echainiv-authenc-" "hmac-sha256-cbc-aes-caam", .cra_blocksize = AES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, }, }, { .aead = { .base = { .cra_name = "authenc(hmac(sha384),cbc(aes))", .cra_driver_name = "authenc-hmac-sha384-" "cbc-aes-caam", .cra_blocksize = AES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA384_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC_PRECOMP, }, }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(sha384)," "cbc(aes)))", .cra_driver_name = "echainiv-authenc-" "hmac-sha384-cbc-aes-caam", .cra_blocksize = AES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA384_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, }, }, { .aead = { .base = { .cra_name = "authenc(hmac(sha512),cbc(aes))", .cra_driver_name = "authenc-hmac-sha512-" "cbc-aes-caam", .cra_blocksize = AES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA512_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC_PRECOMP, }, }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(sha512)," "cbc(aes)))", .cra_driver_name = "echainiv-authenc-" "hmac-sha512-cbc-aes-caam", .cra_blocksize = AES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA512_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, }, }, { .aead = { .base = { .cra_name = "authenc(hmac(md5),cbc(des3_ede))", .cra_driver_name = "authenc-hmac-md5-" "cbc-des3_ede-caam", .cra_blocksize = DES3_EDE_BLOCK_SIZE, }, .setkey = des3_aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = MD5_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC_PRECOMP, } }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(md5)," "cbc(des3_ede)))", .cra_driver_name = "echainiv-authenc-hmac-md5-" "cbc-des3_ede-caam", .cra_blocksize = DES3_EDE_BLOCK_SIZE, }, .setkey = des3_aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = MD5_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, } }, { .aead = { .base = { .cra_name = "authenc(hmac(sha1)," "cbc(des3_ede))", .cra_driver_name = "authenc-hmac-sha1-" "cbc-des3_ede-caam", .cra_blocksize = DES3_EDE_BLOCK_SIZE, }, .setkey = des3_aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP, }, }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(sha1)," "cbc(des3_ede)))", .cra_driver_name = "echainiv-authenc-" "hmac-sha1-" "cbc-des3_ede-caam", .cra_blocksize = DES3_EDE_BLOCK_SIZE, }, .setkey = des3_aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, }, }, { .aead = { .base = { .cra_name = "authenc(hmac(sha224)," "cbc(des3_ede))", .cra_driver_name = "authenc-hmac-sha224-" "cbc-des3_ede-caam", .cra_blocksize = DES3_EDE_BLOCK_SIZE, }, .setkey = des3_aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA224_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC_PRECOMP, }, }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(sha224)," "cbc(des3_ede)))", .cra_driver_name = "echainiv-authenc-" "hmac-sha224-" "cbc-des3_ede-caam", .cra_blocksize = DES3_EDE_BLOCK_SIZE, }, .setkey = des3_aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA224_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, }, }, { .aead = { .base = { .cra_name = "authenc(hmac(sha256)," "cbc(des3_ede))", .cra_driver_name = "authenc-hmac-sha256-" "cbc-des3_ede-caam", .cra_blocksize = DES3_EDE_BLOCK_SIZE, }, .setkey = des3_aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC_PRECOMP, }, }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(sha256)," "cbc(des3_ede)))", .cra_driver_name = "echainiv-authenc-" "hmac-sha256-" "cbc-des3_ede-caam", .cra_blocksize = DES3_EDE_BLOCK_SIZE, }, .setkey = des3_aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, }, }, { .aead = { .base = { .cra_name = "authenc(hmac(sha384)," "cbc(des3_ede))", .cra_driver_name = "authenc-hmac-sha384-" "cbc-des3_ede-caam", .cra_blocksize = DES3_EDE_BLOCK_SIZE, }, .setkey = des3_aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA384_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC_PRECOMP, }, }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(sha384)," "cbc(des3_ede)))", .cra_driver_name = "echainiv-authenc-" "hmac-sha384-" "cbc-des3_ede-caam", .cra_blocksize = DES3_EDE_BLOCK_SIZE, }, .setkey = des3_aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA384_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, }, }, { .aead = { .base = { .cra_name = "authenc(hmac(sha512)," "cbc(des3_ede))", .cra_driver_name = "authenc-hmac-sha512-" "cbc-des3_ede-caam", .cra_blocksize = DES3_EDE_BLOCK_SIZE, }, .setkey = des3_aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA512_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC_PRECOMP, }, }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(sha512)," "cbc(des3_ede)))", .cra_driver_name = "echainiv-authenc-" "hmac-sha512-" "cbc-des3_ede-caam", .cra_blocksize = DES3_EDE_BLOCK_SIZE, }, .setkey = des3_aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA512_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, }, }, { .aead = { .base = { .cra_name = "authenc(hmac(md5),cbc(des))", .cra_driver_name = "authenc-hmac-md5-" "cbc-des-caam", .cra_blocksize = DES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES_BLOCK_SIZE, .maxauthsize = MD5_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC_PRECOMP, }, }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(md5)," "cbc(des)))", .cra_driver_name = "echainiv-authenc-hmac-md5-" "cbc-des-caam", .cra_blocksize = DES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES_BLOCK_SIZE, .maxauthsize = MD5_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, }, }, { .aead = { .base = { .cra_name = "authenc(hmac(sha1),cbc(des))", .cra_driver_name = "authenc-hmac-sha1-" "cbc-des-caam", .cra_blocksize = DES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP, }, }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(sha1)," "cbc(des)))", .cra_driver_name = "echainiv-authenc-" "hmac-sha1-cbc-des-caam", .cra_blocksize = DES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, }, }, { .aead = { .base = { .cra_name = "authenc(hmac(sha224),cbc(des))", .cra_driver_name = "authenc-hmac-sha224-" "cbc-des-caam", .cra_blocksize = DES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA224_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC_PRECOMP, }, }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(sha224)," "cbc(des)))", .cra_driver_name = "echainiv-authenc-" "hmac-sha224-cbc-des-caam", .cra_blocksize = DES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA224_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, }, }, { .aead = { .base = { .cra_name = "authenc(hmac(sha256),cbc(des))", .cra_driver_name = "authenc-hmac-sha256-" "cbc-des-caam", .cra_blocksize = DES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC_PRECOMP, }, }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(sha256)," "cbc(des)))", .cra_driver_name = "echainiv-authenc-" "hmac-sha256-cbc-des-caam", .cra_blocksize = DES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, }, }, { .aead = { .base = { .cra_name = "authenc(hmac(sha384),cbc(des))", .cra_driver_name = "authenc-hmac-sha384-" "cbc-des-caam", .cra_blocksize = DES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA384_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC_PRECOMP, }, }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(sha384)," "cbc(des)))", .cra_driver_name = "echainiv-authenc-" "hmac-sha384-cbc-des-caam", .cra_blocksize = DES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA384_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, }, }, { .aead = { .base = { .cra_name = "authenc(hmac(sha512),cbc(des))", .cra_driver_name = "authenc-hmac-sha512-" "cbc-des-caam", .cra_blocksize = DES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA512_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC_PRECOMP, }, }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(sha512)," "cbc(des)))", .cra_driver_name = "echainiv-authenc-" "hmac-sha512-cbc-des-caam", .cra_blocksize = DES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA512_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, }, }, { .aead = { .base = { .cra_name = "authenc(hmac(md5)," "rfc3686(ctr(aes)))", .cra_driver_name = "authenc-hmac-md5-" "rfc3686-ctr-aes-caam", .cra_blocksize = 1, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = CTR_RFC3686_IV_SIZE, .maxauthsize = MD5_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CTR_MOD128, .class2_alg_type = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC_PRECOMP, .rfc3686 = true, }, }, { .aead = { .base = { .cra_name = "seqiv(authenc(" "hmac(md5),rfc3686(ctr(aes))))", .cra_driver_name = "seqiv-authenc-hmac-md5-" "rfc3686-ctr-aes-caam", .cra_blocksize = 1, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = CTR_RFC3686_IV_SIZE, .maxauthsize = MD5_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CTR_MOD128, .class2_alg_type = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC_PRECOMP, .rfc3686 = true, .geniv = true, }, }, { .aead = { .base = { .cra_name = "authenc(hmac(sha1)," "rfc3686(ctr(aes)))", .cra_driver_name = "authenc-hmac-sha1-" "rfc3686-ctr-aes-caam", .cra_blocksize = 1, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = CTR_RFC3686_IV_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CTR_MOD128, .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP, .rfc3686 = true, }, }, { .aead = { .base = { .cra_name = "seqiv(authenc(" "hmac(sha1),rfc3686(ctr(aes))))", .cra_driver_name = "seqiv-authenc-hmac-sha1-" "rfc3686-ctr-aes-caam", .cra_blocksize = 1, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = CTR_RFC3686_IV_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CTR_MOD128, .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP, .rfc3686 = true, .geniv = true, }, }, { .aead = { .base = { .cra_name = "authenc(hmac(sha224)," "rfc3686(ctr(aes)))", .cra_driver_name = "authenc-hmac-sha224-" "rfc3686-ctr-aes-caam", .cra_blocksize = 1, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = CTR_RFC3686_IV_SIZE, .maxauthsize = SHA224_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CTR_MOD128, .class2_alg_type = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC_PRECOMP, .rfc3686 = true, }, }, { .aead = { .base = { .cra_name = "seqiv(authenc(" "hmac(sha224),rfc3686(ctr(aes))))", .cra_driver_name = "seqiv-authenc-hmac-sha224-" "rfc3686-ctr-aes-caam", .cra_blocksize = 1, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = CTR_RFC3686_IV_SIZE, .maxauthsize = SHA224_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CTR_MOD128, .class2_alg_type = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC_PRECOMP, .rfc3686 = true, .geniv = true, }, }, { .aead = { .base = { .cra_name = "authenc(hmac(sha256)," "rfc3686(ctr(aes)))", .cra_driver_name = "authenc-hmac-sha256-" "rfc3686-ctr-aes-caam", .cra_blocksize = 1, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = CTR_RFC3686_IV_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CTR_MOD128, .class2_alg_type = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC_PRECOMP, .rfc3686 = true, }, }, { .aead = { .base = { .cra_name = "seqiv(authenc(hmac(sha256)," "rfc3686(ctr(aes))))", .cra_driver_name = "seqiv-authenc-hmac-sha256-" "rfc3686-ctr-aes-caam", .cra_blocksize = 1, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = CTR_RFC3686_IV_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CTR_MOD128, .class2_alg_type = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC_PRECOMP, .rfc3686 = true, .geniv = true, }, }, { .aead = { .base = { .cra_name = "authenc(hmac(sha384)," "rfc3686(ctr(aes)))", .cra_driver_name = "authenc-hmac-sha384-" "rfc3686-ctr-aes-caam", .cra_blocksize = 1, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = CTR_RFC3686_IV_SIZE, .maxauthsize = SHA384_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CTR_MOD128, .class2_alg_type = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC_PRECOMP, .rfc3686 = true, }, }, { .aead = { .base = { .cra_name = "seqiv(authenc(hmac(sha384)," "rfc3686(ctr(aes))))", .cra_driver_name = "seqiv-authenc-hmac-sha384-" "rfc3686-ctr-aes-caam", .cra_blocksize = 1, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = CTR_RFC3686_IV_SIZE, .maxauthsize = SHA384_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CTR_MOD128, .class2_alg_type = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC_PRECOMP, .rfc3686 = true, .geniv = true, }, }, { .aead = { .base = { .cra_name = "authenc(hmac(sha512)," "rfc3686(ctr(aes)))", .cra_driver_name = "authenc-hmac-sha512-" "rfc3686-ctr-aes-caam", .cra_blocksize = 1, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = CTR_RFC3686_IV_SIZE, .maxauthsize = SHA512_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CTR_MOD128, .class2_alg_type = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC_PRECOMP, .rfc3686 = true, }, }, { .aead = { .base = { .cra_name = "seqiv(authenc(hmac(sha512)," "rfc3686(ctr(aes))))", .cra_driver_name = "seqiv-authenc-hmac-sha512-" "rfc3686-ctr-aes-caam", .cra_blocksize = 1, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = CTR_RFC3686_IV_SIZE, .maxauthsize = SHA512_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CTR_MOD128, .class2_alg_type = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC_PRECOMP, .rfc3686 = true, .geniv = true, }, }, { .aead = { .base = { .cra_name = "rfc7539(chacha20,poly1305)", .cra_driver_name = "rfc7539-chacha20-poly1305-" "caam", .cra_blocksize = 1, }, .setkey = chachapoly_setkey, .setauthsize = chachapoly_setauthsize, .encrypt = chachapoly_encrypt, .decrypt = chachapoly_decrypt, .ivsize = CHACHAPOLY_IV_SIZE, .maxauthsize = POLY1305_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_CHACHA20 | OP_ALG_AAI_AEAD, .class2_alg_type = OP_ALG_ALGSEL_POLY1305 | OP_ALG_AAI_AEAD, .nodkp = true, }, }, { .aead = { .base = { .cra_name = "rfc7539esp(chacha20,poly1305)", .cra_driver_name = "rfc7539esp-chacha20-" "poly1305-caam", .cra_blocksize = 1, }, .setkey = chachapoly_setkey, .setauthsize = chachapoly_setauthsize, .encrypt = chachapoly_encrypt, .decrypt = chachapoly_decrypt, .ivsize = 8, .maxauthsize = POLY1305_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_CHACHA20 | OP_ALG_AAI_AEAD, .class2_alg_type = OP_ALG_ALGSEL_POLY1305 | OP_ALG_AAI_AEAD, .nodkp = true, }, }, }; static int caam_init_common(struct caam_ctx *ctx, struct caam_alg_entry *caam, bool uses_dkp) { dma_addr_t dma_addr; struct caam_drv_private *priv; const size_t sh_desc_enc_offset = offsetof(struct caam_ctx, sh_desc_enc); ctx->jrdev = caam_jr_alloc(); if (IS_ERR(ctx->jrdev)) { pr_err("Job Ring Device allocation for transform failed\n"); return PTR_ERR(ctx->jrdev); } priv = dev_get_drvdata(ctx->jrdev->parent); if (priv->era >= 6 && uses_dkp) ctx->dir = DMA_BIDIRECTIONAL; else ctx->dir = DMA_TO_DEVICE; dma_addr = dma_map_single_attrs(ctx->jrdev, ctx->sh_desc_enc, offsetof(struct caam_ctx, sh_desc_enc_dma) - sh_desc_enc_offset, ctx->dir, DMA_ATTR_SKIP_CPU_SYNC); if (dma_mapping_error(ctx->jrdev, dma_addr)) { dev_err(ctx->jrdev, "unable to map key, shared descriptors\n"); caam_jr_free(ctx->jrdev); return -ENOMEM; } ctx->sh_desc_enc_dma = dma_addr; ctx->sh_desc_dec_dma = dma_addr + offsetof(struct caam_ctx, sh_desc_dec) - sh_desc_enc_offset; ctx->key_dma = dma_addr + offsetof(struct caam_ctx, key) - sh_desc_enc_offset; /* copy descriptor header template value */ ctx->cdata.algtype = OP_TYPE_CLASS1_ALG | caam->class1_alg_type; ctx->adata.algtype = OP_TYPE_CLASS2_ALG | caam->class2_alg_type; return 0; } static int caam_cra_init(struct crypto_skcipher *tfm) { struct skcipher_alg *alg = crypto_skcipher_alg(tfm); struct caam_skcipher_alg *caam_alg = container_of(alg, typeof(*caam_alg), skcipher); struct caam_ctx *ctx = crypto_skcipher_ctx_dma(tfm); u32 alg_aai = caam_alg->caam.class1_alg_type & OP_ALG_AAI_MASK; int ret = 0; ctx->enginectx.op.do_one_request = skcipher_do_one_req; if (alg_aai == OP_ALG_AAI_XTS) { const char *tfm_name = crypto_tfm_alg_name(&tfm->base); struct crypto_skcipher *fallback; fallback = crypto_alloc_skcipher(tfm_name, 0, CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(fallback)) { pr_err("Failed to allocate %s fallback: %ld\n", tfm_name, PTR_ERR(fallback)); return PTR_ERR(fallback); } ctx->fallback = fallback; crypto_skcipher_set_reqsize(tfm, sizeof(struct caam_skcipher_req_ctx) + crypto_skcipher_reqsize(fallback)); } else { crypto_skcipher_set_reqsize(tfm, sizeof(struct caam_skcipher_req_ctx)); } ret = caam_init_common(ctx, &caam_alg->caam, false); if (ret && ctx->fallback) crypto_free_skcipher(ctx->fallback); return ret; } static int caam_aead_init(struct crypto_aead *tfm) { struct aead_alg *alg = crypto_aead_alg(tfm); struct caam_aead_alg *caam_alg = container_of(alg, struct caam_aead_alg, aead); struct caam_ctx *ctx = crypto_aead_ctx_dma(tfm); crypto_aead_set_reqsize(tfm, sizeof(struct caam_aead_req_ctx)); ctx->enginectx.op.do_one_request = aead_do_one_req; return caam_init_common(ctx, &caam_alg->caam, !caam_alg->caam.nodkp); } static void caam_exit_common(struct caam_ctx *ctx) { dma_unmap_single_attrs(ctx->jrdev, ctx->sh_desc_enc_dma, offsetof(struct caam_ctx, sh_desc_enc_dma) - offsetof(struct caam_ctx, sh_desc_enc), ctx->dir, DMA_ATTR_SKIP_CPU_SYNC); caam_jr_free(ctx->jrdev); } static void caam_cra_exit(struct crypto_skcipher *tfm) { struct caam_ctx *ctx = crypto_skcipher_ctx_dma(tfm); if (ctx->fallback) crypto_free_skcipher(ctx->fallback); caam_exit_common(ctx); } static void caam_aead_exit(struct crypto_aead *tfm) { caam_exit_common(crypto_aead_ctx_dma(tfm)); } void caam_algapi_exit(void) { int i; for (i = 0; i < ARRAY_SIZE(driver_aeads); i++) { struct caam_aead_alg *t_alg = driver_aeads + i; if (t_alg->registered) crypto_unregister_aead(&t_alg->aead); } for (i = 0; i < ARRAY_SIZE(driver_algs); i++) { struct caam_skcipher_alg *t_alg = driver_algs + i; if (t_alg->registered) crypto_unregister_skcipher(&t_alg->skcipher); } } static void caam_skcipher_alg_init(struct caam_skcipher_alg *t_alg) { struct skcipher_alg *alg = &t_alg->skcipher; alg->base.cra_module = THIS_MODULE; alg->base.cra_priority = CAAM_CRA_PRIORITY; alg->base.cra_ctxsize = sizeof(struct caam_ctx) + crypto_dma_padding(); alg->base.cra_flags |= (CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY); alg->init = caam_cra_init; alg->exit = caam_cra_exit; } static void caam_aead_alg_init(struct caam_aead_alg *t_alg) { struct aead_alg *alg = &t_alg->aead; alg->base.cra_module = THIS_MODULE; alg->base.cra_priority = CAAM_CRA_PRIORITY; alg->base.cra_ctxsize = sizeof(struct caam_ctx) + crypto_dma_padding(); alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY; alg->init = caam_aead_init; alg->exit = caam_aead_exit; } int caam_algapi_init(struct device *ctrldev) { struct caam_drv_private *priv = dev_get_drvdata(ctrldev); int i = 0, err = 0; u32 aes_vid, aes_inst, des_inst, md_vid, md_inst, ccha_inst, ptha_inst; unsigned int md_limit = SHA512_DIGEST_SIZE; bool registered = false, gcm_support; /* * Register crypto algorithms the device supports. * First, detect presence and attributes of DES, AES, and MD blocks. */ if (priv->era < 10) { u32 cha_vid, cha_inst, aes_rn; cha_vid = rd_reg32(&priv->ctrl->perfmon.cha_id_ls); aes_vid = cha_vid & CHA_ID_LS_AES_MASK; md_vid = (cha_vid & CHA_ID_LS_MD_MASK) >> CHA_ID_LS_MD_SHIFT; cha_inst = rd_reg32(&priv->ctrl->perfmon.cha_num_ls); des_inst = (cha_inst & CHA_ID_LS_DES_MASK) >> CHA_ID_LS_DES_SHIFT; aes_inst = cha_inst & CHA_ID_LS_AES_MASK; md_inst = (cha_inst & CHA_ID_LS_MD_MASK) >> CHA_ID_LS_MD_SHIFT; ccha_inst = 0; ptha_inst = 0; aes_rn = rd_reg32(&priv->ctrl->perfmon.cha_rev_ls) & CHA_ID_LS_AES_MASK; gcm_support = !(aes_vid == CHA_VER_VID_AES_LP && aes_rn < 8); } else { u32 aesa, mdha; aesa = rd_reg32(&priv->ctrl->vreg.aesa); mdha = rd_reg32(&priv->ctrl->vreg.mdha); aes_vid = (aesa & CHA_VER_VID_MASK) >> CHA_VER_VID_SHIFT; md_vid = (mdha & CHA_VER_VID_MASK) >> CHA_VER_VID_SHIFT; des_inst = rd_reg32(&priv->ctrl->vreg.desa) & CHA_VER_NUM_MASK; aes_inst = aesa & CHA_VER_NUM_MASK; md_inst = mdha & CHA_VER_NUM_MASK; ccha_inst = rd_reg32(&priv->ctrl->vreg.ccha) & CHA_VER_NUM_MASK; ptha_inst = rd_reg32(&priv->ctrl->vreg.ptha) & CHA_VER_NUM_MASK; gcm_support = aesa & CHA_VER_MISC_AES_GCM; } /* If MD is present, limit digest size based on LP256 */ if (md_inst && md_vid == CHA_VER_VID_MD_LP256) md_limit = SHA256_DIGEST_SIZE; for (i = 0; i < ARRAY_SIZE(driver_algs); i++) { struct caam_skcipher_alg *t_alg = driver_algs + i; u32 alg_sel = t_alg->caam.class1_alg_type & OP_ALG_ALGSEL_MASK; /* Skip DES algorithms if not supported by device */ if (!des_inst && ((alg_sel == OP_ALG_ALGSEL_3DES) || (alg_sel == OP_ALG_ALGSEL_DES))) continue; /* Skip AES algorithms if not supported by device */ if (!aes_inst && (alg_sel == OP_ALG_ALGSEL_AES)) continue; /* * Check support for AES modes not available * on LP devices. */ if (aes_vid == CHA_VER_VID_AES_LP && (t_alg->caam.class1_alg_type & OP_ALG_AAI_MASK) == OP_ALG_AAI_XTS) continue; caam_skcipher_alg_init(t_alg); err = crypto_register_skcipher(&t_alg->skcipher); if (err) { pr_warn("%s alg registration failed\n", t_alg->skcipher.base.cra_driver_name); continue; } t_alg->registered = true; registered = true; } for (i = 0; i < ARRAY_SIZE(driver_aeads); i++) { struct caam_aead_alg *t_alg = driver_aeads + i; u32 c1_alg_sel = t_alg->caam.class1_alg_type & OP_ALG_ALGSEL_MASK; u32 c2_alg_sel = t_alg->caam.class2_alg_type & OP_ALG_ALGSEL_MASK; u32 alg_aai = t_alg->caam.class1_alg_type & OP_ALG_AAI_MASK; /* Skip DES algorithms if not supported by device */ if (!des_inst && ((c1_alg_sel == OP_ALG_ALGSEL_3DES) || (c1_alg_sel == OP_ALG_ALGSEL_DES))) continue; /* Skip AES algorithms if not supported by device */ if (!aes_inst && (c1_alg_sel == OP_ALG_ALGSEL_AES)) continue; /* Skip CHACHA20 algorithms if not supported by device */ if (c1_alg_sel == OP_ALG_ALGSEL_CHACHA20 && !ccha_inst) continue; /* Skip POLY1305 algorithms if not supported by device */ if (c2_alg_sel == OP_ALG_ALGSEL_POLY1305 && !ptha_inst) continue; /* Skip GCM algorithms if not supported by device */ if (c1_alg_sel == OP_ALG_ALGSEL_AES && alg_aai == OP_ALG_AAI_GCM && !gcm_support) continue; /* * Skip algorithms requiring message digests * if MD or MD size is not supported by device. */ if (is_mdha(c2_alg_sel) && (!md_inst || t_alg->aead.maxauthsize > md_limit)) continue; caam_aead_alg_init(t_alg); err = crypto_register_aead(&t_alg->aead); if (err) { pr_warn("%s alg registration failed\n", t_alg->aead.base.cra_driver_name); continue; } t_alg->registered = true; registered = true; } if (registered) pr_info("caam algorithms registered in /proc/crypto\n"); return err; }