/* * Copyright 2020 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dm_services.h" #include "dc.h" #include "dcn30_init.h" #include "resource.h" #include "include/irq_service_interface.h" #include "dcn20/dcn20_resource.h" #include "dcn30_resource.h" #include "dcn10/dcn10_ipp.h" #include "dcn30/dcn30_hubbub.h" #include "dcn30/dcn30_mpc.h" #include "dcn30/dcn30_hubp.h" #include "irq/dcn30/irq_service_dcn30.h" #include "dcn30/dcn30_dpp.h" #include "dcn30/dcn30_optc.h" #include "dcn20/dcn20_hwseq.h" #include "dcn30/dcn30_hwseq.h" #include "dce110/dce110_hw_sequencer.h" #include "dcn30/dcn30_opp.h" #include "dcn20/dcn20_dsc.h" #include "dcn30/dcn30_vpg.h" #include "dcn30/dcn30_afmt.h" #include "dcn30/dcn30_dio_stream_encoder.h" #include "dcn30/dcn30_dio_link_encoder.h" #include "dce/dce_clock_source.h" #include "dce/dce_audio.h" #include "dce/dce_hwseq.h" #include "clk_mgr.h" #include "virtual/virtual_stream_encoder.h" #include "dce110/dce110_resource.h" #include "dml/display_mode_vba.h" #include "dcn30/dcn30_dccg.h" #include "dcn10/dcn10_resource.h" #include "link.h" #include "dce/dce_panel_cntl.h" #include "dcn30/dcn30_dwb.h" #include "dcn30/dcn30_mmhubbub.h" #include "sienna_cichlid_ip_offset.h" #include "dcn/dcn_3_0_0_offset.h" #include "dcn/dcn_3_0_0_sh_mask.h" #include "nbio/nbio_7_4_offset.h" #include "dpcs/dpcs_3_0_0_offset.h" #include "dpcs/dpcs_3_0_0_sh_mask.h" #include "mmhub/mmhub_2_0_0_offset.h" #include "mmhub/mmhub_2_0_0_sh_mask.h" #include "reg_helper.h" #include "dce/dmub_abm.h" #include "dce/dmub_psr.h" #include "dce/dce_aux.h" #include "dce/dce_i2c.h" #include "dml/dcn30/dcn30_fpu.h" #include "dml/dcn30/display_mode_vba_30.h" #include "vm_helper.h" #include "dcn20/dcn20_vmid.h" #include "amdgpu_socbb.h" #include "dc_dmub_srv.h" #define DC_LOGGER_INIT(logger) enum dcn30_clk_src_array_id { DCN30_CLK_SRC_PLL0, DCN30_CLK_SRC_PLL1, DCN30_CLK_SRC_PLL2, DCN30_CLK_SRC_PLL3, DCN30_CLK_SRC_PLL4, DCN30_CLK_SRC_PLL5, DCN30_CLK_SRC_TOTAL }; /* begin ********************* * macros to expend register list macro defined in HW object header file */ /* DCN */ #define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg #define BASE(seg) BASE_INNER(seg) #define SR(reg_name)\ .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \ mm ## reg_name #define SRI(reg_name, block, id)\ .reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ mm ## block ## id ## _ ## reg_name #define SRI2(reg_name, block, id)\ .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \ mm ## reg_name #define SRIR(var_name, reg_name, block, id)\ .var_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ mm ## block ## id ## _ ## reg_name #define SRII(reg_name, block, id)\ .reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ mm ## block ## id ## _ ## reg_name #define SRII_MPC_RMU(reg_name, block, id)\ .RMU##_##reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ mm ## block ## id ## _ ## reg_name #define SRII_DWB(reg_name, temp_name, block, id)\ .reg_name[id] = BASE(mm ## block ## id ## _ ## temp_name ## _BASE_IDX) + \ mm ## block ## id ## _ ## temp_name #define SF_DWB2(reg_name, block, id, field_name, post_fix) \ .field_name = reg_name ## __ ## field_name ## post_fix #define DCCG_SRII(reg_name, block, id)\ .block ## _ ## reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ mm ## block ## id ## _ ## reg_name #define VUPDATE_SRII(reg_name, block, id)\ .reg_name[id] = BASE(mm ## reg_name ## _ ## block ## id ## _BASE_IDX) + \ mm ## reg_name ## _ ## block ## id /* NBIO */ #define NBIO_BASE_INNER(seg) \ NBIO_BASE__INST0_SEG ## seg #define NBIO_BASE(seg) \ NBIO_BASE_INNER(seg) #define NBIO_SR(reg_name)\ .reg_name = NBIO_BASE(mm ## reg_name ## _BASE_IDX) + \ mm ## reg_name /* MMHUB */ #define MMHUB_BASE_INNER(seg) \ MMHUB_BASE__INST0_SEG ## seg #define MMHUB_BASE(seg) \ MMHUB_BASE_INNER(seg) #define MMHUB_SR(reg_name)\ .reg_name = MMHUB_BASE(mmMM ## reg_name ## _BASE_IDX) + \ mmMM ## reg_name /* CLOCK */ #define CLK_BASE_INNER(seg) \ CLK_BASE__INST0_SEG ## seg #define CLK_BASE(seg) \ CLK_BASE_INNER(seg) #define CLK_SRI(reg_name, block, inst)\ .reg_name = CLK_BASE(mm ## block ## _ ## inst ## _ ## reg_name ## _BASE_IDX) + \ mm ## block ## _ ## inst ## _ ## reg_name static const struct bios_registers bios_regs = { NBIO_SR(BIOS_SCRATCH_3), NBIO_SR(BIOS_SCRATCH_6) }; #define clk_src_regs(index, pllid)\ [index] = {\ CS_COMMON_REG_LIST_DCN2_0(index, pllid),\ } static const struct dce110_clk_src_regs clk_src_regs[] = { clk_src_regs(0, A), clk_src_regs(1, B), clk_src_regs(2, C), clk_src_regs(3, D), clk_src_regs(4, E), clk_src_regs(5, F) }; static const struct dce110_clk_src_shift cs_shift = { CS_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT) }; static const struct dce110_clk_src_mask cs_mask = { CS_COMMON_MASK_SH_LIST_DCN2_0(_MASK) }; #define abm_regs(id)\ [id] = {\ ABM_DCN30_REG_LIST(id)\ } static const struct dce_abm_registers abm_regs[] = { abm_regs(0), abm_regs(1), abm_regs(2), abm_regs(3), abm_regs(4), abm_regs(5), }; static const struct dce_abm_shift abm_shift = { ABM_MASK_SH_LIST_DCN30(__SHIFT) }; static const struct dce_abm_mask abm_mask = { ABM_MASK_SH_LIST_DCN30(_MASK) }; #define audio_regs(id)\ [id] = {\ AUD_COMMON_REG_LIST(id)\ } static const struct dce_audio_registers audio_regs[] = { audio_regs(0), audio_regs(1), audio_regs(2), audio_regs(3), audio_regs(4), audio_regs(5), audio_regs(6) }; #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\ SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\ SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\ AUD_COMMON_MASK_SH_LIST_BASE(mask_sh) static const struct dce_audio_shift audio_shift = { DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT) }; static const struct dce_audio_mask audio_mask = { DCE120_AUD_COMMON_MASK_SH_LIST(_MASK) }; #define vpg_regs(id)\ [id] = {\ VPG_DCN3_REG_LIST(id)\ } static const struct dcn30_vpg_registers vpg_regs[] = { vpg_regs(0), vpg_regs(1), vpg_regs(2), vpg_regs(3), vpg_regs(4), vpg_regs(5), vpg_regs(6), }; static const struct dcn30_vpg_shift vpg_shift = { DCN3_VPG_MASK_SH_LIST(__SHIFT) }; static const struct dcn30_vpg_mask vpg_mask = { DCN3_VPG_MASK_SH_LIST(_MASK) }; #define afmt_regs(id)\ [id] = {\ AFMT_DCN3_REG_LIST(id)\ } static const struct dcn30_afmt_registers afmt_regs[] = { afmt_regs(0), afmt_regs(1), afmt_regs(2), afmt_regs(3), afmt_regs(4), afmt_regs(5), afmt_regs(6), }; static const struct dcn30_afmt_shift afmt_shift = { DCN3_AFMT_MASK_SH_LIST(__SHIFT) }; static const struct dcn30_afmt_mask afmt_mask = { DCN3_AFMT_MASK_SH_LIST(_MASK) }; #define stream_enc_regs(id)\ [id] = {\ SE_DCN3_REG_LIST(id)\ } static const struct dcn10_stream_enc_registers stream_enc_regs[] = { stream_enc_regs(0), stream_enc_regs(1), stream_enc_regs(2), stream_enc_regs(3), stream_enc_regs(4), stream_enc_regs(5) }; static const struct dcn10_stream_encoder_shift se_shift = { SE_COMMON_MASK_SH_LIST_DCN30(__SHIFT) }; static const struct dcn10_stream_encoder_mask se_mask = { SE_COMMON_MASK_SH_LIST_DCN30(_MASK) }; #define aux_regs(id)\ [id] = {\ DCN2_AUX_REG_LIST(id)\ } static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = { aux_regs(0), aux_regs(1), aux_regs(2), aux_regs(3), aux_regs(4), aux_regs(5) }; #define hpd_regs(id)\ [id] = {\ HPD_REG_LIST(id)\ } static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = { hpd_regs(0), hpd_regs(1), hpd_regs(2), hpd_regs(3), hpd_regs(4), hpd_regs(5) }; #define link_regs(id, phyid)\ [id] = {\ LE_DCN3_REG_LIST(id), \ UNIPHY_DCN2_REG_LIST(phyid), \ DPCS_DCN2_REG_LIST(id), \ SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \ } static const struct dce110_aux_registers_shift aux_shift = { DCN_AUX_MASK_SH_LIST(__SHIFT) }; static const struct dce110_aux_registers_mask aux_mask = { DCN_AUX_MASK_SH_LIST(_MASK) }; static const struct dcn10_link_enc_registers link_enc_regs[] = { link_regs(0, A), link_regs(1, B), link_regs(2, C), link_regs(3, D), link_regs(4, E), link_regs(5, F) }; static const struct dcn10_link_enc_shift le_shift = { LINK_ENCODER_MASK_SH_LIST_DCN30(__SHIFT),\ DPCS_DCN2_MASK_SH_LIST(__SHIFT) }; static const struct dcn10_link_enc_mask le_mask = { LINK_ENCODER_MASK_SH_LIST_DCN30(_MASK),\ DPCS_DCN2_MASK_SH_LIST(_MASK) }; static const struct dce_panel_cntl_registers panel_cntl_regs[] = { { DCN_PANEL_CNTL_REG_LIST() } }; static const struct dce_panel_cntl_shift panel_cntl_shift = { DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT) }; static const struct dce_panel_cntl_mask panel_cntl_mask = { DCE_PANEL_CNTL_MASK_SH_LIST(_MASK) }; #define dpp_regs(id)\ [id] = {\ DPP_REG_LIST_DCN30(id),\ } static const struct dcn3_dpp_registers dpp_regs[] = { dpp_regs(0), dpp_regs(1), dpp_regs(2), dpp_regs(3), dpp_regs(4), dpp_regs(5), }; static const struct dcn3_dpp_shift tf_shift = { DPP_REG_LIST_SH_MASK_DCN30(__SHIFT) }; static const struct dcn3_dpp_mask tf_mask = { DPP_REG_LIST_SH_MASK_DCN30(_MASK) }; #define opp_regs(id)\ [id] = {\ OPP_REG_LIST_DCN30(id),\ } static const struct dcn20_opp_registers opp_regs[] = { opp_regs(0), opp_regs(1), opp_regs(2), opp_regs(3), opp_regs(4), opp_regs(5) }; static const struct dcn20_opp_shift opp_shift = { OPP_MASK_SH_LIST_DCN20(__SHIFT) }; static const struct dcn20_opp_mask opp_mask = { OPP_MASK_SH_LIST_DCN20(_MASK) }; #define aux_engine_regs(id)\ [id] = {\ AUX_COMMON_REG_LIST0(id), \ .AUXN_IMPCAL = 0, \ .AUXP_IMPCAL = 0, \ .AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \ } static const struct dce110_aux_registers aux_engine_regs[] = { aux_engine_regs(0), aux_engine_regs(1), aux_engine_regs(2), aux_engine_regs(3), aux_engine_regs(4), aux_engine_regs(5) }; #define dwbc_regs_dcn3(id)\ [id] = {\ DWBC_COMMON_REG_LIST_DCN30(id),\ } static const struct dcn30_dwbc_registers dwbc30_regs[] = { dwbc_regs_dcn3(0), }; static const struct dcn30_dwbc_shift dwbc30_shift = { DWBC_COMMON_MASK_SH_LIST_DCN30(__SHIFT) }; static const struct dcn30_dwbc_mask dwbc30_mask = { DWBC_COMMON_MASK_SH_LIST_DCN30(_MASK) }; #define mcif_wb_regs_dcn3(id)\ [id] = {\ MCIF_WB_COMMON_REG_LIST_DCN30(id),\ } static const struct dcn30_mmhubbub_registers mcif_wb30_regs[] = { mcif_wb_regs_dcn3(0) }; static const struct dcn30_mmhubbub_shift mcif_wb30_shift = { MCIF_WB_COMMON_MASK_SH_LIST_DCN30(__SHIFT) }; static const struct dcn30_mmhubbub_mask mcif_wb30_mask = { MCIF_WB_COMMON_MASK_SH_LIST_DCN30(_MASK) }; #define dsc_regsDCN20(id)\ [id] = {\ DSC_REG_LIST_DCN20(id)\ } static const struct dcn20_dsc_registers dsc_regs[] = { dsc_regsDCN20(0), dsc_regsDCN20(1), dsc_regsDCN20(2), dsc_regsDCN20(3), dsc_regsDCN20(4), dsc_regsDCN20(5) }; static const struct dcn20_dsc_shift dsc_shift = { DSC_REG_LIST_SH_MASK_DCN20(__SHIFT) }; static const struct dcn20_dsc_mask dsc_mask = { DSC_REG_LIST_SH_MASK_DCN20(_MASK) }; static const struct dcn30_mpc_registers mpc_regs = { MPC_REG_LIST_DCN3_0(0), MPC_REG_LIST_DCN3_0(1), MPC_REG_LIST_DCN3_0(2), MPC_REG_LIST_DCN3_0(3), MPC_REG_LIST_DCN3_0(4), MPC_REG_LIST_DCN3_0(5), MPC_OUT_MUX_REG_LIST_DCN3_0(0), MPC_OUT_MUX_REG_LIST_DCN3_0(1), MPC_OUT_MUX_REG_LIST_DCN3_0(2), MPC_OUT_MUX_REG_LIST_DCN3_0(3), MPC_OUT_MUX_REG_LIST_DCN3_0(4), MPC_OUT_MUX_REG_LIST_DCN3_0(5), MPC_RMU_GLOBAL_REG_LIST_DCN3AG, MPC_RMU_REG_LIST_DCN3AG(0), MPC_RMU_REG_LIST_DCN3AG(1), MPC_RMU_REG_LIST_DCN3AG(2), MPC_DWB_MUX_REG_LIST_DCN3_0(0), }; static const struct dcn30_mpc_shift mpc_shift = { MPC_COMMON_MASK_SH_LIST_DCN30(__SHIFT) }; static const struct dcn30_mpc_mask mpc_mask = { MPC_COMMON_MASK_SH_LIST_DCN30(_MASK) }; #define optc_regs(id)\ [id] = {OPTC_COMMON_REG_LIST_DCN3_0(id)} static const struct dcn_optc_registers optc_regs[] = { optc_regs(0), optc_regs(1), optc_regs(2), optc_regs(3), optc_regs(4), optc_regs(5) }; static const struct dcn_optc_shift optc_shift = { OPTC_COMMON_MASK_SH_LIST_DCN30(__SHIFT) }; static const struct dcn_optc_mask optc_mask = { OPTC_COMMON_MASK_SH_LIST_DCN30(_MASK) }; #define hubp_regs(id)\ [id] = {\ HUBP_REG_LIST_DCN30(id)\ } static const struct dcn_hubp2_registers hubp_regs[] = { hubp_regs(0), hubp_regs(1), hubp_regs(2), hubp_regs(3), hubp_regs(4), hubp_regs(5) }; static const struct dcn_hubp2_shift hubp_shift = { HUBP_MASK_SH_LIST_DCN30(__SHIFT) }; static const struct dcn_hubp2_mask hubp_mask = { HUBP_MASK_SH_LIST_DCN30(_MASK) }; static const struct dcn_hubbub_registers hubbub_reg = { HUBBUB_REG_LIST_DCN30(0) }; static const struct dcn_hubbub_shift hubbub_shift = { HUBBUB_MASK_SH_LIST_DCN30(__SHIFT) }; static const struct dcn_hubbub_mask hubbub_mask = { HUBBUB_MASK_SH_LIST_DCN30(_MASK) }; static const struct dccg_registers dccg_regs = { DCCG_REG_LIST_DCN30() }; static const struct dccg_shift dccg_shift = { DCCG_MASK_SH_LIST_DCN3(__SHIFT) }; static const struct dccg_mask dccg_mask = { DCCG_MASK_SH_LIST_DCN3(_MASK) }; static const struct dce_hwseq_registers hwseq_reg = { HWSEQ_DCN30_REG_LIST() }; static const struct dce_hwseq_shift hwseq_shift = { HWSEQ_DCN30_MASK_SH_LIST(__SHIFT) }; static const struct dce_hwseq_mask hwseq_mask = { HWSEQ_DCN30_MASK_SH_LIST(_MASK) }; #define vmid_regs(id)\ [id] = {\ DCN20_VMID_REG_LIST(id)\ } static const struct dcn_vmid_registers vmid_regs[] = { vmid_regs(0), vmid_regs(1), vmid_regs(2), vmid_regs(3), vmid_regs(4), vmid_regs(5), vmid_regs(6), vmid_regs(7), vmid_regs(8), vmid_regs(9), vmid_regs(10), vmid_regs(11), vmid_regs(12), vmid_regs(13), vmid_regs(14), vmid_regs(15) }; static const struct dcn20_vmid_shift vmid_shifts = { DCN20_VMID_MASK_SH_LIST(__SHIFT) }; static const struct dcn20_vmid_mask vmid_masks = { DCN20_VMID_MASK_SH_LIST(_MASK) }; static const struct resource_caps res_cap_dcn3 = { .num_timing_generator = 6, .num_opp = 6, .num_video_plane = 6, .num_audio = 6, .num_stream_encoder = 6, .num_pll = 6, .num_dwb = 1, .num_ddc = 6, .num_vmid = 16, .num_mpc_3dlut = 3, .num_dsc = 6, }; static const struct dc_plane_cap plane_cap = { .type = DC_PLANE_TYPE_DCN_UNIVERSAL, .blends_with_above = true, .blends_with_below = true, .per_pixel_alpha = true, .pixel_format_support = { .argb8888 = true, .nv12 = true, .fp16 = true, .p010 = true, .ayuv = false, }, .max_upscale_factor = { .argb8888 = 16000, .nv12 = 16000, .fp16 = 16000 }, /* 6:1 downscaling ratio: 1000/6 = 166.666 */ .max_downscale_factor = { .argb8888 = 167, .nv12 = 167, .fp16 = 167 } }; static const struct dc_debug_options debug_defaults_drv = { .disable_dmcu = true, //No DMCU on DCN30 .force_abm_enable = false, .timing_trace = false, .clock_trace = true, .disable_pplib_clock_request = true, .pipe_split_policy = MPC_SPLIT_DYNAMIC, .force_single_disp_pipe_split = false, .disable_dcc = DCC_ENABLE, .vsr_support = true, .performance_trace = false, .max_downscale_src_width = 7680,/*upto 8K*/ .disable_pplib_wm_range = false, .scl_reset_length10 = true, .sanity_checks = false, .underflow_assert_delay_us = 0xFFFFFFFF, .dwb_fi_phase = -1, // -1 = disable, .dmub_command_table = true, .use_max_lb = true, .exit_idle_opt_for_cursor_updates = true }; static const struct dc_debug_options debug_defaults_diags = { .disable_dmcu = true, //No dmcu on DCN30 .force_abm_enable = false, .timing_trace = true, .clock_trace = true, .disable_dpp_power_gate = true, .disable_hubp_power_gate = true, .disable_clock_gate = true, .disable_pplib_clock_request = true, .disable_pplib_wm_range = true, .disable_stutter = false, .scl_reset_length10 = true, .dwb_fi_phase = -1, // -1 = disable .dmub_command_table = true, .enable_tri_buf = true, .use_max_lb = true }; static const struct dc_panel_config panel_config_defaults = { .psr = { .disable_psr = false, .disallow_psrsu = false, }, }; static void dcn30_dpp_destroy(struct dpp **dpp) { kfree(TO_DCN20_DPP(*dpp)); *dpp = NULL; } static struct dpp *dcn30_dpp_create( struct dc_context *ctx, uint32_t inst) { struct dcn3_dpp *dpp = kzalloc(sizeof(struct dcn3_dpp), GFP_KERNEL); if (!dpp) return NULL; if (dpp3_construct(dpp, ctx, inst, &dpp_regs[inst], &tf_shift, &tf_mask)) return &dpp->base; BREAK_TO_DEBUGGER(); kfree(dpp); return NULL; } static struct output_pixel_processor *dcn30_opp_create( struct dc_context *ctx, uint32_t inst) { struct dcn20_opp *opp = kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL); if (!opp) { BREAK_TO_DEBUGGER(); return NULL; } dcn20_opp_construct(opp, ctx, inst, &opp_regs[inst], &opp_shift, &opp_mask); return &opp->base; } static struct dce_aux *dcn30_aux_engine_create( struct dc_context *ctx, uint32_t inst) { struct aux_engine_dce110 *aux_engine = kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL); if (!aux_engine) return NULL; dce110_aux_engine_construct(aux_engine, ctx, inst, SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD, &aux_engine_regs[inst], &aux_mask, &aux_shift, ctx->dc->caps.extended_aux_timeout_support); return &aux_engine->base; } #define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST_DCN30(id) } static const struct dce_i2c_registers i2c_hw_regs[] = { i2c_inst_regs(1), i2c_inst_regs(2), i2c_inst_regs(3), i2c_inst_regs(4), i2c_inst_regs(5), i2c_inst_regs(6), }; static const struct dce_i2c_shift i2c_shifts = { I2C_COMMON_MASK_SH_LIST_DCN30(__SHIFT) }; static const struct dce_i2c_mask i2c_masks = { I2C_COMMON_MASK_SH_LIST_DCN30(_MASK) }; static struct dce_i2c_hw *dcn30_i2c_hw_create( struct dc_context *ctx, uint32_t inst) { struct dce_i2c_hw *dce_i2c_hw = kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL); if (!dce_i2c_hw) return NULL; dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst, &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks); return dce_i2c_hw; } static struct mpc *dcn30_mpc_create( struct dc_context *ctx, int num_mpcc, int num_rmu) { struct dcn30_mpc *mpc30 = kzalloc(sizeof(struct dcn30_mpc), GFP_KERNEL); if (!mpc30) return NULL; dcn30_mpc_construct(mpc30, ctx, &mpc_regs, &mpc_shift, &mpc_mask, num_mpcc, num_rmu); return &mpc30->base; } static struct hubbub *dcn30_hubbub_create(struct dc_context *ctx) { int i; struct dcn20_hubbub *hubbub3 = kzalloc(sizeof(struct dcn20_hubbub), GFP_KERNEL); if (!hubbub3) return NULL; hubbub3_construct(hubbub3, ctx, &hubbub_reg, &hubbub_shift, &hubbub_mask); for (i = 0; i < res_cap_dcn3.num_vmid; i++) { struct dcn20_vmid *vmid = &hubbub3->vmid[i]; vmid->ctx = ctx; vmid->regs = &vmid_regs[i]; vmid->shifts = &vmid_shifts; vmid->masks = &vmid_masks; } return &hubbub3->base; } static struct timing_generator *dcn30_timing_generator_create( struct dc_context *ctx, uint32_t instance) { struct optc *tgn10 = kzalloc(sizeof(struct optc), GFP_KERNEL); if (!tgn10) return NULL; tgn10->base.inst = instance; tgn10->base.ctx = ctx; tgn10->tg_regs = &optc_regs[instance]; tgn10->tg_shift = &optc_shift; tgn10->tg_mask = &optc_mask; dcn30_timing_generator_init(tgn10); return &tgn10->base; } static const struct encoder_feature_support link_enc_feature = { .max_hdmi_deep_color = COLOR_DEPTH_121212, .max_hdmi_pixel_clock = 600000, .hdmi_ycbcr420_supported = true, .dp_ycbcr420_supported = true, .fec_supported = true, .flags.bits.IS_HBR2_CAPABLE = true, .flags.bits.IS_HBR3_CAPABLE = true, .flags.bits.IS_TPS3_CAPABLE = true, .flags.bits.IS_TPS4_CAPABLE = true }; static struct link_encoder *dcn30_link_encoder_create( struct dc_context *ctx, const struct encoder_init_data *enc_init_data) { struct dcn20_link_encoder *enc20 = kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL); if (!enc20) return NULL; dcn30_link_encoder_construct(enc20, enc_init_data, &link_enc_feature, &link_enc_regs[enc_init_data->transmitter], &link_enc_aux_regs[enc_init_data->channel - 1], &link_enc_hpd_regs[enc_init_data->hpd_source], &le_shift, &le_mask); return &enc20->enc10.base; } static struct panel_cntl *dcn30_panel_cntl_create(const struct panel_cntl_init_data *init_data) { struct dce_panel_cntl *panel_cntl = kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL); if (!panel_cntl) return NULL; dce_panel_cntl_construct(panel_cntl, init_data, &panel_cntl_regs[init_data->inst], &panel_cntl_shift, &panel_cntl_mask); return &panel_cntl->base; } static void read_dce_straps( struct dc_context *ctx, struct resource_straps *straps) { generic_reg_get(ctx, mmDC_PINSTRAPS + BASE(mmDC_PINSTRAPS_BASE_IDX), FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio); } static struct audio *dcn30_create_audio( struct dc_context *ctx, unsigned int inst) { return dce_audio_create(ctx, inst, &audio_regs[inst], &audio_shift, &audio_mask); } static struct vpg *dcn30_vpg_create( struct dc_context *ctx, uint32_t inst) { struct dcn30_vpg *vpg3 = kzalloc(sizeof(struct dcn30_vpg), GFP_KERNEL); if (!vpg3) return NULL; vpg3_construct(vpg3, ctx, inst, &vpg_regs[inst], &vpg_shift, &vpg_mask); return &vpg3->base; } static struct afmt *dcn30_afmt_create( struct dc_context *ctx, uint32_t inst) { struct dcn30_afmt *afmt3 = kzalloc(sizeof(struct dcn30_afmt), GFP_KERNEL); if (!afmt3) return NULL; afmt3_construct(afmt3, ctx, inst, &afmt_regs[inst], &afmt_shift, &afmt_mask); return &afmt3->base; } static struct stream_encoder *dcn30_stream_encoder_create(enum engine_id eng_id, struct dc_context *ctx) { struct dcn10_stream_encoder *enc1; struct vpg *vpg; struct afmt *afmt; int vpg_inst; int afmt_inst; /* Mapping of VPG, AFMT, DME register blocks to DIO block instance */ if (eng_id <= ENGINE_ID_DIGF) { vpg_inst = eng_id; afmt_inst = eng_id; } else return NULL; enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL); vpg = dcn30_vpg_create(ctx, vpg_inst); afmt = dcn30_afmt_create(ctx, afmt_inst); if (!enc1 || !vpg || !afmt) { kfree(enc1); kfree(vpg); kfree(afmt); return NULL; } dcn30_dio_stream_encoder_construct(enc1, ctx, ctx->dc_bios, eng_id, vpg, afmt, &stream_enc_regs[eng_id], &se_shift, &se_mask); return &enc1->base; } static struct dce_hwseq *dcn30_hwseq_create(struct dc_context *ctx) { struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL); if (hws) { hws->ctx = ctx; hws->regs = &hwseq_reg; hws->shifts = &hwseq_shift; hws->masks = &hwseq_mask; } return hws; } static const struct resource_create_funcs res_create_funcs = { .read_dce_straps = read_dce_straps, .create_audio = dcn30_create_audio, .create_stream_encoder = dcn30_stream_encoder_create, .create_hwseq = dcn30_hwseq_create, }; static const struct resource_create_funcs res_create_maximus_funcs = { .read_dce_straps = NULL, .create_audio = NULL, .create_stream_encoder = NULL, .create_hwseq = dcn30_hwseq_create, }; static void dcn30_resource_destruct(struct dcn30_resource_pool *pool) { unsigned int i; for (i = 0; i < pool->base.stream_enc_count; i++) { if (pool->base.stream_enc[i] != NULL) { if (pool->base.stream_enc[i]->vpg != NULL) { kfree(DCN30_VPG_FROM_VPG(pool->base.stream_enc[i]->vpg)); pool->base.stream_enc[i]->vpg = NULL; } if (pool->base.stream_enc[i]->afmt != NULL) { kfree(DCN30_AFMT_FROM_AFMT(pool->base.stream_enc[i]->afmt)); pool->base.stream_enc[i]->afmt = NULL; } kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i])); pool->base.stream_enc[i] = NULL; } } for (i = 0; i < pool->base.res_cap->num_dsc; i++) { if (pool->base.dscs[i] != NULL) dcn20_dsc_destroy(&pool->base.dscs[i]); } if (pool->base.mpc != NULL) { kfree(TO_DCN20_MPC(pool->base.mpc)); pool->base.mpc = NULL; } if (pool->base.hubbub != NULL) { kfree(pool->base.hubbub); pool->base.hubbub = NULL; } for (i = 0; i < pool->base.pipe_count; i++) { if (pool->base.dpps[i] != NULL) dcn30_dpp_destroy(&pool->base.dpps[i]); if (pool->base.ipps[i] != NULL) pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]); if (pool->base.hubps[i] != NULL) { kfree(TO_DCN20_HUBP(pool->base.hubps[i])); pool->base.hubps[i] = NULL; } if (pool->base.irqs != NULL) { dal_irq_service_destroy(&pool->base.irqs); } } for (i = 0; i < pool->base.res_cap->num_ddc; i++) { if (pool->base.engines[i] != NULL) dce110_engine_destroy(&pool->base.engines[i]); if (pool->base.hw_i2cs[i] != NULL) { kfree(pool->base.hw_i2cs[i]); pool->base.hw_i2cs[i] = NULL; } if (pool->base.sw_i2cs[i] != NULL) { kfree(pool->base.sw_i2cs[i]); pool->base.sw_i2cs[i] = NULL; } } for (i = 0; i < pool->base.res_cap->num_opp; i++) { if (pool->base.opps[i] != NULL) pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]); } for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { if (pool->base.timing_generators[i] != NULL) { kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i])); pool->base.timing_generators[i] = NULL; } } for (i = 0; i < pool->base.res_cap->num_dwb; i++) { if (pool->base.dwbc[i] != NULL) { kfree(TO_DCN30_DWBC(pool->base.dwbc[i])); pool->base.dwbc[i] = NULL; } if (pool->base.mcif_wb[i] != NULL) { kfree(TO_DCN30_MMHUBBUB(pool->base.mcif_wb[i])); pool->base.mcif_wb[i] = NULL; } } for (i = 0; i < pool->base.audio_count; i++) { if (pool->base.audios[i]) dce_aud_destroy(&pool->base.audios[i]); } for (i = 0; i < pool->base.clk_src_count; i++) { if (pool->base.clock_sources[i] != NULL) { dcn20_clock_source_destroy(&pool->base.clock_sources[i]); pool->base.clock_sources[i] = NULL; } } for (i = 0; i < pool->base.res_cap->num_mpc_3dlut; i++) { if (pool->base.mpc_lut[i] != NULL) { dc_3dlut_func_release(pool->base.mpc_lut[i]); pool->base.mpc_lut[i] = NULL; } if (pool->base.mpc_shaper[i] != NULL) { dc_transfer_func_release(pool->base.mpc_shaper[i]); pool->base.mpc_shaper[i] = NULL; } } if (pool->base.dp_clock_source != NULL) { dcn20_clock_source_destroy(&pool->base.dp_clock_source); pool->base.dp_clock_source = NULL; } for (i = 0; i < pool->base.pipe_count; i++) { if (pool->base.multiple_abms[i] != NULL) dce_abm_destroy(&pool->base.multiple_abms[i]); } if (pool->base.psr != NULL) dmub_psr_destroy(&pool->base.psr); if (pool->base.dccg != NULL) dcn_dccg_destroy(&pool->base.dccg); if (pool->base.oem_device != NULL) link_destroy_ddc_service(&pool->base.oem_device); } static struct hubp *dcn30_hubp_create( struct dc_context *ctx, uint32_t inst) { struct dcn20_hubp *hubp2 = kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL); if (!hubp2) return NULL; if (hubp3_construct(hubp2, ctx, inst, &hubp_regs[inst], &hubp_shift, &hubp_mask)) return &hubp2->base; BREAK_TO_DEBUGGER(); kfree(hubp2); return NULL; } static bool dcn30_dwbc_create(struct dc_context *ctx, struct resource_pool *pool) { int i; uint32_t pipe_count = pool->res_cap->num_dwb; for (i = 0; i < pipe_count; i++) { struct dcn30_dwbc *dwbc30 = kzalloc(sizeof(struct dcn30_dwbc), GFP_KERNEL); if (!dwbc30) { dm_error("DC: failed to create dwbc30!\n"); return false; } dcn30_dwbc_construct(dwbc30, ctx, &dwbc30_regs[i], &dwbc30_shift, &dwbc30_mask, i); pool->dwbc[i] = &dwbc30->base; } return true; } static bool dcn30_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool) { int i; uint32_t pipe_count = pool->res_cap->num_dwb; for (i = 0; i < pipe_count; i++) { struct dcn30_mmhubbub *mcif_wb30 = kzalloc(sizeof(struct dcn30_mmhubbub), GFP_KERNEL); if (!mcif_wb30) { dm_error("DC: failed to create mcif_wb30!\n"); return false; } dcn30_mmhubbub_construct(mcif_wb30, ctx, &mcif_wb30_regs[i], &mcif_wb30_shift, &mcif_wb30_mask, i); pool->mcif_wb[i] = &mcif_wb30->base; } return true; } static struct display_stream_compressor *dcn30_dsc_create( struct dc_context *ctx, uint32_t inst) { struct dcn20_dsc *dsc = kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL); if (!dsc) { BREAK_TO_DEBUGGER(); return NULL; } dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask); return &dsc->base; } enum dc_status dcn30_add_stream_to_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream) { return dcn20_add_stream_to_ctx(dc, new_ctx, dc_stream); } static void dcn30_destroy_resource_pool(struct resource_pool **pool) { struct dcn30_resource_pool *dcn30_pool = TO_DCN30_RES_POOL(*pool); dcn30_resource_destruct(dcn30_pool); kfree(dcn30_pool); *pool = NULL; } static struct clock_source *dcn30_clock_source_create( struct dc_context *ctx, struct dc_bios *bios, enum clock_source_id id, const struct dce110_clk_src_regs *regs, bool dp_clk_src) { struct dce110_clk_src *clk_src = kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL); if (!clk_src) return NULL; if (dcn3_clk_src_construct(clk_src, ctx, bios, id, regs, &cs_shift, &cs_mask)) { clk_src->base.dp_clk_src = dp_clk_src; return &clk_src->base; } kfree(clk_src); BREAK_TO_DEBUGGER(); return NULL; } int dcn30_populate_dml_pipes_from_context( struct dc *dc, struct dc_state *context, display_e2e_pipe_params_st *pipes, bool fast_validate) { int i, pipe_cnt; struct resource_context *res_ctx = &context->res_ctx; DC_FP_START(); dcn20_populate_dml_pipes_from_context(dc, context, pipes, fast_validate); DC_FP_END(); for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) { if (!res_ctx->pipe_ctx[i].stream) continue; pipes[pipe_cnt++].pipe.scale_ratio_depth.lb_depth = dm_lb_16; } return pipe_cnt; } void dcn30_populate_dml_writeback_from_context( struct dc *dc, struct resource_context *res_ctx, display_e2e_pipe_params_st *pipes) { DC_FP_START(); dcn30_fpu_populate_dml_writeback_from_context(dc, res_ctx, pipes); DC_FP_END(); } unsigned int dcn30_calc_max_scaled_time( unsigned int time_per_pixel, enum mmhubbub_wbif_mode mode, unsigned int urgent_watermark) { unsigned int time_per_byte = 0; unsigned int total_free_entry = 0xb40; unsigned int buf_lh_capability; unsigned int max_scaled_time; if (mode == PACKED_444) /* packed mode 32 bpp */ time_per_byte = time_per_pixel/4; else if (mode == PACKED_444_FP16) /* packed mode 64 bpp */ time_per_byte = time_per_pixel/8; if (time_per_byte == 0) time_per_byte = 1; buf_lh_capability = (total_free_entry*time_per_byte*32) >> 6; /* time_per_byte is in u6.6*/ max_scaled_time = buf_lh_capability - urgent_watermark; return max_scaled_time; } void dcn30_set_mcif_arb_params( struct dc *dc, struct dc_state *context, display_e2e_pipe_params_st *pipes, int pipe_cnt) { enum mmhubbub_wbif_mode wbif_mode; struct display_mode_lib *dml = &context->bw_ctx.dml; struct mcif_arb_params *wb_arb_params; int i, j, dwb_pipe; /* Writeback MCIF_WB arbitration parameters */ dwb_pipe = 0; for (i = 0; i < dc->res_pool->pipe_count; i++) { if (!context->res_ctx.pipe_ctx[i].stream) continue; for (j = 0; j < MAX_DWB_PIPES; j++) { struct dc_writeback_info *writeback_info = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j]; if (writeback_info->wb_enabled == false) continue; //wb_arb_params = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j].mcif_arb_params; wb_arb_params = &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[dwb_pipe]; if (writeback_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_ARGB || writeback_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_RGBA) wbif_mode = PACKED_444_FP16; else wbif_mode = PACKED_444; DC_FP_START(); dcn30_fpu_set_mcif_arb_params(wb_arb_params, dml, pipes, pipe_cnt, j); DC_FP_END(); wb_arb_params->time_per_pixel = (1000000 << 6) / context->res_ctx.pipe_ctx[i].stream->phy_pix_clk; /* time_per_pixel should be in u6.6 format */ wb_arb_params->slice_lines = 32; wb_arb_params->arbitration_slice = 2; /* irrelevant since there is no YUV output */ wb_arb_params->max_scaled_time = dcn30_calc_max_scaled_time(wb_arb_params->time_per_pixel, wbif_mode, wb_arb_params->cli_watermark[0]); /* assume 4 watermark sets have the same value */ dwb_pipe++; if (dwb_pipe >= MAX_DWB_PIPES) return; } if (dwb_pipe >= MAX_DWB_PIPES) return; } } static struct dc_cap_funcs cap_funcs = { .get_dcc_compression_cap = dcn20_get_dcc_compression_cap }; bool dcn30_acquire_post_bldn_3dlut( struct resource_context *res_ctx, const struct resource_pool *pool, int mpcc_id, struct dc_3dlut **lut, struct dc_transfer_func **shaper) { int i; bool ret = false; union dc_3dlut_state *state; ASSERT(*lut == NULL && *shaper == NULL); *lut = NULL; *shaper = NULL; for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) { if (!res_ctx->is_mpc_3dlut_acquired[i]) { *lut = pool->mpc_lut[i]; *shaper = pool->mpc_shaper[i]; state = &pool->mpc_lut[i]->state; res_ctx->is_mpc_3dlut_acquired[i] = true; state->bits.rmu_idx_valid = 1; state->bits.rmu_mux_num = i; if (state->bits.rmu_mux_num == 0) state->bits.mpc_rmu0_mux = mpcc_id; else if (state->bits.rmu_mux_num == 1) state->bits.mpc_rmu1_mux = mpcc_id; else if (state->bits.rmu_mux_num == 2) state->bits.mpc_rmu2_mux = mpcc_id; ret = true; break; } } return ret; } bool dcn30_release_post_bldn_3dlut( struct resource_context *res_ctx, const struct resource_pool *pool, struct dc_3dlut **lut, struct dc_transfer_func **shaper) { int i; bool ret = false; for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) { if (pool->mpc_lut[i] == *lut && pool->mpc_shaper[i] == *shaper) { res_ctx->is_mpc_3dlut_acquired[i] = false; pool->mpc_lut[i]->state.raw = 0; *lut = NULL; *shaper = NULL; ret = true; break; } } return ret; } static bool is_soc_bounding_box_valid(struct dc *dc) { uint32_t hw_internal_rev = dc->ctx->asic_id.hw_internal_rev; if (ASICREV_IS_SIENNA_CICHLID_P(hw_internal_rev)) return true; return false; } static bool init_soc_bounding_box(struct dc *dc, struct dcn30_resource_pool *pool) { struct _vcs_dpi_soc_bounding_box_st *loaded_bb = &dcn3_0_soc; struct _vcs_dpi_ip_params_st *loaded_ip = &dcn3_0_ip; DC_LOGGER_INIT(dc->ctx->logger); if (!is_soc_bounding_box_valid(dc)) { DC_LOG_ERROR("%s: not valid soc bounding box\n", __func__); return false; } loaded_ip->max_num_otg = pool->base.res_cap->num_timing_generator; loaded_ip->max_num_dpp = pool->base.pipe_count; loaded_ip->clamp_min_dcfclk = dc->config.clamp_min_dcfclk; dcn20_patch_bounding_box(dc, loaded_bb); DC_FP_START(); patch_dcn30_soc_bounding_box(dc, &dcn3_0_soc); DC_FP_END(); return true; } static bool dcn30_split_stream_for_mpc_or_odm( const struct dc *dc, struct resource_context *res_ctx, struct pipe_ctx *pri_pipe, struct pipe_ctx *sec_pipe, bool odm) { int pipe_idx = sec_pipe->pipe_idx; const struct resource_pool *pool = dc->res_pool; *sec_pipe = *pri_pipe; sec_pipe->pipe_idx = pipe_idx; sec_pipe->plane_res.mi = pool->mis[pipe_idx]; sec_pipe->plane_res.hubp = pool->hubps[pipe_idx]; sec_pipe->plane_res.ipp = pool->ipps[pipe_idx]; sec_pipe->plane_res.xfm = pool->transforms[pipe_idx]; sec_pipe->plane_res.dpp = pool->dpps[pipe_idx]; sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst; sec_pipe->stream_res.dsc = NULL; if (odm) { if (pri_pipe->next_odm_pipe) { ASSERT(pri_pipe->next_odm_pipe != sec_pipe); sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe; sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe; } if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) { pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe; sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe; } if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) { pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe; sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe; } pri_pipe->next_odm_pipe = sec_pipe; sec_pipe->prev_odm_pipe = pri_pipe; if (!sec_pipe->top_pipe) sec_pipe->stream_res.opp = pool->opps[pipe_idx]; else sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp; if (sec_pipe->stream->timing.flags.DSC == 1) { dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx); ASSERT(sec_pipe->stream_res.dsc); if (sec_pipe->stream_res.dsc == NULL) return false; } } else { if (pri_pipe->bottom_pipe) { ASSERT(pri_pipe->bottom_pipe != sec_pipe); sec_pipe->bottom_pipe = pri_pipe->bottom_pipe; sec_pipe->bottom_pipe->top_pipe = sec_pipe; } pri_pipe->bottom_pipe = sec_pipe; sec_pipe->top_pipe = pri_pipe; ASSERT(pri_pipe->plane_state); } return true; } static struct pipe_ctx *dcn30_find_split_pipe( struct dc *dc, struct dc_state *context, int old_index) { struct pipe_ctx *pipe = NULL; int i; if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) { pipe = &context->res_ctx.pipe_ctx[old_index]; pipe->pipe_idx = old_index; } if (!pipe) for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) { if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL && dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) { if (context->res_ctx.pipe_ctx[i].stream == NULL) { pipe = &context->res_ctx.pipe_ctx[i]; pipe->pipe_idx = i; break; } } } /* * May need to fix pipes getting tossed from 1 opp to another on flip * Add for debugging transient underflow during topology updates: * ASSERT(pipe); */ if (!pipe) for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) { if (context->res_ctx.pipe_ctx[i].stream == NULL) { pipe = &context->res_ctx.pipe_ctx[i]; pipe->pipe_idx = i; break; } } return pipe; } noinline bool dcn30_internal_validate_bw( struct dc *dc, struct dc_state *context, display_e2e_pipe_params_st *pipes, int *pipe_cnt_out, int *vlevel_out, bool fast_validate, bool allow_self_refresh_only) { bool out = false; bool repopulate_pipes = false; int split[MAX_PIPES] = { 0 }; bool merge[MAX_PIPES] = { false }; bool newly_split[MAX_PIPES] = { false }; int pipe_cnt, i, pipe_idx, vlevel; struct vba_vars_st *vba = &context->bw_ctx.dml.vba; ASSERT(pipes); if (!pipes) return false; context->bw_ctx.dml.vba.maxMpcComb = 0; context->bw_ctx.dml.vba.VoltageLevel = 0; context->bw_ctx.dml.vba.DRAMClockChangeSupport[0][0] = dm_dram_clock_change_vactive; dc->res_pool->funcs->update_soc_for_wm_a(dc, context); pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate); if (!pipe_cnt) { out = true; goto validate_out; } dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt); if (!fast_validate || !allow_self_refresh_only) { /* * DML favors voltage over p-state, but we're more interested in * supporting p-state over voltage. We can't support p-state in * prefetch mode > 0 so try capping the prefetch mode to start. */ context->bw_ctx.dml.soc.allow_dram_self_refresh_or_dram_clock_change_in_vblank = dm_allow_self_refresh_and_mclk_switch; vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); /* This may adjust vlevel and maxMpcComb */ if (vlevel < context->bw_ctx.dml.soc.num_states) vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge); } if (allow_self_refresh_only && (fast_validate || vlevel == context->bw_ctx.dml.soc.num_states || vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported)) { /* * If mode is unsupported or there's still no p-state support * then fall back to favoring voltage. * * We don't actually support prefetch mode 2, so require that we * at least support prefetch mode 1. */ context->bw_ctx.dml.soc.allow_dram_self_refresh_or_dram_clock_change_in_vblank = dm_allow_self_refresh; vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); if (vlevel < context->bw_ctx.dml.soc.num_states) { memset(split, 0, sizeof(split)); memset(merge, 0, sizeof(merge)); vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge); } } dml_log_mode_support_params(&context->bw_ctx.dml); if (vlevel == context->bw_ctx.dml.soc.num_states) goto validate_fail; if (!dc->config.enable_windowed_mpo_odm) { for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; struct pipe_ctx *mpo_pipe = pipe->bottom_pipe; if (!pipe->stream) continue; /* We only support full screen mpo with ODM */ if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled && pipe->plane_state && mpo_pipe && memcmp(&mpo_pipe->plane_res.scl_data.recout, &pipe->plane_res.scl_data.recout, sizeof(struct rect)) != 0) { ASSERT(mpo_pipe->plane_state != pipe->plane_state); goto validate_fail; } pipe_idx++; } } /* merge pipes if necessary */ for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; /*skip pipes that don't need merging*/ if (!merge[i]) continue; /* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */ if (pipe->prev_odm_pipe) { /*split off odm pipe*/ pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe; if (pipe->next_odm_pipe) pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe; pipe->bottom_pipe = NULL; pipe->next_odm_pipe = NULL; pipe->plane_state = NULL; pipe->stream = NULL; pipe->top_pipe = NULL; pipe->prev_odm_pipe = NULL; if (pipe->stream_res.dsc) dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc); memset(&pipe->plane_res, 0, sizeof(pipe->plane_res)); memset(&pipe->stream_res, 0, sizeof(pipe->stream_res)); repopulate_pipes = true; } else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) { struct pipe_ctx *top_pipe = pipe->top_pipe; struct pipe_ctx *bottom_pipe = pipe->bottom_pipe; top_pipe->bottom_pipe = bottom_pipe; if (bottom_pipe) bottom_pipe->top_pipe = top_pipe; pipe->top_pipe = NULL; pipe->bottom_pipe = NULL; pipe->plane_state = NULL; pipe->stream = NULL; memset(&pipe->plane_res, 0, sizeof(pipe->plane_res)); memset(&pipe->stream_res, 0, sizeof(pipe->stream_res)); repopulate_pipes = true; } else ASSERT(0); /* Should never try to merge master pipe */ } for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i]; struct pipe_ctx *hsplit_pipe = NULL; bool odm; int old_index = -1; if (!pipe->stream || newly_split[i]) continue; pipe_idx++; odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled; if (!pipe->plane_state && !odm) continue; if (split[i]) { if (odm) { if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe) old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx; else if (old_pipe->next_odm_pipe) old_index = old_pipe->next_odm_pipe->pipe_idx; } else { if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state) old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx; else if (old_pipe->bottom_pipe && old_pipe->bottom_pipe->plane_state == old_pipe->plane_state) old_index = old_pipe->bottom_pipe->pipe_idx; } hsplit_pipe = dcn30_find_split_pipe(dc, context, old_index); ASSERT(hsplit_pipe); if (!hsplit_pipe) goto validate_fail; if (!dcn30_split_stream_for_mpc_or_odm( dc, &context->res_ctx, pipe, hsplit_pipe, odm)) goto validate_fail; newly_split[hsplit_pipe->pipe_idx] = true; repopulate_pipes = true; } if (split[i] == 4) { struct pipe_ctx *pipe_4to1; if (odm && old_pipe->next_odm_pipe) old_index = old_pipe->next_odm_pipe->pipe_idx; else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->plane_state == old_pipe->plane_state) old_index = old_pipe->bottom_pipe->pipe_idx; else old_index = -1; pipe_4to1 = dcn30_find_split_pipe(dc, context, old_index); ASSERT(pipe_4to1); if (!pipe_4to1) goto validate_fail; if (!dcn30_split_stream_for_mpc_or_odm( dc, &context->res_ctx, pipe, pipe_4to1, odm)) goto validate_fail; newly_split[pipe_4to1->pipe_idx] = true; if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe) old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx; else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state) old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx; else old_index = -1; pipe_4to1 = dcn30_find_split_pipe(dc, context, old_index); ASSERT(pipe_4to1); if (!pipe_4to1) goto validate_fail; if (!dcn30_split_stream_for_mpc_or_odm( dc, &context->res_ctx, hsplit_pipe, pipe_4to1, odm)) goto validate_fail; newly_split[pipe_4to1->pipe_idx] = true; } if (odm) dcn20_build_mapped_resource(dc, context, pipe->stream); } for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; if (pipe->plane_state) { if (!resource_build_scaling_params(pipe)) goto validate_fail; } } /* Actual dsc count per stream dsc validation*/ if (!dcn20_validate_dsc(dc, context)) { vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE; goto validate_fail; } if (repopulate_pipes) pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate); context->bw_ctx.dml.vba.VoltageLevel = vlevel; *vlevel_out = vlevel; *pipe_cnt_out = pipe_cnt; out = true; goto validate_out; validate_fail: out = false; validate_out: return out; } static int get_refresh_rate(struct dc_state *context) { int refresh_rate = 0; int h_v_total = 0; struct dc_crtc_timing *timing = NULL; if (context == NULL || context->streams[0] == NULL) return 0; /* check if refresh rate at least 120hz */ timing = &context->streams[0]->timing; if (timing == NULL) return 0; h_v_total = timing->h_total * timing->v_total; if (h_v_total == 0) return 0; refresh_rate = ((timing->pix_clk_100hz * 100) / (h_v_total)) + 1; return refresh_rate; } #define MAX_STRETCHED_V_BLANK 500 // in micro-seconds /* * Scaling factor for v_blank stretch calculations considering timing in * micro-seconds and pixel clock in 100hz. * Note: the parenthesis are necessary to ensure the correct order of * operation where V_SCALE is used. */ #define V_SCALE (10000 / MAX_STRETCHED_V_BLANK) static int get_frame_rate_at_max_stretch_100hz(struct dc_state *context) { struct dc_crtc_timing *timing = NULL; uint32_t sec_per_100_lines; uint32_t max_v_blank; uint32_t curr_v_blank; uint32_t v_stretch_max; uint32_t stretched_frame_pix_cnt; uint32_t scaled_stretched_frame_pix_cnt; uint32_t scaled_refresh_rate; if (context == NULL || context->streams[0] == NULL) return 0; /* check if refresh rate at least 120hz */ timing = &context->streams[0]->timing; if (timing == NULL) return 0; sec_per_100_lines = timing->pix_clk_100hz / timing->h_total + 1; max_v_blank = sec_per_100_lines / V_SCALE + 1; curr_v_blank = timing->v_total - timing->v_addressable; v_stretch_max = (max_v_blank > curr_v_blank) ? (max_v_blank - curr_v_blank) : (0); stretched_frame_pix_cnt = (v_stretch_max + timing->v_total) * timing->h_total; scaled_stretched_frame_pix_cnt = stretched_frame_pix_cnt / 10000; scaled_refresh_rate = (timing->pix_clk_100hz) / scaled_stretched_frame_pix_cnt + 1; return scaled_refresh_rate; } static bool is_refresh_rate_support_mclk_switch_using_fw_based_vblank_stretch(struct dc_state *context) { int refresh_rate_max_stretch_100hz; int min_refresh_100hz; if (context == NULL || context->streams[0] == NULL) return false; refresh_rate_max_stretch_100hz = get_frame_rate_at_max_stretch_100hz(context); min_refresh_100hz = context->streams[0]->timing.min_refresh_in_uhz / 10000; if (refresh_rate_max_stretch_100hz < min_refresh_100hz) return false; return true; } bool dcn30_can_support_mclk_switch_using_fw_based_vblank_stretch(struct dc *dc, struct dc_state *context) { int refresh_rate = 0; const int minimum_refreshrate_supported = 120; if (context == NULL || context->streams[0] == NULL) return false; if (context->streams[0]->sink->edid_caps.panel_patch.disable_fams) return false; if (dc->debug.disable_fams) return false; if (!dc->caps.dmub_caps.mclk_sw) return false; if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching_shut_down) return false; /* more then 1 monitor connected */ if (context->stream_count != 1) return false; refresh_rate = get_refresh_rate(context); if (refresh_rate < minimum_refreshrate_supported) return false; if (!is_refresh_rate_support_mclk_switch_using_fw_based_vblank_stretch(context)) return false; // check if freesync enabled if (!context->streams[0]->allow_freesync) return false; if (context->streams[0]->vrr_active_variable) return false; return true; } /* * set up FPO watermarks, pstate, dram latency */ void dcn30_setup_mclk_switch_using_fw_based_vblank_stretch(struct dc *dc, struct dc_state *context) { ASSERT(dc != NULL && context != NULL); if (dc == NULL || context == NULL) return; /* Set wm_a.pstate so high natural MCLK switches are impossible: 4 seconds */ context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 4U * 1000U * 1000U * 1000U; } void dcn30_update_soc_for_wm_a(struct dc *dc, struct dc_state *context) { DC_FP_START(); dcn30_fpu_update_soc_for_wm_a(dc, context); DC_FP_END(); } void dcn30_calculate_wm_and_dlg( struct dc *dc, struct dc_state *context, display_e2e_pipe_params_st *pipes, int pipe_cnt, int vlevel) { DC_FP_START(); dcn30_fpu_calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel); DC_FP_END(); } bool dcn30_validate_bandwidth(struct dc *dc, struct dc_state *context, bool fast_validate) { bool out = false; BW_VAL_TRACE_SETUP(); int vlevel = 0; int pipe_cnt = 0; display_e2e_pipe_params_st *pipes = kzalloc(dc->res_pool->pipe_count * sizeof(display_e2e_pipe_params_st), GFP_KERNEL); DC_LOGGER_INIT(dc->ctx->logger); BW_VAL_TRACE_COUNT(); DC_FP_START(); out = dcn30_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, fast_validate, true); DC_FP_END(); if (pipe_cnt == 0) goto validate_out; if (!out) goto validate_fail; BW_VAL_TRACE_END_VOLTAGE_LEVEL(); if (fast_validate) { BW_VAL_TRACE_SKIP(fast); goto validate_out; } DC_FP_START(); dc->res_pool->funcs->calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel); DC_FP_END(); BW_VAL_TRACE_END_WATERMARKS(); goto validate_out; validate_fail: DC_LOG_WARNING("Mode Validation Warning: %s failed validation.\n", dml_get_status_message(context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states])); BW_VAL_TRACE_SKIP(fail); out = false; validate_out: kfree(pipes); BW_VAL_TRACE_FINISH(); return out; } void dcn30_update_bw_bounding_box(struct dc *dc, struct clk_bw_params *bw_params) { unsigned int i, j; unsigned int num_states = 0; unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0}; unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0}; unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0}; unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0}; unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {694, 875, 1000, 1200}; unsigned int num_dcfclk_sta_targets = 4; unsigned int num_uclk_states; struct dc_bounding_box_max_clk dcn30_bb_max_clk; memset(&dcn30_bb_max_clk, 0, sizeof(dcn30_bb_max_clk)); if (dc->ctx->dc_bios->vram_info.num_chans) dcn3_0_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans; DC_FP_START(); dcn30_fpu_update_dram_channel_width_bytes(dc); DC_FP_END(); if (bw_params->clk_table.entries[0].memclk_mhz) { for (i = 0; i < MAX_NUM_DPM_LVL; i++) { if (bw_params->clk_table.entries[i].dcfclk_mhz > dcn30_bb_max_clk.max_dcfclk_mhz) dcn30_bb_max_clk.max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz; if (bw_params->clk_table.entries[i].dispclk_mhz > dcn30_bb_max_clk.max_dispclk_mhz) dcn30_bb_max_clk.max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz; if (bw_params->clk_table.entries[i].dppclk_mhz > dcn30_bb_max_clk.max_dppclk_mhz) dcn30_bb_max_clk.max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz; if (bw_params->clk_table.entries[i].phyclk_mhz > dcn30_bb_max_clk.max_phyclk_mhz) dcn30_bb_max_clk.max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz; } DC_FP_START(); dcn30_fpu_update_max_clk(&dcn30_bb_max_clk); DC_FP_END(); if (dcn30_bb_max_clk.max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) { // If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array dcfclk_sta_targets[num_dcfclk_sta_targets] = dcn30_bb_max_clk.max_dcfclk_mhz; num_dcfclk_sta_targets++; } else if (dcn30_bb_max_clk.max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) { // If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates for (i = 0; i < num_dcfclk_sta_targets; i++) { if (dcfclk_sta_targets[i] > dcn30_bb_max_clk.max_dcfclk_mhz) { dcfclk_sta_targets[i] = dcn30_bb_max_clk.max_dcfclk_mhz; break; } } // Update size of array since we "removed" duplicates num_dcfclk_sta_targets = i + 1; } num_uclk_states = bw_params->clk_table.num_entries; // Calculate optimal dcfclk for each uclk for (i = 0; i < num_uclk_states; i++) { DC_FP_START(); dcn30_fpu_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16, &optimal_dcfclk_for_uclk[i], NULL); DC_FP_END(); if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) { optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz; } } // Calculate optimal uclk for each dcfclk sta target for (i = 0; i < num_dcfclk_sta_targets; i++) { for (j = 0; j < num_uclk_states; j++) { if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) { optimal_uclk_for_dcfclk_sta_targets[i] = bw_params->clk_table.entries[j].memclk_mhz * 16; break; } } } i = 0; j = 0; // create the final dcfclk and uclk table while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) { if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) { dcfclk_mhz[num_states] = dcfclk_sta_targets[i]; dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++]; } else { if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= dcn30_bb_max_clk.max_dcfclk_mhz) { dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j]; dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16; } else { j = num_uclk_states; } } } while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) { dcfclk_mhz[num_states] = dcfclk_sta_targets[i]; dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++]; } while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES && optimal_dcfclk_for_uclk[j] <= dcn30_bb_max_clk.max_dcfclk_mhz) { dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j]; dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16; } dcn3_0_soc.num_states = num_states; DC_FP_START(); dcn30_fpu_update_bw_bounding_box(dc, bw_params, &dcn30_bb_max_clk, dcfclk_mhz, dram_speed_mts); DC_FP_END(); } } static void dcn30_get_panel_config_defaults(struct dc_panel_config *panel_config) { *panel_config = panel_config_defaults; } static const struct resource_funcs dcn30_res_pool_funcs = { .destroy = dcn30_destroy_resource_pool, .link_enc_create = dcn30_link_encoder_create, .panel_cntl_create = dcn30_panel_cntl_create, .validate_bandwidth = dcn30_validate_bandwidth, .calculate_wm_and_dlg = dcn30_calculate_wm_and_dlg, .update_soc_for_wm_a = dcn30_update_soc_for_wm_a, .populate_dml_pipes = dcn30_populate_dml_pipes_from_context, .acquire_idle_pipe_for_layer = dcn20_acquire_idle_pipe_for_layer, .add_stream_to_ctx = dcn30_add_stream_to_ctx, .add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource, .remove_stream_from_ctx = dcn20_remove_stream_from_ctx, .populate_dml_writeback_from_context = dcn30_populate_dml_writeback_from_context, .set_mcif_arb_params = dcn30_set_mcif_arb_params, .find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link, .acquire_post_bldn_3dlut = dcn30_acquire_post_bldn_3dlut, .release_post_bldn_3dlut = dcn30_release_post_bldn_3dlut, .update_bw_bounding_box = dcn30_update_bw_bounding_box, .patch_unknown_plane_state = dcn20_patch_unknown_plane_state, .get_panel_config_defaults = dcn30_get_panel_config_defaults, }; #define CTX ctx #define REG(reg_name) \ (DCN_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name) static uint32_t read_pipe_fuses(struct dc_context *ctx) { uint32_t value = REG_READ(CC_DC_PIPE_DIS); /* Support for max 6 pipes */ value = value & 0x3f; return value; } static bool dcn30_resource_construct( uint8_t num_virtual_links, struct dc *dc, struct dcn30_resource_pool *pool) { int i; struct dc_context *ctx = dc->ctx; struct irq_service_init_data init_data; struct ddc_service_init_data ddc_init_data = {0}; uint32_t pipe_fuses = read_pipe_fuses(ctx); uint32_t num_pipes = 0; if (!(pipe_fuses == 0 || pipe_fuses == 0x3e)) { BREAK_TO_DEBUGGER(); dm_error("DC: Unexpected fuse recipe for navi2x !\n"); /* fault to single pipe */ pipe_fuses = 0x3e; } DC_FP_START(); ctx->dc_bios->regs = &bios_regs; pool->base.res_cap = &res_cap_dcn3; pool->base.funcs = &dcn30_res_pool_funcs; /************************************************* * Resource + asic cap harcoding * *************************************************/ pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE; pool->base.pipe_count = pool->base.res_cap->num_timing_generator; pool->base.mpcc_count = pool->base.res_cap->num_timing_generator; dc->caps.max_downscale_ratio = 600; dc->caps.i2c_speed_in_khz = 100; dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a not applied by default*/ dc->caps.max_cursor_size = 256; dc->caps.min_horizontal_blanking_period = 80; dc->caps.dmdata_alloc_size = 2048; dc->caps.mall_size_per_mem_channel = 8; /* total size = mall per channel * num channels * 1024 * 1024 */ dc->caps.mall_size_total = dc->caps.mall_size_per_mem_channel * dc->ctx->dc_bios->vram_info.num_chans * 1048576; dc->caps.cursor_cache_size = dc->caps.max_cursor_size * dc->caps.max_cursor_size * 8; dc->caps.max_slave_planes = 2; dc->caps.max_slave_yuv_planes = 2; dc->caps.max_slave_rgb_planes = 2; dc->caps.post_blend_color_processing = true; dc->caps.force_dp_tps4_for_cp2520 = true; dc->caps.extended_aux_timeout_support = true; dc->caps.dmcub_support = true; /* Color pipeline capabilities */ dc->caps.color.dpp.dcn_arch = 1; dc->caps.color.dpp.input_lut_shared = 0; dc->caps.color.dpp.icsc = 1; dc->caps.color.dpp.dgam_ram = 0; // must use gamma_corr dc->caps.color.dpp.dgam_rom_caps.srgb = 1; dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1; dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 1; dc->caps.color.dpp.dgam_rom_caps.pq = 1; dc->caps.color.dpp.dgam_rom_caps.hlg = 1; dc->caps.color.dpp.post_csc = 1; dc->caps.color.dpp.gamma_corr = 1; dc->caps.color.dpp.dgam_rom_for_yuv = 0; dc->caps.color.dpp.hw_3d_lut = 1; dc->caps.color.dpp.ogam_ram = 1; // no OGAM ROM on DCN3 dc->caps.color.dpp.ogam_rom_caps.srgb = 0; dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0; dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0; dc->caps.color.dpp.ogam_rom_caps.pq = 0; dc->caps.color.dpp.ogam_rom_caps.hlg = 0; dc->caps.color.dpp.ocsc = 0; dc->caps.color.mpc.gamut_remap = 1; dc->caps.color.mpc.num_3dluts = pool->base.res_cap->num_mpc_3dlut; //3 dc->caps.color.mpc.ogam_ram = 1; dc->caps.color.mpc.ogam_rom_caps.srgb = 0; dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0; dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0; dc->caps.color.mpc.ogam_rom_caps.pq = 0; dc->caps.color.mpc.ogam_rom_caps.hlg = 0; dc->caps.color.mpc.ocsc = 1; dc->caps.dp_hdmi21_pcon_support = true; /* read VBIOS LTTPR caps */ { if (ctx->dc_bios->funcs->get_lttpr_caps) { enum bp_result bp_query_result; uint8_t is_vbios_lttpr_enable = 0; bp_query_result = ctx->dc_bios->funcs->get_lttpr_caps(ctx->dc_bios, &is_vbios_lttpr_enable); dc->caps.vbios_lttpr_enable = (bp_query_result == BP_RESULT_OK) && !!is_vbios_lttpr_enable; } if (ctx->dc_bios->funcs->get_lttpr_interop) { enum bp_result bp_query_result; uint8_t is_vbios_interop_enabled = 0; bp_query_result = ctx->dc_bios->funcs->get_lttpr_interop(ctx->dc_bios, &is_vbios_interop_enabled); dc->caps.vbios_lttpr_aware = (bp_query_result == BP_RESULT_OK) && !!is_vbios_interop_enabled; } } if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV) dc->debug = debug_defaults_drv; else if (dc->ctx->dce_environment == DCE_ENV_FPGA_MAXIMUS) { dc->debug = debug_defaults_diags; } else dc->debug = debug_defaults_diags; // Init the vm_helper if (dc->vm_helper) vm_helper_init(dc->vm_helper, 16); /************************************************* * Create resources * *************************************************/ /* Clock Sources for Pixel Clock*/ pool->base.clock_sources[DCN30_CLK_SRC_PLL0] = dcn30_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL0, &clk_src_regs[0], false); pool->base.clock_sources[DCN30_CLK_SRC_PLL1] = dcn30_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL1, &clk_src_regs[1], false); pool->base.clock_sources[DCN30_CLK_SRC_PLL2] = dcn30_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL2, &clk_src_regs[2], false); pool->base.clock_sources[DCN30_CLK_SRC_PLL3] = dcn30_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL3, &clk_src_regs[3], false); pool->base.clock_sources[DCN30_CLK_SRC_PLL4] = dcn30_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL4, &clk_src_regs[4], false); pool->base.clock_sources[DCN30_CLK_SRC_PLL5] = dcn30_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL5, &clk_src_regs[5], false); pool->base.clk_src_count = DCN30_CLK_SRC_TOTAL; /* todo: not reuse phy_pll registers */ pool->base.dp_clock_source = dcn30_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_ID_DP_DTO, &clk_src_regs[0], true); for (i = 0; i < pool->base.clk_src_count; i++) { if (pool->base.clock_sources[i] == NULL) { dm_error("DC: failed to create clock sources!\n"); BREAK_TO_DEBUGGER(); goto create_fail; } } /* DCCG */ pool->base.dccg = dccg30_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask); if (pool->base.dccg == NULL) { dm_error("DC: failed to create dccg!\n"); BREAK_TO_DEBUGGER(); goto create_fail; } /* PP Lib and SMU interfaces */ init_soc_bounding_box(dc, pool); num_pipes = dcn3_0_ip.max_num_dpp; for (i = 0; i < dcn3_0_ip.max_num_dpp; i++) if (pipe_fuses & 1 << i) num_pipes--; dcn3_0_ip.max_num_dpp = num_pipes; dcn3_0_ip.max_num_otg = num_pipes; dml_init_instance(&dc->dml, &dcn3_0_soc, &dcn3_0_ip, DML_PROJECT_DCN30); /* IRQ */ init_data.ctx = dc->ctx; pool->base.irqs = dal_irq_service_dcn30_create(&init_data); if (!pool->base.irqs) goto create_fail; /* HUBBUB */ pool->base.hubbub = dcn30_hubbub_create(ctx); if (pool->base.hubbub == NULL) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create hubbub!\n"); goto create_fail; } /* HUBPs, DPPs, OPPs and TGs */ for (i = 0; i < pool->base.pipe_count; i++) { pool->base.hubps[i] = dcn30_hubp_create(ctx, i); if (pool->base.hubps[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC: failed to create hubps!\n"); goto create_fail; } pool->base.dpps[i] = dcn30_dpp_create(ctx, i); if (pool->base.dpps[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC: failed to create dpps!\n"); goto create_fail; } } for (i = 0; i < pool->base.res_cap->num_opp; i++) { pool->base.opps[i] = dcn30_opp_create(ctx, i); if (pool->base.opps[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC: failed to create output pixel processor!\n"); goto create_fail; } } for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { pool->base.timing_generators[i] = dcn30_timing_generator_create( ctx, i); if (pool->base.timing_generators[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create tg!\n"); goto create_fail; } } pool->base.timing_generator_count = i; /* PSR */ pool->base.psr = dmub_psr_create(ctx); if (pool->base.psr == NULL) { dm_error("DC: failed to create PSR obj!\n"); BREAK_TO_DEBUGGER(); goto create_fail; } /* ABM */ for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { pool->base.multiple_abms[i] = dmub_abm_create(ctx, &abm_regs[i], &abm_shift, &abm_mask); if (pool->base.multiple_abms[i] == NULL) { dm_error("DC: failed to create abm for pipe %d!\n", i); BREAK_TO_DEBUGGER(); goto create_fail; } } /* MPC and DSC */ pool->base.mpc = dcn30_mpc_create(ctx, pool->base.mpcc_count, pool->base.res_cap->num_mpc_3dlut); if (pool->base.mpc == NULL) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create mpc!\n"); goto create_fail; } for (i = 0; i < pool->base.res_cap->num_dsc; i++) { pool->base.dscs[i] = dcn30_dsc_create(ctx, i); if (pool->base.dscs[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create display stream compressor %d!\n", i); goto create_fail; } } /* DWB and MMHUBBUB */ if (!dcn30_dwbc_create(ctx, &pool->base)) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create dwbc!\n"); goto create_fail; } if (!dcn30_mmhubbub_create(ctx, &pool->base)) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create mcif_wb!\n"); goto create_fail; } /* AUX and I2C */ for (i = 0; i < pool->base.res_cap->num_ddc; i++) { pool->base.engines[i] = dcn30_aux_engine_create(ctx, i); if (pool->base.engines[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC:failed to create aux engine!!\n"); goto create_fail; } pool->base.hw_i2cs[i] = dcn30_i2c_hw_create(ctx, i); if (pool->base.hw_i2cs[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC:failed to create hw i2c!!\n"); goto create_fail; } pool->base.sw_i2cs[i] = NULL; } /* Audio, Stream Encoders including DIG and virtual, MPC 3D LUTs */ if (!resource_construct(num_virtual_links, dc, &pool->base, (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment) ? &res_create_funcs : &res_create_maximus_funcs))) goto create_fail; /* HW Sequencer and Plane caps */ dcn30_hw_sequencer_construct(dc); dc->caps.max_planes = pool->base.pipe_count; for (i = 0; i < dc->caps.max_planes; ++i) dc->caps.planes[i] = plane_cap; dc->cap_funcs = cap_funcs; if (dc->ctx->dc_bios->fw_info.oem_i2c_present) { ddc_init_data.ctx = dc->ctx; ddc_init_data.link = NULL; ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id; ddc_init_data.id.enum_id = 0; ddc_init_data.id.type = OBJECT_TYPE_GENERIC; pool->base.oem_device = link_create_ddc_service(&ddc_init_data); } else { pool->base.oem_device = NULL; } DC_FP_END(); return true; create_fail: DC_FP_END(); dcn30_resource_destruct(pool); return false; } struct resource_pool *dcn30_create_resource_pool( const struct dc_init_data *init_data, struct dc *dc) { struct dcn30_resource_pool *pool = kzalloc(sizeof(struct dcn30_resource_pool), GFP_KERNEL); if (!pool) return NULL; if (dcn30_resource_construct(init_data->num_virtual_links, dc, pool)) return &pool->base; BREAK_TO_DEBUGGER(); kfree(pool); return NULL; }