// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2013 - 2018 Intel Corporation. */ #include "iavf.h" #include "iavf_prototype.h" #include "iavf_client.h" /* All iavf tracepoints are defined by the include below, which must * be included exactly once across the whole kernel with * CREATE_TRACE_POINTS defined */ #define CREATE_TRACE_POINTS #include "iavf_trace.h" static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter); static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter); static int iavf_close(struct net_device *netdev); static void iavf_init_get_resources(struct iavf_adapter *adapter); static int iavf_check_reset_complete(struct iavf_hw *hw); char iavf_driver_name[] = "iavf"; static const char iavf_driver_string[] = "Intel(R) Ethernet Adaptive Virtual Function Network Driver"; static const char iavf_copyright[] = "Copyright (c) 2013 - 2018 Intel Corporation."; /* iavf_pci_tbl - PCI Device ID Table * * Wildcard entries (PCI_ANY_ID) should come last * Last entry must be all 0s * * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, * Class, Class Mask, private data (not used) } */ static const struct pci_device_id iavf_pci_tbl[] = { {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0}, {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0}, {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0}, {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0}, /* required last entry */ {0, } }; MODULE_DEVICE_TABLE(pci, iavf_pci_tbl); MODULE_ALIAS("i40evf"); MODULE_AUTHOR("Intel Corporation, "); MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver"); MODULE_LICENSE("GPL v2"); static const struct net_device_ops iavf_netdev_ops; int iavf_status_to_errno(enum iavf_status status) { switch (status) { case IAVF_SUCCESS: return 0; case IAVF_ERR_PARAM: case IAVF_ERR_MAC_TYPE: case IAVF_ERR_INVALID_MAC_ADDR: case IAVF_ERR_INVALID_LINK_SETTINGS: case IAVF_ERR_INVALID_PD_ID: case IAVF_ERR_INVALID_QP_ID: case IAVF_ERR_INVALID_CQ_ID: case IAVF_ERR_INVALID_CEQ_ID: case IAVF_ERR_INVALID_AEQ_ID: case IAVF_ERR_INVALID_SIZE: case IAVF_ERR_INVALID_ARP_INDEX: case IAVF_ERR_INVALID_FPM_FUNC_ID: case IAVF_ERR_QP_INVALID_MSG_SIZE: case IAVF_ERR_INVALID_FRAG_COUNT: case IAVF_ERR_INVALID_ALIGNMENT: case IAVF_ERR_INVALID_PUSH_PAGE_INDEX: case IAVF_ERR_INVALID_IMM_DATA_SIZE: case IAVF_ERR_INVALID_VF_ID: case IAVF_ERR_INVALID_HMCFN_ID: case IAVF_ERR_INVALID_PBLE_INDEX: case IAVF_ERR_INVALID_SD_INDEX: case IAVF_ERR_INVALID_PAGE_DESC_INDEX: case IAVF_ERR_INVALID_SD_TYPE: case IAVF_ERR_INVALID_HMC_OBJ_INDEX: case IAVF_ERR_INVALID_HMC_OBJ_COUNT: case IAVF_ERR_INVALID_SRQ_ARM_LIMIT: return -EINVAL; case IAVF_ERR_NVM: case IAVF_ERR_NVM_CHECKSUM: case IAVF_ERR_PHY: case IAVF_ERR_CONFIG: case IAVF_ERR_UNKNOWN_PHY: case IAVF_ERR_LINK_SETUP: case IAVF_ERR_ADAPTER_STOPPED: case IAVF_ERR_PRIMARY_REQUESTS_PENDING: case IAVF_ERR_AUTONEG_NOT_COMPLETE: case IAVF_ERR_RESET_FAILED: case IAVF_ERR_BAD_PTR: case IAVF_ERR_SWFW_SYNC: case IAVF_ERR_QP_TOOMANY_WRS_POSTED: case IAVF_ERR_QUEUE_EMPTY: case IAVF_ERR_FLUSHED_QUEUE: case IAVF_ERR_OPCODE_MISMATCH: case IAVF_ERR_CQP_COMPL_ERROR: case IAVF_ERR_BACKING_PAGE_ERROR: case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE: case IAVF_ERR_MEMCPY_FAILED: case IAVF_ERR_SRQ_ENABLED: case IAVF_ERR_ADMIN_QUEUE_ERROR: case IAVF_ERR_ADMIN_QUEUE_FULL: case IAVF_ERR_BAD_RDMA_CQE: case IAVF_ERR_NVM_BLANK_MODE: case IAVF_ERR_PE_DOORBELL_NOT_ENABLED: case IAVF_ERR_DIAG_TEST_FAILED: case IAVF_ERR_FIRMWARE_API_VERSION: case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR: return -EIO; case IAVF_ERR_DEVICE_NOT_SUPPORTED: return -ENODEV; case IAVF_ERR_NO_AVAILABLE_VSI: case IAVF_ERR_RING_FULL: return -ENOSPC; case IAVF_ERR_NO_MEMORY: return -ENOMEM; case IAVF_ERR_TIMEOUT: case IAVF_ERR_ADMIN_QUEUE_TIMEOUT: return -ETIMEDOUT; case IAVF_ERR_NOT_IMPLEMENTED: case IAVF_NOT_SUPPORTED: return -EOPNOTSUPP; case IAVF_ERR_ADMIN_QUEUE_NO_WORK: return -EALREADY; case IAVF_ERR_NOT_READY: return -EBUSY; case IAVF_ERR_BUF_TOO_SHORT: return -EMSGSIZE; } return -EIO; } int virtchnl_status_to_errno(enum virtchnl_status_code v_status) { switch (v_status) { case VIRTCHNL_STATUS_SUCCESS: return 0; case VIRTCHNL_STATUS_ERR_PARAM: case VIRTCHNL_STATUS_ERR_INVALID_VF_ID: return -EINVAL; case VIRTCHNL_STATUS_ERR_NO_MEMORY: return -ENOMEM; case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH: case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR: case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR: return -EIO; case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED: return -EOPNOTSUPP; } return -EIO; } /** * iavf_pdev_to_adapter - go from pci_dev to adapter * @pdev: pci_dev pointer */ static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev) { return netdev_priv(pci_get_drvdata(pdev)); } /** * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code * @hw: pointer to the HW structure * @mem: ptr to mem struct to fill out * @size: size of memory requested * @alignment: what to align the allocation to **/ enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw, struct iavf_dma_mem *mem, u64 size, u32 alignment) { struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; if (!mem) return IAVF_ERR_PARAM; mem->size = ALIGN(size, alignment); mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size, (dma_addr_t *)&mem->pa, GFP_KERNEL); if (mem->va) return 0; else return IAVF_ERR_NO_MEMORY; } /** * iavf_free_dma_mem_d - OS specific memory free for shared code * @hw: pointer to the HW structure * @mem: ptr to mem struct to free **/ enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw, struct iavf_dma_mem *mem) { struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; if (!mem || !mem->va) return IAVF_ERR_PARAM; dma_free_coherent(&adapter->pdev->dev, mem->size, mem->va, (dma_addr_t)mem->pa); return 0; } /** * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code * @hw: pointer to the HW structure * @mem: ptr to mem struct to fill out * @size: size of memory requested **/ enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw, struct iavf_virt_mem *mem, u32 size) { if (!mem) return IAVF_ERR_PARAM; mem->size = size; mem->va = kzalloc(size, GFP_KERNEL); if (mem->va) return 0; else return IAVF_ERR_NO_MEMORY; } /** * iavf_free_virt_mem_d - OS specific memory free for shared code * @hw: pointer to the HW structure * @mem: ptr to mem struct to free **/ enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw, struct iavf_virt_mem *mem) { if (!mem) return IAVF_ERR_PARAM; /* it's ok to kfree a NULL pointer */ kfree(mem->va); return 0; } /** * iavf_lock_timeout - try to lock mutex but give up after timeout * @lock: mutex that should be locked * @msecs: timeout in msecs * * Returns 0 on success, negative on failure **/ int iavf_lock_timeout(struct mutex *lock, unsigned int msecs) { unsigned int wait, delay = 10; for (wait = 0; wait < msecs; wait += delay) { if (mutex_trylock(lock)) return 0; msleep(delay); } return -1; } /** * iavf_schedule_reset - Set the flags and schedule a reset event * @adapter: board private structure **/ void iavf_schedule_reset(struct iavf_adapter *adapter) { if (!(adapter->flags & (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) { adapter->flags |= IAVF_FLAG_RESET_NEEDED; queue_work(adapter->wq, &adapter->reset_task); } } /** * iavf_schedule_request_stats - Set the flags and schedule statistics request * @adapter: board private structure * * Sets IAVF_FLAG_AQ_REQUEST_STATS flag so iavf_watchdog_task() will explicitly * request and refresh ethtool stats **/ void iavf_schedule_request_stats(struct iavf_adapter *adapter) { adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_STATS; mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); } /** * iavf_tx_timeout - Respond to a Tx Hang * @netdev: network interface device structure * @txqueue: queue number that is timing out **/ static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue) { struct iavf_adapter *adapter = netdev_priv(netdev); adapter->tx_timeout_count++; iavf_schedule_reset(adapter); } /** * iavf_misc_irq_disable - Mask off interrupt generation on the NIC * @adapter: board private structure **/ static void iavf_misc_irq_disable(struct iavf_adapter *adapter) { struct iavf_hw *hw = &adapter->hw; if (!adapter->msix_entries) return; wr32(hw, IAVF_VFINT_DYN_CTL01, 0); iavf_flush(hw); synchronize_irq(adapter->msix_entries[0].vector); } /** * iavf_misc_irq_enable - Enable default interrupt generation settings * @adapter: board private structure **/ static void iavf_misc_irq_enable(struct iavf_adapter *adapter) { struct iavf_hw *hw = &adapter->hw; wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK | IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK); wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK); iavf_flush(hw); } /** * iavf_irq_disable - Mask off interrupt generation on the NIC * @adapter: board private structure **/ static void iavf_irq_disable(struct iavf_adapter *adapter) { int i; struct iavf_hw *hw = &adapter->hw; if (!adapter->msix_entries) return; for (i = 1; i < adapter->num_msix_vectors; i++) { wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0); synchronize_irq(adapter->msix_entries[i].vector); } iavf_flush(hw); } /** * iavf_irq_enable_queues - Enable interrupt for all queues * @adapter: board private structure **/ void iavf_irq_enable_queues(struct iavf_adapter *adapter) { struct iavf_hw *hw = &adapter->hw; int i; for (i = 1; i < adapter->num_msix_vectors; i++) { wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), IAVF_VFINT_DYN_CTLN1_INTENA_MASK | IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK); } } /** * iavf_irq_enable - Enable default interrupt generation settings * @adapter: board private structure * @flush: boolean value whether to run rd32() **/ void iavf_irq_enable(struct iavf_adapter *adapter, bool flush) { struct iavf_hw *hw = &adapter->hw; iavf_misc_irq_enable(adapter); iavf_irq_enable_queues(adapter); if (flush) iavf_flush(hw); } /** * iavf_msix_aq - Interrupt handler for vector 0 * @irq: interrupt number * @data: pointer to netdev **/ static irqreturn_t iavf_msix_aq(int irq, void *data) { struct net_device *netdev = data; struct iavf_adapter *adapter = netdev_priv(netdev); struct iavf_hw *hw = &adapter->hw; /* handle non-queue interrupts, these reads clear the registers */ rd32(hw, IAVF_VFINT_ICR01); rd32(hw, IAVF_VFINT_ICR0_ENA1); if (adapter->state != __IAVF_REMOVE) /* schedule work on the private workqueue */ queue_work(adapter->wq, &adapter->adminq_task); return IRQ_HANDLED; } /** * iavf_msix_clean_rings - MSIX mode Interrupt Handler * @irq: interrupt number * @data: pointer to a q_vector **/ static irqreturn_t iavf_msix_clean_rings(int irq, void *data) { struct iavf_q_vector *q_vector = data; if (!q_vector->tx.ring && !q_vector->rx.ring) return IRQ_HANDLED; napi_schedule_irqoff(&q_vector->napi); return IRQ_HANDLED; } /** * iavf_map_vector_to_rxq - associate irqs with rx queues * @adapter: board private structure * @v_idx: interrupt number * @r_idx: queue number **/ static void iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx) { struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx]; struct iavf_hw *hw = &adapter->hw; rx_ring->q_vector = q_vector; rx_ring->next = q_vector->rx.ring; rx_ring->vsi = &adapter->vsi; q_vector->rx.ring = rx_ring; q_vector->rx.count++; q_vector->rx.next_update = jiffies + 1; q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); q_vector->ring_mask |= BIT(r_idx); wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx), q_vector->rx.current_itr >> 1); q_vector->rx.current_itr = q_vector->rx.target_itr; } /** * iavf_map_vector_to_txq - associate irqs with tx queues * @adapter: board private structure * @v_idx: interrupt number * @t_idx: queue number **/ static void iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx) { struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx]; struct iavf_hw *hw = &adapter->hw; tx_ring->q_vector = q_vector; tx_ring->next = q_vector->tx.ring; tx_ring->vsi = &adapter->vsi; q_vector->tx.ring = tx_ring; q_vector->tx.count++; q_vector->tx.next_update = jiffies + 1; q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); q_vector->num_ringpairs++; wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx), q_vector->tx.target_itr >> 1); q_vector->tx.current_itr = q_vector->tx.target_itr; } /** * iavf_map_rings_to_vectors - Maps descriptor rings to vectors * @adapter: board private structure to initialize * * This function maps descriptor rings to the queue-specific vectors * we were allotted through the MSI-X enabling code. Ideally, we'd have * one vector per ring/queue, but on a constrained vector budget, we * group the rings as "efficiently" as possible. You would add new * mapping configurations in here. **/ static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter) { int rings_remaining = adapter->num_active_queues; int ridx = 0, vidx = 0; int q_vectors; q_vectors = adapter->num_msix_vectors - NONQ_VECS; for (; ridx < rings_remaining; ridx++) { iavf_map_vector_to_rxq(adapter, vidx, ridx); iavf_map_vector_to_txq(adapter, vidx, ridx); /* In the case where we have more queues than vectors, continue * round-robin on vectors until all queues are mapped. */ if (++vidx >= q_vectors) vidx = 0; } adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; } /** * iavf_irq_affinity_notify - Callback for affinity changes * @notify: context as to what irq was changed * @mask: the new affinity mask * * This is a callback function used by the irq_set_affinity_notifier function * so that we may register to receive changes to the irq affinity masks. **/ static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify, const cpumask_t *mask) { struct iavf_q_vector *q_vector = container_of(notify, struct iavf_q_vector, affinity_notify); cpumask_copy(&q_vector->affinity_mask, mask); } /** * iavf_irq_affinity_release - Callback for affinity notifier release * @ref: internal core kernel usage * * This is a callback function used by the irq_set_affinity_notifier function * to inform the current notification subscriber that they will no longer * receive notifications. **/ static void iavf_irq_affinity_release(struct kref *ref) {} /** * iavf_request_traffic_irqs - Initialize MSI-X interrupts * @adapter: board private structure * @basename: device basename * * Allocates MSI-X vectors for tx and rx handling, and requests * interrupts from the kernel. **/ static int iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename) { unsigned int vector, q_vectors; unsigned int rx_int_idx = 0, tx_int_idx = 0; int irq_num, err; int cpu; iavf_irq_disable(adapter); /* Decrement for Other and TCP Timer vectors */ q_vectors = adapter->num_msix_vectors - NONQ_VECS; for (vector = 0; vector < q_vectors; vector++) { struct iavf_q_vector *q_vector = &adapter->q_vectors[vector]; irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; if (q_vector->tx.ring && q_vector->rx.ring) { snprintf(q_vector->name, sizeof(q_vector->name), "iavf-%s-TxRx-%u", basename, rx_int_idx++); tx_int_idx++; } else if (q_vector->rx.ring) { snprintf(q_vector->name, sizeof(q_vector->name), "iavf-%s-rx-%u", basename, rx_int_idx++); } else if (q_vector->tx.ring) { snprintf(q_vector->name, sizeof(q_vector->name), "iavf-%s-tx-%u", basename, tx_int_idx++); } else { /* skip this unused q_vector */ continue; } err = request_irq(irq_num, iavf_msix_clean_rings, 0, q_vector->name, q_vector); if (err) { dev_info(&adapter->pdev->dev, "Request_irq failed, error: %d\n", err); goto free_queue_irqs; } /* register for affinity change notifications */ q_vector->affinity_notify.notify = iavf_irq_affinity_notify; q_vector->affinity_notify.release = iavf_irq_affinity_release; irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); /* Spread the IRQ affinity hints across online CPUs. Note that * get_cpu_mask returns a mask with a permanent lifetime so * it's safe to use as a hint for irq_update_affinity_hint. */ cpu = cpumask_local_spread(q_vector->v_idx, -1); irq_update_affinity_hint(irq_num, get_cpu_mask(cpu)); } return 0; free_queue_irqs: while (vector) { vector--; irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; irq_set_affinity_notifier(irq_num, NULL); irq_update_affinity_hint(irq_num, NULL); free_irq(irq_num, &adapter->q_vectors[vector]); } return err; } /** * iavf_request_misc_irq - Initialize MSI-X interrupts * @adapter: board private structure * * Allocates MSI-X vector 0 and requests interrupts from the kernel. This * vector is only for the admin queue, and stays active even when the netdev * is closed. **/ static int iavf_request_misc_irq(struct iavf_adapter *adapter) { struct net_device *netdev = adapter->netdev; int err; snprintf(adapter->misc_vector_name, sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx", dev_name(&adapter->pdev->dev)); err = request_irq(adapter->msix_entries[0].vector, &iavf_msix_aq, 0, adapter->misc_vector_name, netdev); if (err) { dev_err(&adapter->pdev->dev, "request_irq for %s failed: %d\n", adapter->misc_vector_name, err); free_irq(adapter->msix_entries[0].vector, netdev); } return err; } /** * iavf_free_traffic_irqs - Free MSI-X interrupts * @adapter: board private structure * * Frees all MSI-X vectors other than 0. **/ static void iavf_free_traffic_irqs(struct iavf_adapter *adapter) { int vector, irq_num, q_vectors; if (!adapter->msix_entries) return; q_vectors = adapter->num_msix_vectors - NONQ_VECS; for (vector = 0; vector < q_vectors; vector++) { irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; irq_set_affinity_notifier(irq_num, NULL); irq_update_affinity_hint(irq_num, NULL); free_irq(irq_num, &adapter->q_vectors[vector]); } } /** * iavf_free_misc_irq - Free MSI-X miscellaneous vector * @adapter: board private structure * * Frees MSI-X vector 0. **/ static void iavf_free_misc_irq(struct iavf_adapter *adapter) { struct net_device *netdev = adapter->netdev; if (!adapter->msix_entries) return; free_irq(adapter->msix_entries[0].vector, netdev); } /** * iavf_configure_tx - Configure Transmit Unit after Reset * @adapter: board private structure * * Configure the Tx unit of the MAC after a reset. **/ static void iavf_configure_tx(struct iavf_adapter *adapter) { struct iavf_hw *hw = &adapter->hw; int i; for (i = 0; i < adapter->num_active_queues; i++) adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i); } /** * iavf_configure_rx - Configure Receive Unit after Reset * @adapter: board private structure * * Configure the Rx unit of the MAC after a reset. **/ static void iavf_configure_rx(struct iavf_adapter *adapter) { unsigned int rx_buf_len = IAVF_RXBUFFER_2048; struct iavf_hw *hw = &adapter->hw; int i; /* Legacy Rx will always default to a 2048 buffer size. */ #if (PAGE_SIZE < 8192) if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) { struct net_device *netdev = adapter->netdev; /* For jumbo frames on systems with 4K pages we have to use * an order 1 page, so we might as well increase the size * of our Rx buffer to make better use of the available space */ rx_buf_len = IAVF_RXBUFFER_3072; /* We use a 1536 buffer size for configurations with * standard Ethernet mtu. On x86 this gives us enough room * for shared info and 192 bytes of padding. */ if (!IAVF_2K_TOO_SMALL_WITH_PADDING && (netdev->mtu <= ETH_DATA_LEN)) rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN; } #endif for (i = 0; i < adapter->num_active_queues; i++) { adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i); adapter->rx_rings[i].rx_buf_len = rx_buf_len; if (adapter->flags & IAVF_FLAG_LEGACY_RX) clear_ring_build_skb_enabled(&adapter->rx_rings[i]); else set_ring_build_skb_enabled(&adapter->rx_rings[i]); } } /** * iavf_find_vlan - Search filter list for specific vlan filter * @adapter: board private structure * @vlan: vlan tag * * Returns ptr to the filter object or NULL. Must be called while holding the * mac_vlan_list_lock. **/ static struct iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan) { struct iavf_vlan_filter *f; list_for_each_entry(f, &adapter->vlan_filter_list, list) { if (f->vlan.vid == vlan.vid && f->vlan.tpid == vlan.tpid) return f; } return NULL; } /** * iavf_add_vlan - Add a vlan filter to the list * @adapter: board private structure * @vlan: VLAN tag * * Returns ptr to the filter object or NULL when no memory available. **/ static struct iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan) { struct iavf_vlan_filter *f = NULL; spin_lock_bh(&adapter->mac_vlan_list_lock); f = iavf_find_vlan(adapter, vlan); if (!f) { f = kzalloc(sizeof(*f), GFP_ATOMIC); if (!f) goto clearout; f->vlan = vlan; list_add_tail(&f->list, &adapter->vlan_filter_list); f->state = IAVF_VLAN_ADD; adapter->num_vlan_filters++; adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; } clearout: spin_unlock_bh(&adapter->mac_vlan_list_lock); return f; } /** * iavf_del_vlan - Remove a vlan filter from the list * @adapter: board private structure * @vlan: VLAN tag **/ static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan) { struct iavf_vlan_filter *f; spin_lock_bh(&adapter->mac_vlan_list_lock); f = iavf_find_vlan(adapter, vlan); if (f) { f->state = IAVF_VLAN_REMOVE; adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; } spin_unlock_bh(&adapter->mac_vlan_list_lock); } /** * iavf_restore_filters * @adapter: board private structure * * Restore existing non MAC filters when VF netdev comes back up **/ static void iavf_restore_filters(struct iavf_adapter *adapter) { struct iavf_vlan_filter *f; /* re-add all VLAN filters */ spin_lock_bh(&adapter->mac_vlan_list_lock); list_for_each_entry(f, &adapter->vlan_filter_list, list) { if (f->state == IAVF_VLAN_INACTIVE) f->state = IAVF_VLAN_ADD; } spin_unlock_bh(&adapter->mac_vlan_list_lock); adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; } /** * iavf_get_num_vlans_added - get number of VLANs added * @adapter: board private structure */ u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter) { return adapter->num_vlan_filters; } /** * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF * @adapter: board private structure * * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN, * do not impose a limit as that maintains current behavior and for * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF. **/ static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter) { /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has * never been a limit on the VF driver side */ if (VLAN_ALLOWED(adapter)) return VLAN_N_VID; else if (VLAN_V2_ALLOWED(adapter)) return adapter->vlan_v2_caps.filtering.max_filters; return 0; } /** * iavf_max_vlans_added - check if maximum VLANs allowed already exist * @adapter: board private structure **/ static bool iavf_max_vlans_added(struct iavf_adapter *adapter) { if (iavf_get_num_vlans_added(adapter) < iavf_get_max_vlans_allowed(adapter)) return false; return true; } /** * iavf_vlan_rx_add_vid - Add a VLAN filter to a device * @netdev: network device struct * @proto: unused protocol data * @vid: VLAN tag **/ static int iavf_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto, u16 vid) { struct iavf_adapter *adapter = netdev_priv(netdev); /* Do not track VLAN 0 filter, always added by the PF on VF init */ if (!vid) return 0; if (!VLAN_FILTERING_ALLOWED(adapter)) return -EIO; if (iavf_max_vlans_added(adapter)) { netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n", iavf_get_max_vlans_allowed(adapter)); return -EIO; } if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)))) return -ENOMEM; return 0; } /** * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device * @netdev: network device struct * @proto: unused protocol data * @vid: VLAN tag **/ static int iavf_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto, u16 vid) { struct iavf_adapter *adapter = netdev_priv(netdev); /* We do not track VLAN 0 filter */ if (!vid) return 0; iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))); return 0; } /** * iavf_find_filter - Search filter list for specific mac filter * @adapter: board private structure * @macaddr: the MAC address * * Returns ptr to the filter object or NULL. Must be called while holding the * mac_vlan_list_lock. **/ static struct iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter, const u8 *macaddr) { struct iavf_mac_filter *f; if (!macaddr) return NULL; list_for_each_entry(f, &adapter->mac_filter_list, list) { if (ether_addr_equal(macaddr, f->macaddr)) return f; } return NULL; } /** * iavf_add_filter - Add a mac filter to the filter list * @adapter: board private structure * @macaddr: the MAC address * * Returns ptr to the filter object or NULL when no memory available. **/ struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter, const u8 *macaddr) { struct iavf_mac_filter *f; if (!macaddr) return NULL; f = iavf_find_filter(adapter, macaddr); if (!f) { f = kzalloc(sizeof(*f), GFP_ATOMIC); if (!f) return f; ether_addr_copy(f->macaddr, macaddr); list_add_tail(&f->list, &adapter->mac_filter_list); f->add = true; f->add_handled = false; f->is_new_mac = true; f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr); adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; } else { f->remove = false; } return f; } /** * iavf_replace_primary_mac - Replace current primary address * @adapter: board private structure * @new_mac: new MAC address to be applied * * Replace current dev_addr and send request to PF for removal of previous * primary MAC address filter and addition of new primary MAC filter. * Return 0 for success, -ENOMEM for failure. * * Do not call this with mac_vlan_list_lock! **/ int iavf_replace_primary_mac(struct iavf_adapter *adapter, const u8 *new_mac) { struct iavf_hw *hw = &adapter->hw; struct iavf_mac_filter *f; spin_lock_bh(&adapter->mac_vlan_list_lock); list_for_each_entry(f, &adapter->mac_filter_list, list) { f->is_primary = false; } f = iavf_find_filter(adapter, hw->mac.addr); if (f) { f->remove = true; adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; } f = iavf_add_filter(adapter, new_mac); if (f) { /* Always send the request to add if changing primary MAC * even if filter is already present on the list */ f->is_primary = true; f->add = true; adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; ether_addr_copy(hw->mac.addr, new_mac); } spin_unlock_bh(&adapter->mac_vlan_list_lock); /* schedule the watchdog task to immediately process the request */ if (f) { mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); return 0; } return -ENOMEM; } /** * iavf_is_mac_set_handled - wait for a response to set MAC from PF * @netdev: network interface device structure * @macaddr: MAC address to set * * Returns true on success, false on failure */ static bool iavf_is_mac_set_handled(struct net_device *netdev, const u8 *macaddr) { struct iavf_adapter *adapter = netdev_priv(netdev); struct iavf_mac_filter *f; bool ret = false; spin_lock_bh(&adapter->mac_vlan_list_lock); f = iavf_find_filter(adapter, macaddr); if (!f || (!f->add && f->add_handled)) ret = true; spin_unlock_bh(&adapter->mac_vlan_list_lock); return ret; } /** * iavf_set_mac - NDO callback to set port MAC address * @netdev: network interface device structure * @p: pointer to an address structure * * Returns 0 on success, negative on failure */ static int iavf_set_mac(struct net_device *netdev, void *p) { struct iavf_adapter *adapter = netdev_priv(netdev); struct sockaddr *addr = p; int ret; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; ret = iavf_replace_primary_mac(adapter, addr->sa_data); if (ret) return ret; ret = wait_event_interruptible_timeout(adapter->vc_waitqueue, iavf_is_mac_set_handled(netdev, addr->sa_data), msecs_to_jiffies(2500)); /* If ret < 0 then it means wait was interrupted. * If ret == 0 then it means we got a timeout. * else it means we got response for set MAC from PF, * check if netdev MAC was updated to requested MAC, * if yes then set MAC succeeded otherwise it failed return -EACCES */ if (ret < 0) return ret; if (!ret) return -EAGAIN; if (!ether_addr_equal(netdev->dev_addr, addr->sa_data)) return -EACCES; return 0; } /** * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address * @netdev: the netdevice * @addr: address to add * * Called by __dev_(mc|uc)_sync when an address needs to be added. We call * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. */ static int iavf_addr_sync(struct net_device *netdev, const u8 *addr) { struct iavf_adapter *adapter = netdev_priv(netdev); if (iavf_add_filter(adapter, addr)) return 0; else return -ENOMEM; } /** * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address * @netdev: the netdevice * @addr: address to add * * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. */ static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr) { struct iavf_adapter *adapter = netdev_priv(netdev); struct iavf_mac_filter *f; /* Under some circumstances, we might receive a request to delete * our own device address from our uc list. Because we store the * device address in the VSI's MAC/VLAN filter list, we need to ignore * such requests and not delete our device address from this list. */ if (ether_addr_equal(addr, netdev->dev_addr)) return 0; f = iavf_find_filter(adapter, addr); if (f) { f->remove = true; adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; } return 0; } /** * iavf_set_rx_mode - NDO callback to set the netdev filters * @netdev: network interface device structure **/ static void iavf_set_rx_mode(struct net_device *netdev) { struct iavf_adapter *adapter = netdev_priv(netdev); spin_lock_bh(&adapter->mac_vlan_list_lock); __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); spin_unlock_bh(&adapter->mac_vlan_list_lock); if (netdev->flags & IFF_PROMISC && !(adapter->flags & IAVF_FLAG_PROMISC_ON)) adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC; else if (!(netdev->flags & IFF_PROMISC) && adapter->flags & IAVF_FLAG_PROMISC_ON) adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC; if (netdev->flags & IFF_ALLMULTI && !(adapter->flags & IAVF_FLAG_ALLMULTI_ON)) adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI; else if (!(netdev->flags & IFF_ALLMULTI) && adapter->flags & IAVF_FLAG_ALLMULTI_ON) adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI; } /** * iavf_napi_enable_all - enable NAPI on all queue vectors * @adapter: board private structure **/ static void iavf_napi_enable_all(struct iavf_adapter *adapter) { int q_idx; struct iavf_q_vector *q_vector; int q_vectors = adapter->num_msix_vectors - NONQ_VECS; for (q_idx = 0; q_idx < q_vectors; q_idx++) { struct napi_struct *napi; q_vector = &adapter->q_vectors[q_idx]; napi = &q_vector->napi; napi_enable(napi); } } /** * iavf_napi_disable_all - disable NAPI on all queue vectors * @adapter: board private structure **/ static void iavf_napi_disable_all(struct iavf_adapter *adapter) { int q_idx; struct iavf_q_vector *q_vector; int q_vectors = adapter->num_msix_vectors - NONQ_VECS; for (q_idx = 0; q_idx < q_vectors; q_idx++) { q_vector = &adapter->q_vectors[q_idx]; napi_disable(&q_vector->napi); } } /** * iavf_configure - set up transmit and receive data structures * @adapter: board private structure **/ static void iavf_configure(struct iavf_adapter *adapter) { struct net_device *netdev = adapter->netdev; int i; iavf_set_rx_mode(netdev); iavf_configure_tx(adapter); iavf_configure_rx(adapter); adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES; for (i = 0; i < adapter->num_active_queues; i++) { struct iavf_ring *ring = &adapter->rx_rings[i]; iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring)); } } /** * iavf_up_complete - Finish the last steps of bringing up a connection * @adapter: board private structure * * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. **/ static void iavf_up_complete(struct iavf_adapter *adapter) { iavf_change_state(adapter, __IAVF_RUNNING); clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state); iavf_napi_enable_all(adapter); adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES; if (CLIENT_ENABLED(adapter)) adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN; mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); } /** * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF * yet and mark other to be removed. * @adapter: board private structure **/ static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter) { struct iavf_vlan_filter *vlf, *vlftmp; struct iavf_mac_filter *f, *ftmp; spin_lock_bh(&adapter->mac_vlan_list_lock); /* clear the sync flag on all filters */ __dev_uc_unsync(adapter->netdev, NULL); __dev_mc_unsync(adapter->netdev, NULL); /* remove all MAC filters */ list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { if (f->add) { list_del(&f->list); kfree(f); } else { f->remove = true; } } /* disable all VLAN filters */ list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, list) vlf->state = IAVF_VLAN_DISABLE; spin_unlock_bh(&adapter->mac_vlan_list_lock); } /** * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and * mark other to be removed. * @adapter: board private structure **/ static void iavf_clear_cloud_filters(struct iavf_adapter *adapter) { struct iavf_cloud_filter *cf, *cftmp; /* remove all cloud filters */ spin_lock_bh(&adapter->cloud_filter_list_lock); list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { if (cf->add) { list_del(&cf->list); kfree(cf); adapter->num_cloud_filters--; } else { cf->del = true; } } spin_unlock_bh(&adapter->cloud_filter_list_lock); } /** * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark * other to be removed. * @adapter: board private structure **/ static void iavf_clear_fdir_filters(struct iavf_adapter *adapter) { struct iavf_fdir_fltr *fdir, *fdirtmp; /* remove all Flow Director filters */ spin_lock_bh(&adapter->fdir_fltr_lock); list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) { if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) { list_del(&fdir->list); kfree(fdir); adapter->fdir_active_fltr--; } else { fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST; } } spin_unlock_bh(&adapter->fdir_fltr_lock); } /** * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark * other to be removed. * @adapter: board private structure **/ static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter) { struct iavf_adv_rss *rss, *rsstmp; /* remove all advance RSS configuration */ spin_lock_bh(&adapter->adv_rss_lock); list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, list) { if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) { list_del(&rss->list); kfree(rss); } else { rss->state = IAVF_ADV_RSS_DEL_REQUEST; } } spin_unlock_bh(&adapter->adv_rss_lock); } /** * iavf_down - Shutdown the connection processing * @adapter: board private structure * * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock. **/ void iavf_down(struct iavf_adapter *adapter) { struct net_device *netdev = adapter->netdev; if (adapter->state <= __IAVF_DOWN_PENDING) return; netif_carrier_off(netdev); netif_tx_disable(netdev); adapter->link_up = false; iavf_napi_disable_all(adapter); iavf_irq_disable(adapter); iavf_clear_mac_vlan_filters(adapter); iavf_clear_cloud_filters(adapter); iavf_clear_fdir_filters(adapter); iavf_clear_adv_rss_conf(adapter); if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)) { /* cancel any current operation */ adapter->current_op = VIRTCHNL_OP_UNKNOWN; /* Schedule operations to close down the HW. Don't wait * here for this to complete. The watchdog is still running * and it will take care of this. */ if (!list_empty(&adapter->mac_filter_list)) adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; if (!list_empty(&adapter->vlan_filter_list)) adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; if (!list_empty(&adapter->cloud_filter_list)) adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; if (!list_empty(&adapter->fdir_list_head)) adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; if (!list_empty(&adapter->adv_rss_list_head)) adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG; adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES; } mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); } /** * iavf_acquire_msix_vectors - Setup the MSIX capability * @adapter: board private structure * @vectors: number of vectors to request * * Work with the OS to set up the MSIX vectors needed. * * Returns 0 on success, negative on failure **/ static int iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors) { int err, vector_threshold; /* We'll want at least 3 (vector_threshold): * 0) Other (Admin Queue and link, mostly) * 1) TxQ[0] Cleanup * 2) RxQ[0] Cleanup */ vector_threshold = MIN_MSIX_COUNT; /* The more we get, the more we will assign to Tx/Rx Cleanup * for the separate queues...where Rx Cleanup >= Tx Cleanup. * Right now, we simply care about how many we'll get; we'll * set them up later while requesting irq's. */ err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, vector_threshold, vectors); if (err < 0) { dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n"); kfree(adapter->msix_entries); adapter->msix_entries = NULL; return err; } /* Adjust for only the vectors we'll use, which is minimum * of max_msix_q_vectors + NONQ_VECS, or the number of * vectors we were allocated. */ adapter->num_msix_vectors = err; return 0; } /** * iavf_free_queues - Free memory for all rings * @adapter: board private structure to initialize * * Free all of the memory associated with queue pairs. **/ static void iavf_free_queues(struct iavf_adapter *adapter) { if (!adapter->vsi_res) return; adapter->num_active_queues = 0; kfree(adapter->tx_rings); adapter->tx_rings = NULL; kfree(adapter->rx_rings); adapter->rx_rings = NULL; } /** * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload * @adapter: board private structure * * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or * stripped in certain descriptor fields. Instead of checking the offload * capability bits in the hot path, cache the location the ring specific * flags. */ void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter) { int i; for (i = 0; i < adapter->num_active_queues; i++) { struct iavf_ring *tx_ring = &adapter->tx_rings[i]; struct iavf_ring *rx_ring = &adapter->rx_rings[i]; /* prevent multiple L2TAG bits being set after VFR */ tx_ring->flags &= ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2); rx_ring->flags &= ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2); if (VLAN_ALLOWED(adapter)) { tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; } else if (VLAN_V2_ALLOWED(adapter)) { struct virtchnl_vlan_supported_caps *stripping_support; struct virtchnl_vlan_supported_caps *insertion_support; stripping_support = &adapter->vlan_v2_caps.offloads.stripping_support; insertion_support = &adapter->vlan_v2_caps.offloads.insertion_support; if (stripping_support->outer) { if (stripping_support->outer & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; else if (stripping_support->outer & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) rx_ring->flags |= IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; } else if (stripping_support->inner) { if (stripping_support->inner & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; else if (stripping_support->inner & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) rx_ring->flags |= IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; } if (insertion_support->outer) { if (insertion_support->outer & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; else if (insertion_support->outer & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) tx_ring->flags |= IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; } else if (insertion_support->inner) { if (insertion_support->inner & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; else if (insertion_support->inner & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) tx_ring->flags |= IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; } } } } /** * iavf_alloc_queues - Allocate memory for all rings * @adapter: board private structure to initialize * * We allocate one ring per queue at run-time since we don't know the * number of queues at compile-time. The polling_netdev array is * intended for Multiqueue, but should work fine with a single queue. **/ static int iavf_alloc_queues(struct iavf_adapter *adapter) { int i, num_active_queues; /* If we're in reset reallocating queues we don't actually know yet for * certain the PF gave us the number of queues we asked for but we'll * assume it did. Once basic reset is finished we'll confirm once we * start negotiating config with PF. */ if (adapter->num_req_queues) num_active_queues = adapter->num_req_queues; else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && adapter->num_tc) num_active_queues = adapter->ch_config.total_qps; else num_active_queues = min_t(int, adapter->vsi_res->num_queue_pairs, (int)(num_online_cpus())); adapter->tx_rings = kcalloc(num_active_queues, sizeof(struct iavf_ring), GFP_KERNEL); if (!adapter->tx_rings) goto err_out; adapter->rx_rings = kcalloc(num_active_queues, sizeof(struct iavf_ring), GFP_KERNEL); if (!adapter->rx_rings) goto err_out; for (i = 0; i < num_active_queues; i++) { struct iavf_ring *tx_ring; struct iavf_ring *rx_ring; tx_ring = &adapter->tx_rings[i]; tx_ring->queue_index = i; tx_ring->netdev = adapter->netdev; tx_ring->dev = &adapter->pdev->dev; tx_ring->count = adapter->tx_desc_count; tx_ring->itr_setting = IAVF_ITR_TX_DEF; if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE) tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR; rx_ring = &adapter->rx_rings[i]; rx_ring->queue_index = i; rx_ring->netdev = adapter->netdev; rx_ring->dev = &adapter->pdev->dev; rx_ring->count = adapter->rx_desc_count; rx_ring->itr_setting = IAVF_ITR_RX_DEF; } adapter->num_active_queues = num_active_queues; iavf_set_queue_vlan_tag_loc(adapter); return 0; err_out: iavf_free_queues(adapter); return -ENOMEM; } /** * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported * @adapter: board private structure to initialize * * Attempt to configure the interrupts using the best available * capabilities of the hardware and the kernel. **/ static int iavf_set_interrupt_capability(struct iavf_adapter *adapter) { int vector, v_budget; int pairs = 0; int err = 0; if (!adapter->vsi_res) { err = -EIO; goto out; } pairs = adapter->num_active_queues; /* It's easy to be greedy for MSI-X vectors, but it really doesn't do * us much good if we have more vectors than CPUs. However, we already * limit the total number of queues by the number of CPUs so we do not * need any further limiting here. */ v_budget = min_t(int, pairs + NONQ_VECS, (int)adapter->vf_res->max_vectors); adapter->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), GFP_KERNEL); if (!adapter->msix_entries) { err = -ENOMEM; goto out; } for (vector = 0; vector < v_budget; vector++) adapter->msix_entries[vector].entry = vector; err = iavf_acquire_msix_vectors(adapter, v_budget); out: netif_set_real_num_rx_queues(adapter->netdev, pairs); netif_set_real_num_tx_queues(adapter->netdev, pairs); return err; } /** * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands * @adapter: board private structure * * Return 0 on success, negative on failure **/ static int iavf_config_rss_aq(struct iavf_adapter *adapter) { struct iavf_aqc_get_set_rss_key_data *rss_key = (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key; struct iavf_hw *hw = &adapter->hw; enum iavf_status status; if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) { /* bail because we already have a command pending */ dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n", adapter->current_op); return -EBUSY; } status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key); if (status) { dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n", iavf_stat_str(hw, status), iavf_aq_str(hw, hw->aq.asq_last_status)); return iavf_status_to_errno(status); } status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false, adapter->rss_lut, adapter->rss_lut_size); if (status) { dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n", iavf_stat_str(hw, status), iavf_aq_str(hw, hw->aq.asq_last_status)); return iavf_status_to_errno(status); } return 0; } /** * iavf_config_rss_reg - Configure RSS keys and lut by writing registers * @adapter: board private structure * * Returns 0 on success, negative on failure **/ static int iavf_config_rss_reg(struct iavf_adapter *adapter) { struct iavf_hw *hw = &adapter->hw; u32 *dw; u16 i; dw = (u32 *)adapter->rss_key; for (i = 0; i <= adapter->rss_key_size / 4; i++) wr32(hw, IAVF_VFQF_HKEY(i), dw[i]); dw = (u32 *)adapter->rss_lut; for (i = 0; i <= adapter->rss_lut_size / 4; i++) wr32(hw, IAVF_VFQF_HLUT(i), dw[i]); iavf_flush(hw); return 0; } /** * iavf_config_rss - Configure RSS keys and lut * @adapter: board private structure * * Returns 0 on success, negative on failure **/ int iavf_config_rss(struct iavf_adapter *adapter) { if (RSS_PF(adapter)) { adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT | IAVF_FLAG_AQ_SET_RSS_KEY; return 0; } else if (RSS_AQ(adapter)) { return iavf_config_rss_aq(adapter); } else { return iavf_config_rss_reg(adapter); } } /** * iavf_fill_rss_lut - Fill the lut with default values * @adapter: board private structure **/ static void iavf_fill_rss_lut(struct iavf_adapter *adapter) { u16 i; for (i = 0; i < adapter->rss_lut_size; i++) adapter->rss_lut[i] = i % adapter->num_active_queues; } /** * iavf_init_rss - Prepare for RSS * @adapter: board private structure * * Return 0 on success, negative on failure **/ static int iavf_init_rss(struct iavf_adapter *adapter) { struct iavf_hw *hw = &adapter->hw; if (!RSS_PF(adapter)) { /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */ if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED; else adapter->hena = IAVF_DEFAULT_RSS_HENA; wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena); wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32)); } iavf_fill_rss_lut(adapter); netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size); return iavf_config_rss(adapter); } /** * iavf_alloc_q_vectors - Allocate memory for interrupt vectors * @adapter: board private structure to initialize * * We allocate one q_vector per queue interrupt. If allocation fails we * return -ENOMEM. **/ static int iavf_alloc_q_vectors(struct iavf_adapter *adapter) { int q_idx = 0, num_q_vectors; struct iavf_q_vector *q_vector; num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector), GFP_KERNEL); if (!adapter->q_vectors) return -ENOMEM; for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { q_vector = &adapter->q_vectors[q_idx]; q_vector->adapter = adapter; q_vector->vsi = &adapter->vsi; q_vector->v_idx = q_idx; q_vector->reg_idx = q_idx; cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); netif_napi_add(adapter->netdev, &q_vector->napi, iavf_napi_poll); } return 0; } /** * iavf_free_q_vectors - Free memory allocated for interrupt vectors * @adapter: board private structure to initialize * * This function frees the memory allocated to the q_vectors. In addition if * NAPI is enabled it will delete any references to the NAPI struct prior * to freeing the q_vector. **/ static void iavf_free_q_vectors(struct iavf_adapter *adapter) { int q_idx, num_q_vectors; int napi_vectors; if (!adapter->q_vectors) return; num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; napi_vectors = adapter->num_active_queues; for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx]; if (q_idx < napi_vectors) netif_napi_del(&q_vector->napi); } kfree(adapter->q_vectors); adapter->q_vectors = NULL; } /** * iavf_reset_interrupt_capability - Reset MSIX setup * @adapter: board private structure * **/ void iavf_reset_interrupt_capability(struct iavf_adapter *adapter) { if (!adapter->msix_entries) return; pci_disable_msix(adapter->pdev); kfree(adapter->msix_entries); adapter->msix_entries = NULL; } /** * iavf_init_interrupt_scheme - Determine if MSIX is supported and init * @adapter: board private structure to initialize * **/ int iavf_init_interrupt_scheme(struct iavf_adapter *adapter) { int err; err = iavf_alloc_queues(adapter); if (err) { dev_err(&adapter->pdev->dev, "Unable to allocate memory for queues\n"); goto err_alloc_queues; } rtnl_lock(); err = iavf_set_interrupt_capability(adapter); rtnl_unlock(); if (err) { dev_err(&adapter->pdev->dev, "Unable to setup interrupt capabilities\n"); goto err_set_interrupt; } err = iavf_alloc_q_vectors(adapter); if (err) { dev_err(&adapter->pdev->dev, "Unable to allocate memory for queue vectors\n"); goto err_alloc_q_vectors; } /* If we've made it so far while ADq flag being ON, then we haven't * bailed out anywhere in middle. And ADq isn't just enabled but actual * resources have been allocated in the reset path. * Now we can truly claim that ADq is enabled. */ if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && adapter->num_tc) dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created", adapter->num_tc); dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u", (adapter->num_active_queues > 1) ? "Enabled" : "Disabled", adapter->num_active_queues); return 0; err_alloc_q_vectors: iavf_reset_interrupt_capability(adapter); err_set_interrupt: iavf_free_queues(adapter); err_alloc_queues: return err; } /** * iavf_free_rss - Free memory used by RSS structs * @adapter: board private structure **/ static void iavf_free_rss(struct iavf_adapter *adapter) { kfree(adapter->rss_key); adapter->rss_key = NULL; kfree(adapter->rss_lut); adapter->rss_lut = NULL; } /** * iavf_reinit_interrupt_scheme - Reallocate queues and vectors * @adapter: board private structure * * Returns 0 on success, negative on failure **/ static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter) { struct net_device *netdev = adapter->netdev; int err; if (netif_running(netdev)) iavf_free_traffic_irqs(adapter); iavf_free_misc_irq(adapter); iavf_reset_interrupt_capability(adapter); iavf_free_q_vectors(adapter); iavf_free_queues(adapter); err = iavf_init_interrupt_scheme(adapter); if (err) goto err; netif_tx_stop_all_queues(netdev); err = iavf_request_misc_irq(adapter); if (err) goto err; set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); iavf_map_rings_to_vectors(adapter); err: return err; } /** * iavf_process_aq_command - process aq_required flags * and sends aq command * @adapter: pointer to iavf adapter structure * * Returns 0 on success * Returns error code if no command was sent * or error code if the command failed. **/ static int iavf_process_aq_command(struct iavf_adapter *adapter) { if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG) return iavf_send_vf_config_msg(adapter); if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS) return iavf_send_vf_offload_vlan_v2_msg(adapter); if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) { iavf_disable_queues(adapter); return 0; } if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) { iavf_map_queues(adapter); return 0; } if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) { iavf_add_ether_addrs(adapter); return 0; } if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) { iavf_add_vlans(adapter); return 0; } if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) { iavf_del_ether_addrs(adapter); return 0; } if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) { iavf_del_vlans(adapter); return 0; } if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) { iavf_enable_vlan_stripping(adapter); return 0; } if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) { iavf_disable_vlan_stripping(adapter); return 0; } if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) { iavf_configure_queues(adapter); return 0; } if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) { iavf_enable_queues(adapter); return 0; } if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) { /* This message goes straight to the firmware, not the * PF, so we don't have to set current_op as we will * not get a response through the ARQ. */ adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS; return 0; } if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) { iavf_get_hena(adapter); return 0; } if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) { iavf_set_hena(adapter); return 0; } if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) { iavf_set_rss_key(adapter); return 0; } if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) { iavf_set_rss_lut(adapter); return 0; } if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) { iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC | FLAG_VF_MULTICAST_PROMISC); return 0; } if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) { iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC); return 0; } if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) || (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) { iavf_set_promiscuous(adapter, 0); return 0; } if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) { iavf_enable_channels(adapter); return 0; } if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) { iavf_disable_channels(adapter); return 0; } if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { iavf_add_cloud_filter(adapter); return 0; } if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { iavf_del_cloud_filter(adapter); return 0; } if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { iavf_del_cloud_filter(adapter); return 0; } if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { iavf_add_cloud_filter(adapter); return 0; } if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) { iavf_add_fdir_filter(adapter); return IAVF_SUCCESS; } if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) { iavf_del_fdir_filter(adapter); return IAVF_SUCCESS; } if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) { iavf_add_adv_rss_cfg(adapter); return 0; } if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) { iavf_del_adv_rss_cfg(adapter); return 0; } if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) { iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q); return 0; } if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) { iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD); return 0; } if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) { iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q); return 0; } if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) { iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD); return 0; } if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) { iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q); return 0; } if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) { iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD); return 0; } if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) { iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q); return 0; } if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) { iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD); return 0; } if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) { iavf_request_stats(adapter); return 0; } return -EAGAIN; } /** * iavf_set_vlan_offload_features - set VLAN offload configuration * @adapter: board private structure * @prev_features: previous features used for comparison * @features: updated features used for configuration * * Set the aq_required bit(s) based on the requested features passed in to * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule * the watchdog if any changes are requested to expedite the request via * virtchnl. **/ void iavf_set_vlan_offload_features(struct iavf_adapter *adapter, netdev_features_t prev_features, netdev_features_t features) { bool enable_stripping = true, enable_insertion = true; u16 vlan_ethertype = 0; u64 aq_required = 0; /* keep cases separate because one ethertype for offloads can be * disabled at the same time as another is disabled, so check for an * enabled ethertype first, then check for disabled. Default to * ETH_P_8021Q so an ethertype is specified if disabling insertion and * stripping. */ if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) vlan_ethertype = ETH_P_8021AD; else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) vlan_ethertype = ETH_P_8021Q; else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) vlan_ethertype = ETH_P_8021AD; else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) vlan_ethertype = ETH_P_8021Q; else vlan_ethertype = ETH_P_8021Q; if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) enable_stripping = false; if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) enable_insertion = false; if (VLAN_ALLOWED(adapter)) { /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN * stripping via virtchnl. VLAN insertion can be toggled on the * netdev, but it doesn't require a virtchnl message */ if (enable_stripping) aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING; else aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING; } else if (VLAN_V2_ALLOWED(adapter)) { switch (vlan_ethertype) { case ETH_P_8021Q: if (enable_stripping) aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING; else aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING; if (enable_insertion) aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION; else aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION; break; case ETH_P_8021AD: if (enable_stripping) aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING; else aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING; if (enable_insertion) aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION; else aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION; break; } } if (aq_required) { adapter->aq_required |= aq_required; mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); } } /** * iavf_startup - first step of driver startup * @adapter: board private structure * * Function process __IAVF_STARTUP driver state. * When success the state is changed to __IAVF_INIT_VERSION_CHECK * when fails the state is changed to __IAVF_INIT_FAILED **/ static void iavf_startup(struct iavf_adapter *adapter) { struct pci_dev *pdev = adapter->pdev; struct iavf_hw *hw = &adapter->hw; enum iavf_status status; int ret; WARN_ON(adapter->state != __IAVF_STARTUP); /* driver loaded, probe complete */ adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; adapter->flags &= ~IAVF_FLAG_RESET_PENDING; status = iavf_set_mac_type(hw); if (status) { dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", status); goto err; } ret = iavf_check_reset_complete(hw); if (ret) { dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n", ret); goto err; } hw->aq.num_arq_entries = IAVF_AQ_LEN; hw->aq.num_asq_entries = IAVF_AQ_LEN; hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE; hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE; status = iavf_init_adminq(hw); if (status) { dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", status); goto err; } ret = iavf_send_api_ver(adapter); if (ret) { dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret); iavf_shutdown_adminq(hw); goto err; } iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK); return; err: iavf_change_state(adapter, __IAVF_INIT_FAILED); } /** * iavf_init_version_check - second step of driver startup * @adapter: board private structure * * Function process __IAVF_INIT_VERSION_CHECK driver state. * When success the state is changed to __IAVF_INIT_GET_RESOURCES * when fails the state is changed to __IAVF_INIT_FAILED **/ static void iavf_init_version_check(struct iavf_adapter *adapter) { struct pci_dev *pdev = adapter->pdev; struct iavf_hw *hw = &adapter->hw; int err = -EAGAIN; WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK); if (!iavf_asq_done(hw)) { dev_err(&pdev->dev, "Admin queue command never completed\n"); iavf_shutdown_adminq(hw); iavf_change_state(adapter, __IAVF_STARTUP); goto err; } /* aq msg sent, awaiting reply */ err = iavf_verify_api_ver(adapter); if (err) { if (err == -EALREADY) err = iavf_send_api_ver(adapter); else dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n", adapter->pf_version.major, adapter->pf_version.minor, VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR); goto err; } err = iavf_send_vf_config_msg(adapter); if (err) { dev_err(&pdev->dev, "Unable to send config request (%d)\n", err); goto err; } iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES); return; err: iavf_change_state(adapter, __IAVF_INIT_FAILED); } /** * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES * @adapter: board private structure */ int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter) { int i, num_req_queues = adapter->num_req_queues; struct iavf_vsi *vsi = &adapter->vsi; for (i = 0; i < adapter->vf_res->num_vsis; i++) { if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV) adapter->vsi_res = &adapter->vf_res->vsi_res[i]; } if (!adapter->vsi_res) { dev_err(&adapter->pdev->dev, "No LAN VSI found\n"); return -ENODEV; } if (num_req_queues && num_req_queues > adapter->vsi_res->num_queue_pairs) { /* Problem. The PF gave us fewer queues than what we had * negotiated in our request. Need a reset to see if we can't * get back to a working state. */ dev_err(&adapter->pdev->dev, "Requested %d queues, but PF only gave us %d.\n", num_req_queues, adapter->vsi_res->num_queue_pairs); adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED; adapter->num_req_queues = adapter->vsi_res->num_queue_pairs; iavf_schedule_reset(adapter); return -EAGAIN; } adapter->num_req_queues = 0; adapter->vsi.id = adapter->vsi_res->vsi_id; adapter->vsi.back = adapter; adapter->vsi.base_vector = 1; vsi->netdev = adapter->netdev; vsi->qs_handle = adapter->vsi_res->qset_handle; if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) { adapter->rss_key_size = adapter->vf_res->rss_key_size; adapter->rss_lut_size = adapter->vf_res->rss_lut_size; } else { adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE; adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE; } return 0; } /** * iavf_init_get_resources - third step of driver startup * @adapter: board private structure * * Function process __IAVF_INIT_GET_RESOURCES driver state and * finishes driver initialization procedure. * When success the state is changed to __IAVF_DOWN * when fails the state is changed to __IAVF_INIT_FAILED **/ static void iavf_init_get_resources(struct iavf_adapter *adapter) { struct pci_dev *pdev = adapter->pdev; struct iavf_hw *hw = &adapter->hw; int err; WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES); /* aq msg sent, awaiting reply */ if (!adapter->vf_res) { adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE, GFP_KERNEL); if (!adapter->vf_res) { err = -ENOMEM; goto err; } } err = iavf_get_vf_config(adapter); if (err == -EALREADY) { err = iavf_send_vf_config_msg(adapter); goto err; } else if (err == -EINVAL) { /* We only get -EINVAL if the device is in a very bad * state or if we've been disabled for previous bad * behavior. Either way, we're done now. */ iavf_shutdown_adminq(hw); dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n"); return; } if (err) { dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err); goto err_alloc; } err = iavf_parse_vf_resource_msg(adapter); if (err) { dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n", err); goto err_alloc; } /* Some features require additional messages to negotiate extended * capabilities. These are processed in sequence by the * __IAVF_INIT_EXTENDED_CAPS driver state. */ adapter->extended_caps = IAVF_EXTENDED_CAPS; iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS); return; err_alloc: kfree(adapter->vf_res); adapter->vf_res = NULL; err: iavf_change_state(adapter, __IAVF_INIT_FAILED); } /** * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps * @adapter: board private structure * * Function processes send of the extended VLAN V2 capability message to the * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent, * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2. */ static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter) { int ret; WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2)); ret = iavf_send_vf_offload_vlan_v2_msg(adapter); if (ret && ret == -EOPNOTSUPP) { /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case, * we did not send the capability exchange message and do not * expect a response. */ adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; } /* We sent the message, so move on to the next step */ adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2; } /** * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps * @adapter: board private structure * * Function processes receipt of the extended VLAN V2 capability message from * the PF. **/ static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter) { int ret; WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2)); memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps)); ret = iavf_get_vf_vlan_v2_caps(adapter); if (ret) goto err; /* We've processed receipt of the VLAN V2 caps message */ adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; return; err: /* We didn't receive a reply. Make sure we try sending again when * __IAVF_INIT_FAILED attempts to recover. */ adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2; iavf_change_state(adapter, __IAVF_INIT_FAILED); } /** * iavf_init_process_extended_caps - Part of driver startup * @adapter: board private structure * * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state * handles negotiating capabilities for features which require an additional * message. * * Once all extended capabilities exchanges are finished, the driver will * transition into __IAVF_INIT_CONFIG_ADAPTER. */ static void iavf_init_process_extended_caps(struct iavf_adapter *adapter) { WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS); /* Process capability exchange for VLAN V2 */ if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) { iavf_init_send_offload_vlan_v2_caps(adapter); return; } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) { iavf_init_recv_offload_vlan_v2_caps(adapter); return; } /* When we reach here, no further extended capabilities exchanges are * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER */ iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER); } /** * iavf_init_config_adapter - last part of driver startup * @adapter: board private structure * * After all the supported capabilities are negotiated, then the * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization. */ static void iavf_init_config_adapter(struct iavf_adapter *adapter) { struct net_device *netdev = adapter->netdev; struct pci_dev *pdev = adapter->pdev; int err; WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER); if (iavf_process_config(adapter)) goto err; adapter->current_op = VIRTCHNL_OP_UNKNOWN; adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED; netdev->netdev_ops = &iavf_netdev_ops; iavf_set_ethtool_ops(netdev); netdev->watchdog_timeo = 5 * HZ; /* MTU range: 68 - 9710 */ netdev->min_mtu = ETH_MIN_MTU; netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD; if (!is_valid_ether_addr(adapter->hw.mac.addr)) { dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n", adapter->hw.mac.addr); eth_hw_addr_random(netdev); ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr); } else { eth_hw_addr_set(netdev, adapter->hw.mac.addr); ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); } adapter->tx_desc_count = IAVF_DEFAULT_TXD; adapter->rx_desc_count = IAVF_DEFAULT_RXD; err = iavf_init_interrupt_scheme(adapter); if (err) goto err_sw_init; iavf_map_rings_to_vectors(adapter); if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE; err = iavf_request_misc_irq(adapter); if (err) goto err_sw_init; netif_carrier_off(netdev); adapter->link_up = false; /* set the semaphore to prevent any callbacks after device registration * up to time when state of driver will be set to __IAVF_DOWN */ rtnl_lock(); if (!adapter->netdev_registered) { err = register_netdevice(netdev); if (err) { rtnl_unlock(); goto err_register; } } adapter->netdev_registered = true; netif_tx_stop_all_queues(netdev); if (CLIENT_ALLOWED(adapter)) { err = iavf_lan_add_device(adapter); if (err) dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n", err); } dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr); if (netdev->features & NETIF_F_GRO) dev_info(&pdev->dev, "GRO is enabled\n"); iavf_change_state(adapter, __IAVF_DOWN); set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); rtnl_unlock(); iavf_misc_irq_enable(adapter); wake_up(&adapter->down_waitqueue); adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL); adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL); if (!adapter->rss_key || !adapter->rss_lut) { err = -ENOMEM; goto err_mem; } if (RSS_AQ(adapter)) adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; else iavf_init_rss(adapter); if (VLAN_V2_ALLOWED(adapter)) /* request initial VLAN offload settings */ iavf_set_vlan_offload_features(adapter, 0, netdev->features); return; err_mem: iavf_free_rss(adapter); err_register: iavf_free_misc_irq(adapter); err_sw_init: iavf_reset_interrupt_capability(adapter); err: iavf_change_state(adapter, __IAVF_INIT_FAILED); } /** * iavf_watchdog_task - Periodic call-back task * @work: pointer to work_struct **/ static void iavf_watchdog_task(struct work_struct *work) { struct iavf_adapter *adapter = container_of(work, struct iavf_adapter, watchdog_task.work); struct iavf_hw *hw = &adapter->hw; u32 reg_val; if (!mutex_trylock(&adapter->crit_lock)) { if (adapter->state == __IAVF_REMOVE) return; goto restart_watchdog; } if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) && adapter->netdev_registered && !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) && rtnl_trylock()) { netdev_update_features(adapter->netdev); rtnl_unlock(); adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES; } if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) iavf_change_state(adapter, __IAVF_COMM_FAILED); if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { adapter->aq_required = 0; adapter->current_op = VIRTCHNL_OP_UNKNOWN; mutex_unlock(&adapter->crit_lock); queue_work(adapter->wq, &adapter->reset_task); return; } switch (adapter->state) { case __IAVF_STARTUP: iavf_startup(adapter); mutex_unlock(&adapter->crit_lock); queue_delayed_work(adapter->wq, &adapter->watchdog_task, msecs_to_jiffies(30)); return; case __IAVF_INIT_VERSION_CHECK: iavf_init_version_check(adapter); mutex_unlock(&adapter->crit_lock); queue_delayed_work(adapter->wq, &adapter->watchdog_task, msecs_to_jiffies(30)); return; case __IAVF_INIT_GET_RESOURCES: iavf_init_get_resources(adapter); mutex_unlock(&adapter->crit_lock); queue_delayed_work(adapter->wq, &adapter->watchdog_task, msecs_to_jiffies(1)); return; case __IAVF_INIT_EXTENDED_CAPS: iavf_init_process_extended_caps(adapter); mutex_unlock(&adapter->crit_lock); queue_delayed_work(adapter->wq, &adapter->watchdog_task, msecs_to_jiffies(1)); return; case __IAVF_INIT_CONFIG_ADAPTER: iavf_init_config_adapter(adapter); mutex_unlock(&adapter->crit_lock); queue_delayed_work(adapter->wq, &adapter->watchdog_task, msecs_to_jiffies(1)); return; case __IAVF_INIT_FAILED: if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) { /* Do not update the state and do not reschedule * watchdog task, iavf_remove should handle this state * as it can loop forever */ mutex_unlock(&adapter->crit_lock); return; } if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) { dev_err(&adapter->pdev->dev, "Failed to communicate with PF; waiting before retry\n"); adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; iavf_shutdown_adminq(hw); mutex_unlock(&adapter->crit_lock); queue_delayed_work(adapter->wq, &adapter->watchdog_task, (5 * HZ)); return; } /* Try again from failed step*/ iavf_change_state(adapter, adapter->last_state); mutex_unlock(&adapter->crit_lock); queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ); return; case __IAVF_COMM_FAILED: if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) { /* Set state to __IAVF_INIT_FAILED and perform remove * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task * doesn't bring the state back to __IAVF_COMM_FAILED. */ iavf_change_state(adapter, __IAVF_INIT_FAILED); adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; mutex_unlock(&adapter->crit_lock); return; } reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & IAVF_VFGEN_RSTAT_VFR_STATE_MASK; if (reg_val == VIRTCHNL_VFR_VFACTIVE || reg_val == VIRTCHNL_VFR_COMPLETED) { /* A chance for redemption! */ dev_err(&adapter->pdev->dev, "Hardware came out of reset. Attempting reinit.\n"); /* When init task contacts the PF and * gets everything set up again, it'll restart the * watchdog for us. Down, boy. Sit. Stay. Woof. */ iavf_change_state(adapter, __IAVF_STARTUP); adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; } adapter->aq_required = 0; adapter->current_op = VIRTCHNL_OP_UNKNOWN; mutex_unlock(&adapter->crit_lock); queue_delayed_work(adapter->wq, &adapter->watchdog_task, msecs_to_jiffies(10)); return; case __IAVF_RESETTING: mutex_unlock(&adapter->crit_lock); queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ * 2); return; case __IAVF_DOWN: case __IAVF_DOWN_PENDING: case __IAVF_TESTING: case __IAVF_RUNNING: if (adapter->current_op) { if (!iavf_asq_done(hw)) { dev_dbg(&adapter->pdev->dev, "Admin queue timeout\n"); iavf_send_api_ver(adapter); } } else { int ret = iavf_process_aq_command(adapter); /* An error will be returned if no commands were * processed; use this opportunity to update stats * if the error isn't -ENOTSUPP */ if (ret && ret != -EOPNOTSUPP && adapter->state == __IAVF_RUNNING) iavf_request_stats(adapter); } if (adapter->state == __IAVF_RUNNING) iavf_detect_recover_hung(&adapter->vsi); break; case __IAVF_REMOVE: default: mutex_unlock(&adapter->crit_lock); return; } /* check for hw reset */ reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK; if (!reg_val) { adapter->flags |= IAVF_FLAG_RESET_PENDING; adapter->aq_required = 0; adapter->current_op = VIRTCHNL_OP_UNKNOWN; dev_err(&adapter->pdev->dev, "Hardware reset detected\n"); queue_work(adapter->wq, &adapter->reset_task); mutex_unlock(&adapter->crit_lock); queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ * 2); return; } schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5)); mutex_unlock(&adapter->crit_lock); restart_watchdog: if (adapter->state >= __IAVF_DOWN) queue_work(adapter->wq, &adapter->adminq_task); if (adapter->aq_required) queue_delayed_work(adapter->wq, &adapter->watchdog_task, msecs_to_jiffies(20)); else queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ * 2); } /** * iavf_disable_vf - disable VF * @adapter: board private structure * * Set communication failed flag and free all resources. * NOTE: This function is expected to be called with crit_lock being held. **/ static void iavf_disable_vf(struct iavf_adapter *adapter) { struct iavf_mac_filter *f, *ftmp; struct iavf_vlan_filter *fv, *fvtmp; struct iavf_cloud_filter *cf, *cftmp; adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; /* We don't use netif_running() because it may be true prior to * ndo_open() returning, so we can't assume it means all our open * tasks have finished, since we're not holding the rtnl_lock here. */ if (adapter->state == __IAVF_RUNNING) { set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); netif_carrier_off(adapter->netdev); netif_tx_disable(adapter->netdev); adapter->link_up = false; iavf_napi_disable_all(adapter); iavf_irq_disable(adapter); iavf_free_traffic_irqs(adapter); iavf_free_all_tx_resources(adapter); iavf_free_all_rx_resources(adapter); } spin_lock_bh(&adapter->mac_vlan_list_lock); /* Delete all of the filters */ list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { list_del(&f->list); kfree(f); } list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) { list_del(&fv->list); kfree(fv); } adapter->num_vlan_filters = 0; spin_unlock_bh(&adapter->mac_vlan_list_lock); spin_lock_bh(&adapter->cloud_filter_list_lock); list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { list_del(&cf->list); kfree(cf); adapter->num_cloud_filters--; } spin_unlock_bh(&adapter->cloud_filter_list_lock); iavf_free_misc_irq(adapter); iavf_reset_interrupt_capability(adapter); iavf_free_q_vectors(adapter); iavf_free_queues(adapter); memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE); iavf_shutdown_adminq(&adapter->hw); adapter->flags &= ~IAVF_FLAG_RESET_PENDING; iavf_change_state(adapter, __IAVF_DOWN); wake_up(&adapter->down_waitqueue); dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n"); } /** * iavf_reset_task - Call-back task to handle hardware reset * @work: pointer to work_struct * * During reset we need to shut down and reinitialize the admin queue * before we can use it to communicate with the PF again. We also clear * and reinit the rings because that context is lost as well. **/ static void iavf_reset_task(struct work_struct *work) { struct iavf_adapter *adapter = container_of(work, struct iavf_adapter, reset_task); struct virtchnl_vf_resource *vfres = adapter->vf_res; struct net_device *netdev = adapter->netdev; struct iavf_hw *hw = &adapter->hw; struct iavf_mac_filter *f, *ftmp; struct iavf_cloud_filter *cf; enum iavf_status status; u32 reg_val; int i = 0, err; bool running; /* Detach interface to avoid subsequent NDO callbacks */ rtnl_lock(); netif_device_detach(netdev); rtnl_unlock(); /* When device is being removed it doesn't make sense to run the reset * task, just return in such a case. */ if (!mutex_trylock(&adapter->crit_lock)) { if (adapter->state != __IAVF_REMOVE) queue_work(adapter->wq, &adapter->reset_task); goto reset_finish; } while (!mutex_trylock(&adapter->client_lock)) usleep_range(500, 1000); if (CLIENT_ENABLED(adapter)) { adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN | IAVF_FLAG_CLIENT_NEEDS_CLOSE | IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS | IAVF_FLAG_SERVICE_CLIENT_REQUESTED); cancel_delayed_work_sync(&adapter->client_task); iavf_notify_client_close(&adapter->vsi, true); } iavf_misc_irq_disable(adapter); if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { adapter->flags &= ~IAVF_FLAG_RESET_NEEDED; /* Restart the AQ here. If we have been reset but didn't * detect it, or if the PF had to reinit, our AQ will be hosed. */ iavf_shutdown_adminq(hw); iavf_init_adminq(hw); iavf_request_reset(adapter); } adapter->flags |= IAVF_FLAG_RESET_PENDING; /* poll until we see the reset actually happen */ for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) { reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK; if (!reg_val) break; usleep_range(5000, 10000); } if (i == IAVF_RESET_WAIT_DETECTED_COUNT) { dev_info(&adapter->pdev->dev, "Never saw reset\n"); goto continue_reset; /* act like the reset happened */ } /* wait until the reset is complete and the PF is responding to us */ for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { /* sleep first to make sure a minimum wait time is met */ msleep(IAVF_RESET_WAIT_MS); reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & IAVF_VFGEN_RSTAT_VFR_STATE_MASK; if (reg_val == VIRTCHNL_VFR_VFACTIVE) break; } pci_set_master(adapter->pdev); pci_restore_msi_state(adapter->pdev); if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) { dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n", reg_val); iavf_disable_vf(adapter); mutex_unlock(&adapter->client_lock); mutex_unlock(&adapter->crit_lock); if (netif_running(netdev)) { rtnl_lock(); dev_close(netdev); rtnl_unlock(); } return; /* Do not attempt to reinit. It's dead, Jim. */ } continue_reset: /* We don't use netif_running() because it may be true prior to * ndo_open() returning, so we can't assume it means all our open * tasks have finished, since we're not holding the rtnl_lock here. */ running = adapter->state == __IAVF_RUNNING; if (running) { netif_carrier_off(netdev); netif_tx_stop_all_queues(netdev); adapter->link_up = false; iavf_napi_disable_all(adapter); } iavf_irq_disable(adapter); iavf_change_state(adapter, __IAVF_RESETTING); adapter->flags &= ~IAVF_FLAG_RESET_PENDING; /* free the Tx/Rx rings and descriptors, might be better to just * re-use them sometime in the future */ iavf_free_all_rx_resources(adapter); iavf_free_all_tx_resources(adapter); adapter->flags |= IAVF_FLAG_QUEUES_DISABLED; /* kill and reinit the admin queue */ iavf_shutdown_adminq(hw); adapter->current_op = VIRTCHNL_OP_UNKNOWN; status = iavf_init_adminq(hw); if (status) { dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n", status); goto reset_err; } adapter->aq_required = 0; if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { err = iavf_reinit_interrupt_scheme(adapter); if (err) goto reset_err; } if (RSS_AQ(adapter)) { adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; } else { err = iavf_init_rss(adapter); if (err) goto reset_err; } adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG; /* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here, * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have * been successfully sent and negotiated */ adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS; adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; spin_lock_bh(&adapter->mac_vlan_list_lock); /* Delete filter for the current MAC address, it could have * been changed by the PF via administratively set MAC. * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES. */ list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) { list_del(&f->list); kfree(f); } } /* re-add all MAC filters */ list_for_each_entry(f, &adapter->mac_filter_list, list) { f->add = true; } spin_unlock_bh(&adapter->mac_vlan_list_lock); /* check if TCs are running and re-add all cloud filters */ spin_lock_bh(&adapter->cloud_filter_list_lock); if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && adapter->num_tc) { list_for_each_entry(cf, &adapter->cloud_filter_list, list) { cf->add = true; } } spin_unlock_bh(&adapter->cloud_filter_list_lock); adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; iavf_misc_irq_enable(adapter); mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2); /* We were running when the reset started, so we need to restore some * state here. */ if (running) { /* allocate transmit descriptors */ err = iavf_setup_all_tx_resources(adapter); if (err) goto reset_err; /* allocate receive descriptors */ err = iavf_setup_all_rx_resources(adapter); if (err) goto reset_err; if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { err = iavf_request_traffic_irqs(adapter, netdev->name); if (err) goto reset_err; adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED; } iavf_configure(adapter); /* iavf_up_complete() will switch device back * to __IAVF_RUNNING */ iavf_up_complete(adapter); iavf_irq_enable(adapter, true); } else { iavf_change_state(adapter, __IAVF_DOWN); wake_up(&adapter->down_waitqueue); } adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; mutex_unlock(&adapter->client_lock); mutex_unlock(&adapter->crit_lock); goto reset_finish; reset_err: if (running) { set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); iavf_free_traffic_irqs(adapter); } iavf_disable_vf(adapter); mutex_unlock(&adapter->client_lock); mutex_unlock(&adapter->crit_lock); if (netif_running(netdev)) { /* Close device to ensure that Tx queues will not be started * during netif_device_attach() at the end of the reset task. */ rtnl_lock(); dev_close(netdev); rtnl_unlock(); } dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n"); reset_finish: rtnl_lock(); netif_device_attach(netdev); rtnl_unlock(); } /** * iavf_adminq_task - worker thread to clean the admin queue * @work: pointer to work_struct containing our data **/ static void iavf_adminq_task(struct work_struct *work) { struct iavf_adapter *adapter = container_of(work, struct iavf_adapter, adminq_task); struct iavf_hw *hw = &adapter->hw; struct iavf_arq_event_info event; enum virtchnl_ops v_op; enum iavf_status ret, v_ret; u32 val, oldval; u16 pending; if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) goto out; if (!mutex_trylock(&adapter->crit_lock)) { if (adapter->state == __IAVF_REMOVE) return; queue_work(adapter->wq, &adapter->adminq_task); goto out; } event.buf_len = IAVF_MAX_AQ_BUF_SIZE; event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); if (!event.msg_buf) goto out; do { ret = iavf_clean_arq_element(hw, &event, &pending); v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high); v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low); if (ret || !v_op) break; /* No event to process or error cleaning ARQ */ iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf, event.msg_len); if (pending != 0) memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE); } while (pending); mutex_unlock(&adapter->crit_lock); if ((adapter->flags & (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) || adapter->state == __IAVF_RESETTING) goto freedom; /* check for error indications */ val = rd32(hw, hw->aq.arq.len); if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */ goto freedom; oldval = val; if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) { dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n"); val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK; } if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) { dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n"); val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK; } if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) { dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n"); val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK; } if (oldval != val) wr32(hw, hw->aq.arq.len, val); val = rd32(hw, hw->aq.asq.len); oldval = val; if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) { dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n"); val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK; } if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) { dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n"); val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK; } if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) { dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n"); val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK; } if (oldval != val) wr32(hw, hw->aq.asq.len, val); freedom: kfree(event.msg_buf); out: /* re-enable Admin queue interrupt cause */ iavf_misc_irq_enable(adapter); } /** * iavf_client_task - worker thread to perform client work * @work: pointer to work_struct containing our data * * This task handles client interactions. Because client calls can be * reentrant, we can't handle them in the watchdog. **/ static void iavf_client_task(struct work_struct *work) { struct iavf_adapter *adapter = container_of(work, struct iavf_adapter, client_task.work); /* If we can't get the client bit, just give up. We'll be rescheduled * later. */ if (!mutex_trylock(&adapter->client_lock)) return; if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) { iavf_client_subtask(adapter); adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED; goto out; } if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) { iavf_notify_client_l2_params(&adapter->vsi); adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS; goto out; } if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) { iavf_notify_client_close(&adapter->vsi, false); adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE; goto out; } if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) { iavf_notify_client_open(&adapter->vsi); adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN; } out: mutex_unlock(&adapter->client_lock); } /** * iavf_free_all_tx_resources - Free Tx Resources for All Queues * @adapter: board private structure * * Free all transmit software resources **/ void iavf_free_all_tx_resources(struct iavf_adapter *adapter) { int i; if (!adapter->tx_rings) return; for (i = 0; i < adapter->num_active_queues; i++) if (adapter->tx_rings[i].desc) iavf_free_tx_resources(&adapter->tx_rings[i]); } /** * iavf_setup_all_tx_resources - allocate all queues Tx resources * @adapter: board private structure * * If this function returns with an error, then it's possible one or * more of the rings is populated (while the rest are not). It is the * callers duty to clean those orphaned rings. * * Return 0 on success, negative on failure **/ static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter) { int i, err = 0; for (i = 0; i < adapter->num_active_queues; i++) { adapter->tx_rings[i].count = adapter->tx_desc_count; err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]); if (!err) continue; dev_err(&adapter->pdev->dev, "Allocation for Tx Queue %u failed\n", i); break; } return err; } /** * iavf_setup_all_rx_resources - allocate all queues Rx resources * @adapter: board private structure * * If this function returns with an error, then it's possible one or * more of the rings is populated (while the rest are not). It is the * callers duty to clean those orphaned rings. * * Return 0 on success, negative on failure **/ static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter) { int i, err = 0; for (i = 0; i < adapter->num_active_queues; i++) { adapter->rx_rings[i].count = adapter->rx_desc_count; err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]); if (!err) continue; dev_err(&adapter->pdev->dev, "Allocation for Rx Queue %u failed\n", i); break; } return err; } /** * iavf_free_all_rx_resources - Free Rx Resources for All Queues * @adapter: board private structure * * Free all receive software resources **/ void iavf_free_all_rx_resources(struct iavf_adapter *adapter) { int i; if (!adapter->rx_rings) return; for (i = 0; i < adapter->num_active_queues; i++) if (adapter->rx_rings[i].desc) iavf_free_rx_resources(&adapter->rx_rings[i]); } /** * iavf_validate_tx_bandwidth - validate the max Tx bandwidth * @adapter: board private structure * @max_tx_rate: max Tx bw for a tc **/ static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter, u64 max_tx_rate) { int speed = 0, ret = 0; if (ADV_LINK_SUPPORT(adapter)) { if (adapter->link_speed_mbps < U32_MAX) { speed = adapter->link_speed_mbps; goto validate_bw; } else { dev_err(&adapter->pdev->dev, "Unknown link speed\n"); return -EINVAL; } } switch (adapter->link_speed) { case VIRTCHNL_LINK_SPEED_40GB: speed = SPEED_40000; break; case VIRTCHNL_LINK_SPEED_25GB: speed = SPEED_25000; break; case VIRTCHNL_LINK_SPEED_20GB: speed = SPEED_20000; break; case VIRTCHNL_LINK_SPEED_10GB: speed = SPEED_10000; break; case VIRTCHNL_LINK_SPEED_5GB: speed = SPEED_5000; break; case VIRTCHNL_LINK_SPEED_2_5GB: speed = SPEED_2500; break; case VIRTCHNL_LINK_SPEED_1GB: speed = SPEED_1000; break; case VIRTCHNL_LINK_SPEED_100MB: speed = SPEED_100; break; default: break; } validate_bw: if (max_tx_rate > speed) { dev_err(&adapter->pdev->dev, "Invalid tx rate specified\n"); ret = -EINVAL; } return ret; } /** * iavf_validate_ch_config - validate queue mapping info * @adapter: board private structure * @mqprio_qopt: queue parameters * * This function validates if the config provided by the user to * configure queue channels is valid or not. Returns 0 on a valid * config. **/ static int iavf_validate_ch_config(struct iavf_adapter *adapter, struct tc_mqprio_qopt_offload *mqprio_qopt) { u64 total_max_rate = 0; u32 tx_rate_rem = 0; int i, num_qps = 0; u64 tx_rate = 0; int ret = 0; if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS || mqprio_qopt->qopt.num_tc < 1) return -EINVAL; for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) { if (!mqprio_qopt->qopt.count[i] || mqprio_qopt->qopt.offset[i] != num_qps) return -EINVAL; if (mqprio_qopt->min_rate[i]) { dev_err(&adapter->pdev->dev, "Invalid min tx rate (greater than 0) specified for TC%d\n", i); return -EINVAL; } /* convert to Mbps */ tx_rate = div_u64(mqprio_qopt->max_rate[i], IAVF_MBPS_DIVISOR); if (mqprio_qopt->max_rate[i] && tx_rate < IAVF_MBPS_QUANTA) { dev_err(&adapter->pdev->dev, "Invalid max tx rate for TC%d, minimum %dMbps\n", i, IAVF_MBPS_QUANTA); return -EINVAL; } (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem); if (tx_rate_rem != 0) { dev_err(&adapter->pdev->dev, "Invalid max tx rate for TC%d, not divisible by %d\n", i, IAVF_MBPS_QUANTA); return -EINVAL; } total_max_rate += tx_rate; num_qps += mqprio_qopt->qopt.count[i]; } if (num_qps > adapter->num_active_queues) { dev_err(&adapter->pdev->dev, "Cannot support requested number of queues\n"); return -EINVAL; } ret = iavf_validate_tx_bandwidth(adapter, total_max_rate); return ret; } /** * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes * @adapter: board private structure **/ static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter) { struct iavf_cloud_filter *cf, *cftmp; spin_lock_bh(&adapter->cloud_filter_list_lock); list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { list_del(&cf->list); kfree(cf); adapter->num_cloud_filters--; } spin_unlock_bh(&adapter->cloud_filter_list_lock); } /** * __iavf_setup_tc - configure multiple traffic classes * @netdev: network interface device structure * @type_data: tc offload data * * This function processes the config information provided by the * user to configure traffic classes/queue channels and packages the * information to request the PF to setup traffic classes. * * Returns 0 on success. **/ static int __iavf_setup_tc(struct net_device *netdev, void *type_data) { struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; struct iavf_adapter *adapter = netdev_priv(netdev); struct virtchnl_vf_resource *vfres = adapter->vf_res; u8 num_tc = 0, total_qps = 0; int ret = 0, netdev_tc = 0; u64 max_tx_rate; u16 mode; int i; num_tc = mqprio_qopt->qopt.num_tc; mode = mqprio_qopt->mode; /* delete queue_channel */ if (!mqprio_qopt->qopt.hw) { if (adapter->ch_config.state == __IAVF_TC_RUNNING) { /* reset the tc configuration */ netdev_reset_tc(netdev); adapter->num_tc = 0; netif_tx_stop_all_queues(netdev); netif_tx_disable(netdev); iavf_del_all_cloud_filters(adapter); adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS; total_qps = adapter->orig_num_active_queues; goto exit; } else { return -EINVAL; } } /* add queue channel */ if (mode == TC_MQPRIO_MODE_CHANNEL) { if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) { dev_err(&adapter->pdev->dev, "ADq not supported\n"); return -EOPNOTSUPP; } if (adapter->ch_config.state != __IAVF_TC_INVALID) { dev_err(&adapter->pdev->dev, "TC configuration already exists\n"); return -EINVAL; } ret = iavf_validate_ch_config(adapter, mqprio_qopt); if (ret) return ret; /* Return if same TC config is requested */ if (adapter->num_tc == num_tc) return 0; adapter->num_tc = num_tc; for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { if (i < num_tc) { adapter->ch_config.ch_info[i].count = mqprio_qopt->qopt.count[i]; adapter->ch_config.ch_info[i].offset = mqprio_qopt->qopt.offset[i]; total_qps += mqprio_qopt->qopt.count[i]; max_tx_rate = mqprio_qopt->max_rate[i]; /* convert to Mbps */ max_tx_rate = div_u64(max_tx_rate, IAVF_MBPS_DIVISOR); adapter->ch_config.ch_info[i].max_tx_rate = max_tx_rate; } else { adapter->ch_config.ch_info[i].count = 1; adapter->ch_config.ch_info[i].offset = 0; } } /* Take snapshot of original config such as "num_active_queues" * It is used later when delete ADQ flow is exercised, so that * once delete ADQ flow completes, VF shall go back to its * original queue configuration */ adapter->orig_num_active_queues = adapter->num_active_queues; /* Store queue info based on TC so that VF gets configured * with correct number of queues when VF completes ADQ config * flow */ adapter->ch_config.total_qps = total_qps; netif_tx_stop_all_queues(netdev); netif_tx_disable(netdev); adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS; netdev_reset_tc(netdev); /* Report the tc mapping up the stack */ netdev_set_num_tc(adapter->netdev, num_tc); for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { u16 qcount = mqprio_qopt->qopt.count[i]; u16 qoffset = mqprio_qopt->qopt.offset[i]; if (i < num_tc) netdev_set_tc_queue(netdev, netdev_tc++, qcount, qoffset); } } exit: if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) return 0; netif_set_real_num_rx_queues(netdev, total_qps); netif_set_real_num_tx_queues(netdev, total_qps); return ret; } /** * iavf_parse_cls_flower - Parse tc flower filters provided by kernel * @adapter: board private structure * @f: pointer to struct flow_cls_offload * @filter: pointer to cloud filter structure */ static int iavf_parse_cls_flower(struct iavf_adapter *adapter, struct flow_cls_offload *f, struct iavf_cloud_filter *filter) { struct flow_rule *rule = flow_cls_offload_flow_rule(f); struct flow_dissector *dissector = rule->match.dissector; u16 n_proto_mask = 0; u16 n_proto_key = 0; u8 field_flags = 0; u16 addr_type = 0; u16 n_proto = 0; int i = 0; struct virtchnl_filter *vf = &filter->f; if (dissector->used_keys & ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) | BIT(FLOW_DISSECTOR_KEY_BASIC) | BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | BIT(FLOW_DISSECTOR_KEY_VLAN) | BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | BIT(FLOW_DISSECTOR_KEY_PORTS) | BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) { dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n", dissector->used_keys); return -EOPNOTSUPP; } if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { struct flow_match_enc_keyid match; flow_rule_match_enc_keyid(rule, &match); if (match.mask->keyid != 0) field_flags |= IAVF_CLOUD_FIELD_TEN_ID; } if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { struct flow_match_basic match; flow_rule_match_basic(rule, &match); n_proto_key = ntohs(match.key->n_proto); n_proto_mask = ntohs(match.mask->n_proto); if (n_proto_key == ETH_P_ALL) { n_proto_key = 0; n_proto_mask = 0; } n_proto = n_proto_key & n_proto_mask; if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6) return -EINVAL; if (n_proto == ETH_P_IPV6) { /* specify flow type as TCP IPv6 */ vf->flow_type = VIRTCHNL_TCP_V6_FLOW; } if (match.key->ip_proto != IPPROTO_TCP) { dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n"); return -EINVAL; } } if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { struct flow_match_eth_addrs match; flow_rule_match_eth_addrs(rule, &match); /* use is_broadcast and is_zero to check for all 0xf or 0 */ if (!is_zero_ether_addr(match.mask->dst)) { if (is_broadcast_ether_addr(match.mask->dst)) { field_flags |= IAVF_CLOUD_FIELD_OMAC; } else { dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n", match.mask->dst); return -EINVAL; } } if (!is_zero_ether_addr(match.mask->src)) { if (is_broadcast_ether_addr(match.mask->src)) { field_flags |= IAVF_CLOUD_FIELD_IMAC; } else { dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n", match.mask->src); return -EINVAL; } } if (!is_zero_ether_addr(match.key->dst)) if (is_valid_ether_addr(match.key->dst) || is_multicast_ether_addr(match.key->dst)) { /* set the mask if a valid dst_mac address */ for (i = 0; i < ETH_ALEN; i++) vf->mask.tcp_spec.dst_mac[i] |= 0xff; ether_addr_copy(vf->data.tcp_spec.dst_mac, match.key->dst); } if (!is_zero_ether_addr(match.key->src)) if (is_valid_ether_addr(match.key->src) || is_multicast_ether_addr(match.key->src)) { /* set the mask if a valid dst_mac address */ for (i = 0; i < ETH_ALEN; i++) vf->mask.tcp_spec.src_mac[i] |= 0xff; ether_addr_copy(vf->data.tcp_spec.src_mac, match.key->src); } } if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { struct flow_match_vlan match; flow_rule_match_vlan(rule, &match); if (match.mask->vlan_id) { if (match.mask->vlan_id == VLAN_VID_MASK) { field_flags |= IAVF_CLOUD_FIELD_IVLAN; } else { dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n", match.mask->vlan_id); return -EINVAL; } } vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff); vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id); } if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { struct flow_match_control match; flow_rule_match_control(rule, &match); addr_type = match.key->addr_type; } if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { struct flow_match_ipv4_addrs match; flow_rule_match_ipv4_addrs(rule, &match); if (match.mask->dst) { if (match.mask->dst == cpu_to_be32(0xffffffff)) { field_flags |= IAVF_CLOUD_FIELD_IIP; } else { dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n", be32_to_cpu(match.mask->dst)); return -EINVAL; } } if (match.mask->src) { if (match.mask->src == cpu_to_be32(0xffffffff)) { field_flags |= IAVF_CLOUD_FIELD_IIP; } else { dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n", be32_to_cpu(match.mask->src)); return -EINVAL; } } if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) { dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n"); return -EINVAL; } if (match.key->dst) { vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff); vf->data.tcp_spec.dst_ip[0] = match.key->dst; } if (match.key->src) { vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff); vf->data.tcp_spec.src_ip[0] = match.key->src; } } if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { struct flow_match_ipv6_addrs match; flow_rule_match_ipv6_addrs(rule, &match); /* validate mask, make sure it is not IPV6_ADDR_ANY */ if (ipv6_addr_any(&match.mask->dst)) { dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n", IPV6_ADDR_ANY); return -EINVAL; } /* src and dest IPv6 address should not be LOOPBACK * (0:0:0:0:0:0:0:1) which can be represented as ::1 */ if (ipv6_addr_loopback(&match.key->dst) || ipv6_addr_loopback(&match.key->src)) { dev_err(&adapter->pdev->dev, "ipv6 addr should not be loopback\n"); return -EINVAL; } if (!ipv6_addr_any(&match.mask->dst) || !ipv6_addr_any(&match.mask->src)) field_flags |= IAVF_CLOUD_FIELD_IIP; for (i = 0; i < 4; i++) vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff); memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32, sizeof(vf->data.tcp_spec.dst_ip)); for (i = 0; i < 4; i++) vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff); memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32, sizeof(vf->data.tcp_spec.src_ip)); } if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { struct flow_match_ports match; flow_rule_match_ports(rule, &match); if (match.mask->src) { if (match.mask->src == cpu_to_be16(0xffff)) { field_flags |= IAVF_CLOUD_FIELD_IIP; } else { dev_err(&adapter->pdev->dev, "Bad src port mask %u\n", be16_to_cpu(match.mask->src)); return -EINVAL; } } if (match.mask->dst) { if (match.mask->dst == cpu_to_be16(0xffff)) { field_flags |= IAVF_CLOUD_FIELD_IIP; } else { dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n", be16_to_cpu(match.mask->dst)); return -EINVAL; } } if (match.key->dst) { vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff); vf->data.tcp_spec.dst_port = match.key->dst; } if (match.key->src) { vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff); vf->data.tcp_spec.src_port = match.key->src; } } vf->field_flags = field_flags; return 0; } /** * iavf_handle_tclass - Forward to a traffic class on the device * @adapter: board private structure * @tc: traffic class index on the device * @filter: pointer to cloud filter structure */ static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc, struct iavf_cloud_filter *filter) { if (tc == 0) return 0; if (tc < adapter->num_tc) { if (!filter->f.data.tcp_spec.dst_port) { dev_err(&adapter->pdev->dev, "Specify destination port to redirect to traffic class other than TC0\n"); return -EINVAL; } } /* redirect to a traffic class on the same device */ filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT; filter->f.action_meta = tc; return 0; } /** * iavf_find_cf - Find the cloud filter in the list * @adapter: Board private structure * @cookie: filter specific cookie * * Returns ptr to the filter object or NULL. Must be called while holding the * cloud_filter_list_lock. */ static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter, unsigned long *cookie) { struct iavf_cloud_filter *filter = NULL; if (!cookie) return NULL; list_for_each_entry(filter, &adapter->cloud_filter_list, list) { if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) return filter; } return NULL; } /** * iavf_configure_clsflower - Add tc flower filters * @adapter: board private structure * @cls_flower: Pointer to struct flow_cls_offload */ static int iavf_configure_clsflower(struct iavf_adapter *adapter, struct flow_cls_offload *cls_flower) { int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid); struct iavf_cloud_filter *filter = NULL; int err = -EINVAL, count = 50; if (tc < 0) { dev_err(&adapter->pdev->dev, "Invalid traffic class\n"); return -EINVAL; } filter = kzalloc(sizeof(*filter), GFP_KERNEL); if (!filter) return -ENOMEM; while (!mutex_trylock(&adapter->crit_lock)) { if (--count == 0) { kfree(filter); return err; } udelay(1); } filter->cookie = cls_flower->cookie; /* bail out here if filter already exists */ spin_lock_bh(&adapter->cloud_filter_list_lock); if (iavf_find_cf(adapter, &cls_flower->cookie)) { dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n"); err = -EEXIST; goto spin_unlock; } spin_unlock_bh(&adapter->cloud_filter_list_lock); /* set the mask to all zeroes to begin with */ memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec)); /* start out with flow type and eth type IPv4 to begin with */ filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW; err = iavf_parse_cls_flower(adapter, cls_flower, filter); if (err) goto err; err = iavf_handle_tclass(adapter, tc, filter); if (err) goto err; /* add filter to the list */ spin_lock_bh(&adapter->cloud_filter_list_lock); list_add_tail(&filter->list, &adapter->cloud_filter_list); adapter->num_cloud_filters++; filter->add = true; adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; spin_unlock: spin_unlock_bh(&adapter->cloud_filter_list_lock); err: if (err) kfree(filter); mutex_unlock(&adapter->crit_lock); return err; } /** * iavf_delete_clsflower - Remove tc flower filters * @adapter: board private structure * @cls_flower: Pointer to struct flow_cls_offload */ static int iavf_delete_clsflower(struct iavf_adapter *adapter, struct flow_cls_offload *cls_flower) { struct iavf_cloud_filter *filter = NULL; int err = 0; spin_lock_bh(&adapter->cloud_filter_list_lock); filter = iavf_find_cf(adapter, &cls_flower->cookie); if (filter) { filter->del = true; adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; } else { err = -EINVAL; } spin_unlock_bh(&adapter->cloud_filter_list_lock); return err; } /** * iavf_setup_tc_cls_flower - flower classifier offloads * @adapter: board private structure * @cls_flower: pointer to flow_cls_offload struct with flow info */ static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter, struct flow_cls_offload *cls_flower) { switch (cls_flower->command) { case FLOW_CLS_REPLACE: return iavf_configure_clsflower(adapter, cls_flower); case FLOW_CLS_DESTROY: return iavf_delete_clsflower(adapter, cls_flower); case FLOW_CLS_STATS: return -EOPNOTSUPP; default: return -EOPNOTSUPP; } } /** * iavf_setup_tc_block_cb - block callback for tc * @type: type of offload * @type_data: offload data * @cb_priv: * * This function is the block callback for traffic classes **/ static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) { struct iavf_adapter *adapter = cb_priv; if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data)) return -EOPNOTSUPP; switch (type) { case TC_SETUP_CLSFLOWER: return iavf_setup_tc_cls_flower(cb_priv, type_data); default: return -EOPNOTSUPP; } } static LIST_HEAD(iavf_block_cb_list); /** * iavf_setup_tc - configure multiple traffic classes * @netdev: network interface device structure * @type: type of offload * @type_data: tc offload data * * This function is the callback to ndo_setup_tc in the * netdev_ops. * * Returns 0 on success **/ static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type, void *type_data) { struct iavf_adapter *adapter = netdev_priv(netdev); switch (type) { case TC_SETUP_QDISC_MQPRIO: return __iavf_setup_tc(netdev, type_data); case TC_SETUP_BLOCK: return flow_block_cb_setup_simple(type_data, &iavf_block_cb_list, iavf_setup_tc_block_cb, adapter, adapter, true); default: return -EOPNOTSUPP; } } /** * iavf_open - Called when a network interface is made active * @netdev: network interface device structure * * Returns 0 on success, negative value on failure * * The open entry point is called when a network interface is made * active by the system (IFF_UP). At this point all resources needed * for transmit and receive operations are allocated, the interrupt * handler is registered with the OS, the watchdog is started, * and the stack is notified that the interface is ready. **/ static int iavf_open(struct net_device *netdev) { struct iavf_adapter *adapter = netdev_priv(netdev); int err; if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) { dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n"); return -EIO; } while (!mutex_trylock(&adapter->crit_lock)) { /* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock * is already taken and iavf_open is called from an upper * device's notifier reacting on NETDEV_REGISTER event. * We have to leave here to avoid dead lock. */ if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER) return -EBUSY; usleep_range(500, 1000); } if (adapter->state != __IAVF_DOWN) { err = -EBUSY; goto err_unlock; } if (adapter->state == __IAVF_RUNNING && !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) { dev_dbg(&adapter->pdev->dev, "VF is already open.\n"); err = 0; goto err_unlock; } /* allocate transmit descriptors */ err = iavf_setup_all_tx_resources(adapter); if (err) goto err_setup_tx; /* allocate receive descriptors */ err = iavf_setup_all_rx_resources(adapter); if (err) goto err_setup_rx; /* clear any pending interrupts, may auto mask */ err = iavf_request_traffic_irqs(adapter, netdev->name); if (err) goto err_req_irq; spin_lock_bh(&adapter->mac_vlan_list_lock); iavf_add_filter(adapter, adapter->hw.mac.addr); spin_unlock_bh(&adapter->mac_vlan_list_lock); /* Restore VLAN filters that were removed with IFF_DOWN */ iavf_restore_filters(adapter); iavf_configure(adapter); iavf_up_complete(adapter); iavf_irq_enable(adapter, true); mutex_unlock(&adapter->crit_lock); return 0; err_req_irq: iavf_down(adapter); iavf_free_traffic_irqs(adapter); err_setup_rx: iavf_free_all_rx_resources(adapter); err_setup_tx: iavf_free_all_tx_resources(adapter); err_unlock: mutex_unlock(&adapter->crit_lock); return err; } /** * iavf_close - Disables a network interface * @netdev: network interface device structure * * Returns 0, this is not allowed to fail * * The close entry point is called when an interface is de-activated * by the OS. The hardware is still under the drivers control, but * needs to be disabled. All IRQs except vector 0 (reserved for admin queue) * are freed, along with all transmit and receive resources. **/ static int iavf_close(struct net_device *netdev) { struct iavf_adapter *adapter = netdev_priv(netdev); u64 aq_to_restore; int status; mutex_lock(&adapter->crit_lock); if (adapter->state <= __IAVF_DOWN_PENDING) { mutex_unlock(&adapter->crit_lock); return 0; } set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); if (CLIENT_ENABLED(adapter)) adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE; /* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl * deadlock with adminq_task() until iavf_close timeouts. We must send * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make * disable queues possible for vf. Give only necessary flags to * iavf_down and save other to set them right before iavf_close() * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and * iavf will be in DOWN state. */ aq_to_restore = adapter->aq_required; adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG; /* Remove flags which we do not want to send after close or we want to * send before disable queues. */ aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG | IAVF_FLAG_AQ_ENABLE_QUEUES | IAVF_FLAG_AQ_CONFIGURE_QUEUES | IAVF_FLAG_AQ_ADD_VLAN_FILTER | IAVF_FLAG_AQ_ADD_MAC_FILTER | IAVF_FLAG_AQ_ADD_CLOUD_FILTER | IAVF_FLAG_AQ_ADD_FDIR_FILTER | IAVF_FLAG_AQ_ADD_ADV_RSS_CFG); iavf_down(adapter); iavf_change_state(adapter, __IAVF_DOWN_PENDING); iavf_free_traffic_irqs(adapter); mutex_unlock(&adapter->crit_lock); /* We explicitly don't free resources here because the hardware is * still active and can DMA into memory. Resources are cleared in * iavf_virtchnl_completion() after we get confirmation from the PF * driver that the rings have been stopped. * * Also, we wait for state to transition to __IAVF_DOWN before * returning. State change occurs in iavf_virtchnl_completion() after * VF resources are released (which occurs after PF driver processes and * responds to admin queue commands). */ status = wait_event_timeout(adapter->down_waitqueue, adapter->state == __IAVF_DOWN, msecs_to_jiffies(500)); if (!status) netdev_warn(netdev, "Device resources not yet released\n"); mutex_lock(&adapter->crit_lock); adapter->aq_required |= aq_to_restore; mutex_unlock(&adapter->crit_lock); return 0; } /** * iavf_change_mtu - Change the Maximum Transfer Unit * @netdev: network interface device structure * @new_mtu: new value for maximum frame size * * Returns 0 on success, negative on failure **/ static int iavf_change_mtu(struct net_device *netdev, int new_mtu) { struct iavf_adapter *adapter = netdev_priv(netdev); netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu); netdev->mtu = new_mtu; if (CLIENT_ENABLED(adapter)) { iavf_notify_client_l2_params(&adapter->vsi); adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED; } if (netif_running(netdev)) { adapter->flags |= IAVF_FLAG_RESET_NEEDED; queue_work(adapter->wq, &adapter->reset_task); } return 0; } #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ NETIF_F_HW_VLAN_CTAG_TX | \ NETIF_F_HW_VLAN_STAG_RX | \ NETIF_F_HW_VLAN_STAG_TX) /** * iavf_set_features - set the netdev feature flags * @netdev: ptr to the netdev being adjusted * @features: the feature set that the stack is suggesting * Note: expects to be called while under rtnl_lock() **/ static int iavf_set_features(struct net_device *netdev, netdev_features_t features) { struct iavf_adapter *adapter = netdev_priv(netdev); /* trigger update on any VLAN feature change */ if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^ (features & NETIF_VLAN_OFFLOAD_FEATURES)) iavf_set_vlan_offload_features(adapter, netdev->features, features); return 0; } /** * iavf_features_check - Validate encapsulated packet conforms to limits * @skb: skb buff * @dev: This physical port's netdev * @features: Offload features that the stack believes apply **/ static netdev_features_t iavf_features_check(struct sk_buff *skb, struct net_device *dev, netdev_features_t features) { size_t len; /* No point in doing any of this if neither checksum nor GSO are * being requested for this frame. We can rule out both by just * checking for CHECKSUM_PARTIAL */ if (skb->ip_summed != CHECKSUM_PARTIAL) return features; /* We cannot support GSO if the MSS is going to be less than * 64 bytes. If it is then we need to drop support for GSO. */ if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) features &= ~NETIF_F_GSO_MASK; /* MACLEN can support at most 63 words */ len = skb_network_header(skb) - skb->data; if (len & ~(63 * 2)) goto out_err; /* IPLEN and EIPLEN can support at most 127 dwords */ len = skb_transport_header(skb) - skb_network_header(skb); if (len & ~(127 * 4)) goto out_err; if (skb->encapsulation) { /* L4TUNLEN can support 127 words */ len = skb_inner_network_header(skb) - skb_transport_header(skb); if (len & ~(127 * 2)) goto out_err; /* IPLEN can support at most 127 dwords */ len = skb_inner_transport_header(skb) - skb_inner_network_header(skb); if (len & ~(127 * 4)) goto out_err; } /* No need to validate L4LEN as TCP is the only protocol with a * flexible value and we support all possible values supported * by TCP, which is at most 15 dwords */ return features; out_err: return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); } /** * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off * @adapter: board private structure * * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 * were negotiated determine the VLAN features that can be toggled on and off. **/ static netdev_features_t iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter) { netdev_features_t hw_features = 0; if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) return hw_features; /* Enable VLAN features if supported */ if (VLAN_ALLOWED(adapter)) { hw_features |= (NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX); } else if (VLAN_V2_ALLOWED(adapter)) { struct virtchnl_vlan_caps *vlan_v2_caps = &adapter->vlan_v2_caps; struct virtchnl_vlan_supported_caps *stripping_support = &vlan_v2_caps->offloads.stripping_support; struct virtchnl_vlan_supported_caps *insertion_support = &vlan_v2_caps->offloads.insertion_support; if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) { if (stripping_support->outer & VIRTCHNL_VLAN_ETHERTYPE_8100) hw_features |= NETIF_F_HW_VLAN_CTAG_RX; if (stripping_support->outer & VIRTCHNL_VLAN_ETHERTYPE_88A8) hw_features |= NETIF_F_HW_VLAN_STAG_RX; } else if (stripping_support->inner != VIRTCHNL_VLAN_UNSUPPORTED && stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) { if (stripping_support->inner & VIRTCHNL_VLAN_ETHERTYPE_8100) hw_features |= NETIF_F_HW_VLAN_CTAG_RX; } if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) { if (insertion_support->outer & VIRTCHNL_VLAN_ETHERTYPE_8100) hw_features |= NETIF_F_HW_VLAN_CTAG_TX; if (insertion_support->outer & VIRTCHNL_VLAN_ETHERTYPE_88A8) hw_features |= NETIF_F_HW_VLAN_STAG_TX; } else if (insertion_support->inner && insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) { if (insertion_support->inner & VIRTCHNL_VLAN_ETHERTYPE_8100) hw_features |= NETIF_F_HW_VLAN_CTAG_TX; } } return hw_features; } /** * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures * @adapter: board private structure * * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 * were negotiated determine the VLAN features that are enabled by default. **/ static netdev_features_t iavf_get_netdev_vlan_features(struct iavf_adapter *adapter) { netdev_features_t features = 0; if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) return features; if (VLAN_ALLOWED(adapter)) { features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX; } else if (VLAN_V2_ALLOWED(adapter)) { struct virtchnl_vlan_caps *vlan_v2_caps = &adapter->vlan_v2_caps; struct virtchnl_vlan_supported_caps *filtering_support = &vlan_v2_caps->filtering.filtering_support; struct virtchnl_vlan_supported_caps *stripping_support = &vlan_v2_caps->offloads.stripping_support; struct virtchnl_vlan_supported_caps *insertion_support = &vlan_v2_caps->offloads.insertion_support; u32 ethertype_init; /* give priority to outer stripping and don't support both outer * and inner stripping */ ethertype_init = vlan_v2_caps->offloads.ethertype_init; if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { if (stripping_support->outer & VIRTCHNL_VLAN_ETHERTYPE_8100 && ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) features |= NETIF_F_HW_VLAN_CTAG_RX; else if (stripping_support->outer & VIRTCHNL_VLAN_ETHERTYPE_88A8 && ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) features |= NETIF_F_HW_VLAN_STAG_RX; } else if (stripping_support->inner != VIRTCHNL_VLAN_UNSUPPORTED) { if (stripping_support->inner & VIRTCHNL_VLAN_ETHERTYPE_8100 && ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) features |= NETIF_F_HW_VLAN_CTAG_RX; } /* give priority to outer insertion and don't support both outer * and inner insertion */ if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { if (insertion_support->outer & VIRTCHNL_VLAN_ETHERTYPE_8100 && ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) features |= NETIF_F_HW_VLAN_CTAG_TX; else if (insertion_support->outer & VIRTCHNL_VLAN_ETHERTYPE_88A8 && ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) features |= NETIF_F_HW_VLAN_STAG_TX; } else if (insertion_support->inner != VIRTCHNL_VLAN_UNSUPPORTED) { if (insertion_support->inner & VIRTCHNL_VLAN_ETHERTYPE_8100 && ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) features |= NETIF_F_HW_VLAN_CTAG_TX; } /* give priority to outer filtering and don't bother if both * outer and inner filtering are enabled */ ethertype_init = vlan_v2_caps->filtering.ethertype_init; if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { if (filtering_support->outer & VIRTCHNL_VLAN_ETHERTYPE_8100 && ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) features |= NETIF_F_HW_VLAN_CTAG_FILTER; if (filtering_support->outer & VIRTCHNL_VLAN_ETHERTYPE_88A8 && ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) features |= NETIF_F_HW_VLAN_STAG_FILTER; } else if (filtering_support->inner != VIRTCHNL_VLAN_UNSUPPORTED) { if (filtering_support->inner & VIRTCHNL_VLAN_ETHERTYPE_8100 && ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) features |= NETIF_F_HW_VLAN_CTAG_FILTER; if (filtering_support->inner & VIRTCHNL_VLAN_ETHERTYPE_88A8 && ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) features |= NETIF_F_HW_VLAN_STAG_FILTER; } } return features; } #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \ (!(((requested) & (feature_bit)) && \ !((allowed) & (feature_bit)))) /** * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support * @adapter: board private structure * @requested_features: stack requested NETDEV features **/ static netdev_features_t iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter, netdev_features_t requested_features) { netdev_features_t allowed_features; allowed_features = iavf_get_netdev_vlan_hw_features(adapter) | iavf_get_netdev_vlan_features(adapter); if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, allowed_features, NETIF_F_HW_VLAN_CTAG_TX)) requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX; if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, allowed_features, NETIF_F_HW_VLAN_CTAG_RX)) requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX; if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, allowed_features, NETIF_F_HW_VLAN_STAG_TX)) requested_features &= ~NETIF_F_HW_VLAN_STAG_TX; if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, allowed_features, NETIF_F_HW_VLAN_STAG_RX)) requested_features &= ~NETIF_F_HW_VLAN_STAG_RX; if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, allowed_features, NETIF_F_HW_VLAN_CTAG_FILTER)) requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, allowed_features, NETIF_F_HW_VLAN_STAG_FILTER)) requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER; if ((requested_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && (requested_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) && adapter->vlan_v2_caps.offloads.ethertype_match == VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) { netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX); } return requested_features; } /** * iavf_fix_features - fix up the netdev feature bits * @netdev: our net device * @features: desired feature bits * * Returns fixed-up features bits **/ static netdev_features_t iavf_fix_features(struct net_device *netdev, netdev_features_t features) { struct iavf_adapter *adapter = netdev_priv(netdev); return iavf_fix_netdev_vlan_features(adapter, features); } static const struct net_device_ops iavf_netdev_ops = { .ndo_open = iavf_open, .ndo_stop = iavf_close, .ndo_start_xmit = iavf_xmit_frame, .ndo_set_rx_mode = iavf_set_rx_mode, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = iavf_set_mac, .ndo_change_mtu = iavf_change_mtu, .ndo_tx_timeout = iavf_tx_timeout, .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid, .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid, .ndo_features_check = iavf_features_check, .ndo_fix_features = iavf_fix_features, .ndo_set_features = iavf_set_features, .ndo_setup_tc = iavf_setup_tc, }; /** * iavf_check_reset_complete - check that VF reset is complete * @hw: pointer to hw struct * * Returns 0 if device is ready to use, or -EBUSY if it's in reset. **/ static int iavf_check_reset_complete(struct iavf_hw *hw) { u32 rstat; int i; for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { rstat = rd32(hw, IAVF_VFGEN_RSTAT) & IAVF_VFGEN_RSTAT_VFR_STATE_MASK; if ((rstat == VIRTCHNL_VFR_VFACTIVE) || (rstat == VIRTCHNL_VFR_COMPLETED)) return 0; usleep_range(10, 20); } return -EBUSY; } /** * iavf_process_config - Process the config information we got from the PF * @adapter: board private structure * * Verify that we have a valid config struct, and set up our netdev features * and our VSI struct. **/ int iavf_process_config(struct iavf_adapter *adapter) { struct virtchnl_vf_resource *vfres = adapter->vf_res; netdev_features_t hw_vlan_features, vlan_features; struct net_device *netdev = adapter->netdev; netdev_features_t hw_enc_features; netdev_features_t hw_features; hw_enc_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA | NETIF_F_SOFT_FEATURES | NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_SCTP_CRC | NETIF_F_RXHASH | NETIF_F_RXCSUM | 0; /* advertise to stack only if offloads for encapsulated packets is * supported */ if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) { hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_IPXIP6 | NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_PARTIAL | 0; if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)) netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM; netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; netdev->hw_enc_features |= hw_enc_features; } /* record features VLANs can make use of */ netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; /* Write features and hw_features separately to avoid polluting * with, or dropping, features that are set when we registered. */ hw_features = hw_enc_features; /* get HW VLAN features that can be toggled */ hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter); /* Enable cloud filter if ADQ is supported */ if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) hw_features |= NETIF_F_HW_TC; if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO) hw_features |= NETIF_F_GSO_UDP_L4; netdev->hw_features |= hw_features | hw_vlan_features; vlan_features = iavf_get_netdev_vlan_features(adapter); netdev->features |= hw_features | vlan_features; if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; netdev->priv_flags |= IFF_UNICAST_FLT; /* Do not turn on offloads when they are requested to be turned off. * TSO needs minimum 576 bytes to work correctly. */ if (netdev->wanted_features) { if (!(netdev->wanted_features & NETIF_F_TSO) || netdev->mtu < 576) netdev->features &= ~NETIF_F_TSO; if (!(netdev->wanted_features & NETIF_F_TSO6) || netdev->mtu < 576) netdev->features &= ~NETIF_F_TSO6; if (!(netdev->wanted_features & NETIF_F_TSO_ECN)) netdev->features &= ~NETIF_F_TSO_ECN; if (!(netdev->wanted_features & NETIF_F_GRO)) netdev->features &= ~NETIF_F_GRO; if (!(netdev->wanted_features & NETIF_F_GSO)) netdev->features &= ~NETIF_F_GSO; } return 0; } /** * iavf_shutdown - Shutdown the device in preparation for a reboot * @pdev: pci device structure **/ static void iavf_shutdown(struct pci_dev *pdev) { struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev); struct net_device *netdev = adapter->netdev; netif_device_detach(netdev); if (netif_running(netdev)) iavf_close(netdev); if (iavf_lock_timeout(&adapter->crit_lock, 5000)) dev_warn(&adapter->pdev->dev, "%s: failed to acquire crit_lock\n", __func__); /* Prevent the watchdog from running. */ iavf_change_state(adapter, __IAVF_REMOVE); adapter->aq_required = 0; mutex_unlock(&adapter->crit_lock); #ifdef CONFIG_PM pci_save_state(pdev); #endif pci_disable_device(pdev); } /** * iavf_probe - Device Initialization Routine * @pdev: PCI device information struct * @ent: entry in iavf_pci_tbl * * Returns 0 on success, negative on failure * * iavf_probe initializes an adapter identified by a pci_dev structure. * The OS initialization, configuring of the adapter private structure, * and a hardware reset occur. **/ static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *netdev; struct iavf_adapter *adapter = NULL; struct iavf_hw *hw = NULL; int err; err = pci_enable_device(pdev); if (err) return err; err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); if (err) { dev_err(&pdev->dev, "DMA configuration failed: 0x%x\n", err); goto err_dma; } err = pci_request_regions(pdev, iavf_driver_name); if (err) { dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err); goto err_pci_reg; } pci_set_master(pdev); netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter), IAVF_MAX_REQ_QUEUES); if (!netdev) { err = -ENOMEM; goto err_alloc_etherdev; } SET_NETDEV_DEV(netdev, &pdev->dev); pci_set_drvdata(pdev, netdev); adapter = netdev_priv(netdev); adapter->netdev = netdev; adapter->pdev = pdev; hw = &adapter->hw; hw->back = adapter; adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM, iavf_driver_name); if (!adapter->wq) { err = -ENOMEM; goto err_alloc_wq; } adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1; iavf_change_state(adapter, __IAVF_STARTUP); /* Call save state here because it relies on the adapter struct. */ pci_save_state(pdev); hw->hw_addr = ioremap(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0)); if (!hw->hw_addr) { err = -EIO; goto err_ioremap; } hw->vendor_id = pdev->vendor; hw->device_id = pdev->device; pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); hw->subsystem_vendor_id = pdev->subsystem_vendor; hw->subsystem_device_id = pdev->subsystem_device; hw->bus.device = PCI_SLOT(pdev->devfn); hw->bus.func = PCI_FUNC(pdev->devfn); hw->bus.bus_id = pdev->bus->number; /* set up the locks for the AQ, do this only once in probe * and destroy them only once in remove */ mutex_init(&adapter->crit_lock); mutex_init(&adapter->client_lock); mutex_init(&hw->aq.asq_mutex); mutex_init(&hw->aq.arq_mutex); spin_lock_init(&adapter->mac_vlan_list_lock); spin_lock_init(&adapter->cloud_filter_list_lock); spin_lock_init(&adapter->fdir_fltr_lock); spin_lock_init(&adapter->adv_rss_lock); INIT_LIST_HEAD(&adapter->mac_filter_list); INIT_LIST_HEAD(&adapter->vlan_filter_list); INIT_LIST_HEAD(&adapter->cloud_filter_list); INIT_LIST_HEAD(&adapter->fdir_list_head); INIT_LIST_HEAD(&adapter->adv_rss_list_head); INIT_WORK(&adapter->reset_task, iavf_reset_task); INIT_WORK(&adapter->adminq_task, iavf_adminq_task); INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task); INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task); queue_delayed_work(adapter->wq, &adapter->watchdog_task, msecs_to_jiffies(5 * (pdev->devfn & 0x07))); /* Setup the wait queue for indicating transition to down status */ init_waitqueue_head(&adapter->down_waitqueue); /* Setup the wait queue for indicating virtchannel events */ init_waitqueue_head(&adapter->vc_waitqueue); return 0; err_ioremap: destroy_workqueue(adapter->wq); err_alloc_wq: free_netdev(netdev); err_alloc_etherdev: pci_release_regions(pdev); err_pci_reg: err_dma: pci_disable_device(pdev); return err; } /** * iavf_suspend - Power management suspend routine * @dev_d: device info pointer * * Called when the system (VM) is entering sleep/suspend. **/ static int __maybe_unused iavf_suspend(struct device *dev_d) { struct net_device *netdev = dev_get_drvdata(dev_d); struct iavf_adapter *adapter = netdev_priv(netdev); netif_device_detach(netdev); while (!mutex_trylock(&adapter->crit_lock)) usleep_range(500, 1000); if (netif_running(netdev)) { rtnl_lock(); iavf_down(adapter); rtnl_unlock(); } iavf_free_misc_irq(adapter); iavf_reset_interrupt_capability(adapter); mutex_unlock(&adapter->crit_lock); return 0; } /** * iavf_resume - Power management resume routine * @dev_d: device info pointer * * Called when the system (VM) is resumed from sleep/suspend. **/ static int __maybe_unused iavf_resume(struct device *dev_d) { struct pci_dev *pdev = to_pci_dev(dev_d); struct iavf_adapter *adapter; u32 err; adapter = iavf_pdev_to_adapter(pdev); pci_set_master(pdev); rtnl_lock(); err = iavf_set_interrupt_capability(adapter); if (err) { rtnl_unlock(); dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n"); return err; } err = iavf_request_misc_irq(adapter); rtnl_unlock(); if (err) { dev_err(&pdev->dev, "Cannot get interrupt vector.\n"); return err; } queue_work(adapter->wq, &adapter->reset_task); netif_device_attach(adapter->netdev); return err; } /** * iavf_remove - Device Removal Routine * @pdev: PCI device information struct * * iavf_remove is called by the PCI subsystem to alert the driver * that it should release a PCI device. The could be caused by a * Hot-Plug event, or because the driver is going to be removed from * memory. **/ static void iavf_remove(struct pci_dev *pdev) { struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev); struct iavf_fdir_fltr *fdir, *fdirtmp; struct iavf_vlan_filter *vlf, *vlftmp; struct iavf_cloud_filter *cf, *cftmp; struct iavf_adv_rss *rss, *rsstmp; struct iavf_mac_filter *f, *ftmp; struct net_device *netdev; struct iavf_hw *hw; int err; netdev = adapter->netdev; hw = &adapter->hw; if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) return; /* Wait until port initialization is complete. * There are flows where register/unregister netdev may race. */ while (1) { mutex_lock(&adapter->crit_lock); if (adapter->state == __IAVF_RUNNING || adapter->state == __IAVF_DOWN || adapter->state == __IAVF_INIT_FAILED) { mutex_unlock(&adapter->crit_lock); break; } /* Simply return if we already went through iavf_shutdown */ if (adapter->state == __IAVF_REMOVE) { mutex_unlock(&adapter->crit_lock); return; } mutex_unlock(&adapter->crit_lock); usleep_range(500, 1000); } cancel_delayed_work_sync(&adapter->watchdog_task); if (adapter->netdev_registered) { rtnl_lock(); unregister_netdevice(netdev); adapter->netdev_registered = false; rtnl_unlock(); } if (CLIENT_ALLOWED(adapter)) { err = iavf_lan_del_device(adapter); if (err) dev_warn(&pdev->dev, "Failed to delete client device: %d\n", err); } mutex_lock(&adapter->crit_lock); dev_info(&adapter->pdev->dev, "Removing device\n"); iavf_change_state(adapter, __IAVF_REMOVE); iavf_request_reset(adapter); msleep(50); /* If the FW isn't responding, kick it once, but only once. */ if (!iavf_asq_done(hw)) { iavf_request_reset(adapter); msleep(50); } iavf_misc_irq_disable(adapter); /* Shut down all the garbage mashers on the detention level */ cancel_work_sync(&adapter->reset_task); cancel_delayed_work_sync(&adapter->watchdog_task); cancel_work_sync(&adapter->adminq_task); cancel_delayed_work_sync(&adapter->client_task); adapter->aq_required = 0; adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; iavf_free_all_tx_resources(adapter); iavf_free_all_rx_resources(adapter); iavf_free_misc_irq(adapter); iavf_reset_interrupt_capability(adapter); iavf_free_q_vectors(adapter); iavf_free_rss(adapter); if (hw->aq.asq.count) iavf_shutdown_adminq(hw); /* destroy the locks only once, here */ mutex_destroy(&hw->aq.arq_mutex); mutex_destroy(&hw->aq.asq_mutex); mutex_destroy(&adapter->client_lock); mutex_unlock(&adapter->crit_lock); mutex_destroy(&adapter->crit_lock); iounmap(hw->hw_addr); pci_release_regions(pdev); iavf_free_queues(adapter); kfree(adapter->vf_res); spin_lock_bh(&adapter->mac_vlan_list_lock); /* If we got removed before an up/down sequence, we've got a filter * hanging out there that we need to get rid of. */ list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { list_del(&f->list); kfree(f); } list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, list) { list_del(&vlf->list); kfree(vlf); } spin_unlock_bh(&adapter->mac_vlan_list_lock); spin_lock_bh(&adapter->cloud_filter_list_lock); list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { list_del(&cf->list); kfree(cf); } spin_unlock_bh(&adapter->cloud_filter_list_lock); spin_lock_bh(&adapter->fdir_fltr_lock); list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) { list_del(&fdir->list); kfree(fdir); } spin_unlock_bh(&adapter->fdir_fltr_lock); spin_lock_bh(&adapter->adv_rss_lock); list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, list) { list_del(&rss->list); kfree(rss); } spin_unlock_bh(&adapter->adv_rss_lock); destroy_workqueue(adapter->wq); free_netdev(netdev); pci_disable_device(pdev); } static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume); static struct pci_driver iavf_driver = { .name = iavf_driver_name, .id_table = iavf_pci_tbl, .probe = iavf_probe, .remove = iavf_remove, .driver.pm = &iavf_pm_ops, .shutdown = iavf_shutdown, }; /** * iavf_init_module - Driver Registration Routine * * iavf_init_module is the first routine called when the driver is * loaded. All it does is register with the PCI subsystem. **/ static int __init iavf_init_module(void) { pr_info("iavf: %s\n", iavf_driver_string); pr_info("%s\n", iavf_copyright); return pci_register_driver(&iavf_driver); } module_init(iavf_init_module); /** * iavf_exit_module - Driver Exit Cleanup Routine * * iavf_exit_module is called just before the driver is removed * from memory. **/ static void __exit iavf_exit_module(void) { pci_unregister_driver(&iavf_driver); } module_exit(iavf_exit_module); /* iavf_main.c */