// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2018, Intel Corporation. */ #include "ice.h" #include "ice_vf_lib_private.h" #include "ice_base.h" #include "ice_lib.h" #include "ice_fltr.h" #include "ice_dcb_lib.h" #include "ice_flow.h" #include "ice_eswitch.h" #include "ice_virtchnl_allowlist.h" #include "ice_flex_pipe.h" #include "ice_vf_vsi_vlan_ops.h" #include "ice_vlan.h" /** * ice_free_vf_entries - Free all VF entries from the hash table * @pf: pointer to the PF structure * * Iterate over the VF hash table, removing and releasing all VF entries. * Called during VF teardown or as cleanup during failed VF initialization. */ static void ice_free_vf_entries(struct ice_pf *pf) { struct ice_vfs *vfs = &pf->vfs; struct hlist_node *tmp; struct ice_vf *vf; unsigned int bkt; /* Remove all VFs from the hash table and release their main * reference. Once all references to the VF are dropped, ice_put_vf() * will call ice_release_vf which will remove the VF memory. */ lockdep_assert_held(&vfs->table_lock); hash_for_each_safe(vfs->table, bkt, tmp, vf, entry) { hash_del_rcu(&vf->entry); ice_put_vf(vf); } } /** * ice_free_vf_res - Free a VF's resources * @vf: pointer to the VF info */ static void ice_free_vf_res(struct ice_vf *vf) { struct ice_pf *pf = vf->pf; int i, last_vector_idx; /* First, disable VF's configuration API to prevent OS from * accessing the VF's VSI after it's freed or invalidated. */ clear_bit(ICE_VF_STATE_INIT, vf->vf_states); ice_vf_fdir_exit(vf); /* free VF control VSI */ if (vf->ctrl_vsi_idx != ICE_NO_VSI) ice_vf_ctrl_vsi_release(vf); /* free VSI and disconnect it from the parent uplink */ if (vf->lan_vsi_idx != ICE_NO_VSI) { ice_vf_vsi_release(vf); vf->num_mac = 0; } last_vector_idx = vf->first_vector_idx + pf->vfs.num_msix_per - 1; /* clear VF MDD event information */ memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events)); memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events)); /* Disable interrupts so that VF starts in a known state */ for (i = vf->first_vector_idx; i <= last_vector_idx; i++) { wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M); ice_flush(&pf->hw); } /* reset some of the state variables keeping track of the resources */ clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states); clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states); } /** * ice_dis_vf_mappings * @vf: pointer to the VF structure */ static void ice_dis_vf_mappings(struct ice_vf *vf) { struct ice_pf *pf = vf->pf; struct ice_vsi *vsi; struct device *dev; int first, last, v; struct ice_hw *hw; hw = &pf->hw; vsi = ice_get_vf_vsi(vf); if (WARN_ON(!vsi)) return; dev = ice_pf_to_dev(pf); wr32(hw, VPINT_ALLOC(vf->vf_id), 0); wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0); first = vf->first_vector_idx; last = first + pf->vfs.num_msix_per - 1; for (v = first; v <= last; v++) { u32 reg; reg = (((1 << GLINT_VECT2FUNC_IS_PF_S) & GLINT_VECT2FUNC_IS_PF_M) | ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) & GLINT_VECT2FUNC_PF_NUM_M)); wr32(hw, GLINT_VECT2FUNC(v), reg); } if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0); else dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n"); if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0); else dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n"); } /** * ice_sriov_free_msix_res - Reset/free any used MSIX resources * @pf: pointer to the PF structure * * Since no MSIX entries are taken from the pf->irq_tracker then just clear * the pf->sriov_base_vector. * * Returns 0 on success, and -EINVAL on error. */ static int ice_sriov_free_msix_res(struct ice_pf *pf) { struct ice_res_tracker *res; if (!pf) return -EINVAL; res = pf->irq_tracker; if (!res) return -EINVAL; /* give back irq_tracker resources used */ WARN_ON(pf->sriov_base_vector < res->num_entries); pf->sriov_base_vector = 0; return 0; } /** * ice_free_vfs - Free all VFs * @pf: pointer to the PF structure */ void ice_free_vfs(struct ice_pf *pf) { struct device *dev = ice_pf_to_dev(pf); struct ice_vfs *vfs = &pf->vfs; struct ice_hw *hw = &pf->hw; struct ice_vf *vf; unsigned int bkt; if (!ice_has_vfs(pf)) return; while (test_and_set_bit(ICE_VF_DIS, pf->state)) usleep_range(1000, 2000); /* Disable IOV before freeing resources. This lets any VF drivers * running in the host get themselves cleaned up before we yank * the carpet out from underneath their feet. */ if (!pci_vfs_assigned(pf->pdev)) pci_disable_sriov(pf->pdev); else dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n"); mutex_lock(&vfs->table_lock); ice_eswitch_release(pf); ice_for_each_vf(pf, bkt, vf) { mutex_lock(&vf->cfg_lock); ice_dis_vf_qs(vf); if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) { /* disable VF qp mappings and set VF disable state */ ice_dis_vf_mappings(vf); set_bit(ICE_VF_STATE_DIS, vf->vf_states); ice_free_vf_res(vf); } if (!pci_vfs_assigned(pf->pdev)) { u32 reg_idx, bit_idx; reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32; bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32; wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx)); } /* clear malicious info since the VF is getting released */ if (ice_mbx_clear_malvf(&hw->mbx_snapshot, pf->vfs.malvfs, ICE_MAX_SRIOV_VFS, vf->vf_id)) dev_dbg(dev, "failed to clear malicious VF state for VF %u\n", vf->vf_id); mutex_unlock(&vf->cfg_lock); } if (ice_sriov_free_msix_res(pf)) dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n"); vfs->num_qps_per = 0; ice_free_vf_entries(pf); mutex_unlock(&vfs->table_lock); clear_bit(ICE_VF_DIS, pf->state); clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags); } /** * ice_vf_vsi_setup - Set up a VF VSI * @vf: VF to setup VSI for * * Returns pointer to the successfully allocated VSI struct on success, * otherwise returns NULL on failure. */ static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf) { struct ice_vsi_cfg_params params = {}; struct ice_pf *pf = vf->pf; struct ice_vsi *vsi; params.type = ICE_VSI_VF; params.pi = ice_vf_get_port_info(vf); params.vf = vf; params.flags = ICE_VSI_FLAG_INIT; vsi = ice_vsi_setup(pf, ¶ms); if (!vsi) { dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n"); ice_vf_invalidate_vsi(vf); return NULL; } vf->lan_vsi_idx = vsi->idx; vf->lan_vsi_num = vsi->vsi_num; return vsi; } /** * ice_calc_vf_first_vector_idx - Calculate MSIX vector index in the PF space * @pf: pointer to PF structure * @vf: pointer to VF that the first MSIX vector index is being calculated for * * This returns the first MSIX vector index in PF space that is used by this VF. * This index is used when accessing PF relative registers such as * GLINT_VECT2FUNC and GLINT_DYN_CTL. * This will always be the OICR index in the AVF driver so any functionality * using vf->first_vector_idx for queue configuration will have to increment by * 1 to avoid meddling with the OICR index. */ static int ice_calc_vf_first_vector_idx(struct ice_pf *pf, struct ice_vf *vf) { return pf->sriov_base_vector + vf->vf_id * pf->vfs.num_msix_per; } /** * ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware * @vf: VF to enable MSIX mappings for * * Some of the registers need to be indexed/configured using hardware global * device values and other registers need 0-based values, which represent PF * based values. */ static void ice_ena_vf_msix_mappings(struct ice_vf *vf) { int device_based_first_msix, device_based_last_msix; int pf_based_first_msix, pf_based_last_msix, v; struct ice_pf *pf = vf->pf; int device_based_vf_id; struct ice_hw *hw; u32 reg; hw = &pf->hw; pf_based_first_msix = vf->first_vector_idx; pf_based_last_msix = (pf_based_first_msix + pf->vfs.num_msix_per) - 1; device_based_first_msix = pf_based_first_msix + pf->hw.func_caps.common_cap.msix_vector_first_id; device_based_last_msix = (device_based_first_msix + pf->vfs.num_msix_per) - 1; device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id; reg = (((device_based_first_msix << VPINT_ALLOC_FIRST_S) & VPINT_ALLOC_FIRST_M) | ((device_based_last_msix << VPINT_ALLOC_LAST_S) & VPINT_ALLOC_LAST_M) | VPINT_ALLOC_VALID_M); wr32(hw, VPINT_ALLOC(vf->vf_id), reg); reg = (((device_based_first_msix << VPINT_ALLOC_PCI_FIRST_S) & VPINT_ALLOC_PCI_FIRST_M) | ((device_based_last_msix << VPINT_ALLOC_PCI_LAST_S) & VPINT_ALLOC_PCI_LAST_M) | VPINT_ALLOC_PCI_VALID_M); wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg); /* map the interrupts to its functions */ for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) { reg = (((device_based_vf_id << GLINT_VECT2FUNC_VF_NUM_S) & GLINT_VECT2FUNC_VF_NUM_M) | ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) & GLINT_VECT2FUNC_PF_NUM_M)); wr32(hw, GLINT_VECT2FUNC(v), reg); } /* Map mailbox interrupt to VF MSI-X vector 0 */ wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M); } /** * ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF * @vf: VF to enable the mappings for * @max_txq: max Tx queues allowed on the VF's VSI * @max_rxq: max Rx queues allowed on the VF's VSI */ static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq) { struct device *dev = ice_pf_to_dev(vf->pf); struct ice_vsi *vsi = ice_get_vf_vsi(vf); struct ice_hw *hw = &vf->pf->hw; u32 reg; if (WARN_ON(!vsi)) return; /* set regardless of mapping mode */ wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M); /* VF Tx queues allocation */ if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) { /* set the VF PF Tx queue range * VFNUMQ value should be set to (number of queues - 1). A value * of 0 means 1 queue and a value of 255 means 256 queues */ reg = (((vsi->txq_map[0] << VPLAN_TX_QBASE_VFFIRSTQ_S) & VPLAN_TX_QBASE_VFFIRSTQ_M) | (((max_txq - 1) << VPLAN_TX_QBASE_VFNUMQ_S) & VPLAN_TX_QBASE_VFNUMQ_M)); wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg); } else { dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n"); } /* set regardless of mapping mode */ wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M); /* VF Rx queues allocation */ if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) { /* set the VF PF Rx queue range * VFNUMQ value should be set to (number of queues - 1). A value * of 0 means 1 queue and a value of 255 means 256 queues */ reg = (((vsi->rxq_map[0] << VPLAN_RX_QBASE_VFFIRSTQ_S) & VPLAN_RX_QBASE_VFFIRSTQ_M) | (((max_rxq - 1) << VPLAN_RX_QBASE_VFNUMQ_S) & VPLAN_RX_QBASE_VFNUMQ_M)); wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg); } else { dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n"); } } /** * ice_ena_vf_mappings - enable VF MSIX and queue mapping * @vf: pointer to the VF structure */ static void ice_ena_vf_mappings(struct ice_vf *vf) { struct ice_vsi *vsi = ice_get_vf_vsi(vf); if (WARN_ON(!vsi)) return; ice_ena_vf_msix_mappings(vf); ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq); } /** * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space * @vf: VF to calculate the register index for * @q_vector: a q_vector associated to the VF */ int ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector) { struct ice_pf *pf; if (!vf || !q_vector) return -EINVAL; pf = vf->pf; /* always add one to account for the OICR being the first MSIX */ return pf->sriov_base_vector + pf->vfs.num_msix_per * vf->vf_id + q_vector->v_idx + 1; } /** * ice_get_max_valid_res_idx - Get the max valid resource index * @res: pointer to the resource to find the max valid index for * * Start from the end of the ice_res_tracker and return right when we find the * first res->list entry with the ICE_RES_VALID_BIT set. This function is only * valid for SR-IOV because it is the only consumer that manipulates the * res->end and this is always called when res->end is set to res->num_entries. */ static int ice_get_max_valid_res_idx(struct ice_res_tracker *res) { int i; if (!res) return -EINVAL; for (i = res->num_entries - 1; i >= 0; i--) if (res->list[i] & ICE_RES_VALID_BIT) return i; return 0; } /** * ice_sriov_set_msix_res - Set any used MSIX resources * @pf: pointer to PF structure * @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs * * This function allows SR-IOV resources to be taken from the end of the PF's * allowed HW MSIX vectors so that the irq_tracker will not be affected. We * just set the pf->sriov_base_vector and return success. * * If there are not enough resources available, return an error. This should * always be caught by ice_set_per_vf_res(). * * Return 0 on success, and -EINVAL when there are not enough MSIX vectors * in the PF's space available for SR-IOV. */ static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed) { u16 total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors; int vectors_used = pf->irq_tracker->num_entries; int sriov_base_vector; sriov_base_vector = total_vectors - num_msix_needed; /* make sure we only grab irq_tracker entries from the list end and * that we have enough available MSIX vectors */ if (sriov_base_vector < vectors_used) return -EINVAL; pf->sriov_base_vector = sriov_base_vector; return 0; } /** * ice_set_per_vf_res - check if vectors and queues are available * @pf: pointer to the PF structure * @num_vfs: the number of SR-IOV VFs being configured * * First, determine HW interrupts from common pool. If we allocate fewer VFs, we * get more vectors and can enable more queues per VF. Note that this does not * grab any vectors from the SW pool already allocated. Also note, that all * vector counts include one for each VF's miscellaneous interrupt vector * (i.e. OICR). * * Minimum VFs - 2 vectors, 1 queue pair * Small VFs - 5 vectors, 4 queue pairs * Medium VFs - 17 vectors, 16 queue pairs * * Second, determine number of queue pairs per VF by starting with a pre-defined * maximum each VF supports. If this is not possible, then we adjust based on * queue pairs available on the device. * * Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used * by each VF during VF initialization and reset. */ static int ice_set_per_vf_res(struct ice_pf *pf, u16 num_vfs) { int max_valid_res_idx = ice_get_max_valid_res_idx(pf->irq_tracker); u16 num_msix_per_vf, num_txq, num_rxq, avail_qs; int msix_avail_per_vf, msix_avail_for_sriov; struct device *dev = ice_pf_to_dev(pf); int err; lockdep_assert_held(&pf->vfs.table_lock); if (!num_vfs) return -EINVAL; if (max_valid_res_idx < 0) return -ENOSPC; /* determine MSI-X resources per VF */ msix_avail_for_sriov = pf->hw.func_caps.common_cap.num_msix_vectors - pf->irq_tracker->num_entries; msix_avail_per_vf = msix_avail_for_sriov / num_vfs; if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) { num_msix_per_vf = ICE_NUM_VF_MSIX_MED; } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) { num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL; } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) { num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN; } else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) { num_msix_per_vf = ICE_MIN_INTR_PER_VF; } else { dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n", msix_avail_for_sriov, ICE_MIN_INTR_PER_VF, num_vfs); return -ENOSPC; } num_txq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF, ICE_MAX_RSS_QS_PER_VF); avail_qs = ice_get_avail_txq_count(pf) / num_vfs; if (!avail_qs) num_txq = 0; else if (num_txq > avail_qs) num_txq = rounddown_pow_of_two(avail_qs); num_rxq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF, ICE_MAX_RSS_QS_PER_VF); avail_qs = ice_get_avail_rxq_count(pf) / num_vfs; if (!avail_qs) num_rxq = 0; else if (num_rxq > avail_qs) num_rxq = rounddown_pow_of_two(avail_qs); if (num_txq < ICE_MIN_QS_PER_VF || num_rxq < ICE_MIN_QS_PER_VF) { dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n", ICE_MIN_QS_PER_VF, num_vfs); return -ENOSPC; } err = ice_sriov_set_msix_res(pf, num_msix_per_vf * num_vfs); if (err) { dev_err(dev, "Unable to set MSI-X resources for %d VFs, err %d\n", num_vfs, err); return err; } /* only allow equal Tx/Rx queue count (i.e. queue pairs) */ pf->vfs.num_qps_per = min_t(int, num_txq, num_rxq); pf->vfs.num_msix_per = num_msix_per_vf; dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n", num_vfs, pf->vfs.num_msix_per, pf->vfs.num_qps_per); return 0; } /** * ice_init_vf_vsi_res - initialize/setup VF VSI resources * @vf: VF to initialize/setup the VSI for * * This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the * VF VSI's broadcast filter and is only used during initial VF creation. */ static int ice_init_vf_vsi_res(struct ice_vf *vf) { struct ice_pf *pf = vf->pf; struct ice_vsi *vsi; int err; vf->first_vector_idx = ice_calc_vf_first_vector_idx(pf, vf); vsi = ice_vf_vsi_setup(vf); if (!vsi) return -ENOMEM; err = ice_vf_init_host_cfg(vf, vsi); if (err) goto release_vsi; return 0; release_vsi: ice_vf_vsi_release(vf); return err; } /** * ice_start_vfs - start VFs so they are ready to be used by SR-IOV * @pf: PF the VFs are associated with */ static int ice_start_vfs(struct ice_pf *pf) { struct ice_hw *hw = &pf->hw; unsigned int bkt, it_cnt; struct ice_vf *vf; int retval; lockdep_assert_held(&pf->vfs.table_lock); it_cnt = 0; ice_for_each_vf(pf, bkt, vf) { vf->vf_ops->clear_reset_trigger(vf); retval = ice_init_vf_vsi_res(vf); if (retval) { dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n", vf->vf_id, retval); goto teardown; } set_bit(ICE_VF_STATE_INIT, vf->vf_states); ice_ena_vf_mappings(vf); wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE); it_cnt++; } ice_flush(hw); return 0; teardown: ice_for_each_vf(pf, bkt, vf) { if (it_cnt == 0) break; ice_dis_vf_mappings(vf); ice_vf_vsi_release(vf); it_cnt--; } return retval; } /** * ice_sriov_free_vf - Free VF memory after all references are dropped * @vf: pointer to VF to free * * Called by ice_put_vf through ice_release_vf once the last reference to a VF * structure has been dropped. */ static void ice_sriov_free_vf(struct ice_vf *vf) { mutex_destroy(&vf->cfg_lock); kfree_rcu(vf, rcu); } /** * ice_sriov_clear_reset_state - clears VF Reset status register * @vf: the vf to configure */ static void ice_sriov_clear_reset_state(struct ice_vf *vf) { struct ice_hw *hw = &vf->pf->hw; /* Clear the reset status register so that VF immediately sees that * the device is resetting, even if hardware hasn't yet gotten around * to clearing VFGEN_RSTAT for us. */ wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_INPROGRESS); } /** * ice_sriov_clear_mbx_register - clears SRIOV VF's mailbox registers * @vf: the vf to configure */ static void ice_sriov_clear_mbx_register(struct ice_vf *vf) { struct ice_pf *pf = vf->pf; wr32(&pf->hw, VF_MBX_ARQLEN(vf->vf_id), 0); wr32(&pf->hw, VF_MBX_ATQLEN(vf->vf_id), 0); } /** * ice_sriov_trigger_reset_register - trigger VF reset for SRIOV VF * @vf: pointer to VF structure * @is_vflr: true if reset occurred due to VFLR * * Trigger and cleanup after a VF reset for a SR-IOV VF. */ static void ice_sriov_trigger_reset_register(struct ice_vf *vf, bool is_vflr) { struct ice_pf *pf = vf->pf; u32 reg, reg_idx, bit_idx; unsigned int vf_abs_id, i; struct device *dev; struct ice_hw *hw; dev = ice_pf_to_dev(pf); hw = &pf->hw; vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id; /* In the case of a VFLR, HW has already reset the VF and we just need * to clean up. Otherwise we must first trigger the reset using the * VFRTRIG register. */ if (!is_vflr) { reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id)); reg |= VPGEN_VFRTRIG_VFSWR_M; wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg); } /* clear the VFLR bit in GLGEN_VFLRSTAT */ reg_idx = (vf_abs_id) / 32; bit_idx = (vf_abs_id) % 32; wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx)); ice_flush(hw); wr32(hw, PF_PCI_CIAA, VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S)); for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) { reg = rd32(hw, PF_PCI_CIAD); /* no transactions pending so stop polling */ if ((reg & VF_TRANS_PENDING_M) == 0) break; dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id); udelay(ICE_PCI_CIAD_WAIT_DELAY_US); } } /** * ice_sriov_poll_reset_status - poll SRIOV VF reset status * @vf: pointer to VF structure * * Returns true when reset is successful, else returns false */ static bool ice_sriov_poll_reset_status(struct ice_vf *vf) { struct ice_pf *pf = vf->pf; unsigned int i; u32 reg; for (i = 0; i < 10; i++) { /* VF reset requires driver to first reset the VF and then * poll the status register to make sure that the reset * completed successfully. */ reg = rd32(&pf->hw, VPGEN_VFRSTAT(vf->vf_id)); if (reg & VPGEN_VFRSTAT_VFRD_M) return true; /* only sleep if the reset is not done */ usleep_range(10, 20); } return false; } /** * ice_sriov_clear_reset_trigger - enable VF to access hardware * @vf: VF to enabled hardware access for */ static void ice_sriov_clear_reset_trigger(struct ice_vf *vf) { struct ice_hw *hw = &vf->pf->hw; u32 reg; reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id)); reg &= ~VPGEN_VFRTRIG_VFSWR_M; wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg); ice_flush(hw); } /** * ice_sriov_create_vsi - Create a new VSI for a VF * @vf: VF to create the VSI for * * This is called by ice_vf_recreate_vsi to create the new VSI after the old * VSI has been released. */ static int ice_sriov_create_vsi(struct ice_vf *vf) { struct ice_vsi *vsi; vsi = ice_vf_vsi_setup(vf); if (!vsi) return -ENOMEM; return 0; } /** * ice_sriov_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt * @vf: VF to perform tasks on */ static void ice_sriov_post_vsi_rebuild(struct ice_vf *vf) { ice_ena_vf_mappings(vf); wr32(&vf->pf->hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE); } static const struct ice_vf_ops ice_sriov_vf_ops = { .reset_type = ICE_VF_RESET, .free = ice_sriov_free_vf, .clear_reset_state = ice_sriov_clear_reset_state, .clear_mbx_register = ice_sriov_clear_mbx_register, .trigger_reset_register = ice_sriov_trigger_reset_register, .poll_reset_status = ice_sriov_poll_reset_status, .clear_reset_trigger = ice_sriov_clear_reset_trigger, .irq_close = NULL, .create_vsi = ice_sriov_create_vsi, .post_vsi_rebuild = ice_sriov_post_vsi_rebuild, }; /** * ice_create_vf_entries - Allocate and insert VF entries * @pf: pointer to the PF structure * @num_vfs: the number of VFs to allocate * * Allocate new VF entries and insert them into the hash table. Set some * basic default fields for initializing the new VFs. * * After this function exits, the hash table will have num_vfs entries * inserted. * * Returns 0 on success or an integer error code on failure. */ static int ice_create_vf_entries(struct ice_pf *pf, u16 num_vfs) { struct ice_vfs *vfs = &pf->vfs; struct ice_vf *vf; u16 vf_id; int err; lockdep_assert_held(&vfs->table_lock); for (vf_id = 0; vf_id < num_vfs; vf_id++) { vf = kzalloc(sizeof(*vf), GFP_KERNEL); if (!vf) { err = -ENOMEM; goto err_free_entries; } kref_init(&vf->refcnt); vf->pf = pf; vf->vf_id = vf_id; /* set sriov vf ops for VFs created during SRIOV flow */ vf->vf_ops = &ice_sriov_vf_ops; ice_initialize_vf_entry(vf); vf->vf_sw_id = pf->first_sw; hash_add_rcu(vfs->table, &vf->entry, vf_id); } return 0; err_free_entries: ice_free_vf_entries(pf); return err; } /** * ice_ena_vfs - enable VFs so they are ready to be used * @pf: pointer to the PF structure * @num_vfs: number of VFs to enable */ static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs) { struct device *dev = ice_pf_to_dev(pf); struct ice_hw *hw = &pf->hw; int ret; /* Disable global interrupt 0 so we don't try to handle the VFLR. */ wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); set_bit(ICE_OICR_INTR_DIS, pf->state); ice_flush(hw); ret = pci_enable_sriov(pf->pdev, num_vfs); if (ret) goto err_unroll_intr; mutex_lock(&pf->vfs.table_lock); ret = ice_set_per_vf_res(pf, num_vfs); if (ret) { dev_err(dev, "Not enough resources for %d VFs, err %d. Try with fewer number of VFs\n", num_vfs, ret); goto err_unroll_sriov; } ret = ice_create_vf_entries(pf, num_vfs); if (ret) { dev_err(dev, "Failed to allocate VF entries for %d VFs\n", num_vfs); goto err_unroll_sriov; } ret = ice_start_vfs(pf); if (ret) { dev_err(dev, "Failed to start %d VFs, err %d\n", num_vfs, ret); ret = -EAGAIN; goto err_unroll_vf_entries; } clear_bit(ICE_VF_DIS, pf->state); ret = ice_eswitch_configure(pf); if (ret) { dev_err(dev, "Failed to configure eswitch, err %d\n", ret); goto err_unroll_sriov; } /* rearm global interrupts */ if (test_and_clear_bit(ICE_OICR_INTR_DIS, pf->state)) ice_irq_dynamic_ena(hw, NULL, NULL); mutex_unlock(&pf->vfs.table_lock); return 0; err_unroll_vf_entries: ice_free_vf_entries(pf); err_unroll_sriov: mutex_unlock(&pf->vfs.table_lock); pci_disable_sriov(pf->pdev); err_unroll_intr: /* rearm interrupts here */ ice_irq_dynamic_ena(hw, NULL, NULL); clear_bit(ICE_OICR_INTR_DIS, pf->state); return ret; } /** * ice_pci_sriov_ena - Enable or change number of VFs * @pf: pointer to the PF structure * @num_vfs: number of VFs to allocate * * Returns 0 on success and negative on failure */ static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs) { int pre_existing_vfs = pci_num_vf(pf->pdev); struct device *dev = ice_pf_to_dev(pf); int err; if (pre_existing_vfs && pre_existing_vfs != num_vfs) ice_free_vfs(pf); else if (pre_existing_vfs && pre_existing_vfs == num_vfs) return 0; if (num_vfs > pf->vfs.num_supported) { dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n", num_vfs, pf->vfs.num_supported); return -EOPNOTSUPP; } dev_info(dev, "Enabling %d VFs\n", num_vfs); err = ice_ena_vfs(pf, num_vfs); if (err) { dev_err(dev, "Failed to enable SR-IOV: %d\n", err); return err; } set_bit(ICE_FLAG_SRIOV_ENA, pf->flags); return 0; } /** * ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks * @pf: PF to enabled SR-IOV on */ static int ice_check_sriov_allowed(struct ice_pf *pf) { struct device *dev = ice_pf_to_dev(pf); if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) { dev_err(dev, "This device is not capable of SR-IOV\n"); return -EOPNOTSUPP; } if (ice_is_safe_mode(pf)) { dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n"); return -EOPNOTSUPP; } if (!ice_pf_state_is_nominal(pf)) { dev_err(dev, "Cannot enable SR-IOV, device not ready\n"); return -EBUSY; } return 0; } /** * ice_sriov_configure - Enable or change number of VFs via sysfs * @pdev: pointer to a pci_dev structure * @num_vfs: number of VFs to allocate or 0 to free VFs * * This function is called when the user updates the number of VFs in sysfs. On * success return whatever num_vfs was set to by the caller. Return negative on * failure. */ int ice_sriov_configure(struct pci_dev *pdev, int num_vfs) { struct ice_pf *pf = pci_get_drvdata(pdev); struct device *dev = ice_pf_to_dev(pf); int err; err = ice_check_sriov_allowed(pf); if (err) return err; if (!num_vfs) { if (!pci_vfs_assigned(pdev)) { ice_free_vfs(pf); ice_mbx_deinit_snapshot(&pf->hw); if (pf->lag) ice_enable_lag(pf->lag); return 0; } dev_err(dev, "can't free VFs because some are assigned to VMs.\n"); return -EBUSY; } err = ice_mbx_init_snapshot(&pf->hw, num_vfs); if (err) return err; err = ice_pci_sriov_ena(pf, num_vfs); if (err) { ice_mbx_deinit_snapshot(&pf->hw); return err; } if (pf->lag) ice_disable_lag(pf->lag); return num_vfs; } /** * ice_process_vflr_event - Free VF resources via IRQ calls * @pf: pointer to the PF structure * * called from the VFLR IRQ handler to * free up VF resources and state variables */ void ice_process_vflr_event(struct ice_pf *pf) { struct ice_hw *hw = &pf->hw; struct ice_vf *vf; unsigned int bkt; u32 reg; if (!test_and_clear_bit(ICE_VFLR_EVENT_PENDING, pf->state) || !ice_has_vfs(pf)) return; mutex_lock(&pf->vfs.table_lock); ice_for_each_vf(pf, bkt, vf) { u32 reg_idx, bit_idx; reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32; bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32; /* read GLGEN_VFLRSTAT register to find out the flr VFs */ reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx)); if (reg & BIT(bit_idx)) /* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */ ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK); } mutex_unlock(&pf->vfs.table_lock); } /** * ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in * @pf: PF used to index all VFs * @pfq: queue index relative to the PF's function space * * If no VF is found who owns the pfq then return NULL, otherwise return a * pointer to the VF who owns the pfq * * If this function returns non-NULL, it acquires a reference count of the VF * structure. The caller is responsible for calling ice_put_vf() to drop this * reference. */ static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq) { struct ice_vf *vf; unsigned int bkt; rcu_read_lock(); ice_for_each_vf_rcu(pf, bkt, vf) { struct ice_vsi *vsi; u16 rxq_idx; vsi = ice_get_vf_vsi(vf); if (!vsi) continue; ice_for_each_rxq(vsi, rxq_idx) if (vsi->rxq_map[rxq_idx] == pfq) { struct ice_vf *found; if (kref_get_unless_zero(&vf->refcnt)) found = vf; else found = NULL; rcu_read_unlock(); return found; } } rcu_read_unlock(); return NULL; } /** * ice_globalq_to_pfq - convert from global queue index to PF space queue index * @pf: PF used for conversion * @globalq: global queue index used to convert to PF space queue index */ static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq) { return globalq - pf->hw.func_caps.common_cap.rxq_first_id; } /** * ice_vf_lan_overflow_event - handle LAN overflow event for a VF * @pf: PF that the LAN overflow event happened on * @event: structure holding the event information for the LAN overflow event * * Determine if the LAN overflow event was caused by a VF queue. If it was not * caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a * reset on the offending VF. */ void ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event) { u32 gldcb_rtctq, queue; struct ice_vf *vf; gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq); dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq); /* event returns device global Rx queue number */ queue = (gldcb_rtctq & GLDCB_RTCTQ_RXQNUM_M) >> GLDCB_RTCTQ_RXQNUM_S; vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue)); if (!vf) return; ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK); ice_put_vf(vf); } /** * ice_set_vf_spoofchk * @netdev: network interface device structure * @vf_id: VF identifier * @ena: flag to enable or disable feature * * Enable or disable VF spoof checking */ int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena) { struct ice_netdev_priv *np = netdev_priv(netdev); struct ice_pf *pf = np->vsi->back; struct ice_vsi *vf_vsi; struct device *dev; struct ice_vf *vf; int ret; dev = ice_pf_to_dev(pf); vf = ice_get_vf_by_id(pf, vf_id); if (!vf) return -EINVAL; ret = ice_check_vf_ready_for_reset(vf); if (ret) goto out_put_vf; vf_vsi = ice_get_vf_vsi(vf); if (!vf_vsi) { netdev_err(netdev, "VSI %d for VF %d is null\n", vf->lan_vsi_idx, vf->vf_id); ret = -EINVAL; goto out_put_vf; } if (vf_vsi->type != ICE_VSI_VF) { netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n", vf_vsi->type, vf_vsi->vsi_num, vf->vf_id); ret = -ENODEV; goto out_put_vf; } if (ena == vf->spoofchk) { dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF"); ret = 0; goto out_put_vf; } ret = ice_vsi_apply_spoofchk(vf_vsi, ena); if (ret) dev_err(dev, "Failed to set spoofchk %s for VF %d VSI %d\n error %d\n", ena ? "ON" : "OFF", vf->vf_id, vf_vsi->vsi_num, ret); else vf->spoofchk = ena; out_put_vf: ice_put_vf(vf); return ret; } /** * ice_get_vf_cfg * @netdev: network interface device structure * @vf_id: VF identifier * @ivi: VF configuration structure * * return VF configuration */ int ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi) { struct ice_pf *pf = ice_netdev_to_pf(netdev); struct ice_vf *vf; int ret; vf = ice_get_vf_by_id(pf, vf_id); if (!vf) return -EINVAL; ret = ice_check_vf_ready_for_cfg(vf); if (ret) goto out_put_vf; ivi->vf = vf_id; ether_addr_copy(ivi->mac, vf->hw_lan_addr); /* VF configuration for VLAN and applicable QoS */ ivi->vlan = ice_vf_get_port_vlan_id(vf); ivi->qos = ice_vf_get_port_vlan_prio(vf); if (ice_vf_is_port_vlan_ena(vf)) ivi->vlan_proto = cpu_to_be16(ice_vf_get_port_vlan_tpid(vf)); ivi->trusted = vf->trusted; ivi->spoofchk = vf->spoofchk; if (!vf->link_forced) ivi->linkstate = IFLA_VF_LINK_STATE_AUTO; else if (vf->link_up) ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE; else ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE; ivi->max_tx_rate = vf->max_tx_rate; ivi->min_tx_rate = vf->min_tx_rate; out_put_vf: ice_put_vf(vf); return ret; } /** * ice_set_vf_mac * @netdev: network interface device structure * @vf_id: VF identifier * @mac: MAC address * * program VF MAC address */ int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac) { struct ice_pf *pf = ice_netdev_to_pf(netdev); struct ice_vf *vf; int ret; if (is_multicast_ether_addr(mac)) { netdev_err(netdev, "%pM not a valid unicast address\n", mac); return -EINVAL; } vf = ice_get_vf_by_id(pf, vf_id); if (!vf) return -EINVAL; /* nothing left to do, unicast MAC already set */ if (ether_addr_equal(vf->dev_lan_addr, mac) && ether_addr_equal(vf->hw_lan_addr, mac)) { ret = 0; goto out_put_vf; } ret = ice_check_vf_ready_for_reset(vf); if (ret) goto out_put_vf; mutex_lock(&vf->cfg_lock); /* VF is notified of its new MAC via the PF's response to the * VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset */ ether_addr_copy(vf->dev_lan_addr, mac); ether_addr_copy(vf->hw_lan_addr, mac); if (is_zero_ether_addr(mac)) { /* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */ vf->pf_set_mac = false; netdev_info(netdev, "Removing MAC on VF %d. VF driver will be reinitialized\n", vf->vf_id); } else { /* PF will add MAC rule for the VF */ vf->pf_set_mac = true; netdev_info(netdev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n", mac, vf_id); } ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); mutex_unlock(&vf->cfg_lock); out_put_vf: ice_put_vf(vf); return ret; } /** * ice_set_vf_trust * @netdev: network interface device structure * @vf_id: VF identifier * @trusted: Boolean value to enable/disable trusted VF * * Enable or disable a given VF as trusted */ int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted) { struct ice_pf *pf = ice_netdev_to_pf(netdev); struct ice_vf *vf; int ret; vf = ice_get_vf_by_id(pf, vf_id); if (!vf) return -EINVAL; if (ice_is_eswitch_mode_switchdev(pf)) { dev_info(ice_pf_to_dev(pf), "Trusted VF is forbidden in switchdev mode\n"); return -EOPNOTSUPP; } ret = ice_check_vf_ready_for_reset(vf); if (ret) goto out_put_vf; /* Check if already trusted */ if (trusted == vf->trusted) { ret = 0; goto out_put_vf; } mutex_lock(&vf->cfg_lock); vf->trusted = trusted; ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n", vf_id, trusted ? "" : "un"); mutex_unlock(&vf->cfg_lock); out_put_vf: ice_put_vf(vf); return ret; } /** * ice_set_vf_link_state * @netdev: network interface device structure * @vf_id: VF identifier * @link_state: required link state * * Set VF's link state, irrespective of physical link state status */ int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state) { struct ice_pf *pf = ice_netdev_to_pf(netdev); struct ice_vf *vf; int ret; vf = ice_get_vf_by_id(pf, vf_id); if (!vf) return -EINVAL; ret = ice_check_vf_ready_for_cfg(vf); if (ret) goto out_put_vf; switch (link_state) { case IFLA_VF_LINK_STATE_AUTO: vf->link_forced = false; break; case IFLA_VF_LINK_STATE_ENABLE: vf->link_forced = true; vf->link_up = true; break; case IFLA_VF_LINK_STATE_DISABLE: vf->link_forced = true; vf->link_up = false; break; default: ret = -EINVAL; goto out_put_vf; } ice_vc_notify_vf_link_state(vf); out_put_vf: ice_put_vf(vf); return ret; } /** * ice_calc_all_vfs_min_tx_rate - calculate cumulative min Tx rate on all VFs * @pf: PF associated with VFs */ static int ice_calc_all_vfs_min_tx_rate(struct ice_pf *pf) { struct ice_vf *vf; unsigned int bkt; int rate = 0; rcu_read_lock(); ice_for_each_vf_rcu(pf, bkt, vf) rate += vf->min_tx_rate; rcu_read_unlock(); return rate; } /** * ice_min_tx_rate_oversubscribed - check if min Tx rate causes oversubscription * @vf: VF trying to configure min_tx_rate * @min_tx_rate: min Tx rate in Mbps * * Check if the min_tx_rate being passed in will cause oversubscription of total * min_tx_rate based on the current link speed and all other VFs configured * min_tx_rate * * Return true if the passed min_tx_rate would cause oversubscription, else * return false */ static bool ice_min_tx_rate_oversubscribed(struct ice_vf *vf, int min_tx_rate) { struct ice_vsi *vsi = ice_get_vf_vsi(vf); int all_vfs_min_tx_rate; int link_speed_mbps; if (WARN_ON(!vsi)) return false; link_speed_mbps = ice_get_link_speed_mbps(vsi); all_vfs_min_tx_rate = ice_calc_all_vfs_min_tx_rate(vf->pf); /* this VF's previous rate is being overwritten */ all_vfs_min_tx_rate -= vf->min_tx_rate; if (all_vfs_min_tx_rate + min_tx_rate > link_speed_mbps) { dev_err(ice_pf_to_dev(vf->pf), "min_tx_rate of %d Mbps on VF %u would cause oversubscription of %d Mbps based on the current link speed %d Mbps\n", min_tx_rate, vf->vf_id, all_vfs_min_tx_rate + min_tx_rate - link_speed_mbps, link_speed_mbps); return true; } return false; } /** * ice_set_vf_bw - set min/max VF bandwidth * @netdev: network interface device structure * @vf_id: VF identifier * @min_tx_rate: Minimum Tx rate in Mbps * @max_tx_rate: Maximum Tx rate in Mbps */ int ice_set_vf_bw(struct net_device *netdev, int vf_id, int min_tx_rate, int max_tx_rate) { struct ice_pf *pf = ice_netdev_to_pf(netdev); struct ice_vsi *vsi; struct device *dev; struct ice_vf *vf; int ret; dev = ice_pf_to_dev(pf); vf = ice_get_vf_by_id(pf, vf_id); if (!vf) return -EINVAL; ret = ice_check_vf_ready_for_cfg(vf); if (ret) goto out_put_vf; vsi = ice_get_vf_vsi(vf); if (!vsi) { ret = -EINVAL; goto out_put_vf; } if (min_tx_rate && ice_is_dcb_active(pf)) { dev_err(dev, "DCB on PF is currently enabled. VF min Tx rate limiting not allowed on this PF.\n"); ret = -EOPNOTSUPP; goto out_put_vf; } if (ice_min_tx_rate_oversubscribed(vf, min_tx_rate)) { ret = -EINVAL; goto out_put_vf; } if (vf->min_tx_rate != (unsigned int)min_tx_rate) { ret = ice_set_min_bw_limit(vsi, (u64)min_tx_rate * 1000); if (ret) { dev_err(dev, "Unable to set min-tx-rate for VF %d\n", vf->vf_id); goto out_put_vf; } vf->min_tx_rate = min_tx_rate; } if (vf->max_tx_rate != (unsigned int)max_tx_rate) { ret = ice_set_max_bw_limit(vsi, (u64)max_tx_rate * 1000); if (ret) { dev_err(dev, "Unable to set max-tx-rate for VF %d\n", vf->vf_id); goto out_put_vf; } vf->max_tx_rate = max_tx_rate; } out_put_vf: ice_put_vf(vf); return ret; } /** * ice_get_vf_stats - populate some stats for the VF * @netdev: the netdev of the PF * @vf_id: the host OS identifier (0-255) * @vf_stats: pointer to the OS memory to be initialized */ int ice_get_vf_stats(struct net_device *netdev, int vf_id, struct ifla_vf_stats *vf_stats) { struct ice_pf *pf = ice_netdev_to_pf(netdev); struct ice_eth_stats *stats; struct ice_vsi *vsi; struct ice_vf *vf; int ret; vf = ice_get_vf_by_id(pf, vf_id); if (!vf) return -EINVAL; ret = ice_check_vf_ready_for_cfg(vf); if (ret) goto out_put_vf; vsi = ice_get_vf_vsi(vf); if (!vsi) { ret = -EINVAL; goto out_put_vf; } ice_update_eth_stats(vsi); stats = &vsi->eth_stats; memset(vf_stats, 0, sizeof(*vf_stats)); vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast + stats->rx_multicast; vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast + stats->tx_multicast; vf_stats->rx_bytes = stats->rx_bytes; vf_stats->tx_bytes = stats->tx_bytes; vf_stats->broadcast = stats->rx_broadcast; vf_stats->multicast = stats->rx_multicast; vf_stats->rx_dropped = stats->rx_discards; vf_stats->tx_dropped = stats->tx_discards; out_put_vf: ice_put_vf(vf); return ret; } /** * ice_is_supported_port_vlan_proto - make sure the vlan_proto is supported * @hw: hardware structure used to check the VLAN mode * @vlan_proto: VLAN TPID being checked * * If the device is configured in Double VLAN Mode (DVM), then both ETH_P_8021Q * and ETH_P_8021AD are supported. If the device is configured in Single VLAN * Mode (SVM), then only ETH_P_8021Q is supported. */ static bool ice_is_supported_port_vlan_proto(struct ice_hw *hw, u16 vlan_proto) { bool is_supported = false; switch (vlan_proto) { case ETH_P_8021Q: is_supported = true; break; case ETH_P_8021AD: if (ice_is_dvm_ena(hw)) is_supported = true; break; } return is_supported; } /** * ice_set_vf_port_vlan * @netdev: network interface device structure * @vf_id: VF identifier * @vlan_id: VLAN ID being set * @qos: priority setting * @vlan_proto: VLAN protocol * * program VF Port VLAN ID and/or QoS */ int ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos, __be16 vlan_proto) { struct ice_pf *pf = ice_netdev_to_pf(netdev); u16 local_vlan_proto = ntohs(vlan_proto); struct device *dev; struct ice_vf *vf; int ret; dev = ice_pf_to_dev(pf); if (vlan_id >= VLAN_N_VID || qos > 7) { dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n", vf_id, vlan_id, qos); return -EINVAL; } if (!ice_is_supported_port_vlan_proto(&pf->hw, local_vlan_proto)) { dev_err(dev, "VF VLAN protocol 0x%04x is not supported\n", local_vlan_proto); return -EPROTONOSUPPORT; } vf = ice_get_vf_by_id(pf, vf_id); if (!vf) return -EINVAL; ret = ice_check_vf_ready_for_reset(vf); if (ret) goto out_put_vf; if (ice_vf_get_port_vlan_prio(vf) == qos && ice_vf_get_port_vlan_tpid(vf) == local_vlan_proto && ice_vf_get_port_vlan_id(vf) == vlan_id) { /* duplicate request, so just return success */ dev_dbg(dev, "Duplicate port VLAN %u, QoS %u, TPID 0x%04x request\n", vlan_id, qos, local_vlan_proto); ret = 0; goto out_put_vf; } mutex_lock(&vf->cfg_lock); vf->port_vlan_info = ICE_VLAN(local_vlan_proto, vlan_id, qos); if (ice_vf_is_port_vlan_ena(vf)) dev_info(dev, "Setting VLAN %u, QoS %u, TPID 0x%04x on VF %d\n", vlan_id, qos, local_vlan_proto, vf_id); else dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id); ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); mutex_unlock(&vf->cfg_lock); out_put_vf: ice_put_vf(vf); return ret; } /** * ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event * @vf: pointer to the VF structure */ void ice_print_vf_rx_mdd_event(struct ice_vf *vf) { struct ice_pf *pf = vf->pf; struct device *dev; dev = ice_pf_to_dev(pf); dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n", vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id, vf->dev_lan_addr, test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags) ? "on" : "off"); } /** * ice_print_vfs_mdd_events - print VFs malicious driver detect event * @pf: pointer to the PF structure * * Called from ice_handle_mdd_event to rate limit and print VFs MDD events. */ void ice_print_vfs_mdd_events(struct ice_pf *pf) { struct device *dev = ice_pf_to_dev(pf); struct ice_hw *hw = &pf->hw; struct ice_vf *vf; unsigned int bkt; /* check that there are pending MDD events to print */ if (!test_and_clear_bit(ICE_MDD_VF_PRINT_PENDING, pf->state)) return; /* VF MDD event logs are rate limited to one second intervals */ if (time_is_after_jiffies(pf->vfs.last_printed_mdd_jiffies + HZ * 1)) return; pf->vfs.last_printed_mdd_jiffies = jiffies; mutex_lock(&pf->vfs.table_lock); ice_for_each_vf(pf, bkt, vf) { /* only print Rx MDD event message if there are new events */ if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) { vf->mdd_rx_events.last_printed = vf->mdd_rx_events.count; ice_print_vf_rx_mdd_event(vf); } /* only print Tx MDD event message if there are new events */ if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) { vf->mdd_tx_events.last_printed = vf->mdd_tx_events.count; dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM.\n", vf->mdd_tx_events.count, hw->pf_id, vf->vf_id, vf->dev_lan_addr); } } mutex_unlock(&pf->vfs.table_lock); } /** * ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR * @pdev: pointer to a pci_dev structure * * Called when recovering from a PF FLR to restore interrupt capability to * the VFs. */ void ice_restore_all_vfs_msi_state(struct pci_dev *pdev) { u16 vf_id; int pos; if (!pci_num_vf(pdev)) return; pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); if (pos) { struct pci_dev *vfdev; pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID, &vf_id); vfdev = pci_get_device(pdev->vendor, vf_id, NULL); while (vfdev) { if (vfdev->is_virtfn && vfdev->physfn == pdev) pci_restore_msi_state(vfdev); vfdev = pci_get_device(pdev->vendor, vf_id, vfdev); } } } /** * ice_is_malicious_vf - helper function to detect a malicious VF * @pf: ptr to struct ice_pf * @event: pointer to the AQ event * @num_msg_proc: the number of messages processed so far * @num_msg_pending: the number of messages peinding in admin queue */ bool ice_is_malicious_vf(struct ice_pf *pf, struct ice_rq_event_info *event, u16 num_msg_proc, u16 num_msg_pending) { s16 vf_id = le16_to_cpu(event->desc.retval); struct device *dev = ice_pf_to_dev(pf); struct ice_mbx_data mbxdata; bool malvf = false; struct ice_vf *vf; int status; vf = ice_get_vf_by_id(pf, vf_id); if (!vf) return false; if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) goto out_put_vf; mbxdata.num_msg_proc = num_msg_proc; mbxdata.num_pending_arq = num_msg_pending; mbxdata.max_num_msgs_mbx = pf->hw.mailboxq.num_rq_entries; #define ICE_MBX_OVERFLOW_WATERMARK 64 mbxdata.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK; /* check to see if we have a malicious VF */ status = ice_mbx_vf_state_handler(&pf->hw, &mbxdata, vf_id, &malvf); if (status) goto out_put_vf; if (malvf) { bool report_vf = false; /* if the VF is malicious and we haven't let the user * know about it, then let them know now */ status = ice_mbx_report_malvf(&pf->hw, pf->vfs.malvfs, ICE_MAX_SRIOV_VFS, vf_id, &report_vf); if (status) dev_dbg(dev, "Error reporting malicious VF\n"); if (report_vf) { struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); if (pf_vsi) dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n", &vf->dev_lan_addr[0], pf_vsi->netdev->dev_addr); } } out_put_vf: ice_put_vf(vf); return malvf; }