// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2016-2022 HabanaLabs, Ltd. * All Rights Reserved. */ #include "habanalabs.h" #include /** * struct hl_eqe_work - This structure is used to schedule work of EQ * entry and cpucp_reset event * * @eq_work: workqueue object to run when EQ entry is received * @hdev: pointer to device structure * @eq_entry: copy of the EQ entry */ struct hl_eqe_work { struct work_struct eq_work; struct hl_device *hdev; struct hl_eq_entry eq_entry; }; /** * hl_cq_inc_ptr - increment ci or pi of cq * * @ptr: the current ci or pi value of the completion queue * * Increment ptr by 1. If it reaches the number of completion queue * entries, set it to 0 */ inline u32 hl_cq_inc_ptr(u32 ptr) { ptr++; if (unlikely(ptr == HL_CQ_LENGTH)) ptr = 0; return ptr; } /** * hl_eq_inc_ptr - increment ci of eq * * @ptr: the current ci value of the event queue * * Increment ptr by 1. If it reaches the number of event queue * entries, set it to 0 */ static inline u32 hl_eq_inc_ptr(u32 ptr) { ptr++; if (unlikely(ptr == HL_EQ_LENGTH)) ptr = 0; return ptr; } static void irq_handle_eqe(struct work_struct *work) { struct hl_eqe_work *eqe_work = container_of(work, struct hl_eqe_work, eq_work); struct hl_device *hdev = eqe_work->hdev; hdev->asic_funcs->handle_eqe(hdev, &eqe_work->eq_entry); kfree(eqe_work); } /** * job_finish - queue job finish work * * @hdev: pointer to device structure * @cs_seq: command submission sequence * @cq: completion queue * @timestamp: interrupt timestamp * */ static void job_finish(struct hl_device *hdev, u32 cs_seq, struct hl_cq *cq, ktime_t timestamp) { struct hl_hw_queue *queue; struct hl_cs_job *job; queue = &hdev->kernel_queues[cq->hw_queue_id]; job = queue->shadow_queue[hl_pi_2_offset(cs_seq)]; job->timestamp = timestamp; queue_work(hdev->cq_wq[cq->cq_idx], &job->finish_work); atomic_inc(&queue->ci); } /** * cs_finish - queue all cs jobs finish work * * @hdev: pointer to device structure * @cs_seq: command submission sequence * @timestamp: interrupt timestamp * */ static void cs_finish(struct hl_device *hdev, u16 cs_seq, ktime_t timestamp) { struct asic_fixed_properties *prop = &hdev->asic_prop; struct hl_hw_queue *queue; struct hl_cs *cs; struct hl_cs_job *job; cs = hdev->shadow_cs_queue[cs_seq & (prop->max_pending_cs - 1)]; if (!cs) { dev_warn(hdev->dev, "No pointer to CS in shadow array at index %d\n", cs_seq); return; } list_for_each_entry(job, &cs->job_list, cs_node) { queue = &hdev->kernel_queues[job->hw_queue_id]; atomic_inc(&queue->ci); } cs->completion_timestamp = timestamp; queue_work(hdev->cs_cmplt_wq, &cs->finish_work); } /** * hl_irq_handler_cq - irq handler for completion queue * * @irq: irq number * @arg: pointer to completion queue structure * */ irqreturn_t hl_irq_handler_cq(int irq, void *arg) { struct hl_cq *cq = arg; struct hl_device *hdev = cq->hdev; bool shadow_index_valid, entry_ready; u16 shadow_index; struct hl_cq_entry *cq_entry, *cq_base; ktime_t timestamp = ktime_get(); if (hdev->disabled) { dev_dbg(hdev->dev, "Device disabled but received IRQ %d for CQ %d\n", irq, cq->hw_queue_id); return IRQ_HANDLED; } cq_base = cq->kernel_address; while (1) { cq_entry = (struct hl_cq_entry *) &cq_base[cq->ci]; entry_ready = !!FIELD_GET(CQ_ENTRY_READY_MASK, le32_to_cpu(cq_entry->data)); if (!entry_ready) break; /* Make sure we read CQ entry contents after we've * checked the ownership bit. */ dma_rmb(); shadow_index_valid = !!FIELD_GET(CQ_ENTRY_SHADOW_INDEX_VALID_MASK, le32_to_cpu(cq_entry->data)); shadow_index = FIELD_GET(CQ_ENTRY_SHADOW_INDEX_MASK, le32_to_cpu(cq_entry->data)); /* * CQ interrupt handler has 2 modes of operation: * 1. Interrupt per CS completion: (Single CQ for all queues) * CQ entry represents a completed CS * * 2. Interrupt per CS job completion in queue: (CQ per queue) * CQ entry represents a completed job in a certain queue */ if (shadow_index_valid && !hdev->disabled) { if (hdev->asic_prop.completion_mode == HL_COMPLETION_MODE_CS) cs_finish(hdev, shadow_index, timestamp); else job_finish(hdev, shadow_index, cq, timestamp); } /* Clear CQ entry ready bit */ cq_entry->data = cpu_to_le32(le32_to_cpu(cq_entry->data) & ~CQ_ENTRY_READY_MASK); cq->ci = hl_cq_inc_ptr(cq->ci); /* Increment free slots */ atomic_inc(&cq->free_slots_cnt); } return IRQ_HANDLED; } /* * hl_ts_free_objects - handler of the free objects workqueue. * This function should put refcount to objects that the registration node * took refcount to them. * @work: workqueue object pointer */ static void hl_ts_free_objects(struct work_struct *work) { struct timestamp_reg_work_obj *job = container_of(work, struct timestamp_reg_work_obj, free_obj); struct timestamp_reg_free_node *free_obj, *temp_free_obj; struct list_head *free_list_head = job->free_obj_head; struct hl_device *hdev = job->hdev; list_for_each_entry_safe(free_obj, temp_free_obj, free_list_head, free_objects_node) { dev_dbg(hdev->dev, "About to put refcount to buf (%p) cq_cb(%p)\n", free_obj->buf, free_obj->cq_cb); hl_mmap_mem_buf_put(free_obj->buf); hl_cb_put(free_obj->cq_cb); kfree(free_obj); } kfree(free_list_head); kfree(job); } /* * This function called with spin_lock of wait_list_lock taken * This function will set timestamp and delete the registration node from the * wait_list_lock. * and since we're protected with spin_lock here, so we cannot just put the refcount * for the objects here, since the release function may be called and it's also a long * logic (which might sleep also) that cannot be handled in irq context. * so here we'll be filling a list with nodes of "put" jobs and then will send this * list to a dedicated workqueue to do the actual put. */ static int handle_registration_node(struct hl_device *hdev, struct hl_user_pending_interrupt *pend, struct list_head **free_list, ktime_t now) { struct timestamp_reg_free_node *free_node; u64 timestamp; if (!(*free_list)) { /* Alloc/Init the timestamp registration free objects list */ *free_list = kmalloc(sizeof(struct list_head), GFP_ATOMIC); if (!(*free_list)) return -ENOMEM; INIT_LIST_HEAD(*free_list); } free_node = kmalloc(sizeof(*free_node), GFP_ATOMIC); if (!free_node) return -ENOMEM; timestamp = ktime_to_ns(now); *pend->ts_reg_info.timestamp_kernel_addr = timestamp; dev_dbg(hdev->dev, "Timestamp is set to ts cb address (%p), ts: 0x%llx\n", pend->ts_reg_info.timestamp_kernel_addr, *(u64 *)pend->ts_reg_info.timestamp_kernel_addr); list_del(&pend->wait_list_node); /* Mark kernel CB node as free */ pend->ts_reg_info.in_use = 0; /* Putting the refcount for ts_buff and cq_cb objects will be handled * in workqueue context, just add job to free_list. */ free_node->buf = pend->ts_reg_info.buf; free_node->cq_cb = pend->ts_reg_info.cq_cb; list_add(&free_node->free_objects_node, *free_list); return 0; } static void handle_user_interrupt(struct hl_device *hdev, struct hl_user_interrupt *intr) { struct hl_user_pending_interrupt *pend, *temp_pend; struct list_head *ts_reg_free_list_head = NULL; struct timestamp_reg_work_obj *job; bool reg_node_handle_fail = false; ktime_t now = ktime_get(); int rc; /* For registration nodes: * As part of handling the registration nodes, we should put refcount to * some objects. the problem is that we cannot do that under spinlock * or in irq handler context at all (since release functions are long and * might sleep), so we will need to handle that part in workqueue context. * To avoid handling kmalloc failure which compels us rolling back actions * and move nodes hanged on the free list back to the interrupt wait list * we always alloc the job of the WQ at the beginning. */ job = kmalloc(sizeof(*job), GFP_ATOMIC); if (!job) return; spin_lock(&intr->wait_list_lock); list_for_each_entry_safe(pend, temp_pend, &intr->wait_list_head, wait_list_node) { if ((pend->cq_kernel_addr && *(pend->cq_kernel_addr) >= pend->cq_target_value) || !pend->cq_kernel_addr) { if (pend->ts_reg_info.buf) { if (!reg_node_handle_fail) { rc = handle_registration_node(hdev, pend, &ts_reg_free_list_head, now); if (rc) reg_node_handle_fail = true; } } else { /* Handle wait target value node */ pend->fence.timestamp = now; complete_all(&pend->fence.completion); } } } spin_unlock(&intr->wait_list_lock); if (ts_reg_free_list_head) { INIT_WORK(&job->free_obj, hl_ts_free_objects); job->free_obj_head = ts_reg_free_list_head; job->hdev = hdev; queue_work(hdev->ts_free_obj_wq, &job->free_obj); } else { kfree(job); } } /** * hl_irq_handler_user_interrupt - irq handler for user interrupts * * @irq: irq number * @arg: pointer to user interrupt structure * */ irqreturn_t hl_irq_handler_user_interrupt(int irq, void *arg) { struct hl_user_interrupt *user_int = arg; struct hl_device *hdev = user_int->hdev; switch (user_int->type) { case HL_USR_INTERRUPT_CQ: handle_user_interrupt(hdev, &hdev->common_user_cq_interrupt); /* Handle user cq interrupt registered on this specific irq */ handle_user_interrupt(hdev, user_int); break; case HL_USR_INTERRUPT_DECODER: handle_user_interrupt(hdev, &hdev->common_decoder_interrupt); /* Handle decoder interrupt registered on this specific irq */ handle_user_interrupt(hdev, user_int); break; default: break; } return IRQ_HANDLED; } /** * hl_irq_handler_default - default irq handler * * @irq: irq number * @arg: pointer to user interrupt structure * */ irqreturn_t hl_irq_handler_default(int irq, void *arg) { struct hl_user_interrupt *user_interrupt = arg; struct hl_device *hdev = user_interrupt->hdev; u32 interrupt_id = user_interrupt->interrupt_id; dev_err(hdev->dev, "got invalid user interrupt %u", interrupt_id); return IRQ_HANDLED; } /** * hl_irq_handler_eq - irq handler for event queue * * @irq: irq number * @arg: pointer to event queue structure * */ irqreturn_t hl_irq_handler_eq(int irq, void *arg) { struct hl_eq *eq = arg; struct hl_device *hdev = eq->hdev; struct hl_eq_entry *eq_entry; struct hl_eq_entry *eq_base; struct hl_eqe_work *handle_eqe_work; bool entry_ready; u32 cur_eqe; u16 cur_eqe_index; eq_base = eq->kernel_address; while (1) { cur_eqe = le32_to_cpu(eq_base[eq->ci].hdr.ctl); entry_ready = !!FIELD_GET(EQ_CTL_READY_MASK, cur_eqe); if (!entry_ready) break; cur_eqe_index = FIELD_GET(EQ_CTL_INDEX_MASK, cur_eqe); if ((hdev->event_queue.check_eqe_index) && (((eq->prev_eqe_index + 1) & EQ_CTL_INDEX_MASK) != cur_eqe_index)) { dev_dbg(hdev->dev, "EQE 0x%x in queue is ready but index does not match %d!=%d", eq_base[eq->ci].hdr.ctl, ((eq->prev_eqe_index + 1) & EQ_CTL_INDEX_MASK), cur_eqe_index); break; } eq->prev_eqe_index++; eq_entry = &eq_base[eq->ci]; /* * Make sure we read EQ entry contents after we've * checked the ownership bit. */ dma_rmb(); if (hdev->disabled && !hdev->reset_info.in_compute_reset) { dev_warn(hdev->dev, "Device disabled but received an EQ event\n"); goto skip_irq; } handle_eqe_work = kmalloc(sizeof(*handle_eqe_work), GFP_ATOMIC); if (handle_eqe_work) { INIT_WORK(&handle_eqe_work->eq_work, irq_handle_eqe); handle_eqe_work->hdev = hdev; memcpy(&handle_eqe_work->eq_entry, eq_entry, sizeof(*eq_entry)); queue_work(hdev->eq_wq, &handle_eqe_work->eq_work); } skip_irq: /* Clear EQ entry ready bit */ eq_entry->hdr.ctl = cpu_to_le32(le32_to_cpu(eq_entry->hdr.ctl) & ~EQ_CTL_READY_MASK); eq->ci = hl_eq_inc_ptr(eq->ci); hdev->asic_funcs->update_eq_ci(hdev, eq->ci); } return IRQ_HANDLED; } /** * hl_irq_handler_dec_abnrm - Decoder error interrupt handler * @irq: IRQ number * @arg: pointer to decoder structure. */ irqreturn_t hl_irq_handler_dec_abnrm(int irq, void *arg) { struct hl_dec *dec = arg; schedule_work(&dec->completion_abnrm_work); return IRQ_HANDLED; } /** * hl_cq_init - main initialization function for an cq object * * @hdev: pointer to device structure * @q: pointer to cq structure * @hw_queue_id: The H/W queue ID this completion queue belongs to * HL_INVALID_QUEUE if cq is not attached to any specific queue * * Allocate dma-able memory for the completion queue and initialize fields * Returns 0 on success */ int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id) { void *p; p = hl_asic_dma_alloc_coherent(hdev, HL_CQ_SIZE_IN_BYTES, &q->bus_address, GFP_KERNEL | __GFP_ZERO); if (!p) return -ENOMEM; q->hdev = hdev; q->kernel_address = p; q->hw_queue_id = hw_queue_id; q->ci = 0; q->pi = 0; atomic_set(&q->free_slots_cnt, HL_CQ_LENGTH); return 0; } /** * hl_cq_fini - destroy completion queue * * @hdev: pointer to device structure * @q: pointer to cq structure * * Free the completion queue memory */ void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q) { hl_asic_dma_free_coherent(hdev, HL_CQ_SIZE_IN_BYTES, q->kernel_address, q->bus_address); } void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q) { q->ci = 0; q->pi = 0; atomic_set(&q->free_slots_cnt, HL_CQ_LENGTH); /* * It's not enough to just reset the PI/CI because the H/W may have * written valid completion entries before it was halted and therefore * we need to clean the actual queues so we won't process old entries * when the device is operational again */ memset(q->kernel_address, 0, HL_CQ_SIZE_IN_BYTES); } /** * hl_eq_init - main initialization function for an event queue object * * @hdev: pointer to device structure * @q: pointer to eq structure * * Allocate dma-able memory for the event queue and initialize fields * Returns 0 on success */ int hl_eq_init(struct hl_device *hdev, struct hl_eq *q) { void *p; p = hl_cpu_accessible_dma_pool_alloc(hdev, HL_EQ_SIZE_IN_BYTES, &q->bus_address); if (!p) return -ENOMEM; q->hdev = hdev; q->kernel_address = p; q->ci = 0; q->prev_eqe_index = 0; return 0; } /** * hl_eq_fini - destroy event queue * * @hdev: pointer to device structure * @q: pointer to eq structure * * Free the event queue memory */ void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q) { flush_workqueue(hdev->eq_wq); hl_cpu_accessible_dma_pool_free(hdev, HL_EQ_SIZE_IN_BYTES, q->kernel_address); } void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q) { q->ci = 0; q->prev_eqe_index = 0; /* * It's not enough to just reset the PI/CI because the H/W may have * written valid completion entries before it was halted and therefore * we need to clean the actual queues so we won't process old entries * when the device is operational again */ memset(q->kernel_address, 0, HL_EQ_SIZE_IN_BYTES); }