// SPDX-License-Identifier: ISC /* * Copyright (c) 2010 Broadcom Corporation */ /* Toplevel file. Relies on dhd_linux.c to send commands to the dongle. */ #include #include #include #include #include #include #include #include #include #include #include #include "core.h" #include "debug.h" #include "tracepoint.h" #include "fwil_types.h" #include "p2p.h" #include "btcoex.h" #include "pno.h" #include "fwsignal.h" #include "cfg80211.h" #include "feature.h" #include "fwil.h" #include "proto.h" #include "vendor.h" #include "bus.h" #include "common.h" #define BRCMF_SCAN_IE_LEN_MAX 2048 #define WPA_OUI "\x00\x50\xF2" /* WPA OUI */ #define WPA_OUI_TYPE 1 #define RSN_OUI "\x00\x0F\xAC" /* RSN OUI */ #define WME_OUI_TYPE 2 #define WPS_OUI_TYPE 4 #define VS_IE_FIXED_HDR_LEN 6 #define WPA_IE_VERSION_LEN 2 #define WPA_IE_MIN_OUI_LEN 4 #define WPA_IE_SUITE_COUNT_LEN 2 #define WPA_CIPHER_NONE 0 /* None */ #define WPA_CIPHER_WEP_40 1 /* WEP (40-bit) */ #define WPA_CIPHER_TKIP 2 /* TKIP: default for WPA */ #define WPA_CIPHER_AES_CCM 4 /* AES (CCM) */ #define WPA_CIPHER_WEP_104 5 /* WEP (104-bit) */ #define RSN_AKM_NONE 0 /* None (IBSS) */ #define RSN_AKM_UNSPECIFIED 1 /* Over 802.1x */ #define RSN_AKM_PSK 2 /* Pre-shared Key */ #define RSN_AKM_SHA256_1X 5 /* SHA256, 802.1X */ #define RSN_AKM_SHA256_PSK 6 /* SHA256, Pre-shared Key */ #define RSN_AKM_SAE 8 /* SAE */ #define RSN_CAP_LEN 2 /* Length of RSN capabilities */ #define RSN_CAP_PTK_REPLAY_CNTR_MASK (BIT(2) | BIT(3)) #define RSN_CAP_MFPR_MASK BIT(6) #define RSN_CAP_MFPC_MASK BIT(7) #define RSN_PMKID_COUNT_LEN 2 #define VNDR_IE_CMD_LEN 4 /* length of the set command * string :"add", "del" (+ NUL) */ #define VNDR_IE_COUNT_OFFSET 4 #define VNDR_IE_PKTFLAG_OFFSET 8 #define VNDR_IE_VSIE_OFFSET 12 #define VNDR_IE_HDR_SIZE 12 #define VNDR_IE_PARSE_LIMIT 5 #define DOT11_MGMT_HDR_LEN 24 /* d11 management header len */ #define DOT11_BCN_PRB_FIXED_LEN 12 /* beacon/probe fixed length */ #define BRCMF_SCAN_JOIN_ACTIVE_DWELL_TIME_MS 320 #define BRCMF_SCAN_JOIN_PASSIVE_DWELL_TIME_MS 400 #define BRCMF_SCAN_JOIN_PROBE_INTERVAL_MS 20 #define BRCMF_SCAN_CHANNEL_TIME 40 #define BRCMF_SCAN_UNASSOC_TIME 40 #define BRCMF_SCAN_PASSIVE_TIME 120 #define BRCMF_ND_INFO_TIMEOUT msecs_to_jiffies(2000) #define BRCMF_PS_MAX_TIMEOUT_MS 2000 /* Dump obss definitions */ #define ACS_MSRMNT_DELAY 80 #define CHAN_NOISE_DUMMY (-80) #define OBSS_TOKEN_IDX 15 #define IBSS_TOKEN_IDX 15 #define TX_TOKEN_IDX 14 #define CTG_TOKEN_IDX 13 #define PKT_TOKEN_IDX 15 #define IDLE_TOKEN_IDX 12 #define BRCMF_ASSOC_PARAMS_FIXED_SIZE \ (sizeof(struct brcmf_assoc_params_le) - sizeof(u16)) #define BRCMF_MAX_CHANSPEC_LIST \ (BRCMF_DCMD_MEDLEN / sizeof(__le32) - 1) struct brcmf_dump_survey { u32 obss; u32 ibss; u32 no_ctg; u32 no_pckt; u32 tx; u32 idle; }; struct cca_stats_n_flags { u32 msrmnt_time; /* Time for Measurement (msec) */ u32 msrmnt_done; /* flag set when measurement complete */ char buf[1]; }; struct cca_msrmnt_query { u32 msrmnt_query; u32 time_req; }; static bool check_vif_up(struct brcmf_cfg80211_vif *vif) { if (!test_bit(BRCMF_VIF_STATUS_READY, &vif->sme_state)) { brcmf_dbg(INFO, "device is not ready : status (%lu)\n", vif->sme_state); return false; } return true; } #define RATE_TO_BASE100KBPS(rate) (((rate) * 10) / 2) #define RATETAB_ENT(_rateid, _flags) \ { \ .bitrate = RATE_TO_BASE100KBPS(_rateid), \ .hw_value = (_rateid), \ .flags = (_flags), \ } static struct ieee80211_rate __wl_rates[] = { RATETAB_ENT(BRCM_RATE_1M, 0), RATETAB_ENT(BRCM_RATE_2M, IEEE80211_RATE_SHORT_PREAMBLE), RATETAB_ENT(BRCM_RATE_5M5, IEEE80211_RATE_SHORT_PREAMBLE), RATETAB_ENT(BRCM_RATE_11M, IEEE80211_RATE_SHORT_PREAMBLE), RATETAB_ENT(BRCM_RATE_6M, 0), RATETAB_ENT(BRCM_RATE_9M, 0), RATETAB_ENT(BRCM_RATE_12M, 0), RATETAB_ENT(BRCM_RATE_18M, 0), RATETAB_ENT(BRCM_RATE_24M, 0), RATETAB_ENT(BRCM_RATE_36M, 0), RATETAB_ENT(BRCM_RATE_48M, 0), RATETAB_ENT(BRCM_RATE_54M, 0), }; #define wl_g_rates (__wl_rates + 0) #define wl_g_rates_size ARRAY_SIZE(__wl_rates) #define wl_a_rates (__wl_rates + 4) #define wl_a_rates_size (wl_g_rates_size - 4) #define CHAN2G(_channel, _freq) { \ .band = NL80211_BAND_2GHZ, \ .center_freq = (_freq), \ .hw_value = (_channel), \ .max_antenna_gain = 0, \ .max_power = 30, \ } #define CHAN5G(_channel) { \ .band = NL80211_BAND_5GHZ, \ .center_freq = 5000 + (5 * (_channel)), \ .hw_value = (_channel), \ .max_antenna_gain = 0, \ .max_power = 30, \ } static struct ieee80211_channel __wl_2ghz_channels[] = { CHAN2G(1, 2412), CHAN2G(2, 2417), CHAN2G(3, 2422), CHAN2G(4, 2427), CHAN2G(5, 2432), CHAN2G(6, 2437), CHAN2G(7, 2442), CHAN2G(8, 2447), CHAN2G(9, 2452), CHAN2G(10, 2457), CHAN2G(11, 2462), CHAN2G(12, 2467), CHAN2G(13, 2472), CHAN2G(14, 2484) }; static struct ieee80211_channel __wl_5ghz_channels[] = { CHAN5G(34), CHAN5G(36), CHAN5G(38), CHAN5G(40), CHAN5G(42), CHAN5G(44), CHAN5G(46), CHAN5G(48), CHAN5G(52), CHAN5G(56), CHAN5G(60), CHAN5G(64), CHAN5G(100), CHAN5G(104), CHAN5G(108), CHAN5G(112), CHAN5G(116), CHAN5G(120), CHAN5G(124), CHAN5G(128), CHAN5G(132), CHAN5G(136), CHAN5G(140), CHAN5G(144), CHAN5G(149), CHAN5G(153), CHAN5G(157), CHAN5G(161), CHAN5G(165) }; /* Band templates duplicated per wiphy. The channel info * above is added to the band during setup. */ static const struct ieee80211_supported_band __wl_band_2ghz = { .band = NL80211_BAND_2GHZ, .bitrates = wl_g_rates, .n_bitrates = wl_g_rates_size, }; static const struct ieee80211_supported_band __wl_band_5ghz = { .band = NL80211_BAND_5GHZ, .bitrates = wl_a_rates, .n_bitrates = wl_a_rates_size, }; /* This is to override regulatory domains defined in cfg80211 module (reg.c) * By default world regulatory domain defined in reg.c puts the flags * NL80211_RRF_NO_IR for 5GHz channels (for * 36..48 and 149..165). * With respect to these flags, wpa_supplicant doesn't * start p2p * operations on 5GHz channels. All the changes in world regulatory * domain are to be done here. */ static const struct ieee80211_regdomain brcmf_regdom = { .n_reg_rules = 4, .alpha2 = "99", .reg_rules = { /* IEEE 802.11b/g, channels 1..11 */ REG_RULE(2412-10, 2472+10, 40, 6, 20, 0), /* If any */ /* IEEE 802.11 channel 14 - Only JP enables * this and for 802.11b only */ REG_RULE(2484-10, 2484+10, 20, 6, 20, 0), /* IEEE 802.11a, channel 36..64 */ REG_RULE(5150-10, 5350+10, 160, 6, 20, 0), /* IEEE 802.11a, channel 100..165 */ REG_RULE(5470-10, 5850+10, 160, 6, 20, 0), } }; /* Note: brcmf_cipher_suites is an array of int defining which cipher suites * are supported. A pointer to this array and the number of entries is passed * on to upper layers. AES_CMAC defines whether or not the driver supports MFP. * So the cipher suite AES_CMAC has to be the last one in the array, and when * device does not support MFP then the number of suites will be decreased by 1 */ static const u32 brcmf_cipher_suites[] = { WLAN_CIPHER_SUITE_WEP40, WLAN_CIPHER_SUITE_WEP104, WLAN_CIPHER_SUITE_TKIP, WLAN_CIPHER_SUITE_CCMP, /* Keep as last entry: */ WLAN_CIPHER_SUITE_AES_CMAC }; /* Vendor specific ie. id = 221, oui and type defines exact ie */ struct brcmf_vs_tlv { u8 id; u8 len; u8 oui[3]; u8 oui_type; }; struct parsed_vndr_ie_info { u8 *ie_ptr; u32 ie_len; /* total length including id & length field */ struct brcmf_vs_tlv vndrie; }; struct parsed_vndr_ies { u32 count; struct parsed_vndr_ie_info ie_info[VNDR_IE_PARSE_LIMIT]; }; #define WL_INTERFACE_CREATE_VER_1 1 #define WL_INTERFACE_CREATE_VER_2 2 #define WL_INTERFACE_CREATE_VER_3 3 #define WL_INTERFACE_CREATE_VER_MAX WL_INTERFACE_CREATE_VER_3 #define WL_INTERFACE_MAC_DONT_USE 0x0 #define WL_INTERFACE_MAC_USE 0x2 #define WL_INTERFACE_CREATE_STA 0x0 #define WL_INTERFACE_CREATE_AP 0x1 struct wl_interface_create_v1 { u16 ver; /* structure version */ u32 flags; /* flags for operation */ u8 mac_addr[ETH_ALEN]; /* MAC address */ u32 wlc_index; /* optional for wlc index */ }; struct wl_interface_create_v2 { u16 ver; /* structure version */ u8 pad1[2]; u32 flags; /* flags for operation */ u8 mac_addr[ETH_ALEN]; /* MAC address */ u8 iftype; /* type of interface created */ u8 pad2; u32 wlc_index; /* optional for wlc index */ }; struct wl_interface_create_v3 { u16 ver; /* structure version */ u16 len; /* length of structure + data */ u16 fixed_len; /* length of structure */ u8 iftype; /* type of interface created */ u8 wlc_index; /* optional for wlc index */ u32 flags; /* flags for operation */ u8 mac_addr[ETH_ALEN]; /* MAC address */ u8 bssid[ETH_ALEN]; /* optional for BSSID */ u8 if_index; /* interface index request */ u8 pad[3]; u8 data[]; /* Optional for specific data */ }; static u8 nl80211_band_to_fwil(enum nl80211_band band) { switch (band) { case NL80211_BAND_2GHZ: return WLC_BAND_2G; case NL80211_BAND_5GHZ: return WLC_BAND_5G; default: WARN_ON(1); break; } return 0; } static u16 chandef_to_chanspec(struct brcmu_d11inf *d11inf, struct cfg80211_chan_def *ch) { struct brcmu_chan ch_inf; s32 primary_offset; brcmf_dbg(TRACE, "chandef: control %d center %d width %d\n", ch->chan->center_freq, ch->center_freq1, ch->width); ch_inf.chnum = ieee80211_frequency_to_channel(ch->center_freq1); primary_offset = ch->chan->center_freq - ch->center_freq1; switch (ch->width) { case NL80211_CHAN_WIDTH_20: case NL80211_CHAN_WIDTH_20_NOHT: ch_inf.bw = BRCMU_CHAN_BW_20; WARN_ON(primary_offset != 0); break; case NL80211_CHAN_WIDTH_40: ch_inf.bw = BRCMU_CHAN_BW_40; if (primary_offset > 0) ch_inf.sb = BRCMU_CHAN_SB_U; else ch_inf.sb = BRCMU_CHAN_SB_L; break; case NL80211_CHAN_WIDTH_80: ch_inf.bw = BRCMU_CHAN_BW_80; if (primary_offset == -30) ch_inf.sb = BRCMU_CHAN_SB_LL; else if (primary_offset == -10) ch_inf.sb = BRCMU_CHAN_SB_LU; else if (primary_offset == 10) ch_inf.sb = BRCMU_CHAN_SB_UL; else ch_inf.sb = BRCMU_CHAN_SB_UU; break; case NL80211_CHAN_WIDTH_160: ch_inf.bw = BRCMU_CHAN_BW_160; if (primary_offset == -70) ch_inf.sb = BRCMU_CHAN_SB_LLL; else if (primary_offset == -50) ch_inf.sb = BRCMU_CHAN_SB_LLU; else if (primary_offset == -30) ch_inf.sb = BRCMU_CHAN_SB_LUL; else if (primary_offset == -10) ch_inf.sb = BRCMU_CHAN_SB_LUU; else if (primary_offset == 10) ch_inf.sb = BRCMU_CHAN_SB_ULL; else if (primary_offset == 30) ch_inf.sb = BRCMU_CHAN_SB_ULU; else if (primary_offset == 50) ch_inf.sb = BRCMU_CHAN_SB_UUL; else ch_inf.sb = BRCMU_CHAN_SB_UUU; break; case NL80211_CHAN_WIDTH_80P80: case NL80211_CHAN_WIDTH_5: case NL80211_CHAN_WIDTH_10: default: WARN_ON_ONCE(1); } switch (ch->chan->band) { case NL80211_BAND_2GHZ: ch_inf.band = BRCMU_CHAN_BAND_2G; break; case NL80211_BAND_5GHZ: ch_inf.band = BRCMU_CHAN_BAND_5G; break; case NL80211_BAND_60GHZ: default: WARN_ON_ONCE(1); } d11inf->encchspec(&ch_inf); brcmf_dbg(TRACE, "chanspec: 0x%x\n", ch_inf.chspec); return ch_inf.chspec; } u16 channel_to_chanspec(struct brcmu_d11inf *d11inf, struct ieee80211_channel *ch) { struct brcmu_chan ch_inf; ch_inf.chnum = ieee80211_frequency_to_channel(ch->center_freq); ch_inf.bw = BRCMU_CHAN_BW_20; d11inf->encchspec(&ch_inf); return ch_inf.chspec; } /* Traverse a string of 1-byte tag/1-byte length/variable-length value * triples, returning a pointer to the substring whose first element * matches tag */ static const struct brcmf_tlv * brcmf_parse_tlvs(const void *buf, int buflen, uint key) { const struct brcmf_tlv *elt = buf; int totlen = buflen; /* find tagged parameter */ while (totlen >= TLV_HDR_LEN) { int len = elt->len; /* validate remaining totlen */ if ((elt->id == key) && (totlen >= (len + TLV_HDR_LEN))) return elt; elt = (struct brcmf_tlv *)((u8 *)elt + (len + TLV_HDR_LEN)); totlen -= (len + TLV_HDR_LEN); } return NULL; } /* Is any of the tlvs the expected entry? If * not update the tlvs buffer pointer/length. */ static bool brcmf_tlv_has_ie(const u8 *ie, const u8 **tlvs, u32 *tlvs_len, const u8 *oui, u32 oui_len, u8 type) { /* If the contents match the OUI and the type */ if (ie[TLV_LEN_OFF] >= oui_len + 1 && !memcmp(&ie[TLV_BODY_OFF], oui, oui_len) && type == ie[TLV_BODY_OFF + oui_len]) { return true; } if (tlvs == NULL) return false; /* point to the next ie */ ie += ie[TLV_LEN_OFF] + TLV_HDR_LEN; /* calculate the length of the rest of the buffer */ *tlvs_len -= (int)(ie - *tlvs); /* update the pointer to the start of the buffer */ *tlvs = ie; return false; } static struct brcmf_vs_tlv * brcmf_find_wpaie(const u8 *parse, u32 len) { const struct brcmf_tlv *ie; while ((ie = brcmf_parse_tlvs(parse, len, WLAN_EID_VENDOR_SPECIFIC))) { if (brcmf_tlv_has_ie((const u8 *)ie, &parse, &len, WPA_OUI, TLV_OUI_LEN, WPA_OUI_TYPE)) return (struct brcmf_vs_tlv *)ie; } return NULL; } static struct brcmf_vs_tlv * brcmf_find_wpsie(const u8 *parse, u32 len) { const struct brcmf_tlv *ie; while ((ie = brcmf_parse_tlvs(parse, len, WLAN_EID_VENDOR_SPECIFIC))) { if (brcmf_tlv_has_ie((u8 *)ie, &parse, &len, WPA_OUI, TLV_OUI_LEN, WPS_OUI_TYPE)) return (struct brcmf_vs_tlv *)ie; } return NULL; } static int brcmf_vif_change_validate(struct brcmf_cfg80211_info *cfg, struct brcmf_cfg80211_vif *vif, enum nl80211_iftype new_type) { struct brcmf_cfg80211_vif *pos; bool check_combos = false; int ret = 0; struct iface_combination_params params = { .num_different_channels = 1, }; list_for_each_entry(pos, &cfg->vif_list, list) if (pos == vif) { params.iftype_num[new_type]++; } else { /* concurrent interfaces so need check combinations */ check_combos = true; params.iftype_num[pos->wdev.iftype]++; } if (check_combos) ret = cfg80211_check_combinations(cfg->wiphy, ¶ms); return ret; } static int brcmf_vif_add_validate(struct brcmf_cfg80211_info *cfg, enum nl80211_iftype new_type) { struct brcmf_cfg80211_vif *pos; struct iface_combination_params params = { .num_different_channels = 1, }; list_for_each_entry(pos, &cfg->vif_list, list) params.iftype_num[pos->wdev.iftype]++; params.iftype_num[new_type]++; return cfg80211_check_combinations(cfg->wiphy, ¶ms); } static void convert_key_from_CPU(struct brcmf_wsec_key *key, struct brcmf_wsec_key_le *key_le) { key_le->index = cpu_to_le32(key->index); key_le->len = cpu_to_le32(key->len); key_le->algo = cpu_to_le32(key->algo); key_le->flags = cpu_to_le32(key->flags); key_le->rxiv.hi = cpu_to_le32(key->rxiv.hi); key_le->rxiv.lo = cpu_to_le16(key->rxiv.lo); key_le->iv_initialized = cpu_to_le32(key->iv_initialized); memcpy(key_le->data, key->data, sizeof(key->data)); memcpy(key_le->ea, key->ea, sizeof(key->ea)); } static int send_key_to_dongle(struct brcmf_if *ifp, struct brcmf_wsec_key *key) { struct brcmf_pub *drvr = ifp->drvr; int err; struct brcmf_wsec_key_le key_le; convert_key_from_CPU(key, &key_le); brcmf_netdev_wait_pend8021x(ifp); err = brcmf_fil_bsscfg_data_set(ifp, "wsec_key", &key_le, sizeof(key_le)); if (err) bphy_err(drvr, "wsec_key error (%d)\n", err); return err; } static void brcmf_cfg80211_update_proto_addr_mode(struct wireless_dev *wdev) { struct brcmf_cfg80211_vif *vif; struct brcmf_if *ifp; vif = container_of(wdev, struct brcmf_cfg80211_vif, wdev); ifp = vif->ifp; if ((wdev->iftype == NL80211_IFTYPE_ADHOC) || (wdev->iftype == NL80211_IFTYPE_AP) || (wdev->iftype == NL80211_IFTYPE_P2P_GO)) brcmf_proto_configure_addr_mode(ifp->drvr, ifp->ifidx, ADDR_DIRECT); else brcmf_proto_configure_addr_mode(ifp->drvr, ifp->ifidx, ADDR_INDIRECT); } static int brcmf_get_first_free_bsscfgidx(struct brcmf_pub *drvr) { int bsscfgidx; for (bsscfgidx = 0; bsscfgidx < BRCMF_MAX_IFS; bsscfgidx++) { /* bsscfgidx 1 is reserved for legacy P2P */ if (bsscfgidx == 1) continue; if (!drvr->iflist[bsscfgidx]) return bsscfgidx; } return -ENOMEM; } static void brcmf_set_vif_sta_macaddr(struct brcmf_if *ifp, u8 *mac_addr) { u8 mac_idx = ifp->drvr->sta_mac_idx; /* set difference MAC address with locally administered bit */ memcpy(mac_addr, ifp->mac_addr, ETH_ALEN); mac_addr[0] |= 0x02; mac_addr[3] ^= mac_idx ? 0xC0 : 0xA0; mac_idx++; mac_idx = mac_idx % 2; ifp->drvr->sta_mac_idx = mac_idx; } static int brcmf_cfg80211_request_sta_if(struct brcmf_if *ifp, u8 *macaddr) { struct wl_interface_create_v1 iface_v1; struct wl_interface_create_v2 iface_v2; struct wl_interface_create_v3 iface_v3; u32 iface_create_ver; int err; /* interface_create version 1 */ memset(&iface_v1, 0, sizeof(iface_v1)); iface_v1.ver = WL_INTERFACE_CREATE_VER_1; iface_v1.flags = WL_INTERFACE_CREATE_STA | WL_INTERFACE_MAC_USE; if (!is_zero_ether_addr(macaddr)) memcpy(iface_v1.mac_addr, macaddr, ETH_ALEN); else brcmf_set_vif_sta_macaddr(ifp, iface_v1.mac_addr); err = brcmf_fil_iovar_data_get(ifp, "interface_create", &iface_v1, sizeof(iface_v1)); if (err) { brcmf_info("failed to create interface(v1), err=%d\n", err); } else { brcmf_dbg(INFO, "interface created(v1)\n"); return 0; } /* interface_create version 2 */ memset(&iface_v2, 0, sizeof(iface_v2)); iface_v2.ver = WL_INTERFACE_CREATE_VER_2; iface_v2.flags = WL_INTERFACE_MAC_USE; iface_v2.iftype = WL_INTERFACE_CREATE_STA; if (!is_zero_ether_addr(macaddr)) memcpy(iface_v2.mac_addr, macaddr, ETH_ALEN); else brcmf_set_vif_sta_macaddr(ifp, iface_v2.mac_addr); err = brcmf_fil_iovar_data_get(ifp, "interface_create", &iface_v2, sizeof(iface_v2)); if (err) { brcmf_info("failed to create interface(v2), err=%d\n", err); } else { brcmf_dbg(INFO, "interface created(v2)\n"); return 0; } /* interface_create version 3+ */ /* get supported version from firmware side */ iface_create_ver = 0; err = brcmf_fil_bsscfg_int_get(ifp, "interface_create", &iface_create_ver); if (err) { brcmf_err("fail to get supported version, err=%d\n", err); return -EOPNOTSUPP; } switch (iface_create_ver) { case WL_INTERFACE_CREATE_VER_3: memset(&iface_v3, 0, sizeof(iface_v3)); iface_v3.ver = WL_INTERFACE_CREATE_VER_3; iface_v3.flags = WL_INTERFACE_MAC_USE; iface_v3.iftype = WL_INTERFACE_CREATE_STA; if (!is_zero_ether_addr(macaddr)) memcpy(iface_v3.mac_addr, macaddr, ETH_ALEN); else brcmf_set_vif_sta_macaddr(ifp, iface_v3.mac_addr); err = brcmf_fil_iovar_data_get(ifp, "interface_create", &iface_v3, sizeof(iface_v3)); if (!err) brcmf_dbg(INFO, "interface created(v3)\n"); break; default: brcmf_err("not support interface create(v%d)\n", iface_create_ver); err = -EOPNOTSUPP; break; } if (err) { brcmf_info("station interface creation failed (%d)\n", err); return -EIO; } return 0; } static int brcmf_cfg80211_request_ap_if(struct brcmf_if *ifp) { struct wl_interface_create_v1 iface_v1; struct wl_interface_create_v2 iface_v2; struct wl_interface_create_v3 iface_v3; u32 iface_create_ver; struct brcmf_pub *drvr = ifp->drvr; struct brcmf_mbss_ssid_le mbss_ssid_le; int bsscfgidx; int err; /* interface_create version 1 */ memset(&iface_v1, 0, sizeof(iface_v1)); iface_v1.ver = WL_INTERFACE_CREATE_VER_1; iface_v1.flags = WL_INTERFACE_CREATE_AP | WL_INTERFACE_MAC_USE; brcmf_set_vif_sta_macaddr(ifp, iface_v1.mac_addr); err = brcmf_fil_iovar_data_get(ifp, "interface_create", &iface_v1, sizeof(iface_v1)); if (err) { brcmf_info("failed to create interface(v1), err=%d\n", err); } else { brcmf_dbg(INFO, "interface created(v1)\n"); return 0; } /* interface_create version 2 */ memset(&iface_v2, 0, sizeof(iface_v2)); iface_v2.ver = WL_INTERFACE_CREATE_VER_2; iface_v2.flags = WL_INTERFACE_MAC_USE; iface_v2.iftype = WL_INTERFACE_CREATE_AP; brcmf_set_vif_sta_macaddr(ifp, iface_v2.mac_addr); err = brcmf_fil_iovar_data_get(ifp, "interface_create", &iface_v2, sizeof(iface_v2)); if (err) { brcmf_info("failed to create interface(v2), err=%d\n", err); } else { brcmf_dbg(INFO, "interface created(v2)\n"); return 0; } /* interface_create version 3+ */ /* get supported version from firmware side */ iface_create_ver = 0; err = brcmf_fil_bsscfg_int_get(ifp, "interface_create", &iface_create_ver); if (err) { brcmf_err("fail to get supported version, err=%d\n", err); return -EOPNOTSUPP; } switch (iface_create_ver) { case WL_INTERFACE_CREATE_VER_3: memset(&iface_v3, 0, sizeof(iface_v3)); iface_v3.ver = WL_INTERFACE_CREATE_VER_3; iface_v3.flags = WL_INTERFACE_MAC_USE; iface_v3.iftype = WL_INTERFACE_CREATE_AP; brcmf_set_vif_sta_macaddr(ifp, iface_v3.mac_addr); err = brcmf_fil_iovar_data_get(ifp, "interface_create", &iface_v3, sizeof(iface_v3)); if (!err) brcmf_dbg(INFO, "interface created(v3)\n"); break; default: brcmf_err("not support interface create(v%d)\n", iface_create_ver); err = -EOPNOTSUPP; break; } if (err) { brcmf_info("Does not support interface_create (%d)\n", err); memset(&mbss_ssid_le, 0, sizeof(mbss_ssid_le)); bsscfgidx = brcmf_get_first_free_bsscfgidx(ifp->drvr); if (bsscfgidx < 0) return bsscfgidx; mbss_ssid_le.bsscfgidx = cpu_to_le32(bsscfgidx); mbss_ssid_le.SSID_len = cpu_to_le32(5); sprintf(mbss_ssid_le.SSID, "ssid%d", bsscfgidx); err = brcmf_fil_bsscfg_data_set(ifp, "bsscfg:ssid", &mbss_ssid_le, sizeof(mbss_ssid_le)); if (err < 0) bphy_err(drvr, "setting ssid failed %d\n", err); } return err; } /** * brcmf_apsta_add_vif() - create a new AP or STA virtual interface * * @wiphy: wiphy device of new interface. * @name: name of the new interface. * @params: contains mac address for AP or STA device. * @type: interface type. */ static struct wireless_dev *brcmf_apsta_add_vif(struct wiphy *wiphy, const char *name, struct vif_params *params, enum nl80211_iftype type) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_if *ifp = netdev_priv(cfg_to_ndev(cfg)); struct brcmf_pub *drvr = cfg->pub; struct brcmf_cfg80211_vif *vif; int err; if (type != NL80211_IFTYPE_STATION && type != NL80211_IFTYPE_AP) return ERR_PTR(-EINVAL); if (brcmf_cfg80211_vif_event_armed(cfg)) return ERR_PTR(-EBUSY); brcmf_dbg(INFO, "Adding vif \"%s\"\n", name); vif = brcmf_alloc_vif(cfg, type); if (IS_ERR(vif)) return (struct wireless_dev *)vif; brcmf_cfg80211_arm_vif_event(cfg, vif); if (type == NL80211_IFTYPE_STATION) err = brcmf_cfg80211_request_sta_if(ifp, params->macaddr); else err = brcmf_cfg80211_request_ap_if(ifp); if (err) { brcmf_cfg80211_arm_vif_event(cfg, NULL); goto fail; } /* wait for firmware event */ err = brcmf_cfg80211_wait_vif_event(cfg, BRCMF_E_IF_ADD, BRCMF_VIF_EVENT_TIMEOUT); brcmf_cfg80211_arm_vif_event(cfg, NULL); if (!err) { bphy_err(drvr, "timeout occurred\n"); err = -EIO; goto fail; } /* interface created in firmware */ ifp = vif->ifp; if (!ifp) { bphy_err(drvr, "no if pointer provided\n"); err = -ENOENT; goto fail; } strncpy(ifp->ndev->name, name, sizeof(ifp->ndev->name) - 1); err = brcmf_net_attach(ifp, true); if (err) { bphy_err(drvr, "Registering netdevice failed\n"); free_netdev(ifp->ndev); goto fail; } return &ifp->vif->wdev; fail: brcmf_free_vif(vif); return ERR_PTR(err); } static bool brcmf_is_apmode(struct brcmf_cfg80211_vif *vif) { enum nl80211_iftype iftype; iftype = vif->wdev.iftype; return iftype == NL80211_IFTYPE_AP || iftype == NL80211_IFTYPE_P2P_GO; } static bool brcmf_is_ibssmode(struct brcmf_cfg80211_vif *vif) { return vif->wdev.iftype == NL80211_IFTYPE_ADHOC; } /** * brcmf_mon_add_vif() - create monitor mode virtual interface * * @wiphy: wiphy device of new interface. * @name: name of the new interface. */ static struct wireless_dev *brcmf_mon_add_vif(struct wiphy *wiphy, const char *name) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_cfg80211_vif *vif; struct net_device *ndev; struct brcmf_if *ifp; int err; if (cfg->pub->mon_if) { err = -EEXIST; goto err_out; } vif = brcmf_alloc_vif(cfg, NL80211_IFTYPE_MONITOR); if (IS_ERR(vif)) { err = PTR_ERR(vif); goto err_out; } ndev = alloc_netdev(sizeof(*ifp), name, NET_NAME_UNKNOWN, ether_setup); if (!ndev) { err = -ENOMEM; goto err_free_vif; } ndev->type = ARPHRD_IEEE80211_RADIOTAP; ndev->ieee80211_ptr = &vif->wdev; ndev->needs_free_netdev = true; ndev->priv_destructor = brcmf_cfg80211_free_netdev; SET_NETDEV_DEV(ndev, wiphy_dev(cfg->wiphy)); ifp = netdev_priv(ndev); ifp->vif = vif; ifp->ndev = ndev; ifp->drvr = cfg->pub; vif->ifp = ifp; vif->wdev.netdev = ndev; err = brcmf_net_mon_attach(ifp); if (err) { brcmf_err("Failed to attach %s device\n", ndev->name); free_netdev(ndev); goto err_free_vif; } cfg->pub->mon_if = ifp; return &vif->wdev; err_free_vif: brcmf_free_vif(vif); err_out: return ERR_PTR(err); } static int brcmf_mon_del_vif(struct wiphy *wiphy, struct wireless_dev *wdev) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct net_device *ndev = wdev->netdev; ndev->netdev_ops->ndo_stop(ndev); brcmf_net_detach(ndev, true); cfg->pub->mon_if = NULL; return 0; } static struct wireless_dev *brcmf_cfg80211_add_iface(struct wiphy *wiphy, const char *name, unsigned char name_assign_type, enum nl80211_iftype type, struct vif_params *params) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_pub *drvr = cfg->pub; struct wireless_dev *wdev; int err; brcmf_dbg(TRACE, "enter: %s type %d\n", name, type); err = brcmf_vif_add_validate(wiphy_to_cfg(wiphy), type); if (err) { bphy_err(drvr, "iface validation failed: err=%d\n", err); return ERR_PTR(err); } switch (type) { case NL80211_IFTYPE_ADHOC: case NL80211_IFTYPE_AP_VLAN: case NL80211_IFTYPE_WDS: case NL80211_IFTYPE_MESH_POINT: return ERR_PTR(-EOPNOTSUPP); case NL80211_IFTYPE_MONITOR: return brcmf_mon_add_vif(wiphy, name); case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_AP: wdev = brcmf_apsta_add_vif(wiphy, name, params, type); break; case NL80211_IFTYPE_P2P_CLIENT: case NL80211_IFTYPE_P2P_GO: case NL80211_IFTYPE_P2P_DEVICE: wdev = brcmf_p2p_add_vif(wiphy, name, name_assign_type, type, params); break; case NL80211_IFTYPE_UNSPECIFIED: default: return ERR_PTR(-EINVAL); } if (IS_ERR(wdev)) bphy_err(drvr, "add iface %s type %d failed: err=%d\n", name, type, (int)PTR_ERR(wdev)); else brcmf_cfg80211_update_proto_addr_mode(wdev); return wdev; } static void brcmf_scan_config_mpc(struct brcmf_if *ifp, int mpc) { if (brcmf_feat_is_quirk_enabled(ifp, BRCMF_FEAT_QUIRK_NEED_MPC)) brcmf_set_mpc(ifp, mpc); } void brcmf_set_mpc(struct brcmf_if *ifp, int mpc) { struct brcmf_pub *drvr = ifp->drvr; s32 err = 0; if (check_vif_up(ifp->vif)) { err = brcmf_fil_iovar_int_set(ifp, "mpc", mpc); if (err) { bphy_err(drvr, "fail to set mpc\n"); return; } brcmf_dbg(INFO, "MPC : %d\n", mpc); } } s32 brcmf_notify_escan_complete(struct brcmf_cfg80211_info *cfg, struct brcmf_if *ifp, bool aborted, bool fw_abort) { struct brcmf_pub *drvr = cfg->pub; struct brcmf_scan_params_le params_le; struct cfg80211_scan_request *scan_request; u64 reqid; u32 bucket; s32 err = 0; brcmf_dbg(SCAN, "Enter\n"); /* clear scan request, because the FW abort can cause a second call */ /* to this functon and might cause a double cfg80211_scan_done */ scan_request = cfg->scan_request; cfg->scan_request = NULL; if (timer_pending(&cfg->escan_timeout)) del_timer_sync(&cfg->escan_timeout); if (fw_abort) { /* Do a scan abort to stop the driver's scan engine */ brcmf_dbg(SCAN, "ABORT scan in firmware\n"); memset(¶ms_le, 0, sizeof(params_le)); eth_broadcast_addr(params_le.bssid); params_le.bss_type = DOT11_BSSTYPE_ANY; params_le.scan_type = 0; params_le.channel_num = cpu_to_le32(1); params_le.nprobes = cpu_to_le32(1); params_le.active_time = cpu_to_le32(-1); params_le.passive_time = cpu_to_le32(-1); params_le.home_time = cpu_to_le32(-1); /* Scan is aborted by setting channel_list[0] to -1 */ params_le.channel_list[0] = cpu_to_le16(-1); /* E-Scan (or anyother type) can be aborted by SCAN */ err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SCAN, ¶ms_le, sizeof(params_le)); if (err) bphy_err(drvr, "Scan abort failed\n"); } brcmf_scan_config_mpc(ifp, 1); /* * e-scan can be initiated internally * which takes precedence. */ if (cfg->int_escan_map) { brcmf_dbg(SCAN, "scheduled scan completed (%x)\n", cfg->int_escan_map); while (cfg->int_escan_map) { bucket = __ffs(cfg->int_escan_map); cfg->int_escan_map &= ~BIT(bucket); reqid = brcmf_pno_find_reqid_by_bucket(cfg->pno, bucket); if (!aborted) { brcmf_dbg(SCAN, "report results: reqid=%llu\n", reqid); cfg80211_sched_scan_results(cfg_to_wiphy(cfg), reqid); } } } else if (scan_request) { struct cfg80211_scan_info info = { .aborted = aborted, }; brcmf_dbg(SCAN, "ESCAN Completed scan: %s\n", aborted ? "Aborted" : "Done"); cfg80211_scan_done(scan_request, &info); } if (!test_and_clear_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status)) brcmf_dbg(SCAN, "Scan complete, probably P2P scan\n"); return err; } static int brcmf_cfg80211_del_apsta_iface(struct wiphy *wiphy, struct wireless_dev *wdev) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct net_device *ndev = wdev->netdev; struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_pub *drvr = cfg->pub; int ret; int err; brcmf_cfg80211_arm_vif_event(cfg, ifp->vif); err = brcmf_fil_bsscfg_data_set(ifp, "interface_remove", NULL, 0); if (err) { bphy_err(drvr, "interface_remove failed %d\n", err); goto err_unarm; } /* wait for firmware event */ ret = brcmf_cfg80211_wait_vif_event(cfg, BRCMF_E_IF_DEL, BRCMF_VIF_EVENT_TIMEOUT); if (!ret) { bphy_err(drvr, "timeout occurred\n"); err = -EIO; goto err_unarm; } brcmf_remove_interface(ifp, true); err_unarm: brcmf_cfg80211_arm_vif_event(cfg, NULL); return err; } static int brcmf_cfg80211_del_iface(struct wiphy *wiphy, struct wireless_dev *wdev) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct net_device *ndev = wdev->netdev; if (ndev && ndev == cfg_to_ndev(cfg)) return -ENOTSUPP; /* vif event pending in firmware */ if (brcmf_cfg80211_vif_event_armed(cfg)) return -EBUSY; if (ndev) { if (test_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status) && cfg->escan_info.ifp == netdev_priv(ndev)) brcmf_notify_escan_complete(cfg, netdev_priv(ndev), true, true); brcmf_fil_iovar_int_set(netdev_priv(ndev), "mpc", 1); } switch (wdev->iftype) { case NL80211_IFTYPE_ADHOC: case NL80211_IFTYPE_AP_VLAN: case NL80211_IFTYPE_WDS: case NL80211_IFTYPE_MESH_POINT: return -EOPNOTSUPP; case NL80211_IFTYPE_MONITOR: return brcmf_mon_del_vif(wiphy, wdev); case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_AP: return brcmf_cfg80211_del_apsta_iface(wiphy, wdev); case NL80211_IFTYPE_P2P_CLIENT: case NL80211_IFTYPE_P2P_GO: case NL80211_IFTYPE_P2P_DEVICE: return brcmf_p2p_del_vif(wiphy, wdev); case NL80211_IFTYPE_UNSPECIFIED: default: return -EINVAL; } return -EOPNOTSUPP; } static s32 brcmf_cfg80211_change_iface(struct wiphy *wiphy, struct net_device *ndev, enum nl80211_iftype type, struct vif_params *params) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_cfg80211_vif *vif = ifp->vif; struct brcmf_pub *drvr = cfg->pub; s32 infra = 0; s32 ap = 0; s32 err = 0; brcmf_dbg(TRACE, "Enter, bsscfgidx=%d, type=%d\n", ifp->bsscfgidx, type); /* WAR: There are a number of p2p interface related problems which * need to be handled initially (before doing the validate). * wpa_supplicant tends to do iface changes on p2p device/client/go * which are not always possible/allowed. However we need to return * OK otherwise the wpa_supplicant wont start. The situation differs * on configuration and setup (p2pon=1 module param). The first check * is to see if the request is a change to station for p2p iface. */ if ((type == NL80211_IFTYPE_STATION) && ((vif->wdev.iftype == NL80211_IFTYPE_P2P_CLIENT) || (vif->wdev.iftype == NL80211_IFTYPE_P2P_GO) || (vif->wdev.iftype == NL80211_IFTYPE_P2P_DEVICE))) { brcmf_dbg(TRACE, "Ignoring cmd for p2p if\n"); /* Now depending on whether module param p2pon=1 was used the * response needs to be either 0 or EOPNOTSUPP. The reason is * that if p2pon=1 is used, but a newer supplicant is used then * we should return an error, as this combination wont work. * In other situations 0 is returned and supplicant will start * normally. It will give a trace in cfg80211, but it is the * only way to get it working. Unfortunately this will result * in situation where we wont support new supplicant in * combination with module param p2pon=1, but that is the way * it is. If the user tries this then unloading of driver might * fail/lock. */ if (cfg->p2p.p2pdev_dynamically) return -EOPNOTSUPP; else return 0; } err = brcmf_vif_change_validate(wiphy_to_cfg(wiphy), vif, type); if (err) { bphy_err(drvr, "iface validation failed: err=%d\n", err); return err; } switch (type) { case NL80211_IFTYPE_MONITOR: case NL80211_IFTYPE_WDS: bphy_err(drvr, "type (%d) : currently we do not support this type\n", type); return -EOPNOTSUPP; case NL80211_IFTYPE_ADHOC: infra = 0; break; case NL80211_IFTYPE_STATION: infra = 1; break; case NL80211_IFTYPE_AP: case NL80211_IFTYPE_P2P_GO: ap = 1; break; default: err = -EINVAL; goto done; } if (ap) { if (type == NL80211_IFTYPE_P2P_GO) { brcmf_dbg(INFO, "IF Type = P2P GO\n"); err = brcmf_p2p_ifchange(cfg, BRCMF_FIL_P2P_IF_GO); } if (!err) { brcmf_dbg(INFO, "IF Type = AP\n"); } } else { err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_INFRA, infra); if (err) { bphy_err(drvr, "WLC_SET_INFRA error (%d)\n", err); err = -EAGAIN; goto done; } brcmf_dbg(INFO, "IF Type = %s\n", brcmf_is_ibssmode(vif) ? "Adhoc" : "Infra"); } ndev->ieee80211_ptr->iftype = type; brcmf_cfg80211_update_proto_addr_mode(&vif->wdev); done: brcmf_dbg(TRACE, "Exit\n"); return err; } static void brcmf_escan_prep(struct brcmf_cfg80211_info *cfg, struct brcmf_scan_params_le *params_le, struct cfg80211_scan_request *request) { u32 n_ssids; u32 n_channels; s32 i; s32 offset; u16 chanspec; char *ptr; struct brcmf_ssid_le ssid_le; eth_broadcast_addr(params_le->bssid); params_le->bss_type = DOT11_BSSTYPE_ANY; params_le->scan_type = BRCMF_SCANTYPE_ACTIVE; params_le->channel_num = 0; params_le->nprobes = cpu_to_le32(-1); params_le->active_time = cpu_to_le32(-1); params_le->passive_time = cpu_to_le32(-1); params_le->home_time = cpu_to_le32(-1); memset(¶ms_le->ssid_le, 0, sizeof(params_le->ssid_le)); n_ssids = request->n_ssids; n_channels = request->n_channels; /* Copy channel array if applicable */ brcmf_dbg(SCAN, "### List of channelspecs to scan ### %d\n", n_channels); if (n_channels > 0) { for (i = 0; i < n_channels; i++) { chanspec = channel_to_chanspec(&cfg->d11inf, request->channels[i]); brcmf_dbg(SCAN, "Chan : %d, Channel spec: %x\n", request->channels[i]->hw_value, chanspec); params_le->channel_list[i] = cpu_to_le16(chanspec); } } else { brcmf_dbg(SCAN, "Scanning all channels\n"); } /* Copy ssid array if applicable */ brcmf_dbg(SCAN, "### List of SSIDs to scan ### %d\n", n_ssids); if (n_ssids > 0) { offset = offsetof(struct brcmf_scan_params_le, channel_list) + n_channels * sizeof(u16); offset = roundup(offset, sizeof(u32)); ptr = (char *)params_le + offset; for (i = 0; i < n_ssids; i++) { memset(&ssid_le, 0, sizeof(ssid_le)); ssid_le.SSID_len = cpu_to_le32(request->ssids[i].ssid_len); memcpy(ssid_le.SSID, request->ssids[i].ssid, request->ssids[i].ssid_len); if (!ssid_le.SSID_len) brcmf_dbg(SCAN, "%d: Broadcast scan\n", i); else brcmf_dbg(SCAN, "%d: scan for %.32s size=%d\n", i, ssid_le.SSID, ssid_le.SSID_len); memcpy(ptr, &ssid_le, sizeof(ssid_le)); ptr += sizeof(ssid_le); } } else { brcmf_dbg(SCAN, "Performing passive scan\n"); params_le->scan_type = BRCMF_SCANTYPE_PASSIVE; } /* Adding mask to channel numbers */ params_le->channel_num = cpu_to_le32((n_ssids << BRCMF_SCAN_PARAMS_NSSID_SHIFT) | (n_channels & BRCMF_SCAN_PARAMS_COUNT_MASK)); } static s32 brcmf_run_escan(struct brcmf_cfg80211_info *cfg, struct brcmf_if *ifp, struct cfg80211_scan_request *request) { struct brcmf_pub *drvr = cfg->pub; s32 params_size = BRCMF_SCAN_PARAMS_FIXED_SIZE + offsetof(struct brcmf_escan_params_le, params_le); struct brcmf_escan_params_le *params; s32 err = 0; brcmf_dbg(SCAN, "E-SCAN START\n"); if (request != NULL) { /* Allocate space for populating ssids in struct */ params_size += sizeof(u32) * ((request->n_channels + 1) / 2); /* Allocate space for populating ssids in struct */ params_size += sizeof(struct brcmf_ssid_le) * request->n_ssids; } params = kzalloc(params_size, GFP_KERNEL); if (!params) { err = -ENOMEM; goto exit; } BUG_ON(params_size + sizeof("escan") >= BRCMF_DCMD_MEDLEN); brcmf_escan_prep(cfg, ¶ms->params_le, request); params->version = cpu_to_le32(BRCMF_ESCAN_REQ_VERSION); params->action = cpu_to_le16(WL_ESCAN_ACTION_START); params->sync_id = cpu_to_le16(0x1234); err = brcmf_fil_iovar_data_set(ifp, "escan", params, params_size); if (err) { if (err == -EBUSY) brcmf_dbg(INFO, "system busy : escan canceled\n"); else bphy_err(drvr, "error (%d)\n", err); } kfree(params); exit: return err; } static s32 brcmf_do_escan(struct brcmf_if *ifp, struct cfg80211_scan_request *request) { struct brcmf_cfg80211_info *cfg = ifp->drvr->config; s32 err; struct brcmf_scan_results *results; struct escan_info *escan = &cfg->escan_info; brcmf_dbg(SCAN, "Enter\n"); escan->ifp = ifp; escan->wiphy = cfg->wiphy; escan->escan_state = WL_ESCAN_STATE_SCANNING; brcmf_scan_config_mpc(ifp, 0); results = (struct brcmf_scan_results *)cfg->escan_info.escan_buf; results->version = 0; results->count = 0; results->buflen = WL_ESCAN_RESULTS_FIXED_SIZE; err = escan->run(cfg, ifp, request); if (err) brcmf_scan_config_mpc(ifp, 1); return err; } static s32 brcmf_cfg80211_scan(struct wiphy *wiphy, struct cfg80211_scan_request *request) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_pub *drvr = cfg->pub; struct brcmf_cfg80211_vif *vif; s32 err = 0; brcmf_dbg(TRACE, "Enter\n"); vif = container_of(request->wdev, struct brcmf_cfg80211_vif, wdev); if (!check_vif_up(vif)) return -EIO; if (test_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status)) { bphy_err(drvr, "Scanning already: status (%lu)\n", cfg->scan_status); return -EAGAIN; } if (test_bit(BRCMF_SCAN_STATUS_ABORT, &cfg->scan_status)) { bphy_err(drvr, "Scanning being aborted: status (%lu)\n", cfg->scan_status); return -EAGAIN; } if (test_bit(BRCMF_SCAN_STATUS_SUPPRESS, &cfg->scan_status)) { bphy_err(drvr, "Scanning suppressed: status (%lu)\n", cfg->scan_status); return -EAGAIN; } if (test_bit(BRCMF_VIF_STATUS_CONNECTING, &vif->sme_state)) { bphy_err(drvr, "Connecting: status (%lu)\n", vif->sme_state); return -EAGAIN; } /* If scan req comes for p2p0, send it over primary I/F */ if (vif == cfg->p2p.bss_idx[P2PAPI_BSSCFG_DEVICE].vif) vif = cfg->p2p.bss_idx[P2PAPI_BSSCFG_PRIMARY].vif; brcmf_dbg(SCAN, "START ESCAN\n"); cfg->scan_request = request; set_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status); cfg->escan_info.run = brcmf_run_escan; err = brcmf_p2p_scan_prep(wiphy, request, vif); if (err) goto scan_out; err = brcmf_vif_set_mgmt_ie(vif, BRCMF_VNDR_IE_PRBREQ_FLAG, request->ie, request->ie_len); if (err) goto scan_out; err = brcmf_do_escan(vif->ifp, request); if (err) goto scan_out; /* Arm scan timeout timer */ mod_timer(&cfg->escan_timeout, jiffies + msecs_to_jiffies(BRCMF_ESCAN_TIMER_INTERVAL_MS)); return 0; scan_out: bphy_err(drvr, "scan error (%d)\n", err); clear_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status); cfg->scan_request = NULL; return err; } static s32 brcmf_set_rts(struct net_device *ndev, u32 rts_threshold) { struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_pub *drvr = ifp->drvr; s32 err = 0; err = brcmf_fil_iovar_int_set(ifp, "rtsthresh", rts_threshold); if (err) bphy_err(drvr, "Error (%d)\n", err); return err; } static s32 brcmf_set_frag(struct net_device *ndev, u32 frag_threshold) { struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_pub *drvr = ifp->drvr; s32 err = 0; err = brcmf_fil_iovar_int_set(ifp, "fragthresh", frag_threshold); if (err) bphy_err(drvr, "Error (%d)\n", err); return err; } static s32 brcmf_set_retry(struct net_device *ndev, u32 retry, bool l) { struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_pub *drvr = ifp->drvr; s32 err = 0; u32 cmd = (l ? BRCMF_C_SET_LRL : BRCMF_C_SET_SRL); err = brcmf_fil_cmd_int_set(ifp, cmd, retry); if (err) { bphy_err(drvr, "cmd (%d) , error (%d)\n", cmd, err); return err; } return err; } static s32 brcmf_cfg80211_set_wiphy_params(struct wiphy *wiphy, u32 changed) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct net_device *ndev = cfg_to_ndev(cfg); struct brcmf_if *ifp = netdev_priv(ndev); s32 err = 0; brcmf_dbg(TRACE, "Enter\n"); if (!check_vif_up(ifp->vif)) return -EIO; if (changed & WIPHY_PARAM_RTS_THRESHOLD && (cfg->conf->rts_threshold != wiphy->rts_threshold)) { cfg->conf->rts_threshold = wiphy->rts_threshold; err = brcmf_set_rts(ndev, cfg->conf->rts_threshold); if (!err) goto done; } if (changed & WIPHY_PARAM_FRAG_THRESHOLD && (cfg->conf->frag_threshold != wiphy->frag_threshold)) { cfg->conf->frag_threshold = wiphy->frag_threshold; err = brcmf_set_frag(ndev, cfg->conf->frag_threshold); if (!err) goto done; } if (changed & WIPHY_PARAM_RETRY_LONG && (cfg->conf->retry_long != wiphy->retry_long)) { cfg->conf->retry_long = wiphy->retry_long; err = brcmf_set_retry(ndev, cfg->conf->retry_long, true); if (!err) goto done; } if (changed & WIPHY_PARAM_RETRY_SHORT && (cfg->conf->retry_short != wiphy->retry_short)) { cfg->conf->retry_short = wiphy->retry_short; err = brcmf_set_retry(ndev, cfg->conf->retry_short, false); if (!err) goto done; } done: brcmf_dbg(TRACE, "Exit\n"); return err; } static void brcmf_init_prof(struct brcmf_cfg80211_profile *prof) { memset(prof, 0, sizeof(*prof)); } static u16 brcmf_map_fw_linkdown_reason(const struct brcmf_event_msg *e) { u16 reason; switch (e->event_code) { case BRCMF_E_DEAUTH: case BRCMF_E_DEAUTH_IND: case BRCMF_E_DISASSOC_IND: reason = e->reason; break; case BRCMF_E_LINK: default: reason = 0; break; } return reason; } static int brcmf_set_pmk(struct brcmf_if *ifp, const u8 *pmk_data, u16 pmk_len) { struct brcmf_pub *drvr = ifp->drvr; struct brcmf_wsec_pmk_le pmk; int err; memset(&pmk, 0, sizeof(pmk)); /* pass pmk directly */ pmk.key_len = cpu_to_le16(pmk_len); pmk.flags = cpu_to_le16(0); memcpy(pmk.key, pmk_data, pmk_len); /* store psk in firmware */ err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SET_WSEC_PMK, &pmk, sizeof(pmk)); if (err < 0) bphy_err(drvr, "failed to change PSK in firmware (len=%u)\n", pmk_len); return err; } static int brcmf_set_sae_password(struct brcmf_if *ifp, const u8 *pwd_data, u16 pwd_len) { struct brcmf_pub *drvr = ifp->drvr; struct brcmf_wsec_sae_pwd_le sae_pwd; int err; if (pwd_len > BRCMF_WSEC_MAX_SAE_PASSWORD_LEN) { bphy_err(drvr, "sae_password must be less than %d\n", BRCMF_WSEC_MAX_SAE_PASSWORD_LEN); return -EINVAL; } sae_pwd.key_len = cpu_to_le16(pwd_len); memcpy(sae_pwd.key, pwd_data, pwd_len); err = brcmf_fil_iovar_data_set(ifp, "sae_password", &sae_pwd, sizeof(sae_pwd)); if (err < 0) bphy_err(drvr, "failed to set SAE password in firmware (len=%u)\n", pwd_len); return err; } static void brcmf_link_down(struct brcmf_cfg80211_vif *vif, u16 reason, bool locally_generated) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(vif->wdev.wiphy); struct brcmf_pub *drvr = cfg->pub; bool bus_up = drvr->bus_if->state == BRCMF_BUS_UP; s32 err = 0; brcmf_dbg(TRACE, "Enter\n"); if (test_and_clear_bit(BRCMF_VIF_STATUS_CONNECTED, &vif->sme_state)) { if (bus_up) { brcmf_dbg(INFO, "Call WLC_DISASSOC to stop excess roaming\n"); err = brcmf_fil_cmd_data_set(vif->ifp, BRCMF_C_DISASSOC, NULL, 0); if (err) bphy_err(drvr, "WLC_DISASSOC failed (%d)\n", err); } if ((vif->wdev.iftype == NL80211_IFTYPE_STATION) || (vif->wdev.iftype == NL80211_IFTYPE_P2P_CLIENT)) cfg80211_disconnected(vif->wdev.netdev, reason, NULL, 0, locally_generated, GFP_KERNEL); } clear_bit(BRCMF_VIF_STATUS_CONNECTING, &vif->sme_state); clear_bit(BRCMF_VIF_STATUS_EAP_SUCCESS, &vif->sme_state); clear_bit(BRCMF_VIF_STATUS_ASSOC_SUCCESS, &vif->sme_state); clear_bit(BRCMF_SCAN_STATUS_SUPPRESS, &cfg->scan_status); brcmf_btcoex_set_mode(vif, BRCMF_BTCOEX_ENABLED, 0); if (vif->profile.use_fwsup != BRCMF_PROFILE_FWSUP_NONE) { if (bus_up) brcmf_set_pmk(vif->ifp, NULL, 0); vif->profile.use_fwsup = BRCMF_PROFILE_FWSUP_NONE; } brcmf_dbg(TRACE, "Exit\n"); } static s32 brcmf_cfg80211_join_ibss(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_ibss_params *params) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_cfg80211_profile *profile = &ifp->vif->profile; struct brcmf_pub *drvr = cfg->pub; struct brcmf_join_params join_params; size_t join_params_size = 0; s32 err = 0; s32 wsec = 0; s32 bcnprd; u16 chanspec; u32 ssid_len; brcmf_dbg(TRACE, "Enter\n"); if (!check_vif_up(ifp->vif)) return -EIO; if (params->ssid) brcmf_dbg(CONN, "SSID: %s\n", params->ssid); else { brcmf_dbg(CONN, "SSID: NULL, Not supported\n"); return -EOPNOTSUPP; } set_bit(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state); if (params->bssid) brcmf_dbg(CONN, "BSSID: %pM\n", params->bssid); else brcmf_dbg(CONN, "No BSSID specified\n"); if (params->chandef.chan) brcmf_dbg(CONN, "channel: %d\n", params->chandef.chan->center_freq); else brcmf_dbg(CONN, "no channel specified\n"); if (params->channel_fixed) brcmf_dbg(CONN, "fixed channel required\n"); else brcmf_dbg(CONN, "no fixed channel required\n"); if (params->ie && params->ie_len) brcmf_dbg(CONN, "ie len: %d\n", params->ie_len); else brcmf_dbg(CONN, "no ie specified\n"); if (params->beacon_interval) brcmf_dbg(CONN, "beacon interval: %d\n", params->beacon_interval); else brcmf_dbg(CONN, "no beacon interval specified\n"); if (params->basic_rates) brcmf_dbg(CONN, "basic rates: %08X\n", params->basic_rates); else brcmf_dbg(CONN, "no basic rates specified\n"); if (params->privacy) brcmf_dbg(CONN, "privacy required\n"); else brcmf_dbg(CONN, "no privacy required\n"); /* Configure Privacy for starter */ if (params->privacy) wsec |= WEP_ENABLED; err = brcmf_fil_iovar_int_set(ifp, "wsec", wsec); if (err) { bphy_err(drvr, "wsec failed (%d)\n", err); goto done; } /* Configure Beacon Interval for starter */ if (params->beacon_interval) bcnprd = params->beacon_interval; else bcnprd = 100; err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_BCNPRD, bcnprd); if (err) { bphy_err(drvr, "WLC_SET_BCNPRD failed (%d)\n", err); goto done; } /* Configure required join parameter */ memset(&join_params, 0, sizeof(struct brcmf_join_params)); /* SSID */ ssid_len = min_t(u32, params->ssid_len, IEEE80211_MAX_SSID_LEN); memcpy(join_params.ssid_le.SSID, params->ssid, ssid_len); join_params.ssid_le.SSID_len = cpu_to_le32(ssid_len); join_params_size = sizeof(join_params.ssid_le); /* BSSID */ if (params->bssid) { memcpy(join_params.params_le.bssid, params->bssid, ETH_ALEN); join_params_size += BRCMF_ASSOC_PARAMS_FIXED_SIZE; memcpy(profile->bssid, params->bssid, ETH_ALEN); } else { eth_broadcast_addr(join_params.params_le.bssid); eth_zero_addr(profile->bssid); } /* Channel */ if (params->chandef.chan) { u32 target_channel; cfg->channel = ieee80211_frequency_to_channel( params->chandef.chan->center_freq); if (params->channel_fixed) { /* adding chanspec */ chanspec = chandef_to_chanspec(&cfg->d11inf, ¶ms->chandef); join_params.params_le.chanspec_list[0] = cpu_to_le16(chanspec); join_params.params_le.chanspec_num = cpu_to_le32(1); join_params_size += sizeof(join_params.params_le); } /* set channel for starter */ target_channel = cfg->channel; err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_CHANNEL, target_channel); if (err) { bphy_err(drvr, "WLC_SET_CHANNEL failed (%d)\n", err); goto done; } } else cfg->channel = 0; cfg->ibss_starter = false; err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SET_SSID, &join_params, join_params_size); if (err) { bphy_err(drvr, "WLC_SET_SSID failed (%d)\n", err); goto done; } done: if (err) clear_bit(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state); brcmf_dbg(TRACE, "Exit\n"); return err; } static s32 brcmf_cfg80211_leave_ibss(struct wiphy *wiphy, struct net_device *ndev) { struct brcmf_if *ifp = netdev_priv(ndev); brcmf_dbg(TRACE, "Enter\n"); if (!check_vif_up(ifp->vif)) { /* When driver is being unloaded, it can end up here. If an * error is returned then later on a debug trace in the wireless * core module will be printed. To avoid this 0 is returned. */ return 0; } brcmf_link_down(ifp->vif, WLAN_REASON_DEAUTH_LEAVING, true); brcmf_net_setcarrier(ifp, false); brcmf_dbg(TRACE, "Exit\n"); return 0; } static s32 brcmf_set_wpa_version(struct net_device *ndev, struct cfg80211_connect_params *sme) { struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_cfg80211_profile *profile = ndev_to_prof(ndev); struct brcmf_pub *drvr = ifp->drvr; struct brcmf_cfg80211_security *sec; s32 val = 0; s32 err = 0; if (sme->crypto.wpa_versions & NL80211_WPA_VERSION_1) val = WPA_AUTH_PSK | WPA_AUTH_UNSPECIFIED; else if (sme->crypto.wpa_versions & NL80211_WPA_VERSION_2) val = WPA2_AUTH_PSK | WPA2_AUTH_UNSPECIFIED; else if (sme->crypto.wpa_versions & NL80211_WPA_VERSION_3) val = WPA3_AUTH_SAE_PSK; else val = WPA_AUTH_DISABLED; brcmf_dbg(CONN, "setting wpa_auth to 0x%0x\n", val); err = brcmf_fil_bsscfg_int_set(ifp, "wpa_auth", val); if (err) { bphy_err(drvr, "set wpa_auth failed (%d)\n", err); return err; } sec = &profile->sec; sec->wpa_versions = sme->crypto.wpa_versions; return err; } static s32 brcmf_set_auth_type(struct net_device *ndev, struct cfg80211_connect_params *sme) { struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_cfg80211_profile *profile = ndev_to_prof(ndev); struct brcmf_pub *drvr = ifp->drvr; struct brcmf_cfg80211_security *sec; s32 val = 0; s32 err = 0; switch (sme->auth_type) { case NL80211_AUTHTYPE_OPEN_SYSTEM: val = 0; brcmf_dbg(CONN, "open system\n"); break; case NL80211_AUTHTYPE_SHARED_KEY: val = 1; brcmf_dbg(CONN, "shared key\n"); break; case NL80211_AUTHTYPE_SAE: val = 3; brcmf_dbg(CONN, "SAE authentication\n"); break; default: val = 2; brcmf_dbg(CONN, "automatic, auth type (%d)\n", sme->auth_type); break; } err = brcmf_fil_bsscfg_int_set(ifp, "auth", val); if (err) { bphy_err(drvr, "set auth failed (%d)\n", err); return err; } sec = &profile->sec; sec->auth_type = sme->auth_type; return err; } static s32 brcmf_set_wsec_mode(struct net_device *ndev, struct cfg80211_connect_params *sme) { struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_cfg80211_profile *profile = ndev_to_prof(ndev); struct brcmf_pub *drvr = ifp->drvr; struct brcmf_cfg80211_security *sec; s32 pval = 0; s32 gval = 0; s32 wsec; s32 err = 0; if (sme->crypto.n_ciphers_pairwise) { switch (sme->crypto.ciphers_pairwise[0]) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: pval = WEP_ENABLED; break; case WLAN_CIPHER_SUITE_TKIP: pval = TKIP_ENABLED; break; case WLAN_CIPHER_SUITE_CCMP: pval = AES_ENABLED; break; case WLAN_CIPHER_SUITE_AES_CMAC: pval = AES_ENABLED; break; default: bphy_err(drvr, "invalid cipher pairwise (%d)\n", sme->crypto.ciphers_pairwise[0]); return -EINVAL; } } if (sme->crypto.cipher_group) { switch (sme->crypto.cipher_group) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: gval = WEP_ENABLED; break; case WLAN_CIPHER_SUITE_TKIP: gval = TKIP_ENABLED; break; case WLAN_CIPHER_SUITE_CCMP: gval = AES_ENABLED; break; case WLAN_CIPHER_SUITE_AES_CMAC: gval = AES_ENABLED; break; default: bphy_err(drvr, "invalid cipher group (%d)\n", sme->crypto.cipher_group); return -EINVAL; } } brcmf_dbg(CONN, "pval (%d) gval (%d)\n", pval, gval); /* In case of privacy, but no security and WPS then simulate */ /* setting AES. WPS-2.0 allows no security */ if (brcmf_find_wpsie(sme->ie, sme->ie_len) && !pval && !gval && sme->privacy) pval = AES_ENABLED; wsec = pval | gval; err = brcmf_fil_bsscfg_int_set(ifp, "wsec", wsec); if (err) { bphy_err(drvr, "error (%d)\n", err); return err; } sec = &profile->sec; sec->cipher_pairwise = sme->crypto.ciphers_pairwise[0]; sec->cipher_group = sme->crypto.cipher_group; return err; } static s32 brcmf_set_key_mgmt(struct net_device *ndev, struct cfg80211_connect_params *sme) { struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_cfg80211_profile *profile = &ifp->vif->profile; struct brcmf_pub *drvr = ifp->drvr; s32 val; s32 err; const struct brcmf_tlv *rsn_ie; const u8 *ie; u32 ie_len; u32 offset; u16 rsn_cap; u32 mfp; u16 count; profile->use_fwsup = BRCMF_PROFILE_FWSUP_NONE; profile->is_ft = false; if (!sme->crypto.n_akm_suites) return 0; err = brcmf_fil_bsscfg_int_get(netdev_priv(ndev), "wpa_auth", &val); if (err) { bphy_err(drvr, "could not get wpa_auth (%d)\n", err); return err; } if (val & (WPA_AUTH_PSK | WPA_AUTH_UNSPECIFIED)) { switch (sme->crypto.akm_suites[0]) { case WLAN_AKM_SUITE_8021X: val = WPA_AUTH_UNSPECIFIED; if (sme->want_1x) profile->use_fwsup = BRCMF_PROFILE_FWSUP_1X; break; case WLAN_AKM_SUITE_PSK: val = WPA_AUTH_PSK; break; default: bphy_err(drvr, "invalid akm suite (%d)\n", sme->crypto.akm_suites[0]); return -EINVAL; } } else if (val & (WPA2_AUTH_PSK | WPA2_AUTH_UNSPECIFIED)) { switch (sme->crypto.akm_suites[0]) { case WLAN_AKM_SUITE_8021X: val = WPA2_AUTH_UNSPECIFIED; if (sme->want_1x) profile->use_fwsup = BRCMF_PROFILE_FWSUP_1X; break; case WLAN_AKM_SUITE_8021X_SHA256: val = WPA2_AUTH_1X_SHA256; if (sme->want_1x) profile->use_fwsup = BRCMF_PROFILE_FWSUP_1X; break; case WLAN_AKM_SUITE_PSK_SHA256: val = WPA2_AUTH_PSK_SHA256; break; case WLAN_AKM_SUITE_PSK: val = WPA2_AUTH_PSK; break; case WLAN_AKM_SUITE_FT_8021X: val = WPA2_AUTH_UNSPECIFIED | WPA2_AUTH_FT; profile->is_ft = true; if (sme->want_1x) profile->use_fwsup = BRCMF_PROFILE_FWSUP_1X; break; case WLAN_AKM_SUITE_FT_PSK: val = WPA2_AUTH_PSK | WPA2_AUTH_FT; profile->is_ft = true; break; default: bphy_err(drvr, "invalid akm suite (%d)\n", sme->crypto.akm_suites[0]); return -EINVAL; } } else if (val & WPA3_AUTH_SAE_PSK) { switch (sme->crypto.akm_suites[0]) { case WLAN_AKM_SUITE_SAE: val = WPA3_AUTH_SAE_PSK; if (sme->crypto.sae_pwd) { brcmf_dbg(INFO, "using SAE offload\n"); profile->use_fwsup = BRCMF_PROFILE_FWSUP_SAE; } break; case WLAN_AKM_SUITE_FT_OVER_SAE: val = WPA3_AUTH_SAE_PSK | WPA2_AUTH_FT; profile->is_ft = true; if (sme->crypto.sae_pwd) { brcmf_dbg(INFO, "using SAE offload\n"); profile->use_fwsup = BRCMF_PROFILE_FWSUP_SAE; } break; default: bphy_err(drvr, "invalid akm suite (%d)\n", sme->crypto.akm_suites[0]); return -EINVAL; } } if (profile->use_fwsup == BRCMF_PROFILE_FWSUP_1X) brcmf_dbg(INFO, "using 1X offload\n"); if (!brcmf_feat_is_enabled(ifp, BRCMF_FEAT_MFP)) goto skip_mfp_config; /* The MFP mode (1 or 2) needs to be determined, parse IEs. The * IE will not be verified, just a quick search for MFP config */ rsn_ie = brcmf_parse_tlvs((const u8 *)sme->ie, sme->ie_len, WLAN_EID_RSN); if (!rsn_ie) goto skip_mfp_config; ie = (const u8 *)rsn_ie; ie_len = rsn_ie->len + TLV_HDR_LEN; /* Skip unicast suite */ offset = TLV_HDR_LEN + WPA_IE_VERSION_LEN + WPA_IE_MIN_OUI_LEN; if (offset + WPA_IE_SUITE_COUNT_LEN >= ie_len) goto skip_mfp_config; /* Skip multicast suite */ count = ie[offset] + (ie[offset + 1] << 8); offset += WPA_IE_SUITE_COUNT_LEN + (count * WPA_IE_MIN_OUI_LEN); if (offset + WPA_IE_SUITE_COUNT_LEN >= ie_len) goto skip_mfp_config; /* Skip auth key management suite(s) */ count = ie[offset] + (ie[offset + 1] << 8); offset += WPA_IE_SUITE_COUNT_LEN + (count * WPA_IE_MIN_OUI_LEN); if (offset + WPA_IE_SUITE_COUNT_LEN > ie_len) goto skip_mfp_config; /* Ready to read capabilities */ mfp = BRCMF_MFP_NONE; rsn_cap = ie[offset] + (ie[offset + 1] << 8); if (rsn_cap & RSN_CAP_MFPR_MASK) mfp = BRCMF_MFP_REQUIRED; else if (rsn_cap & RSN_CAP_MFPC_MASK) mfp = BRCMF_MFP_CAPABLE; brcmf_fil_bsscfg_int_set(netdev_priv(ndev), "mfp", mfp); skip_mfp_config: brcmf_dbg(CONN, "setting wpa_auth to %d\n", val); err = brcmf_fil_bsscfg_int_set(netdev_priv(ndev), "wpa_auth", val); if (err) { bphy_err(drvr, "could not set wpa_auth (%d)\n", err); return err; } return err; } static s32 brcmf_set_sharedkey(struct net_device *ndev, struct cfg80211_connect_params *sme) { struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_pub *drvr = ifp->drvr; struct brcmf_cfg80211_profile *profile = ndev_to_prof(ndev); struct brcmf_cfg80211_security *sec; struct brcmf_wsec_key key; s32 val; s32 err = 0; brcmf_dbg(CONN, "key len (%d)\n", sme->key_len); if (sme->key_len == 0) return 0; sec = &profile->sec; brcmf_dbg(CONN, "wpa_versions 0x%x cipher_pairwise 0x%x\n", sec->wpa_versions, sec->cipher_pairwise); if (sec->wpa_versions & (NL80211_WPA_VERSION_1 | NL80211_WPA_VERSION_2 | NL80211_WPA_VERSION_3)) return 0; if (!(sec->cipher_pairwise & (WLAN_CIPHER_SUITE_WEP40 | WLAN_CIPHER_SUITE_WEP104))) return 0; memset(&key, 0, sizeof(key)); key.len = (u32) sme->key_len; key.index = (u32) sme->key_idx; if (key.len > sizeof(key.data)) { bphy_err(drvr, "Too long key length (%u)\n", key.len); return -EINVAL; } memcpy(key.data, sme->key, key.len); key.flags = BRCMF_PRIMARY_KEY; switch (sec->cipher_pairwise) { case WLAN_CIPHER_SUITE_WEP40: key.algo = CRYPTO_ALGO_WEP1; break; case WLAN_CIPHER_SUITE_WEP104: key.algo = CRYPTO_ALGO_WEP128; break; default: bphy_err(drvr, "Invalid algorithm (%d)\n", sme->crypto.ciphers_pairwise[0]); return -EINVAL; } /* Set the new key/index */ brcmf_dbg(CONN, "key length (%d) key index (%d) algo (%d)\n", key.len, key.index, key.algo); brcmf_dbg(CONN, "key \"%s\"\n", key.data); err = send_key_to_dongle(ifp, &key); if (err) return err; if (sec->auth_type == NL80211_AUTHTYPE_SHARED_KEY) { brcmf_dbg(CONN, "set auth_type to shared key\n"); val = WL_AUTH_SHARED_KEY; /* shared key */ err = brcmf_fil_bsscfg_int_set(ifp, "auth", val); if (err) bphy_err(drvr, "set auth failed (%d)\n", err); } return err; } static enum nl80211_auth_type brcmf_war_auth_type(struct brcmf_if *ifp, enum nl80211_auth_type type) { if (type == NL80211_AUTHTYPE_AUTOMATIC && brcmf_feat_is_quirk_enabled(ifp, BRCMF_FEAT_QUIRK_AUTO_AUTH)) { brcmf_dbg(CONN, "WAR: use OPEN instead of AUTO\n"); type = NL80211_AUTHTYPE_OPEN_SYSTEM; } return type; } static void brcmf_set_join_pref(struct brcmf_if *ifp, struct cfg80211_bss_selection *bss_select) { struct brcmf_pub *drvr = ifp->drvr; struct brcmf_join_pref_params join_pref_params[2]; enum nl80211_band band; int err, i = 0; join_pref_params[i].len = 2; join_pref_params[i].rssi_gain = 0; if (bss_select->behaviour != NL80211_BSS_SELECT_ATTR_BAND_PREF) brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_ASSOC_PREFER, WLC_BAND_AUTO); switch (bss_select->behaviour) { case __NL80211_BSS_SELECT_ATTR_INVALID: brcmf_c_set_joinpref_default(ifp); return; case NL80211_BSS_SELECT_ATTR_BAND_PREF: join_pref_params[i].type = BRCMF_JOIN_PREF_BAND; band = bss_select->param.band_pref; join_pref_params[i].band = nl80211_band_to_fwil(band); i++; break; case NL80211_BSS_SELECT_ATTR_RSSI_ADJUST: join_pref_params[i].type = BRCMF_JOIN_PREF_RSSI_DELTA; band = bss_select->param.adjust.band; join_pref_params[i].band = nl80211_band_to_fwil(band); join_pref_params[i].rssi_gain = bss_select->param.adjust.delta; i++; break; case NL80211_BSS_SELECT_ATTR_RSSI: default: break; } join_pref_params[i].type = BRCMF_JOIN_PREF_RSSI; join_pref_params[i].len = 2; join_pref_params[i].rssi_gain = 0; join_pref_params[i].band = 0; err = brcmf_fil_iovar_data_set(ifp, "join_pref", join_pref_params, sizeof(join_pref_params)); if (err) bphy_err(drvr, "Set join_pref error (%d)\n", err); } static s32 brcmf_cfg80211_connect(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_connect_params *sme) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_cfg80211_profile *profile = &ifp->vif->profile; struct ieee80211_channel *chan = sme->channel; struct brcmf_pub *drvr = ifp->drvr; struct brcmf_join_params join_params; size_t join_params_size; const struct brcmf_tlv *rsn_ie; const struct brcmf_vs_tlv *wpa_ie; const void *ie; u32 ie_len; struct brcmf_ext_join_params_le *ext_join_params; u16 chanspec; s32 err = 0; u32 ssid_len; brcmf_dbg(TRACE, "Enter\n"); if (!check_vif_up(ifp->vif)) return -EIO; if (!sme->ssid) { bphy_err(drvr, "Invalid ssid\n"); return -EOPNOTSUPP; } if (sme->channel_hint) chan = sme->channel_hint; if (sme->bssid_hint) sme->bssid = sme->bssid_hint; if (ifp->vif == cfg->p2p.bss_idx[P2PAPI_BSSCFG_PRIMARY].vif) { /* A normal (non P2P) connection request setup. */ ie = NULL; ie_len = 0; /* find the WPA_IE */ wpa_ie = brcmf_find_wpaie((u8 *)sme->ie, sme->ie_len); if (wpa_ie) { ie = wpa_ie; ie_len = wpa_ie->len + TLV_HDR_LEN; } else { /* find the RSN_IE */ rsn_ie = brcmf_parse_tlvs((const u8 *)sme->ie, sme->ie_len, WLAN_EID_RSN); if (rsn_ie) { ie = rsn_ie; ie_len = rsn_ie->len + TLV_HDR_LEN; } } brcmf_fil_iovar_data_set(ifp, "wpaie", ie, ie_len); } err = brcmf_vif_set_mgmt_ie(ifp->vif, BRCMF_VNDR_IE_ASSOCREQ_FLAG, sme->ie, sme->ie_len); if (err) bphy_err(drvr, "Set Assoc REQ IE Failed\n"); else brcmf_dbg(TRACE, "Applied Vndr IEs for Assoc request\n"); set_bit(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state); if (chan) { cfg->channel = ieee80211_frequency_to_channel(chan->center_freq); chanspec = channel_to_chanspec(&cfg->d11inf, chan); brcmf_dbg(CONN, "channel=%d, center_req=%d, chanspec=0x%04x\n", cfg->channel, chan->center_freq, chanspec); } else { cfg->channel = 0; chanspec = 0; } brcmf_dbg(INFO, "ie (%p), ie_len (%zd)\n", sme->ie, sme->ie_len); err = brcmf_set_wpa_version(ndev, sme); if (err) { bphy_err(drvr, "wl_set_wpa_version failed (%d)\n", err); goto done; } sme->auth_type = brcmf_war_auth_type(ifp, sme->auth_type); err = brcmf_set_auth_type(ndev, sme); if (err) { bphy_err(drvr, "wl_set_auth_type failed (%d)\n", err); goto done; } err = brcmf_set_wsec_mode(ndev, sme); if (err) { bphy_err(drvr, "wl_set_set_cipher failed (%d)\n", err); goto done; } err = brcmf_set_key_mgmt(ndev, sme); if (err) { bphy_err(drvr, "wl_set_key_mgmt failed (%d)\n", err); goto done; } err = brcmf_set_sharedkey(ndev, sme); if (err) { bphy_err(drvr, "brcmf_set_sharedkey failed (%d)\n", err); goto done; } if (sme->crypto.psk && profile->use_fwsup != BRCMF_PROFILE_FWSUP_SAE) { if (WARN_ON(profile->use_fwsup != BRCMF_PROFILE_FWSUP_NONE)) { err = -EINVAL; goto done; } brcmf_dbg(INFO, "using PSK offload\n"); profile->use_fwsup = BRCMF_PROFILE_FWSUP_PSK; } if (profile->use_fwsup != BRCMF_PROFILE_FWSUP_NONE) { /* enable firmware supplicant for this interface */ err = brcmf_fil_iovar_int_set(ifp, "sup_wpa", 1); if (err < 0) { bphy_err(drvr, "failed to enable fw supplicant\n"); goto done; } } if (profile->use_fwsup == BRCMF_PROFILE_FWSUP_PSK) err = brcmf_set_pmk(ifp, sme->crypto.psk, BRCMF_WSEC_MAX_PSK_LEN); else if (profile->use_fwsup == BRCMF_PROFILE_FWSUP_SAE) { /* clean up user-space RSNE */ err = brcmf_fil_iovar_data_set(ifp, "wpaie", NULL, 0); if (err) { bphy_err(drvr, "failed to clean up user-space RSNE\n"); goto done; } err = brcmf_set_sae_password(ifp, sme->crypto.sae_pwd, sme->crypto.sae_pwd_len); if (!err && sme->crypto.psk) err = brcmf_set_pmk(ifp, sme->crypto.psk, BRCMF_WSEC_MAX_PSK_LEN); } if (err) goto done; /* Join with specific BSSID and cached SSID * If SSID is zero join based on BSSID only */ join_params_size = offsetof(struct brcmf_ext_join_params_le, assoc_le) + offsetof(struct brcmf_assoc_params_le, chanspec_list); if (cfg->channel) join_params_size += sizeof(u16); ext_join_params = kzalloc(sizeof(*ext_join_params), GFP_KERNEL); if (ext_join_params == NULL) { err = -ENOMEM; goto done; } ssid_len = min_t(u32, sme->ssid_len, IEEE80211_MAX_SSID_LEN); ext_join_params->ssid_le.SSID_len = cpu_to_le32(ssid_len); memcpy(&ext_join_params->ssid_le.SSID, sme->ssid, ssid_len); if (ssid_len < IEEE80211_MAX_SSID_LEN) brcmf_dbg(CONN, "SSID \"%s\", len (%d)\n", ext_join_params->ssid_le.SSID, ssid_len); /* Set up join scan parameters */ ext_join_params->scan_le.scan_type = -1; ext_join_params->scan_le.home_time = cpu_to_le32(-1); if (sme->bssid) memcpy(&ext_join_params->assoc_le.bssid, sme->bssid, ETH_ALEN); else eth_broadcast_addr(ext_join_params->assoc_le.bssid); if (cfg->channel) { ext_join_params->assoc_le.chanspec_num = cpu_to_le32(1); ext_join_params->assoc_le.chanspec_list[0] = cpu_to_le16(chanspec); /* Increase dwell time to receive probe response or detect * beacon from target AP at a noisy air only during connect * command. */ ext_join_params->scan_le.active_time = cpu_to_le32(BRCMF_SCAN_JOIN_ACTIVE_DWELL_TIME_MS); ext_join_params->scan_le.passive_time = cpu_to_le32(BRCMF_SCAN_JOIN_PASSIVE_DWELL_TIME_MS); /* To sync with presence period of VSDB GO send probe request * more frequently. Probe request will be stopped when it gets * probe response from target AP/GO. */ ext_join_params->scan_le.nprobes = cpu_to_le32(BRCMF_SCAN_JOIN_ACTIVE_DWELL_TIME_MS / BRCMF_SCAN_JOIN_PROBE_INTERVAL_MS); } else { ext_join_params->scan_le.active_time = cpu_to_le32(-1); ext_join_params->scan_le.passive_time = cpu_to_le32(-1); ext_join_params->scan_le.nprobes = cpu_to_le32(-1); } brcmf_set_join_pref(ifp, &sme->bss_select); err = brcmf_fil_bsscfg_data_set(ifp, "join", ext_join_params, join_params_size); kfree(ext_join_params); if (!err) /* This is it. join command worked, we are done */ goto done; /* join command failed, fallback to set ssid */ memset(&join_params, 0, sizeof(join_params)); join_params_size = sizeof(join_params.ssid_le); memcpy(&join_params.ssid_le.SSID, sme->ssid, ssid_len); join_params.ssid_le.SSID_len = cpu_to_le32(ssid_len); if (sme->bssid) memcpy(join_params.params_le.bssid, sme->bssid, ETH_ALEN); else eth_broadcast_addr(join_params.params_le.bssid); if (cfg->channel) { join_params.params_le.chanspec_list[0] = cpu_to_le16(chanspec); join_params.params_le.chanspec_num = cpu_to_le32(1); join_params_size += sizeof(join_params.params_le); } err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SET_SSID, &join_params, join_params_size); if (err) bphy_err(drvr, "BRCMF_C_SET_SSID failed (%d)\n", err); done: if (err) clear_bit(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state); brcmf_dbg(TRACE, "Exit\n"); return err; } static s32 brcmf_cfg80211_disconnect(struct wiphy *wiphy, struct net_device *ndev, u16 reason_code) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_cfg80211_profile *profile = &ifp->vif->profile; struct brcmf_pub *drvr = cfg->pub; struct brcmf_scb_val_le scbval; s32 err = 0; brcmf_dbg(TRACE, "Enter. Reason code = %d\n", reason_code); if (!check_vif_up(ifp->vif)) return -EIO; clear_bit(BRCMF_VIF_STATUS_CONNECTED, &ifp->vif->sme_state); clear_bit(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state); clear_bit(BRCMF_VIF_STATUS_EAP_SUCCESS, &ifp->vif->sme_state); clear_bit(BRCMF_VIF_STATUS_ASSOC_SUCCESS, &ifp->vif->sme_state); cfg80211_disconnected(ndev, reason_code, NULL, 0, true, GFP_KERNEL); memcpy(&scbval.ea, &profile->bssid, ETH_ALEN); scbval.val = cpu_to_le32(reason_code); err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_DISASSOC, &scbval, sizeof(scbval)); if (err) bphy_err(drvr, "error (%d)\n", err); brcmf_dbg(TRACE, "Exit\n"); return err; } static s32 brcmf_cfg80211_set_tx_power(struct wiphy *wiphy, struct wireless_dev *wdev, enum nl80211_tx_power_setting type, s32 mbm) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct net_device *ndev = cfg_to_ndev(cfg); struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_pub *drvr = cfg->pub; s32 err; s32 disable; u32 qdbm = 127; brcmf_dbg(TRACE, "Enter %d %d\n", type, mbm); if (!check_vif_up(ifp->vif)) return -EIO; switch (type) { case NL80211_TX_POWER_AUTOMATIC: break; case NL80211_TX_POWER_LIMITED: case NL80211_TX_POWER_FIXED: if (mbm < 0) { bphy_err(drvr, "TX_POWER_FIXED - dbm is negative\n"); err = -EINVAL; goto done; } qdbm = MBM_TO_DBM(4 * mbm); if (qdbm > 127) qdbm = 127; qdbm |= WL_TXPWR_OVERRIDE; break; default: bphy_err(drvr, "Unsupported type %d\n", type); err = -EINVAL; goto done; } /* Make sure radio is off or on as far as software is concerned */ disable = WL_RADIO_SW_DISABLE << 16; err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_RADIO, disable); if (err) bphy_err(drvr, "WLC_SET_RADIO error (%d)\n", err); err = brcmf_fil_iovar_int_set(ifp, "qtxpower", qdbm); if (err) bphy_err(drvr, "qtxpower error (%d)\n", err); done: brcmf_dbg(TRACE, "Exit %d (qdbm)\n", qdbm & ~WL_TXPWR_OVERRIDE); return err; } static s32 brcmf_cfg80211_get_tx_power(struct wiphy *wiphy, struct wireless_dev *wdev, s32 *dbm) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_cfg80211_vif *vif = wdev_to_vif(wdev); struct brcmf_pub *drvr = cfg->pub; s32 qdbm = 0; s32 err; brcmf_dbg(TRACE, "Enter\n"); if (!check_vif_up(vif)) return -EIO; err = brcmf_fil_iovar_int_get(vif->ifp, "qtxpower", &qdbm); if (err) { bphy_err(drvr, "error (%d)\n", err); goto done; } *dbm = (qdbm & ~WL_TXPWR_OVERRIDE) / 4; done: brcmf_dbg(TRACE, "Exit (0x%x %d)\n", qdbm, *dbm); return err; } static s32 brcmf_cfg80211_config_default_key(struct wiphy *wiphy, struct net_device *ndev, int link_id, u8 key_idx, bool unicast, bool multicast) { struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_pub *drvr = ifp->drvr; u32 index; u32 wsec; s32 err = 0; brcmf_dbg(TRACE, "Enter\n"); brcmf_dbg(CONN, "key index (%d)\n", key_idx); if (!check_vif_up(ifp->vif)) return -EIO; err = brcmf_fil_bsscfg_int_get(ifp, "wsec", &wsec); if (err) { bphy_err(drvr, "WLC_GET_WSEC error (%d)\n", err); goto done; } if (wsec & WEP_ENABLED) { /* Just select a new current key */ index = key_idx; err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_KEY_PRIMARY, index); if (err) bphy_err(drvr, "error (%d)\n", err); } done: brcmf_dbg(TRACE, "Exit\n"); return err; } static s32 brcmf_cfg80211_del_key(struct wiphy *wiphy, struct net_device *ndev, int link_id, u8 key_idx, bool pairwise, const u8 *mac_addr) { struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_wsec_key *key; s32 err; brcmf_dbg(TRACE, "Enter\n"); brcmf_dbg(CONN, "key index (%d)\n", key_idx); if (!check_vif_up(ifp->vif)) return -EIO; if (key_idx >= BRCMF_MAX_DEFAULT_KEYS) { /* we ignore this key index in this case */ return -EINVAL; } key = &ifp->vif->profile.key[key_idx]; if (key->algo == CRYPTO_ALGO_OFF) { brcmf_dbg(CONN, "Ignore clearing of (never configured) key\n"); return -EINVAL; } memset(key, 0, sizeof(*key)); key->index = (u32)key_idx; key->flags = BRCMF_PRIMARY_KEY; /* Clear the key/index */ err = send_key_to_dongle(ifp, key); brcmf_dbg(TRACE, "Exit\n"); return err; } static s32 brcmf_cfg80211_add_key(struct wiphy *wiphy, struct net_device *ndev, int link_id, u8 key_idx, bool pairwise, const u8 *mac_addr, struct key_params *params) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_pub *drvr = cfg->pub; struct brcmf_wsec_key *key; s32 val; s32 wsec; s32 err; u8 keybuf[8]; bool ext_key; brcmf_dbg(TRACE, "Enter\n"); brcmf_dbg(CONN, "key index (%d)\n", key_idx); if (!check_vif_up(ifp->vif)) return -EIO; if (key_idx >= BRCMF_MAX_DEFAULT_KEYS) { /* we ignore this key index in this case */ bphy_err(drvr, "invalid key index (%d)\n", key_idx); return -EINVAL; } if (params->key_len == 0) return brcmf_cfg80211_del_key(wiphy, ndev, -1, key_idx, pairwise, mac_addr); if (params->key_len > sizeof(key->data)) { bphy_err(drvr, "Too long key length (%u)\n", params->key_len); return -EINVAL; } ext_key = false; if (mac_addr && (params->cipher != WLAN_CIPHER_SUITE_WEP40) && (params->cipher != WLAN_CIPHER_SUITE_WEP104)) { brcmf_dbg(TRACE, "Ext key, mac %pM", mac_addr); ext_key = true; } key = &ifp->vif->profile.key[key_idx]; memset(key, 0, sizeof(*key)); if ((ext_key) && (!is_multicast_ether_addr(mac_addr))) memcpy((char *)&key->ea, (void *)mac_addr, ETH_ALEN); key->len = params->key_len; key->index = key_idx; memcpy(key->data, params->key, key->len); if (!ext_key) key->flags = BRCMF_PRIMARY_KEY; if (params->seq && params->seq_len == 6) { /* rx iv */ u8 *ivptr; ivptr = (u8 *)params->seq; key->rxiv.hi = (ivptr[5] << 24) | (ivptr[4] << 16) | (ivptr[3] << 8) | ivptr[2]; key->rxiv.lo = (ivptr[1] << 8) | ivptr[0]; key->iv_initialized = true; } switch (params->cipher) { case WLAN_CIPHER_SUITE_WEP40: key->algo = CRYPTO_ALGO_WEP1; val = WEP_ENABLED; brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_WEP40\n"); break; case WLAN_CIPHER_SUITE_WEP104: key->algo = CRYPTO_ALGO_WEP128; val = WEP_ENABLED; brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_WEP104\n"); break; case WLAN_CIPHER_SUITE_TKIP: if (!brcmf_is_apmode(ifp->vif)) { brcmf_dbg(CONN, "Swapping RX/TX MIC key\n"); memcpy(keybuf, &key->data[24], sizeof(keybuf)); memcpy(&key->data[24], &key->data[16], sizeof(keybuf)); memcpy(&key->data[16], keybuf, sizeof(keybuf)); } key->algo = CRYPTO_ALGO_TKIP; val = TKIP_ENABLED; brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_TKIP\n"); break; case WLAN_CIPHER_SUITE_AES_CMAC: key->algo = CRYPTO_ALGO_AES_CCM; val = AES_ENABLED; brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_AES_CMAC\n"); break; case WLAN_CIPHER_SUITE_CCMP: key->algo = CRYPTO_ALGO_AES_CCM; val = AES_ENABLED; brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_CCMP\n"); break; default: bphy_err(drvr, "Invalid cipher (0x%x)\n", params->cipher); err = -EINVAL; goto done; } err = send_key_to_dongle(ifp, key); if (ext_key || err) goto done; err = brcmf_fil_bsscfg_int_get(ifp, "wsec", &wsec); if (err) { bphy_err(drvr, "get wsec error (%d)\n", err); goto done; } wsec |= val; err = brcmf_fil_bsscfg_int_set(ifp, "wsec", wsec); if (err) { bphy_err(drvr, "set wsec error (%d)\n", err); goto done; } done: brcmf_dbg(TRACE, "Exit\n"); return err; } static s32 brcmf_cfg80211_get_key(struct wiphy *wiphy, struct net_device *ndev, int link_id, u8 key_idx, bool pairwise, const u8 *mac_addr, void *cookie, void (*callback)(void *cookie, struct key_params *params)) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct key_params params; struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_cfg80211_profile *profile = &ifp->vif->profile; struct brcmf_pub *drvr = cfg->pub; struct brcmf_cfg80211_security *sec; s32 wsec; s32 err = 0; brcmf_dbg(TRACE, "Enter\n"); brcmf_dbg(CONN, "key index (%d)\n", key_idx); if (!check_vif_up(ifp->vif)) return -EIO; memset(¶ms, 0, sizeof(params)); err = brcmf_fil_bsscfg_int_get(ifp, "wsec", &wsec); if (err) { bphy_err(drvr, "WLC_GET_WSEC error (%d)\n", err); /* Ignore this error, may happen during DISASSOC */ err = -EAGAIN; goto done; } if (wsec & WEP_ENABLED) { sec = &profile->sec; if (sec->cipher_pairwise & WLAN_CIPHER_SUITE_WEP40) { params.cipher = WLAN_CIPHER_SUITE_WEP40; brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_WEP40\n"); } else if (sec->cipher_pairwise & WLAN_CIPHER_SUITE_WEP104) { params.cipher = WLAN_CIPHER_SUITE_WEP104; brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_WEP104\n"); } } else if (wsec & TKIP_ENABLED) { params.cipher = WLAN_CIPHER_SUITE_TKIP; brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_TKIP\n"); } else if (wsec & AES_ENABLED) { params.cipher = WLAN_CIPHER_SUITE_AES_CMAC; brcmf_dbg(CONN, "WLAN_CIPHER_SUITE_AES_CMAC\n"); } else { bphy_err(drvr, "Invalid algo (0x%x)\n", wsec); err = -EINVAL; goto done; } callback(cookie, ¶ms); done: brcmf_dbg(TRACE, "Exit\n"); return err; } static s32 brcmf_cfg80211_config_default_mgmt_key(struct wiphy *wiphy, struct net_device *ndev, int link_id, u8 key_idx) { struct brcmf_if *ifp = netdev_priv(ndev); brcmf_dbg(TRACE, "Enter key_idx %d\n", key_idx); if (brcmf_feat_is_enabled(ifp, BRCMF_FEAT_MFP)) return 0; brcmf_dbg(INFO, "Not supported\n"); return -EOPNOTSUPP; } static void brcmf_cfg80211_reconfigure_wep(struct brcmf_if *ifp) { struct brcmf_pub *drvr = ifp->drvr; s32 err; u8 key_idx; struct brcmf_wsec_key *key; s32 wsec; for (key_idx = 0; key_idx < BRCMF_MAX_DEFAULT_KEYS; key_idx++) { key = &ifp->vif->profile.key[key_idx]; if ((key->algo == CRYPTO_ALGO_WEP1) || (key->algo == CRYPTO_ALGO_WEP128)) break; } if (key_idx == BRCMF_MAX_DEFAULT_KEYS) return; err = send_key_to_dongle(ifp, key); if (err) { bphy_err(drvr, "Setting WEP key failed (%d)\n", err); return; } err = brcmf_fil_bsscfg_int_get(ifp, "wsec", &wsec); if (err) { bphy_err(drvr, "get wsec error (%d)\n", err); return; } wsec |= WEP_ENABLED; err = brcmf_fil_bsscfg_int_set(ifp, "wsec", wsec); if (err) bphy_err(drvr, "set wsec error (%d)\n", err); } static void brcmf_convert_sta_flags(u32 fw_sta_flags, struct station_info *si) { struct nl80211_sta_flag_update *sfu; brcmf_dbg(TRACE, "flags %08x\n", fw_sta_flags); si->filled |= BIT_ULL(NL80211_STA_INFO_STA_FLAGS); sfu = &si->sta_flags; sfu->mask = BIT(NL80211_STA_FLAG_WME) | BIT(NL80211_STA_FLAG_AUTHENTICATED) | BIT(NL80211_STA_FLAG_ASSOCIATED) | BIT(NL80211_STA_FLAG_AUTHORIZED); if (fw_sta_flags & BRCMF_STA_WME) sfu->set |= BIT(NL80211_STA_FLAG_WME); if (fw_sta_flags & BRCMF_STA_AUTHE) sfu->set |= BIT(NL80211_STA_FLAG_AUTHENTICATED); if (fw_sta_flags & BRCMF_STA_ASSOC) sfu->set |= BIT(NL80211_STA_FLAG_ASSOCIATED); if (fw_sta_flags & BRCMF_STA_AUTHO) sfu->set |= BIT(NL80211_STA_FLAG_AUTHORIZED); } static void brcmf_fill_bss_param(struct brcmf_if *ifp, struct station_info *si) { struct brcmf_pub *drvr = ifp->drvr; struct { __le32 len; struct brcmf_bss_info_le bss_le; } *buf; u16 capability; int err; buf = kzalloc(WL_BSS_INFO_MAX, GFP_KERNEL); if (!buf) return; buf->len = cpu_to_le32(WL_BSS_INFO_MAX); err = brcmf_fil_cmd_data_get(ifp, BRCMF_C_GET_BSS_INFO, buf, WL_BSS_INFO_MAX); if (err) { bphy_err(drvr, "Failed to get bss info (%d)\n", err); goto out_kfree; } si->filled |= BIT_ULL(NL80211_STA_INFO_BSS_PARAM); si->bss_param.beacon_interval = le16_to_cpu(buf->bss_le.beacon_period); si->bss_param.dtim_period = buf->bss_le.dtim_period; capability = le16_to_cpu(buf->bss_le.capability); if (capability & IEEE80211_HT_STBC_PARAM_DUAL_CTS_PROT) si->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT; if (capability & WLAN_CAPABILITY_SHORT_PREAMBLE) si->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE; if (capability & WLAN_CAPABILITY_SHORT_SLOT_TIME) si->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME; out_kfree: kfree(buf); } static s32 brcmf_cfg80211_get_station_ibss(struct brcmf_if *ifp, struct station_info *sinfo) { struct brcmf_pub *drvr = ifp->drvr; struct brcmf_scb_val_le scbval; struct brcmf_pktcnt_le pktcnt; s32 err; u32 rate; u32 rssi; /* Get the current tx rate */ err = brcmf_fil_cmd_int_get(ifp, BRCMF_C_GET_RATE, &rate); if (err < 0) { bphy_err(drvr, "BRCMF_C_GET_RATE error (%d)\n", err); return err; } sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE); sinfo->txrate.legacy = rate * 5; memset(&scbval, 0, sizeof(scbval)); err = brcmf_fil_cmd_data_get(ifp, BRCMF_C_GET_RSSI, &scbval, sizeof(scbval)); if (err) { bphy_err(drvr, "BRCMF_C_GET_RSSI error (%d)\n", err); return err; } rssi = le32_to_cpu(scbval.val); sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL); sinfo->signal = rssi; err = brcmf_fil_cmd_data_get(ifp, BRCMF_C_GET_GET_PKTCNTS, &pktcnt, sizeof(pktcnt)); if (err) { bphy_err(drvr, "BRCMF_C_GET_GET_PKTCNTS error (%d)\n", err); return err; } sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_PACKETS) | BIT_ULL(NL80211_STA_INFO_RX_DROP_MISC) | BIT_ULL(NL80211_STA_INFO_TX_PACKETS) | BIT_ULL(NL80211_STA_INFO_TX_FAILED); sinfo->rx_packets = le32_to_cpu(pktcnt.rx_good_pkt); sinfo->rx_dropped_misc = le32_to_cpu(pktcnt.rx_bad_pkt); sinfo->tx_packets = le32_to_cpu(pktcnt.tx_good_pkt); sinfo->tx_failed = le32_to_cpu(pktcnt.tx_bad_pkt); return 0; } static s32 brcmf_cfg80211_get_station(struct wiphy *wiphy, struct net_device *ndev, const u8 *mac, struct station_info *sinfo) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_pub *drvr = cfg->pub; struct brcmf_scb_val_le scb_val; s32 err = 0; struct brcmf_sta_info_le sta_info_le; u32 sta_flags; u32 is_tdls_peer; s32 total_rssi_avg = 0; s32 total_rssi = 0; s32 count_rssi = 0; int rssi; u32 i; brcmf_dbg(TRACE, "Enter, MAC %pM\n", mac); if (!check_vif_up(ifp->vif)) return -EIO; if (brcmf_is_ibssmode(ifp->vif)) return brcmf_cfg80211_get_station_ibss(ifp, sinfo); memset(&sta_info_le, 0, sizeof(sta_info_le)); memcpy(&sta_info_le, mac, ETH_ALEN); err = brcmf_fil_iovar_data_get(ifp, "tdls_sta_info", &sta_info_le, sizeof(sta_info_le)); is_tdls_peer = !err; if (err) { err = brcmf_fil_iovar_data_get(ifp, "sta_info", &sta_info_le, sizeof(sta_info_le)); if (err < 0) { bphy_err(drvr, "GET STA INFO failed, %d\n", err); goto done; } } brcmf_dbg(TRACE, "version %d\n", le16_to_cpu(sta_info_le.ver)); sinfo->filled = BIT_ULL(NL80211_STA_INFO_INACTIVE_TIME); sinfo->inactive_time = le32_to_cpu(sta_info_le.idle) * 1000; sta_flags = le32_to_cpu(sta_info_le.flags); brcmf_convert_sta_flags(sta_flags, sinfo); sinfo->sta_flags.mask |= BIT(NL80211_STA_FLAG_TDLS_PEER); if (is_tdls_peer) sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER); else sinfo->sta_flags.set &= ~BIT(NL80211_STA_FLAG_TDLS_PEER); if (sta_flags & BRCMF_STA_ASSOC) { sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CONNECTED_TIME); sinfo->connected_time = le32_to_cpu(sta_info_le.in); brcmf_fill_bss_param(ifp, sinfo); } if (sta_flags & BRCMF_STA_SCBSTATS) { sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_FAILED); sinfo->tx_failed = le32_to_cpu(sta_info_le.tx_failures); sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_PACKETS); sinfo->tx_packets = le32_to_cpu(sta_info_le.tx_pkts); sinfo->tx_packets += le32_to_cpu(sta_info_le.tx_mcast_pkts); sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_PACKETS); sinfo->rx_packets = le32_to_cpu(sta_info_le.rx_ucast_pkts); sinfo->rx_packets += le32_to_cpu(sta_info_le.rx_mcast_pkts); if (sinfo->tx_packets) { sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE); sinfo->txrate.legacy = le32_to_cpu(sta_info_le.tx_rate) / 100; } if (sinfo->rx_packets) { sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BITRATE); sinfo->rxrate.legacy = le32_to_cpu(sta_info_le.rx_rate) / 100; } if (le16_to_cpu(sta_info_le.ver) >= 4) { sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BYTES); sinfo->tx_bytes = le64_to_cpu(sta_info_le.tx_tot_bytes); sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BYTES); sinfo->rx_bytes = le64_to_cpu(sta_info_le.rx_tot_bytes); } for (i = 0; i < BRCMF_ANT_MAX; i++) { if (sta_info_le.rssi[i] == 0 || sta_info_le.rx_lastpkt_rssi[i] == 0) continue; sinfo->chains |= BIT(count_rssi); sinfo->chain_signal[count_rssi] = sta_info_le.rx_lastpkt_rssi[i]; sinfo->chain_signal_avg[count_rssi] = sta_info_le.rssi[i]; total_rssi += sta_info_le.rx_lastpkt_rssi[i]; total_rssi_avg += sta_info_le.rssi[i]; count_rssi++; } if (count_rssi) { sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL); sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG); sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL); sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG); sinfo->signal = total_rssi / count_rssi; sinfo->signal_avg = total_rssi_avg / count_rssi; } else if (test_bit(BRCMF_VIF_STATUS_CONNECTED, &ifp->vif->sme_state)) { memset(&scb_val, 0, sizeof(scb_val)); err = brcmf_fil_cmd_data_get(ifp, BRCMF_C_GET_RSSI, &scb_val, sizeof(scb_val)); if (err) { bphy_err(drvr, "Could not get rssi (%d)\n", err); goto done; } else { rssi = le32_to_cpu(scb_val.val); sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL); sinfo->signal = rssi; brcmf_dbg(CONN, "RSSI %d dBm\n", rssi); } } } done: brcmf_dbg(TRACE, "Exit\n"); return err; } static int brcmf_cfg80211_dump_station(struct wiphy *wiphy, struct net_device *ndev, int idx, u8 *mac, struct station_info *sinfo) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_pub *drvr = cfg->pub; s32 err; brcmf_dbg(TRACE, "Enter, idx %d\n", idx); if (idx == 0) { cfg->assoclist.count = cpu_to_le32(BRCMF_MAX_ASSOCLIST); err = brcmf_fil_cmd_data_get(ifp, BRCMF_C_GET_ASSOCLIST, &cfg->assoclist, sizeof(cfg->assoclist)); if (err) { /* GET_ASSOCLIST unsupported by firmware of older chips */ if (err == -EBADE) bphy_info_once(drvr, "BRCMF_C_GET_ASSOCLIST unsupported\n"); else bphy_err(drvr, "BRCMF_C_GET_ASSOCLIST failed, err=%d\n", err); cfg->assoclist.count = 0; return -EOPNOTSUPP; } } if (idx < le32_to_cpu(cfg->assoclist.count)) { memcpy(mac, cfg->assoclist.mac[idx], ETH_ALEN); return brcmf_cfg80211_get_station(wiphy, ndev, mac, sinfo); } return -ENOENT; } static s32 brcmf_cfg80211_set_power_mgmt(struct wiphy *wiphy, struct net_device *ndev, bool enabled, s32 timeout) { s32 pm; s32 err = 0; struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_pub *drvr = cfg->pub; brcmf_dbg(TRACE, "Enter\n"); /* * Powersave enable/disable request is coming from the * cfg80211 even before the interface is up. In that * scenario, driver will be storing the power save * preference in cfg struct to apply this to * FW later while initializing the dongle */ cfg->pwr_save = enabled; if (!check_vif_up(ifp->vif)) { brcmf_dbg(INFO, "Device is not ready, storing the value in cfg_info struct\n"); goto done; } pm = enabled ? PM_FAST : PM_OFF; /* Do not enable the power save after assoc if it is a p2p interface */ if (ifp->vif->wdev.iftype == NL80211_IFTYPE_P2P_CLIENT) { brcmf_dbg(INFO, "Do not enable power save for P2P clients\n"); pm = PM_OFF; } brcmf_dbg(INFO, "power save %s\n", (pm ? "enabled" : "disabled")); err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_PM, pm); if (err) { if (err == -ENODEV) bphy_err(drvr, "net_device is not ready yet\n"); else bphy_err(drvr, "error (%d)\n", err); } err = brcmf_fil_iovar_int_set(ifp, "pm2_sleep_ret", min_t(u32, timeout, BRCMF_PS_MAX_TIMEOUT_MS)); if (err) bphy_err(drvr, "Unable to set pm timeout, (%d)\n", err); done: brcmf_dbg(TRACE, "Exit\n"); return err; } static s32 brcmf_inform_single_bss(struct brcmf_cfg80211_info *cfg, struct brcmf_bss_info_le *bi) { struct wiphy *wiphy = cfg_to_wiphy(cfg); struct brcmf_pub *drvr = cfg->pub; struct cfg80211_bss *bss; enum nl80211_band band; struct brcmu_chan ch; u16 channel; u32 freq; u16 notify_capability; u16 notify_interval; u8 *notify_ie; size_t notify_ielen; struct cfg80211_inform_bss bss_data = {}; if (le32_to_cpu(bi->length) > WL_BSS_INFO_MAX) { bphy_err(drvr, "Bss info is larger than buffer. Discarding\n"); return -EINVAL; } if (!bi->ctl_ch) { ch.chspec = le16_to_cpu(bi->chanspec); cfg->d11inf.decchspec(&ch); bi->ctl_ch = ch.control_ch_num; } channel = bi->ctl_ch; if (channel <= CH_MAX_2G_CHANNEL) band = NL80211_BAND_2GHZ; else band = NL80211_BAND_5GHZ; freq = ieee80211_channel_to_frequency(channel, band); bss_data.chan = ieee80211_get_channel(wiphy, freq); bss_data.scan_width = NL80211_BSS_CHAN_WIDTH_20; bss_data.boottime_ns = ktime_to_ns(ktime_get_boottime()); notify_capability = le16_to_cpu(bi->capability); notify_interval = le16_to_cpu(bi->beacon_period); notify_ie = (u8 *)bi + le16_to_cpu(bi->ie_offset); notify_ielen = le32_to_cpu(bi->ie_length); bss_data.signal = (s16)le16_to_cpu(bi->RSSI) * 100; brcmf_dbg(CONN, "bssid: %pM\n", bi->BSSID); brcmf_dbg(CONN, "Channel: %d(%d)\n", channel, freq); brcmf_dbg(CONN, "Capability: %X\n", notify_capability); brcmf_dbg(CONN, "Beacon interval: %d\n", notify_interval); brcmf_dbg(CONN, "Signal: %d\n", bss_data.signal); bss = cfg80211_inform_bss_data(wiphy, &bss_data, CFG80211_BSS_FTYPE_UNKNOWN, (const u8 *)bi->BSSID, 0, notify_capability, notify_interval, notify_ie, notify_ielen, GFP_KERNEL); if (!bss) return -ENOMEM; cfg80211_put_bss(wiphy, bss); return 0; } static struct brcmf_bss_info_le * next_bss_le(struct brcmf_scan_results *list, struct brcmf_bss_info_le *bss) { if (bss == NULL) return list->bss_info_le; return (struct brcmf_bss_info_le *)((unsigned long)bss + le32_to_cpu(bss->length)); } static s32 brcmf_inform_bss(struct brcmf_cfg80211_info *cfg) { struct brcmf_pub *drvr = cfg->pub; struct brcmf_scan_results *bss_list; struct brcmf_bss_info_le *bi = NULL; /* must be initialized */ s32 err = 0; int i; bss_list = (struct brcmf_scan_results *)cfg->escan_info.escan_buf; if (bss_list->count != 0 && bss_list->version != BRCMF_BSS_INFO_VERSION) { bphy_err(drvr, "Version %d != WL_BSS_INFO_VERSION\n", bss_list->version); return -EOPNOTSUPP; } brcmf_dbg(SCAN, "scanned AP count (%d)\n", bss_list->count); for (i = 0; i < bss_list->count; i++) { bi = next_bss_le(bss_list, bi); err = brcmf_inform_single_bss(cfg, bi); if (err) break; } return err; } static s32 brcmf_inform_ibss(struct brcmf_cfg80211_info *cfg, struct net_device *ndev, const u8 *bssid) { struct wiphy *wiphy = cfg_to_wiphy(cfg); struct brcmf_pub *drvr = cfg->pub; struct ieee80211_channel *notify_channel; struct brcmf_bss_info_le *bi = NULL; struct ieee80211_supported_band *band; struct cfg80211_bss *bss; struct brcmu_chan ch; u8 *buf = NULL; s32 err = 0; u32 freq; u16 notify_capability; u16 notify_interval; u8 *notify_ie; size_t notify_ielen; s32 notify_signal; brcmf_dbg(TRACE, "Enter\n"); buf = kzalloc(WL_BSS_INFO_MAX, GFP_KERNEL); if (buf == NULL) { err = -ENOMEM; goto CleanUp; } *(__le32 *)buf = cpu_to_le32(WL_BSS_INFO_MAX); err = brcmf_fil_cmd_data_get(netdev_priv(ndev), BRCMF_C_GET_BSS_INFO, buf, WL_BSS_INFO_MAX); if (err) { bphy_err(drvr, "WLC_GET_BSS_INFO failed: %d\n", err); goto CleanUp; } bi = (struct brcmf_bss_info_le *)(buf + 4); ch.chspec = le16_to_cpu(bi->chanspec); cfg->d11inf.decchspec(&ch); if (ch.band == BRCMU_CHAN_BAND_2G) band = wiphy->bands[NL80211_BAND_2GHZ]; else band = wiphy->bands[NL80211_BAND_5GHZ]; freq = ieee80211_channel_to_frequency(ch.control_ch_num, band->band); cfg->channel = freq; notify_channel = ieee80211_get_channel(wiphy, freq); notify_capability = le16_to_cpu(bi->capability); notify_interval = le16_to_cpu(bi->beacon_period); notify_ie = (u8 *)bi + le16_to_cpu(bi->ie_offset); notify_ielen = le32_to_cpu(bi->ie_length); notify_signal = (s16)le16_to_cpu(bi->RSSI) * 100; brcmf_dbg(CONN, "channel: %d(%d)\n", ch.control_ch_num, freq); brcmf_dbg(CONN, "capability: %X\n", notify_capability); brcmf_dbg(CONN, "beacon interval: %d\n", notify_interval); brcmf_dbg(CONN, "signal: %d\n", notify_signal); bss = cfg80211_inform_bss(wiphy, notify_channel, CFG80211_BSS_FTYPE_UNKNOWN, bssid, 0, notify_capability, notify_interval, notify_ie, notify_ielen, notify_signal, GFP_KERNEL); if (!bss) { err = -ENOMEM; goto CleanUp; } cfg80211_put_bss(wiphy, bss); CleanUp: kfree(buf); brcmf_dbg(TRACE, "Exit\n"); return err; } static s32 brcmf_update_bss_info(struct brcmf_cfg80211_info *cfg, struct brcmf_if *ifp) { struct brcmf_pub *drvr = cfg->pub; struct brcmf_bss_info_le *bi = NULL; s32 err = 0; brcmf_dbg(TRACE, "Enter\n"); if (brcmf_is_ibssmode(ifp->vif)) return err; *(__le32 *)cfg->extra_buf = cpu_to_le32(WL_EXTRA_BUF_MAX); err = brcmf_fil_cmd_data_get(ifp, BRCMF_C_GET_BSS_INFO, cfg->extra_buf, WL_EXTRA_BUF_MAX); if (err) { bphy_err(drvr, "Could not get bss info %d\n", err); goto update_bss_info_out; } bi = (struct brcmf_bss_info_le *)(cfg->extra_buf + 4); err = brcmf_inform_single_bss(cfg, bi); update_bss_info_out: brcmf_dbg(TRACE, "Exit"); return err; } void brcmf_abort_scanning(struct brcmf_cfg80211_info *cfg) { struct escan_info *escan = &cfg->escan_info; set_bit(BRCMF_SCAN_STATUS_ABORT, &cfg->scan_status); if (cfg->int_escan_map || cfg->scan_request) { escan->escan_state = WL_ESCAN_STATE_IDLE; brcmf_notify_escan_complete(cfg, escan->ifp, true, true); } clear_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status); clear_bit(BRCMF_SCAN_STATUS_ABORT, &cfg->scan_status); } static void brcmf_cfg80211_escan_timeout_worker(struct work_struct *work) { struct brcmf_cfg80211_info *cfg = container_of(work, struct brcmf_cfg80211_info, escan_timeout_work); brcmf_inform_bss(cfg); brcmf_notify_escan_complete(cfg, cfg->escan_info.ifp, true, true); } static void brcmf_escan_timeout(struct timer_list *t) { struct brcmf_cfg80211_info *cfg = from_timer(cfg, t, escan_timeout); struct brcmf_pub *drvr = cfg->pub; if (cfg->int_escan_map || cfg->scan_request) { bphy_err(drvr, "timer expired\n"); schedule_work(&cfg->escan_timeout_work); } } static s32 brcmf_compare_update_same_bss(struct brcmf_cfg80211_info *cfg, struct brcmf_bss_info_le *bss, struct brcmf_bss_info_le *bss_info_le) { struct brcmu_chan ch_bss, ch_bss_info_le; ch_bss.chspec = le16_to_cpu(bss->chanspec); cfg->d11inf.decchspec(&ch_bss); ch_bss_info_le.chspec = le16_to_cpu(bss_info_le->chanspec); cfg->d11inf.decchspec(&ch_bss_info_le); if (!memcmp(&bss_info_le->BSSID, &bss->BSSID, ETH_ALEN) && ch_bss.band == ch_bss_info_le.band && bss_info_le->SSID_len == bss->SSID_len && !memcmp(bss_info_le->SSID, bss->SSID, bss_info_le->SSID_len)) { if ((bss->flags & BRCMF_BSS_RSSI_ON_CHANNEL) == (bss_info_le->flags & BRCMF_BSS_RSSI_ON_CHANNEL)) { s16 bss_rssi = le16_to_cpu(bss->RSSI); s16 bss_info_rssi = le16_to_cpu(bss_info_le->RSSI); /* preserve max RSSI if the measurements are * both on-channel or both off-channel */ if (bss_info_rssi > bss_rssi) bss->RSSI = bss_info_le->RSSI; } else if ((bss->flags & BRCMF_BSS_RSSI_ON_CHANNEL) && (bss_info_le->flags & BRCMF_BSS_RSSI_ON_CHANNEL) == 0) { /* preserve the on-channel rssi measurement * if the new measurement is off channel */ bss->RSSI = bss_info_le->RSSI; bss->flags |= BRCMF_BSS_RSSI_ON_CHANNEL; } return 1; } return 0; } static s32 brcmf_cfg80211_escan_handler(struct brcmf_if *ifp, const struct brcmf_event_msg *e, void *data) { struct brcmf_pub *drvr = ifp->drvr; struct brcmf_cfg80211_info *cfg = drvr->config; s32 status; struct brcmf_escan_result_le *escan_result_le; u32 escan_buflen; struct brcmf_bss_info_le *bss_info_le; struct brcmf_bss_info_le *bss = NULL; u32 bi_length; struct brcmf_scan_results *list; u32 i; bool aborted; status = e->status; if (status == BRCMF_E_STATUS_ABORT) goto exit; if (!test_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status)) { bphy_err(drvr, "scan not ready, bsscfgidx=%d\n", ifp->bsscfgidx); return -EPERM; } if (status == BRCMF_E_STATUS_PARTIAL) { brcmf_dbg(SCAN, "ESCAN Partial result\n"); if (e->datalen < sizeof(*escan_result_le)) { bphy_err(drvr, "invalid event data length\n"); goto exit; } escan_result_le = (struct brcmf_escan_result_le *) data; if (!escan_result_le) { bphy_err(drvr, "Invalid escan result (NULL pointer)\n"); goto exit; } escan_buflen = le32_to_cpu(escan_result_le->buflen); if (escan_buflen > BRCMF_ESCAN_BUF_SIZE || escan_buflen > e->datalen || escan_buflen < sizeof(*escan_result_le)) { bphy_err(drvr, "Invalid escan buffer length: %d\n", escan_buflen); goto exit; } if (le16_to_cpu(escan_result_le->bss_count) != 1) { bphy_err(drvr, "Invalid bss_count %d: ignoring\n", escan_result_le->bss_count); goto exit; } bss_info_le = &escan_result_le->bss_info_le; if (brcmf_p2p_scan_finding_common_channel(cfg, bss_info_le)) goto exit; if (!cfg->int_escan_map && !cfg->scan_request) { brcmf_dbg(SCAN, "result without cfg80211 request\n"); goto exit; } bi_length = le32_to_cpu(bss_info_le->length); if (bi_length != escan_buflen - WL_ESCAN_RESULTS_FIXED_SIZE) { bphy_err(drvr, "Ignoring invalid bss_info length: %d\n", bi_length); goto exit; } if (!(cfg_to_wiphy(cfg)->interface_modes & BIT(NL80211_IFTYPE_ADHOC))) { if (le16_to_cpu(bss_info_le->capability) & WLAN_CAPABILITY_IBSS) { bphy_err(drvr, "Ignoring IBSS result\n"); goto exit; } } list = (struct brcmf_scan_results *) cfg->escan_info.escan_buf; if (bi_length > BRCMF_ESCAN_BUF_SIZE - list->buflen) { bphy_err(drvr, "Buffer is too small: ignoring\n"); goto exit; } for (i = 0; i < list->count; i++) { bss = bss ? (struct brcmf_bss_info_le *) ((unsigned char *)bss + le32_to_cpu(bss->length)) : list->bss_info_le; if (brcmf_compare_update_same_bss(cfg, bss, bss_info_le)) goto exit; } memcpy(&cfg->escan_info.escan_buf[list->buflen], bss_info_le, bi_length); list->version = le32_to_cpu(bss_info_le->version); list->buflen += bi_length; list->count++; } else { cfg->escan_info.escan_state = WL_ESCAN_STATE_IDLE; if (brcmf_p2p_scan_finding_common_channel(cfg, NULL)) goto exit; if (cfg->int_escan_map || cfg->scan_request) { brcmf_inform_bss(cfg); aborted = status != BRCMF_E_STATUS_SUCCESS; brcmf_notify_escan_complete(cfg, ifp, aborted, false); } else brcmf_dbg(SCAN, "Ignored scan complete result 0x%x\n", status); } exit: return 0; } static void brcmf_init_escan(struct brcmf_cfg80211_info *cfg) { brcmf_fweh_register(cfg->pub, BRCMF_E_ESCAN_RESULT, brcmf_cfg80211_escan_handler); cfg->escan_info.escan_state = WL_ESCAN_STATE_IDLE; /* Init scan_timeout timer */ timer_setup(&cfg->escan_timeout, brcmf_escan_timeout, 0); INIT_WORK(&cfg->escan_timeout_work, brcmf_cfg80211_escan_timeout_worker); } static struct cfg80211_scan_request * brcmf_alloc_internal_escan_request(struct wiphy *wiphy, u32 n_netinfo) { struct cfg80211_scan_request *req; size_t req_size; req_size = sizeof(*req) + n_netinfo * sizeof(req->channels[0]) + n_netinfo * sizeof(*req->ssids); req = kzalloc(req_size, GFP_KERNEL); if (req) { req->wiphy = wiphy; req->ssids = (void *)(&req->channels[0]) + n_netinfo * sizeof(req->channels[0]); } return req; } static int brcmf_internal_escan_add_info(struct cfg80211_scan_request *req, u8 *ssid, u8 ssid_len, u8 channel) { struct ieee80211_channel *chan; enum nl80211_band band; int freq, i; if (channel <= CH_MAX_2G_CHANNEL) band = NL80211_BAND_2GHZ; else band = NL80211_BAND_5GHZ; freq = ieee80211_channel_to_frequency(channel, band); if (!freq) return -EINVAL; chan = ieee80211_get_channel(req->wiphy, freq); if (!chan) return -EINVAL; for (i = 0; i < req->n_channels; i++) { if (req->channels[i] == chan) break; } if (i == req->n_channels) req->channels[req->n_channels++] = chan; for (i = 0; i < req->n_ssids; i++) { if (req->ssids[i].ssid_len == ssid_len && !memcmp(req->ssids[i].ssid, ssid, ssid_len)) break; } if (i == req->n_ssids) { memcpy(req->ssids[req->n_ssids].ssid, ssid, ssid_len); req->ssids[req->n_ssids++].ssid_len = ssid_len; } return 0; } static int brcmf_start_internal_escan(struct brcmf_if *ifp, u32 fwmap, struct cfg80211_scan_request *request) { struct brcmf_cfg80211_info *cfg = ifp->drvr->config; int err; if (test_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status)) { if (cfg->int_escan_map) brcmf_dbg(SCAN, "aborting internal scan: map=%u\n", cfg->int_escan_map); /* Abort any on-going scan */ brcmf_abort_scanning(cfg); } brcmf_dbg(SCAN, "start internal scan: map=%u\n", fwmap); set_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status); cfg->escan_info.run = brcmf_run_escan; err = brcmf_do_escan(ifp, request); if (err) { clear_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status); return err; } cfg->int_escan_map = fwmap; return 0; } static struct brcmf_pno_net_info_le * brcmf_get_netinfo_array(struct brcmf_pno_scanresults_le *pfn_v1) { struct brcmf_pno_scanresults_v2_le *pfn_v2; struct brcmf_pno_net_info_le *netinfo; switch (pfn_v1->version) { default: WARN_ON(1); fallthrough; case cpu_to_le32(1): netinfo = (struct brcmf_pno_net_info_le *)(pfn_v1 + 1); break; case cpu_to_le32(2): pfn_v2 = (struct brcmf_pno_scanresults_v2_le *)pfn_v1; netinfo = (struct brcmf_pno_net_info_le *)(pfn_v2 + 1); break; } return netinfo; } /* PFN result doesn't have all the info which are required by the supplicant * (For e.g IEs) Do a target Escan so that sched scan results are reported * via wl_inform_single_bss in the required format. Escan does require the * scan request in the form of cfg80211_scan_request. For timebeing, create * cfg80211_scan_request one out of the received PNO event. */ static s32 brcmf_notify_sched_scan_results(struct brcmf_if *ifp, const struct brcmf_event_msg *e, void *data) { struct brcmf_pub *drvr = ifp->drvr; struct brcmf_cfg80211_info *cfg = drvr->config; struct brcmf_pno_net_info_le *netinfo, *netinfo_start; struct cfg80211_scan_request *request = NULL; struct wiphy *wiphy = cfg_to_wiphy(cfg); int i, err = 0; struct brcmf_pno_scanresults_le *pfn_result; u32 bucket_map; u32 result_count; u32 status; u32 datalen; brcmf_dbg(SCAN, "Enter\n"); if (e->datalen < (sizeof(*pfn_result) + sizeof(*netinfo))) { brcmf_dbg(SCAN, "Event data to small. Ignore\n"); return 0; } if (e->event_code == BRCMF_E_PFN_NET_LOST) { brcmf_dbg(SCAN, "PFN NET LOST event. Do Nothing\n"); return 0; } pfn_result = (struct brcmf_pno_scanresults_le *)data; result_count = le32_to_cpu(pfn_result->count); status = le32_to_cpu(pfn_result->status); /* PFN event is limited to fit 512 bytes so we may get * multiple NET_FOUND events. For now place a warning here. */ WARN_ON(status != BRCMF_PNO_SCAN_COMPLETE); brcmf_dbg(SCAN, "PFN NET FOUND event. count: %d\n", result_count); if (!result_count) { bphy_err(drvr, "FALSE PNO Event. (pfn_count == 0)\n"); goto out_err; } netinfo_start = brcmf_get_netinfo_array(pfn_result); datalen = e->datalen - ((void *)netinfo_start - (void *)pfn_result); if (datalen < result_count * sizeof(*netinfo)) { bphy_err(drvr, "insufficient event data\n"); goto out_err; } request = brcmf_alloc_internal_escan_request(wiphy, result_count); if (!request) { err = -ENOMEM; goto out_err; } bucket_map = 0; for (i = 0; i < result_count; i++) { netinfo = &netinfo_start[i]; if (netinfo->SSID_len > IEEE80211_MAX_SSID_LEN) netinfo->SSID_len = IEEE80211_MAX_SSID_LEN; brcmf_dbg(SCAN, "SSID:%.32s Channel:%d\n", netinfo->SSID, netinfo->channel); bucket_map |= brcmf_pno_get_bucket_map(cfg->pno, netinfo); err = brcmf_internal_escan_add_info(request, netinfo->SSID, netinfo->SSID_len, netinfo->channel); if (err) goto out_err; } if (!bucket_map) goto free_req; err = brcmf_start_internal_escan(ifp, bucket_map, request); if (!err) goto free_req; out_err: cfg80211_sched_scan_stopped(wiphy, 0); free_req: kfree(request); return err; } static int brcmf_cfg80211_sched_scan_start(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_sched_scan_request *req) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_pub *drvr = cfg->pub; brcmf_dbg(SCAN, "Enter: n_match_sets=%d n_ssids=%d\n", req->n_match_sets, req->n_ssids); if (test_bit(BRCMF_SCAN_STATUS_SUPPRESS, &cfg->scan_status)) { bphy_err(drvr, "Scanning suppressed: status=%lu\n", cfg->scan_status); return -EAGAIN; } if (req->n_match_sets <= 0) { brcmf_dbg(SCAN, "invalid number of matchsets specified: %d\n", req->n_match_sets); return -EINVAL; } return brcmf_pno_start_sched_scan(ifp, req); } static int brcmf_cfg80211_sched_scan_stop(struct wiphy *wiphy, struct net_device *ndev, u64 reqid) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_if *ifp = netdev_priv(ndev); brcmf_dbg(SCAN, "enter\n"); brcmf_pno_stop_sched_scan(ifp, reqid); if (cfg->int_escan_map) brcmf_notify_escan_complete(cfg, ifp, true, true); return 0; } static __always_inline void brcmf_delay(u32 ms) { if (ms < 1000 / HZ) { cond_resched(); mdelay(ms); } else { msleep(ms); } } static s32 brcmf_config_wowl_pattern(struct brcmf_if *ifp, u8 cmd[4], u8 *pattern, u32 patternsize, u8 *mask, u32 packet_offset) { struct brcmf_fil_wowl_pattern_le *filter; u32 masksize; u32 patternoffset; u8 *buf; u32 bufsize; s32 ret; masksize = (patternsize + 7) / 8; patternoffset = sizeof(*filter) - sizeof(filter->cmd) + masksize; bufsize = sizeof(*filter) + patternsize + masksize; buf = kzalloc(bufsize, GFP_KERNEL); if (!buf) return -ENOMEM; filter = (struct brcmf_fil_wowl_pattern_le *)buf; memcpy(filter->cmd, cmd, 4); filter->masksize = cpu_to_le32(masksize); filter->offset = cpu_to_le32(packet_offset); filter->patternoffset = cpu_to_le32(patternoffset); filter->patternsize = cpu_to_le32(patternsize); filter->type = cpu_to_le32(BRCMF_WOWL_PATTERN_TYPE_BITMAP); if ((mask) && (masksize)) memcpy(buf + sizeof(*filter), mask, masksize); if ((pattern) && (patternsize)) memcpy(buf + sizeof(*filter) + masksize, pattern, patternsize); ret = brcmf_fil_iovar_data_set(ifp, "wowl_pattern", buf, bufsize); kfree(buf); return ret; } static s32 brcmf_wowl_nd_results(struct brcmf_if *ifp, const struct brcmf_event_msg *e, void *data) { struct brcmf_pub *drvr = ifp->drvr; struct brcmf_cfg80211_info *cfg = drvr->config; struct brcmf_pno_scanresults_le *pfn_result; struct brcmf_pno_net_info_le *netinfo; brcmf_dbg(SCAN, "Enter\n"); if (e->datalen < (sizeof(*pfn_result) + sizeof(*netinfo))) { brcmf_dbg(SCAN, "Event data to small. Ignore\n"); return 0; } pfn_result = (struct brcmf_pno_scanresults_le *)data; if (e->event_code == BRCMF_E_PFN_NET_LOST) { brcmf_dbg(SCAN, "PFN NET LOST event. Ignore\n"); return 0; } if (le32_to_cpu(pfn_result->count) < 1) { bphy_err(drvr, "Invalid result count, expected 1 (%d)\n", le32_to_cpu(pfn_result->count)); return -EINVAL; } netinfo = brcmf_get_netinfo_array(pfn_result); if (netinfo->SSID_len > IEEE80211_MAX_SSID_LEN) netinfo->SSID_len = IEEE80211_MAX_SSID_LEN; memcpy(cfg->wowl.nd->ssid.ssid, netinfo->SSID, netinfo->SSID_len); cfg->wowl.nd->ssid.ssid_len = netinfo->SSID_len; cfg->wowl.nd->n_channels = 1; cfg->wowl.nd->channels[0] = ieee80211_channel_to_frequency(netinfo->channel, netinfo->channel <= CH_MAX_2G_CHANNEL ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ); cfg->wowl.nd_info->n_matches = 1; cfg->wowl.nd_info->matches[0] = cfg->wowl.nd; /* Inform (the resume task) that the net detect information was recvd */ cfg->wowl.nd_data_completed = true; wake_up(&cfg->wowl.nd_data_wait); return 0; } #ifdef CONFIG_PM static void brcmf_report_wowl_wakeind(struct wiphy *wiphy, struct brcmf_if *ifp) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_pub *drvr = cfg->pub; struct brcmf_wowl_wakeind_le wake_ind_le; struct cfg80211_wowlan_wakeup wakeup_data; struct cfg80211_wowlan_wakeup *wakeup; u32 wakeind; s32 err; int timeout; err = brcmf_fil_iovar_data_get(ifp, "wowl_wakeind", &wake_ind_le, sizeof(wake_ind_le)); if (err) { bphy_err(drvr, "Get wowl_wakeind failed, err = %d\n", err); return; } wakeind = le32_to_cpu(wake_ind_le.ucode_wakeind); if (wakeind & (BRCMF_WOWL_MAGIC | BRCMF_WOWL_DIS | BRCMF_WOWL_BCN | BRCMF_WOWL_RETR | BRCMF_WOWL_NET | BRCMF_WOWL_PFN_FOUND)) { wakeup = &wakeup_data; memset(&wakeup_data, 0, sizeof(wakeup_data)); wakeup_data.pattern_idx = -1; if (wakeind & BRCMF_WOWL_MAGIC) { brcmf_dbg(INFO, "WOWL Wake indicator: BRCMF_WOWL_MAGIC\n"); wakeup_data.magic_pkt = true; } if (wakeind & BRCMF_WOWL_DIS) { brcmf_dbg(INFO, "WOWL Wake indicator: BRCMF_WOWL_DIS\n"); wakeup_data.disconnect = true; } if (wakeind & BRCMF_WOWL_BCN) { brcmf_dbg(INFO, "WOWL Wake indicator: BRCMF_WOWL_BCN\n"); wakeup_data.disconnect = true; } if (wakeind & BRCMF_WOWL_RETR) { brcmf_dbg(INFO, "WOWL Wake indicator: BRCMF_WOWL_RETR\n"); wakeup_data.disconnect = true; } if (wakeind & BRCMF_WOWL_NET) { brcmf_dbg(INFO, "WOWL Wake indicator: BRCMF_WOWL_NET\n"); /* For now always map to pattern 0, no API to get * correct information available at the moment. */ wakeup_data.pattern_idx = 0; } if (wakeind & BRCMF_WOWL_PFN_FOUND) { brcmf_dbg(INFO, "WOWL Wake indicator: BRCMF_WOWL_PFN_FOUND\n"); timeout = wait_event_timeout(cfg->wowl.nd_data_wait, cfg->wowl.nd_data_completed, BRCMF_ND_INFO_TIMEOUT); if (!timeout) bphy_err(drvr, "No result for wowl net detect\n"); else wakeup_data.net_detect = cfg->wowl.nd_info; } if (wakeind & BRCMF_WOWL_GTK_FAILURE) { brcmf_dbg(INFO, "WOWL Wake indicator: BRCMF_WOWL_GTK_FAILURE\n"); wakeup_data.gtk_rekey_failure = true; } } else { wakeup = NULL; } cfg80211_report_wowlan_wakeup(&ifp->vif->wdev, wakeup, GFP_KERNEL); } #else static void brcmf_report_wowl_wakeind(struct wiphy *wiphy, struct brcmf_if *ifp) { } #endif /* CONFIG_PM */ static s32 brcmf_cfg80211_resume(struct wiphy *wiphy) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct net_device *ndev = cfg_to_ndev(cfg); struct brcmf_if *ifp = netdev_priv(ndev); brcmf_dbg(TRACE, "Enter\n"); if (cfg->wowl.active) { brcmf_report_wowl_wakeind(wiphy, ifp); brcmf_fil_iovar_int_set(ifp, "wowl_clear", 0); brcmf_config_wowl_pattern(ifp, "clr", NULL, 0, NULL, 0); if (!brcmf_feat_is_enabled(ifp, BRCMF_FEAT_WOWL_ARP_ND)) brcmf_configure_arp_nd_offload(ifp, true); brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_PM, cfg->wowl.pre_pmmode); cfg->wowl.active = false; if (cfg->wowl.nd_enabled) { brcmf_cfg80211_sched_scan_stop(cfg->wiphy, ifp->ndev, 0); brcmf_fweh_unregister(cfg->pub, BRCMF_E_PFN_NET_FOUND); brcmf_fweh_register(cfg->pub, BRCMF_E_PFN_NET_FOUND, brcmf_notify_sched_scan_results); cfg->wowl.nd_enabled = false; } } return 0; } static void brcmf_configure_wowl(struct brcmf_cfg80211_info *cfg, struct brcmf_if *ifp, struct cfg80211_wowlan *wowl) { u32 wowl_config; struct brcmf_wowl_wakeind_le wowl_wakeind; u32 i; brcmf_dbg(TRACE, "Suspend, wowl config.\n"); if (!brcmf_feat_is_enabled(ifp, BRCMF_FEAT_WOWL_ARP_ND)) brcmf_configure_arp_nd_offload(ifp, false); brcmf_fil_cmd_int_get(ifp, BRCMF_C_GET_PM, &cfg->wowl.pre_pmmode); brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_PM, PM_MAX); wowl_config = 0; if (wowl->disconnect) wowl_config = BRCMF_WOWL_DIS | BRCMF_WOWL_BCN | BRCMF_WOWL_RETR; if (wowl->magic_pkt) wowl_config |= BRCMF_WOWL_MAGIC; if ((wowl->patterns) && (wowl->n_patterns)) { wowl_config |= BRCMF_WOWL_NET; for (i = 0; i < wowl->n_patterns; i++) { brcmf_config_wowl_pattern(ifp, "add", (u8 *)wowl->patterns[i].pattern, wowl->patterns[i].pattern_len, (u8 *)wowl->patterns[i].mask, wowl->patterns[i].pkt_offset); } } if (wowl->nd_config) { brcmf_cfg80211_sched_scan_start(cfg->wiphy, ifp->ndev, wowl->nd_config); wowl_config |= BRCMF_WOWL_PFN_FOUND; cfg->wowl.nd_data_completed = false; cfg->wowl.nd_enabled = true; /* Now reroute the event for PFN to the wowl function. */ brcmf_fweh_unregister(cfg->pub, BRCMF_E_PFN_NET_FOUND); brcmf_fweh_register(cfg->pub, BRCMF_E_PFN_NET_FOUND, brcmf_wowl_nd_results); } if (wowl->gtk_rekey_failure) wowl_config |= BRCMF_WOWL_GTK_FAILURE; if (!test_bit(BRCMF_VIF_STATUS_CONNECTED, &ifp->vif->sme_state)) wowl_config |= BRCMF_WOWL_UNASSOC; memcpy(&wowl_wakeind, "clear", 6); brcmf_fil_iovar_data_set(ifp, "wowl_wakeind", &wowl_wakeind, sizeof(wowl_wakeind)); brcmf_fil_iovar_int_set(ifp, "wowl", wowl_config); brcmf_fil_iovar_int_set(ifp, "wowl_activate", 1); brcmf_bus_wowl_config(cfg->pub->bus_if, true); cfg->wowl.active = true; } static int brcmf_keepalive_start(struct brcmf_if *ifp, unsigned int interval) { struct brcmf_mkeep_alive_pkt_le kalive = {0}; int ret = 0; /* Configure Null function/data keepalive */ kalive.version = cpu_to_le16(1); kalive.period_msec = cpu_to_le32(interval * MSEC_PER_SEC); kalive.len_bytes = cpu_to_le16(0); kalive.keep_alive_id = 0; ret = brcmf_fil_iovar_data_set(ifp, "mkeep_alive", &kalive, sizeof(kalive)); if (ret) brcmf_err("keep-alive packet config failed, ret=%d\n", ret); return ret; } static s32 brcmf_cfg80211_suspend(struct wiphy *wiphy, struct cfg80211_wowlan *wowl) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct net_device *ndev = cfg_to_ndev(cfg); struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_cfg80211_vif *vif; brcmf_dbg(TRACE, "Enter\n"); /* if the primary net_device is not READY there is nothing * we can do but pray resume goes smoothly. */ if (!check_vif_up(ifp->vif)) goto exit; /* Stop scheduled scan */ if (brcmf_feat_is_enabled(ifp, BRCMF_FEAT_PNO)) brcmf_cfg80211_sched_scan_stop(wiphy, ndev, 0); /* end any scanning */ if (test_bit(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status)) brcmf_abort_scanning(cfg); if (wowl == NULL) { brcmf_bus_wowl_config(cfg->pub->bus_if, false); list_for_each_entry(vif, &cfg->vif_list, list) { if (!test_bit(BRCMF_VIF_STATUS_READY, &vif->sme_state)) continue; /* While going to suspend if associated with AP * disassociate from AP to save power while system is * in suspended state */ brcmf_link_down(vif, WLAN_REASON_UNSPECIFIED, true); /* Make sure WPA_Supplicant receives all the event * generated due to DISASSOC call to the fw to keep * the state fw and WPA_Supplicant state consistent */ brcmf_delay(500); } /* Configure MPC */ brcmf_set_mpc(ifp, 1); } else { /* Configure WOWL paramaters */ brcmf_configure_wowl(cfg, ifp, wowl); /* Prevent disassociation due to inactivity with keep-alive */ brcmf_keepalive_start(ifp, 30); } exit: brcmf_dbg(TRACE, "Exit\n"); /* clear any scanning activity */ cfg->scan_status = 0; return 0; } static __used s32 brcmf_update_pmklist(struct brcmf_cfg80211_info *cfg, struct brcmf_if *ifp) { struct brcmf_pmk_list_le *pmk_list; int i; u32 npmk; pmk_list = &cfg->pmk_list; npmk = le32_to_cpu(pmk_list->npmk); brcmf_dbg(CONN, "No of elements %d\n", npmk); for (i = 0; i < npmk; i++) brcmf_dbg(CONN, "PMK[%d]: %pM\n", i, &pmk_list->pmk[i].bssid); return brcmf_fil_iovar_data_set(ifp, "pmkid_info", pmk_list, sizeof(*pmk_list)); } static s32 brcmf_cfg80211_set_pmksa(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_pmksa *pmksa) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_pmksa *pmk = &cfg->pmk_list.pmk[0]; struct brcmf_pub *drvr = cfg->pub; s32 err; u32 npmk, i; brcmf_dbg(TRACE, "Enter\n"); if (!check_vif_up(ifp->vif)) return -EIO; npmk = le32_to_cpu(cfg->pmk_list.npmk); for (i = 0; i < npmk; i++) if (!memcmp(pmksa->bssid, pmk[i].bssid, ETH_ALEN)) break; if (i < BRCMF_MAXPMKID) { memcpy(pmk[i].bssid, pmksa->bssid, ETH_ALEN); memcpy(pmk[i].pmkid, pmksa->pmkid, WLAN_PMKID_LEN); if (i == npmk) { npmk++; cfg->pmk_list.npmk = cpu_to_le32(npmk); } } else { bphy_err(drvr, "Too many PMKSA entries cached %d\n", npmk); return -EINVAL; } brcmf_dbg(CONN, "set_pmksa - PMK bssid: %pM =\n", pmk[npmk].bssid); brcmf_dbg(CONN, "%*ph\n", WLAN_PMKID_LEN, pmk[npmk].pmkid); err = brcmf_update_pmklist(cfg, ifp); brcmf_dbg(TRACE, "Exit\n"); return err; } static s32 brcmf_cfg80211_del_pmksa(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_pmksa *pmksa) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_pmksa *pmk = &cfg->pmk_list.pmk[0]; struct brcmf_pub *drvr = cfg->pub; s32 err; u32 npmk, i; brcmf_dbg(TRACE, "Enter\n"); if (!check_vif_up(ifp->vif)) return -EIO; brcmf_dbg(CONN, "del_pmksa - PMK bssid = %pM\n", pmksa->bssid); npmk = le32_to_cpu(cfg->pmk_list.npmk); for (i = 0; i < npmk; i++) if (!memcmp(pmksa->bssid, pmk[i].bssid, ETH_ALEN)) break; if ((npmk > 0) && (i < npmk)) { for (; i < (npmk - 1); i++) { memcpy(&pmk[i].bssid, &pmk[i + 1].bssid, ETH_ALEN); memcpy(&pmk[i].pmkid, &pmk[i + 1].pmkid, WLAN_PMKID_LEN); } memset(&pmk[i], 0, sizeof(*pmk)); cfg->pmk_list.npmk = cpu_to_le32(npmk - 1); } else { bphy_err(drvr, "Cache entry not found\n"); return -EINVAL; } err = brcmf_update_pmklist(cfg, ifp); brcmf_dbg(TRACE, "Exit\n"); return err; } static s32 brcmf_cfg80211_flush_pmksa(struct wiphy *wiphy, struct net_device *ndev) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_if *ifp = netdev_priv(ndev); s32 err; brcmf_dbg(TRACE, "Enter\n"); if (!check_vif_up(ifp->vif)) return -EIO; memset(&cfg->pmk_list, 0, sizeof(cfg->pmk_list)); err = brcmf_update_pmklist(cfg, ifp); brcmf_dbg(TRACE, "Exit\n"); return err; } static s32 brcmf_configure_opensecurity(struct brcmf_if *ifp) { struct brcmf_pub *drvr = ifp->drvr; s32 err; s32 wpa_val; /* set auth */ err = brcmf_fil_bsscfg_int_set(ifp, "auth", 0); if (err < 0) { bphy_err(drvr, "auth error %d\n", err); return err; } /* set wsec */ err = brcmf_fil_bsscfg_int_set(ifp, "wsec", 0); if (err < 0) { bphy_err(drvr, "wsec error %d\n", err); return err; } /* set upper-layer auth */ if (brcmf_is_ibssmode(ifp->vif)) wpa_val = WPA_AUTH_NONE; else wpa_val = WPA_AUTH_DISABLED; err = brcmf_fil_bsscfg_int_set(ifp, "wpa_auth", wpa_val); if (err < 0) { bphy_err(drvr, "wpa_auth error %d\n", err); return err; } return 0; } static bool brcmf_valid_wpa_oui(u8 *oui, bool is_rsn_ie) { if (is_rsn_ie) return (memcmp(oui, RSN_OUI, TLV_OUI_LEN) == 0); return (memcmp(oui, WPA_OUI, TLV_OUI_LEN) == 0); } static s32 brcmf_configure_wpaie(struct brcmf_if *ifp, const struct brcmf_vs_tlv *wpa_ie, bool is_rsn_ie) { struct brcmf_pub *drvr = ifp->drvr; u32 auth = 0; /* d11 open authentication */ u16 count; s32 err = 0; s32 len; u32 i; u32 wsec; u32 pval = 0; u32 gval = 0; u32 wpa_auth = 0; u32 offset; u8 *data; u16 rsn_cap; u32 wme_bss_disable; u32 mfp; brcmf_dbg(TRACE, "Enter\n"); if (wpa_ie == NULL) goto exit; len = wpa_ie->len + TLV_HDR_LEN; data = (u8 *)wpa_ie; offset = TLV_HDR_LEN; if (!is_rsn_ie) offset += VS_IE_FIXED_HDR_LEN; else offset += WPA_IE_VERSION_LEN; /* check for multicast cipher suite */ if (offset + WPA_IE_MIN_OUI_LEN > len) { err = -EINVAL; bphy_err(drvr, "no multicast cipher suite\n"); goto exit; } if (!brcmf_valid_wpa_oui(&data[offset], is_rsn_ie)) { err = -EINVAL; bphy_err(drvr, "ivalid OUI\n"); goto exit; } offset += TLV_OUI_LEN; /* pick up multicast cipher */ switch (data[offset]) { case WPA_CIPHER_NONE: gval = 0; break; case WPA_CIPHER_WEP_40: case WPA_CIPHER_WEP_104: gval = WEP_ENABLED; break; case WPA_CIPHER_TKIP: gval = TKIP_ENABLED; break; case WPA_CIPHER_AES_CCM: gval = AES_ENABLED; break; default: err = -EINVAL; bphy_err(drvr, "Invalid multi cast cipher info\n"); goto exit; } offset++; /* walk thru unicast cipher list and pick up what we recognize */ count = data[offset] + (data[offset + 1] << 8); offset += WPA_IE_SUITE_COUNT_LEN; /* Check for unicast suite(s) */ if (offset + (WPA_IE_MIN_OUI_LEN * count) > len) { err = -EINVAL; bphy_err(drvr, "no unicast cipher suite\n"); goto exit; } for (i = 0; i < count; i++) { if (!brcmf_valid_wpa_oui(&data[offset], is_rsn_ie)) { err = -EINVAL; bphy_err(drvr, "ivalid OUI\n"); goto exit; } offset += TLV_OUI_LEN; switch (data[offset]) { case WPA_CIPHER_NONE: break; case WPA_CIPHER_WEP_40: case WPA_CIPHER_WEP_104: pval |= WEP_ENABLED; break; case WPA_CIPHER_TKIP: pval |= TKIP_ENABLED; break; case WPA_CIPHER_AES_CCM: pval |= AES_ENABLED; break; default: bphy_err(drvr, "Invalid unicast security info\n"); } offset++; } /* walk thru auth management suite list and pick up what we recognize */ count = data[offset] + (data[offset + 1] << 8); offset += WPA_IE_SUITE_COUNT_LEN; /* Check for auth key management suite(s) */ if (offset + (WPA_IE_MIN_OUI_LEN * count) > len) { err = -EINVAL; bphy_err(drvr, "no auth key mgmt suite\n"); goto exit; } for (i = 0; i < count; i++) { if (!brcmf_valid_wpa_oui(&data[offset], is_rsn_ie)) { err = -EINVAL; bphy_err(drvr, "ivalid OUI\n"); goto exit; } offset += TLV_OUI_LEN; switch (data[offset]) { case RSN_AKM_NONE: brcmf_dbg(TRACE, "RSN_AKM_NONE\n"); wpa_auth |= WPA_AUTH_NONE; break; case RSN_AKM_UNSPECIFIED: brcmf_dbg(TRACE, "RSN_AKM_UNSPECIFIED\n"); is_rsn_ie ? (wpa_auth |= WPA2_AUTH_UNSPECIFIED) : (wpa_auth |= WPA_AUTH_UNSPECIFIED); break; case RSN_AKM_PSK: brcmf_dbg(TRACE, "RSN_AKM_PSK\n"); is_rsn_ie ? (wpa_auth |= WPA2_AUTH_PSK) : (wpa_auth |= WPA_AUTH_PSK); break; case RSN_AKM_SHA256_PSK: brcmf_dbg(TRACE, "RSN_AKM_MFP_PSK\n"); wpa_auth |= WPA2_AUTH_PSK_SHA256; break; case RSN_AKM_SHA256_1X: brcmf_dbg(TRACE, "RSN_AKM_MFP_1X\n"); wpa_auth |= WPA2_AUTH_1X_SHA256; break; case RSN_AKM_SAE: brcmf_dbg(TRACE, "RSN_AKM_SAE\n"); wpa_auth |= WPA3_AUTH_SAE_PSK; break; default: bphy_err(drvr, "Invalid key mgmt info\n"); } offset++; } mfp = BRCMF_MFP_NONE; if (is_rsn_ie) { wme_bss_disable = 1; if ((offset + RSN_CAP_LEN) <= len) { rsn_cap = data[offset] + (data[offset + 1] << 8); if (rsn_cap & RSN_CAP_PTK_REPLAY_CNTR_MASK) wme_bss_disable = 0; if (rsn_cap & RSN_CAP_MFPR_MASK) { brcmf_dbg(TRACE, "MFP Required\n"); mfp = BRCMF_MFP_REQUIRED; /* Firmware only supports mfp required in * combination with WPA2_AUTH_PSK_SHA256, * WPA2_AUTH_1X_SHA256, or WPA3_AUTH_SAE_PSK. */ if (!(wpa_auth & (WPA2_AUTH_PSK_SHA256 | WPA2_AUTH_1X_SHA256 | WPA3_AUTH_SAE_PSK))) { err = -EINVAL; goto exit; } /* Firmware has requirement that WPA2_AUTH_PSK/ * WPA2_AUTH_UNSPECIFIED be set, if SHA256 OUI * is to be included in the rsn ie. */ if (wpa_auth & WPA2_AUTH_PSK_SHA256) wpa_auth |= WPA2_AUTH_PSK; else if (wpa_auth & WPA2_AUTH_1X_SHA256) wpa_auth |= WPA2_AUTH_UNSPECIFIED; } else if (rsn_cap & RSN_CAP_MFPC_MASK) { brcmf_dbg(TRACE, "MFP Capable\n"); mfp = BRCMF_MFP_CAPABLE; } } offset += RSN_CAP_LEN; /* set wme_bss_disable to sync RSN Capabilities */ err = brcmf_fil_bsscfg_int_set(ifp, "wme_bss_disable", wme_bss_disable); if (err < 0) { bphy_err(drvr, "wme_bss_disable error %d\n", err); goto exit; } /* Skip PMKID cnt as it is know to be 0 for AP. */ offset += RSN_PMKID_COUNT_LEN; /* See if there is BIP wpa suite left for MFP */ if (brcmf_feat_is_enabled(ifp, BRCMF_FEAT_MFP) && ((offset + WPA_IE_MIN_OUI_LEN) <= len)) { err = brcmf_fil_bsscfg_data_set(ifp, "bip", &data[offset], WPA_IE_MIN_OUI_LEN); if (err < 0) { bphy_err(drvr, "bip error %d\n", err); goto exit; } } } /* FOR WPS , set SES_OW_ENABLED */ wsec = (pval | gval | SES_OW_ENABLED); /* set auth */ err = brcmf_fil_bsscfg_int_set(ifp, "auth", auth); if (err < 0) { bphy_err(drvr, "auth error %d\n", err); goto exit; } /* set wsec */ err = brcmf_fil_bsscfg_int_set(ifp, "wsec", wsec); if (err < 0) { bphy_err(drvr, "wsec error %d\n", err); goto exit; } /* Configure MFP, this needs to go after wsec otherwise the wsec command * will overwrite the values set by MFP */ if (brcmf_feat_is_enabled(ifp, BRCMF_FEAT_MFP)) { err = brcmf_fil_bsscfg_int_set(ifp, "mfp", mfp); if (err < 0) { bphy_err(drvr, "mfp error %d\n", err); goto exit; } } /* set upper-layer auth */ err = brcmf_fil_bsscfg_int_set(ifp, "wpa_auth", wpa_auth); if (err < 0) { bphy_err(drvr, "wpa_auth error %d\n", err); goto exit; } exit: return err; } static s32 brcmf_parse_vndr_ies(const u8 *vndr_ie_buf, u32 vndr_ie_len, struct parsed_vndr_ies *vndr_ies) { struct brcmf_vs_tlv *vndrie; struct brcmf_tlv *ie; struct parsed_vndr_ie_info *parsed_info; s32 remaining_len; remaining_len = (s32)vndr_ie_len; memset(vndr_ies, 0, sizeof(*vndr_ies)); ie = (struct brcmf_tlv *)vndr_ie_buf; while (ie) { if (ie->id != WLAN_EID_VENDOR_SPECIFIC) goto next; vndrie = (struct brcmf_vs_tlv *)ie; /* len should be bigger than OUI length + one */ if (vndrie->len < (VS_IE_FIXED_HDR_LEN - TLV_HDR_LEN + 1)) { brcmf_err("invalid vndr ie. length is too small %d\n", vndrie->len); goto next; } /* if wpa or wme ie, do not add ie */ if (!memcmp(vndrie->oui, (u8 *)WPA_OUI, TLV_OUI_LEN) && ((vndrie->oui_type == WPA_OUI_TYPE) || (vndrie->oui_type == WME_OUI_TYPE))) { brcmf_dbg(TRACE, "Found WPA/WME oui. Do not add it\n"); goto next; } parsed_info = &vndr_ies->ie_info[vndr_ies->count]; /* save vndr ie information */ parsed_info->ie_ptr = (char *)vndrie; parsed_info->ie_len = vndrie->len + TLV_HDR_LEN; memcpy(&parsed_info->vndrie, vndrie, sizeof(*vndrie)); vndr_ies->count++; brcmf_dbg(TRACE, "** OUI %3ph, type 0x%02x\n", parsed_info->vndrie.oui, parsed_info->vndrie.oui_type); if (vndr_ies->count >= VNDR_IE_PARSE_LIMIT) break; next: remaining_len -= (ie->len + TLV_HDR_LEN); if (remaining_len <= TLV_HDR_LEN) ie = NULL; else ie = (struct brcmf_tlv *)(((u8 *)ie) + ie->len + TLV_HDR_LEN); } return 0; } static u32 brcmf_vndr_ie(u8 *iebuf, s32 pktflag, u8 *ie_ptr, u32 ie_len, s8 *add_del_cmd) { strscpy(iebuf, add_del_cmd, VNDR_IE_CMD_LEN); put_unaligned_le32(1, &iebuf[VNDR_IE_COUNT_OFFSET]); put_unaligned_le32(pktflag, &iebuf[VNDR_IE_PKTFLAG_OFFSET]); memcpy(&iebuf[VNDR_IE_VSIE_OFFSET], ie_ptr, ie_len); return ie_len + VNDR_IE_HDR_SIZE; } s32 brcmf_vif_set_mgmt_ie(struct brcmf_cfg80211_vif *vif, s32 pktflag, const u8 *vndr_ie_buf, u32 vndr_ie_len) { struct brcmf_pub *drvr; struct brcmf_if *ifp; struct vif_saved_ie *saved_ie; s32 err = 0; u8 *iovar_ie_buf; u8 *curr_ie_buf; u8 *mgmt_ie_buf = NULL; int mgmt_ie_buf_len; u32 *mgmt_ie_len; u32 del_add_ie_buf_len = 0; u32 total_ie_buf_len = 0; u32 parsed_ie_buf_len = 0; struct parsed_vndr_ies old_vndr_ies; struct parsed_vndr_ies new_vndr_ies; struct parsed_vndr_ie_info *vndrie_info; s32 i; u8 *ptr; int remained_buf_len; if (!vif) return -ENODEV; ifp = vif->ifp; drvr = ifp->drvr; saved_ie = &vif->saved_ie; brcmf_dbg(TRACE, "bsscfgidx %d, pktflag : 0x%02X\n", ifp->bsscfgidx, pktflag); iovar_ie_buf = kzalloc(WL_EXTRA_BUF_MAX, GFP_KERNEL); if (!iovar_ie_buf) return -ENOMEM; curr_ie_buf = iovar_ie_buf; switch (pktflag) { case BRCMF_VNDR_IE_PRBREQ_FLAG: mgmt_ie_buf = saved_ie->probe_req_ie; mgmt_ie_len = &saved_ie->probe_req_ie_len; mgmt_ie_buf_len = sizeof(saved_ie->probe_req_ie); break; case BRCMF_VNDR_IE_PRBRSP_FLAG: mgmt_ie_buf = saved_ie->probe_res_ie; mgmt_ie_len = &saved_ie->probe_res_ie_len; mgmt_ie_buf_len = sizeof(saved_ie->probe_res_ie); break; case BRCMF_VNDR_IE_BEACON_FLAG: mgmt_ie_buf = saved_ie->beacon_ie; mgmt_ie_len = &saved_ie->beacon_ie_len; mgmt_ie_buf_len = sizeof(saved_ie->beacon_ie); break; case BRCMF_VNDR_IE_ASSOCREQ_FLAG: mgmt_ie_buf = saved_ie->assoc_req_ie; mgmt_ie_len = &saved_ie->assoc_req_ie_len; mgmt_ie_buf_len = sizeof(saved_ie->assoc_req_ie); break; case BRCMF_VNDR_IE_ASSOCRSP_FLAG: mgmt_ie_buf = saved_ie->assoc_res_ie; mgmt_ie_len = &saved_ie->assoc_res_ie_len; mgmt_ie_buf_len = sizeof(saved_ie->assoc_res_ie); break; default: err = -EPERM; bphy_err(drvr, "not suitable type\n"); goto exit; } if (vndr_ie_len > mgmt_ie_buf_len) { err = -ENOMEM; bphy_err(drvr, "extra IE size too big\n"); goto exit; } /* parse and save new vndr_ie in curr_ie_buff before comparing it */ if (vndr_ie_buf && vndr_ie_len && curr_ie_buf) { ptr = curr_ie_buf; brcmf_parse_vndr_ies(vndr_ie_buf, vndr_ie_len, &new_vndr_ies); for (i = 0; i < new_vndr_ies.count; i++) { vndrie_info = &new_vndr_ies.ie_info[i]; memcpy(ptr + parsed_ie_buf_len, vndrie_info->ie_ptr, vndrie_info->ie_len); parsed_ie_buf_len += vndrie_info->ie_len; } } if (mgmt_ie_buf && *mgmt_ie_len) { if (parsed_ie_buf_len && (parsed_ie_buf_len == *mgmt_ie_len) && (memcmp(mgmt_ie_buf, curr_ie_buf, parsed_ie_buf_len) == 0)) { brcmf_dbg(TRACE, "Previous mgmt IE equals to current IE\n"); goto exit; } /* parse old vndr_ie */ brcmf_parse_vndr_ies(mgmt_ie_buf, *mgmt_ie_len, &old_vndr_ies); /* make a command to delete old ie */ for (i = 0; i < old_vndr_ies.count; i++) { vndrie_info = &old_vndr_ies.ie_info[i]; brcmf_dbg(TRACE, "DEL ID : %d, Len: %d , OUI:%3ph\n", vndrie_info->vndrie.id, vndrie_info->vndrie.len, vndrie_info->vndrie.oui); del_add_ie_buf_len = brcmf_vndr_ie(curr_ie_buf, pktflag, vndrie_info->ie_ptr, vndrie_info->ie_len, "del"); curr_ie_buf += del_add_ie_buf_len; total_ie_buf_len += del_add_ie_buf_len; } } *mgmt_ie_len = 0; /* Add if there is any extra IE */ if (mgmt_ie_buf && parsed_ie_buf_len) { ptr = mgmt_ie_buf; remained_buf_len = mgmt_ie_buf_len; /* make a command to add new ie */ for (i = 0; i < new_vndr_ies.count; i++) { vndrie_info = &new_vndr_ies.ie_info[i]; /* verify remained buf size before copy data */ if (remained_buf_len < (vndrie_info->vndrie.len + VNDR_IE_VSIE_OFFSET)) { bphy_err(drvr, "no space in mgmt_ie_buf: len left %d", remained_buf_len); break; } remained_buf_len -= (vndrie_info->ie_len + VNDR_IE_VSIE_OFFSET); brcmf_dbg(TRACE, "ADDED ID : %d, Len: %d, OUI:%3ph\n", vndrie_info->vndrie.id, vndrie_info->vndrie.len, vndrie_info->vndrie.oui); del_add_ie_buf_len = brcmf_vndr_ie(curr_ie_buf, pktflag, vndrie_info->ie_ptr, vndrie_info->ie_len, "add"); /* save the parsed IE in wl struct */ memcpy(ptr + (*mgmt_ie_len), vndrie_info->ie_ptr, vndrie_info->ie_len); *mgmt_ie_len += vndrie_info->ie_len; curr_ie_buf += del_add_ie_buf_len; total_ie_buf_len += del_add_ie_buf_len; } } if (total_ie_buf_len) { err = brcmf_fil_bsscfg_data_set(ifp, "vndr_ie", iovar_ie_buf, total_ie_buf_len); if (err) bphy_err(drvr, "vndr ie set error : %d\n", err); } exit: kfree(iovar_ie_buf); return err; } s32 brcmf_vif_clear_mgmt_ies(struct brcmf_cfg80211_vif *vif) { static const s32 pktflags[] = { BRCMF_VNDR_IE_PRBREQ_FLAG, BRCMF_VNDR_IE_PRBRSP_FLAG, BRCMF_VNDR_IE_BEACON_FLAG }; int i; for (i = 0; i < ARRAY_SIZE(pktflags); i++) brcmf_vif_set_mgmt_ie(vif, pktflags[i], NULL, 0); memset(&vif->saved_ie, 0, sizeof(vif->saved_ie)); return 0; } static s32 brcmf_config_ap_mgmt_ie(struct brcmf_cfg80211_vif *vif, struct cfg80211_beacon_data *beacon) { struct brcmf_pub *drvr = vif->ifp->drvr; s32 err; /* Set Beacon IEs to FW */ err = brcmf_vif_set_mgmt_ie(vif, BRCMF_VNDR_IE_BEACON_FLAG, beacon->tail, beacon->tail_len); if (err) { bphy_err(drvr, "Set Beacon IE Failed\n"); return err; } brcmf_dbg(TRACE, "Applied Vndr IEs for Beacon\n"); /* Set Probe Response IEs to FW */ err = brcmf_vif_set_mgmt_ie(vif, BRCMF_VNDR_IE_PRBRSP_FLAG, beacon->proberesp_ies, beacon->proberesp_ies_len); if (err) bphy_err(drvr, "Set Probe Resp IE Failed\n"); else brcmf_dbg(TRACE, "Applied Vndr IEs for Probe Resp\n"); /* Set Assoc Response IEs to FW */ err = brcmf_vif_set_mgmt_ie(vif, BRCMF_VNDR_IE_ASSOCRSP_FLAG, beacon->assocresp_ies, beacon->assocresp_ies_len); if (err) brcmf_err("Set Assoc Resp IE Failed\n"); else brcmf_dbg(TRACE, "Applied Vndr IEs for Assoc Resp\n"); return err; } static s32 brcmf_parse_configure_security(struct brcmf_if *ifp, struct cfg80211_ap_settings *settings, enum nl80211_iftype dev_role) { const struct brcmf_tlv *rsn_ie; const struct brcmf_vs_tlv *wpa_ie; s32 err = 0; /* find the RSN_IE */ rsn_ie = brcmf_parse_tlvs((u8 *)settings->beacon.tail, settings->beacon.tail_len, WLAN_EID_RSN); /* find the WPA_IE */ wpa_ie = brcmf_find_wpaie((u8 *)settings->beacon.tail, settings->beacon.tail_len); if (wpa_ie || rsn_ie) { brcmf_dbg(TRACE, "WPA(2) IE is found\n"); if (wpa_ie) { /* WPA IE */ err = brcmf_configure_wpaie(ifp, wpa_ie, false); if (err < 0) return err; } else { struct brcmf_vs_tlv *tmp_ie; tmp_ie = (struct brcmf_vs_tlv *)rsn_ie; /* RSN IE */ err = brcmf_configure_wpaie(ifp, tmp_ie, true); if (err < 0) return err; } } else { brcmf_dbg(TRACE, "No WPA(2) IEs found\n"); brcmf_configure_opensecurity(ifp); } return err; } static s32 brcmf_cfg80211_start_ap(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_ap_settings *settings) { s32 ie_offset; struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_pub *drvr = cfg->pub; struct brcmf_cfg80211_profile *profile = &ifp->vif->profile; struct cfg80211_crypto_settings *crypto = &settings->crypto; const struct brcmf_tlv *ssid_ie; const struct brcmf_tlv *country_ie; struct brcmf_ssid_le ssid_le; s32 err = -EPERM; struct brcmf_join_params join_params; enum nl80211_iftype dev_role; struct brcmf_fil_bss_enable_le bss_enable; u16 chanspec = chandef_to_chanspec(&cfg->d11inf, &settings->chandef); bool mbss; int is_11d; bool supports_11d; brcmf_dbg(TRACE, "ctrlchn=%d, center=%d, bw=%d, beacon_interval=%d, dtim_period=%d,\n", settings->chandef.chan->hw_value, settings->chandef.center_freq1, settings->chandef.width, settings->beacon_interval, settings->dtim_period); brcmf_dbg(TRACE, "ssid=%s(%zu), auth_type=%d, inactivity_timeout=%d\n", settings->ssid, settings->ssid_len, settings->auth_type, settings->inactivity_timeout); dev_role = ifp->vif->wdev.iftype; mbss = ifp->vif->mbss; /* store current 11d setting */ if (brcmf_fil_cmd_int_get(ifp, BRCMF_C_GET_REGULATORY, &ifp->vif->is_11d)) { is_11d = supports_11d = false; } else { country_ie = brcmf_parse_tlvs((u8 *)settings->beacon.tail, settings->beacon.tail_len, WLAN_EID_COUNTRY); is_11d = country_ie ? 1 : 0; supports_11d = true; } memset(&ssid_le, 0, sizeof(ssid_le)); if (settings->ssid == NULL || settings->ssid_len == 0) { ie_offset = DOT11_MGMT_HDR_LEN + DOT11_BCN_PRB_FIXED_LEN; ssid_ie = brcmf_parse_tlvs( (u8 *)&settings->beacon.head[ie_offset], settings->beacon.head_len - ie_offset, WLAN_EID_SSID); if (!ssid_ie || ssid_ie->len > IEEE80211_MAX_SSID_LEN) return -EINVAL; memcpy(ssid_le.SSID, ssid_ie->data, ssid_ie->len); ssid_le.SSID_len = cpu_to_le32(ssid_ie->len); brcmf_dbg(TRACE, "SSID is (%s) in Head\n", ssid_le.SSID); } else { memcpy(ssid_le.SSID, settings->ssid, settings->ssid_len); ssid_le.SSID_len = cpu_to_le32((u32)settings->ssid_len); } if (!mbss) { brcmf_set_mpc(ifp, 0); brcmf_configure_arp_nd_offload(ifp, false); } /* Parameters shared by all radio interfaces */ if (!mbss) { if ((supports_11d) && (is_11d != ifp->vif->is_11d)) { err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_REGULATORY, is_11d); if (err < 0) { bphy_err(drvr, "Regulatory Set Error, %d\n", err); goto exit; } } if (settings->beacon_interval) { err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_BCNPRD, settings->beacon_interval); if (err < 0) { bphy_err(drvr, "Beacon Interval Set Error, %d\n", err); goto exit; } } if (settings->dtim_period) { err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_DTIMPRD, settings->dtim_period); if (err < 0) { bphy_err(drvr, "DTIM Interval Set Error, %d\n", err); goto exit; } } if ((dev_role == NL80211_IFTYPE_AP) && ((ifp->ifidx == 0) || (!brcmf_feat_is_enabled(ifp, BRCMF_FEAT_RSDB) && !brcmf_feat_is_enabled(ifp, BRCMF_FEAT_MCHAN)))) { err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_DOWN, 1); if (err < 0) { bphy_err(drvr, "BRCMF_C_DOWN error %d\n", err); goto exit; } brcmf_fil_iovar_int_set(ifp, "apsta", 0); } err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_INFRA, 1); if (err < 0) { bphy_err(drvr, "SET INFRA error %d\n", err); goto exit; } } else if (WARN_ON(supports_11d && (is_11d != ifp->vif->is_11d))) { /* Multiple-BSS should use same 11d configuration */ err = -EINVAL; goto exit; } /* Interface specific setup */ if (dev_role == NL80211_IFTYPE_AP) { if ((brcmf_feat_is_enabled(ifp, BRCMF_FEAT_MBSS)) && (!mbss)) brcmf_fil_iovar_int_set(ifp, "mbss", 1); err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_AP, 1); if (err < 0) { bphy_err(drvr, "setting AP mode failed %d\n", err); goto exit; } if (!mbss) { /* Firmware 10.x requires setting channel after enabling * AP and before bringing interface up. */ err = brcmf_fil_iovar_int_set(ifp, "chanspec", chanspec); if (err < 0) { bphy_err(drvr, "Set Channel failed: chspec=%d, %d\n", chanspec, err); goto exit; } } err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_UP, 1); if (err < 0) { bphy_err(drvr, "BRCMF_C_UP error (%d)\n", err); goto exit; } if (crypto->psk) { brcmf_dbg(INFO, "using PSK offload\n"); profile->use_fwauth |= BIT(BRCMF_PROFILE_FWAUTH_PSK); err = brcmf_set_pmk(ifp, crypto->psk, BRCMF_WSEC_MAX_PSK_LEN); if (err < 0) goto exit; } if (crypto->sae_pwd) { brcmf_dbg(INFO, "using SAE offload\n"); profile->use_fwauth |= BIT(BRCMF_PROFILE_FWAUTH_SAE); err = brcmf_set_sae_password(ifp, crypto->sae_pwd, crypto->sae_pwd_len); if (err < 0) goto exit; } if (profile->use_fwauth == 0) profile->use_fwauth = BIT(BRCMF_PROFILE_FWAUTH_NONE); err = brcmf_parse_configure_security(ifp, settings, NL80211_IFTYPE_AP); if (err < 0) { bphy_err(drvr, "brcmf_parse_configure_security error\n"); goto exit; } /* On DOWN the firmware removes the WEP keys, reconfigure * them if they were set. */ brcmf_cfg80211_reconfigure_wep(ifp); memset(&join_params, 0, sizeof(join_params)); /* join parameters starts with ssid */ memcpy(&join_params.ssid_le, &ssid_le, sizeof(ssid_le)); /* create softap */ err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SET_SSID, &join_params, sizeof(join_params)); if (err < 0) { bphy_err(drvr, "SET SSID error (%d)\n", err); goto exit; } err = brcmf_fil_iovar_int_set(ifp, "closednet", settings->hidden_ssid); if (err) { bphy_err(drvr, "%s closednet error (%d)\n", settings->hidden_ssid ? "enabled" : "disabled", err); goto exit; } brcmf_dbg(TRACE, "AP mode configuration complete\n"); } else if (dev_role == NL80211_IFTYPE_P2P_GO) { err = brcmf_fil_iovar_int_set(ifp, "chanspec", chanspec); if (err < 0) { bphy_err(drvr, "Set Channel failed: chspec=%d, %d\n", chanspec, err); goto exit; } err = brcmf_parse_configure_security(ifp, settings, NL80211_IFTYPE_P2P_GO); if (err < 0) { brcmf_err("brcmf_parse_configure_security error\n"); goto exit; } err = brcmf_fil_bsscfg_data_set(ifp, "ssid", &ssid_le, sizeof(ssid_le)); if (err < 0) { bphy_err(drvr, "setting ssid failed %d\n", err); goto exit; } bss_enable.bsscfgidx = cpu_to_le32(ifp->bsscfgidx); bss_enable.enable = cpu_to_le32(1); err = brcmf_fil_iovar_data_set(ifp, "bss", &bss_enable, sizeof(bss_enable)); if (err < 0) { bphy_err(drvr, "bss_enable config failed %d\n", err); goto exit; } brcmf_dbg(TRACE, "GO mode configuration complete\n"); } else { WARN_ON(1); } brcmf_config_ap_mgmt_ie(ifp->vif, &settings->beacon); set_bit(BRCMF_VIF_STATUS_AP_CREATED, &ifp->vif->sme_state); brcmf_net_setcarrier(ifp, true); exit: if ((err) && (!mbss)) { brcmf_set_mpc(ifp, 1); brcmf_configure_arp_nd_offload(ifp, true); } return err; } static int brcmf_cfg80211_stop_ap(struct wiphy *wiphy, struct net_device *ndev, unsigned int link_id) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_pub *drvr = cfg->pub; struct brcmf_cfg80211_profile *profile = &ifp->vif->profile; s32 err; struct brcmf_fil_bss_enable_le bss_enable; struct brcmf_join_params join_params; brcmf_dbg(TRACE, "Enter\n"); if (ifp->vif->wdev.iftype == NL80211_IFTYPE_AP) { /* Due to most likely deauths outstanding we sleep */ /* first to make sure they get processed by fw. */ msleep(400); if (profile->use_fwauth != BIT(BRCMF_PROFILE_FWAUTH_NONE)) { if (profile->use_fwauth & BIT(BRCMF_PROFILE_FWAUTH_PSK)) brcmf_set_pmk(ifp, NULL, 0); if (profile->use_fwauth & BIT(BRCMF_PROFILE_FWAUTH_SAE)) brcmf_set_sae_password(ifp, NULL, 0); profile->use_fwauth = BIT(BRCMF_PROFILE_FWAUTH_NONE); } if (ifp->vif->mbss) { err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_DOWN, 1); return err; } /* First BSS doesn't get a full reset */ if (ifp->bsscfgidx == 0) brcmf_fil_iovar_int_set(ifp, "closednet", 0); memset(&join_params, 0, sizeof(join_params)); err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SET_SSID, &join_params, sizeof(join_params)); if (err < 0) bphy_err(drvr, "SET SSID error (%d)\n", err); err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_DOWN, 1); if (err < 0) bphy_err(drvr, "BRCMF_C_DOWN error %d\n", err); err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_AP, 0); if (err < 0) bphy_err(drvr, "setting AP mode failed %d\n", err); if (brcmf_feat_is_enabled(ifp, BRCMF_FEAT_MBSS)) brcmf_fil_iovar_int_set(ifp, "mbss", 0); brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_REGULATORY, ifp->vif->is_11d); /* Bring device back up so it can be used again */ err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_UP, 1); if (err < 0) bphy_err(drvr, "BRCMF_C_UP error %d\n", err); brcmf_vif_clear_mgmt_ies(ifp->vif); } else { bss_enable.bsscfgidx = cpu_to_le32(ifp->bsscfgidx); bss_enable.enable = cpu_to_le32(0); err = brcmf_fil_iovar_data_set(ifp, "bss", &bss_enable, sizeof(bss_enable)); if (err < 0) bphy_err(drvr, "bss_enable config failed %d\n", err); } brcmf_set_mpc(ifp, 1); brcmf_configure_arp_nd_offload(ifp, true); clear_bit(BRCMF_VIF_STATUS_AP_CREATED, &ifp->vif->sme_state); brcmf_net_setcarrier(ifp, false); return err; } static s32 brcmf_cfg80211_change_beacon(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_beacon_data *info) { struct brcmf_if *ifp = netdev_priv(ndev); brcmf_dbg(TRACE, "Enter\n"); return brcmf_config_ap_mgmt_ie(ifp->vif, info); } static int brcmf_cfg80211_del_station(struct wiphy *wiphy, struct net_device *ndev, struct station_del_parameters *params) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_pub *drvr = cfg->pub; struct brcmf_scb_val_le scbval; struct brcmf_if *ifp = netdev_priv(ndev); s32 err; if (!params->mac) return -EFAULT; brcmf_dbg(TRACE, "Enter %pM\n", params->mac); if (ifp->vif == cfg->p2p.bss_idx[P2PAPI_BSSCFG_DEVICE].vif) ifp = cfg->p2p.bss_idx[P2PAPI_BSSCFG_PRIMARY].vif->ifp; if (!check_vif_up(ifp->vif)) return -EIO; memcpy(&scbval.ea, params->mac, ETH_ALEN); scbval.val = cpu_to_le32(params->reason_code); err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SCB_DEAUTHENTICATE_FOR_REASON, &scbval, sizeof(scbval)); if (err) bphy_err(drvr, "SCB_DEAUTHENTICATE_FOR_REASON failed %d\n", err); brcmf_dbg(TRACE, "Exit\n"); return err; } static int brcmf_cfg80211_change_station(struct wiphy *wiphy, struct net_device *ndev, const u8 *mac, struct station_parameters *params) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_pub *drvr = cfg->pub; struct brcmf_if *ifp = netdev_priv(ndev); s32 err; brcmf_dbg(TRACE, "Enter, MAC %pM, mask 0x%04x set 0x%04x\n", mac, params->sta_flags_mask, params->sta_flags_set); /* Ignore all 00 MAC */ if (is_zero_ether_addr(mac)) return 0; if (!(params->sta_flags_mask & BIT(NL80211_STA_FLAG_AUTHORIZED))) return 0; if (params->sta_flags_set & BIT(NL80211_STA_FLAG_AUTHORIZED)) err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SET_SCB_AUTHORIZE, (void *)mac, ETH_ALEN); else err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SET_SCB_DEAUTHORIZE, (void *)mac, ETH_ALEN); if (err < 0) bphy_err(drvr, "Setting SCB (de-)authorize failed, %d\n", err); return err; } static void brcmf_cfg80211_update_mgmt_frame_registrations(struct wiphy *wiphy, struct wireless_dev *wdev, struct mgmt_frame_regs *upd) { struct brcmf_cfg80211_vif *vif; vif = container_of(wdev, struct brcmf_cfg80211_vif, wdev); vif->mgmt_rx_reg = upd->interface_stypes; } static int brcmf_cfg80211_mgmt_tx(struct wiphy *wiphy, struct wireless_dev *wdev, struct cfg80211_mgmt_tx_params *params, u64 *cookie) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct ieee80211_channel *chan = params->chan; struct brcmf_pub *drvr = cfg->pub; const u8 *buf = params->buf; size_t len = params->len; const struct ieee80211_mgmt *mgmt; struct brcmf_cfg80211_vif *vif; s32 err = 0; s32 ie_offset; s32 ie_len; struct brcmf_fil_action_frame_le *action_frame; struct brcmf_fil_af_params_le *af_params; bool ack; s32 chan_nr; u32 freq; brcmf_dbg(TRACE, "Enter\n"); *cookie = 0; mgmt = (const struct ieee80211_mgmt *)buf; if (!ieee80211_is_mgmt(mgmt->frame_control)) { bphy_err(drvr, "Driver only allows MGMT packet type\n"); return -EPERM; } vif = container_of(wdev, struct brcmf_cfg80211_vif, wdev); if (ieee80211_is_probe_resp(mgmt->frame_control)) { /* Right now the only reason to get a probe response */ /* is for p2p listen response or for p2p GO from */ /* wpa_supplicant. Unfortunately the probe is send */ /* on primary ndev, while dongle wants it on the p2p */ /* vif. Since this is only reason for a probe */ /* response to be sent, the vif is taken from cfg. */ /* If ever desired to send proberesp for non p2p */ /* response then data should be checked for */ /* "DIRECT-". Note in future supplicant will take */ /* dedicated p2p wdev to do this and then this 'hack'*/ /* is not needed anymore. */ ie_offset = DOT11_MGMT_HDR_LEN + DOT11_BCN_PRB_FIXED_LEN; ie_len = len - ie_offset; if (vif == cfg->p2p.bss_idx[P2PAPI_BSSCFG_PRIMARY].vif) vif = cfg->p2p.bss_idx[P2PAPI_BSSCFG_DEVICE].vif; err = brcmf_vif_set_mgmt_ie(vif, BRCMF_VNDR_IE_PRBRSP_FLAG, &buf[ie_offset], ie_len); cfg80211_mgmt_tx_status(wdev, *cookie, buf, len, true, GFP_KERNEL); } else if (ieee80211_is_action(mgmt->frame_control)) { if (len > BRCMF_FIL_ACTION_FRAME_SIZE + DOT11_MGMT_HDR_LEN) { bphy_err(drvr, "invalid action frame length\n"); err = -EINVAL; goto exit; } af_params = kzalloc(sizeof(*af_params), GFP_KERNEL); if (af_params == NULL) { bphy_err(drvr, "unable to allocate frame\n"); err = -ENOMEM; goto exit; } action_frame = &af_params->action_frame; /* Add the packet Id */ action_frame->packet_id = cpu_to_le32(*cookie); /* Add BSSID */ memcpy(&action_frame->da[0], &mgmt->da[0], ETH_ALEN); memcpy(&af_params->bssid[0], &mgmt->bssid[0], ETH_ALEN); /* Add the length exepted for 802.11 header */ action_frame->len = cpu_to_le16(len - DOT11_MGMT_HDR_LEN); /* Add the channel. Use the one specified as parameter if any or * the current one (got from the firmware) otherwise */ if (chan) freq = chan->center_freq; else brcmf_fil_cmd_int_get(vif->ifp, BRCMF_C_GET_CHANNEL, &freq); chan_nr = ieee80211_frequency_to_channel(freq); af_params->channel = cpu_to_le32(chan_nr); af_params->dwell_time = cpu_to_le32(params->wait); memcpy(action_frame->data, &buf[DOT11_MGMT_HDR_LEN], le16_to_cpu(action_frame->len)); brcmf_dbg(TRACE, "Action frame, cookie=%lld, len=%d, freq=%d\n", *cookie, le16_to_cpu(action_frame->len), freq); ack = brcmf_p2p_send_action_frame(cfg, cfg_to_ndev(cfg), af_params); cfg80211_mgmt_tx_status(wdev, *cookie, buf, len, ack, GFP_KERNEL); kfree(af_params); } else { brcmf_dbg(TRACE, "Unhandled, fc=%04x!!\n", mgmt->frame_control); brcmf_dbg_hex_dump(true, buf, len, "payload, len=%zu\n", len); } exit: return err; } static int brcmf_cfg80211_set_cqm_rssi_range_config(struct wiphy *wiphy, struct net_device *ndev, s32 rssi_low, s32 rssi_high) { struct brcmf_cfg80211_vif *vif; struct brcmf_if *ifp; int err = 0; brcmf_dbg(TRACE, "low=%d high=%d", rssi_low, rssi_high); ifp = netdev_priv(ndev); vif = ifp->vif; if (rssi_low != vif->cqm_rssi_low || rssi_high != vif->cqm_rssi_high) { /* The firmware will send an event when the RSSI is less than or * equal to a configured level and the previous RSSI event was * less than or equal to a different level. Set a third level * so that we also detect the transition from rssi <= rssi_high * to rssi > rssi_high. */ struct brcmf_rssi_event_le config = { .rate_limit_msec = cpu_to_le32(0), .rssi_level_num = 3, .rssi_levels = { clamp_val(rssi_low, S8_MIN, S8_MAX - 2), clamp_val(rssi_high, S8_MIN + 1, S8_MAX - 1), S8_MAX, }, }; err = brcmf_fil_iovar_data_set(ifp, "rssi_event", &config, sizeof(config)); if (err) { err = -EINVAL; } else { vif->cqm_rssi_low = rssi_low; vif->cqm_rssi_high = rssi_high; } } return err; } static int brcmf_cfg80211_cancel_remain_on_channel(struct wiphy *wiphy, struct wireless_dev *wdev, u64 cookie) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_pub *drvr = cfg->pub; struct brcmf_cfg80211_vif *vif; int err = 0; brcmf_dbg(TRACE, "Enter p2p listen cancel\n"); vif = cfg->p2p.bss_idx[P2PAPI_BSSCFG_DEVICE].vif; if (vif == NULL) { bphy_err(drvr, "No p2p device available for probe response\n"); err = -ENODEV; goto exit; } brcmf_p2p_cancel_remain_on_channel(vif->ifp); exit: return err; } static int brcmf_cfg80211_get_channel(struct wiphy *wiphy, struct wireless_dev *wdev, unsigned int link_id, struct cfg80211_chan_def *chandef) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct net_device *ndev = wdev->netdev; struct brcmf_pub *drvr = cfg->pub; struct brcmu_chan ch; enum nl80211_band band = 0; enum nl80211_chan_width width = 0; u32 chanspec; int freq, err; if (!ndev || drvr->bus_if->state != BRCMF_BUS_UP) return -ENODEV; err = brcmf_fil_iovar_int_get(netdev_priv(ndev), "chanspec", &chanspec); if (err) { bphy_err(drvr, "chanspec failed (%d)\n", err); return err; } ch.chspec = chanspec; cfg->d11inf.decchspec(&ch); switch (ch.band) { case BRCMU_CHAN_BAND_2G: band = NL80211_BAND_2GHZ; break; case BRCMU_CHAN_BAND_5G: band = NL80211_BAND_5GHZ; break; } switch (ch.bw) { case BRCMU_CHAN_BW_80: width = NL80211_CHAN_WIDTH_80; break; case BRCMU_CHAN_BW_40: width = NL80211_CHAN_WIDTH_40; break; case BRCMU_CHAN_BW_20: width = NL80211_CHAN_WIDTH_20; break; case BRCMU_CHAN_BW_80P80: width = NL80211_CHAN_WIDTH_80P80; break; case BRCMU_CHAN_BW_160: width = NL80211_CHAN_WIDTH_160; break; } freq = ieee80211_channel_to_frequency(ch.control_ch_num, band); chandef->chan = ieee80211_get_channel(wiphy, freq); chandef->width = width; chandef->center_freq1 = ieee80211_channel_to_frequency(ch.chnum, band); chandef->center_freq2 = 0; return 0; } static int brcmf_cfg80211_crit_proto_start(struct wiphy *wiphy, struct wireless_dev *wdev, enum nl80211_crit_proto_id proto, u16 duration) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_cfg80211_vif *vif; vif = container_of(wdev, struct brcmf_cfg80211_vif, wdev); /* only DHCP support for now */ if (proto != NL80211_CRIT_PROTO_DHCP) return -EINVAL; /* suppress and abort scanning */ set_bit(BRCMF_SCAN_STATUS_SUPPRESS, &cfg->scan_status); brcmf_abort_scanning(cfg); return brcmf_btcoex_set_mode(vif, BRCMF_BTCOEX_DISABLED, duration); } static void brcmf_cfg80211_crit_proto_stop(struct wiphy *wiphy, struct wireless_dev *wdev) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_cfg80211_vif *vif; vif = container_of(wdev, struct brcmf_cfg80211_vif, wdev); brcmf_btcoex_set_mode(vif, BRCMF_BTCOEX_ENABLED, 0); clear_bit(BRCMF_SCAN_STATUS_SUPPRESS, &cfg->scan_status); } static s32 brcmf_notify_tdls_peer_event(struct brcmf_if *ifp, const struct brcmf_event_msg *e, void *data) { switch (e->reason) { case BRCMF_E_REASON_TDLS_PEER_DISCOVERED: brcmf_dbg(TRACE, "TDLS Peer Discovered\n"); break; case BRCMF_E_REASON_TDLS_PEER_CONNECTED: brcmf_dbg(TRACE, "TDLS Peer Connected\n"); brcmf_proto_add_tdls_peer(ifp->drvr, ifp->ifidx, (u8 *)e->addr); break; case BRCMF_E_REASON_TDLS_PEER_DISCONNECTED: brcmf_dbg(TRACE, "TDLS Peer Disconnected\n"); brcmf_proto_delete_peer(ifp->drvr, ifp->ifidx, (u8 *)e->addr); break; } return 0; } static int brcmf_convert_nl80211_tdls_oper(enum nl80211_tdls_operation oper) { int ret; switch (oper) { case NL80211_TDLS_DISCOVERY_REQ: ret = BRCMF_TDLS_MANUAL_EP_DISCOVERY; break; case NL80211_TDLS_SETUP: ret = BRCMF_TDLS_MANUAL_EP_CREATE; break; case NL80211_TDLS_TEARDOWN: ret = BRCMF_TDLS_MANUAL_EP_DELETE; break; default: brcmf_err("unsupported operation: %d\n", oper); ret = -EOPNOTSUPP; } return ret; } static int brcmf_cfg80211_tdls_oper(struct wiphy *wiphy, struct net_device *ndev, const u8 *peer, enum nl80211_tdls_operation oper) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_pub *drvr = cfg->pub; struct brcmf_if *ifp; struct brcmf_tdls_iovar_le info; int ret = 0; ret = brcmf_convert_nl80211_tdls_oper(oper); if (ret < 0) return ret; ifp = netdev_priv(ndev); memset(&info, 0, sizeof(info)); info.mode = (u8)ret; if (peer) memcpy(info.ea, peer, ETH_ALEN); ret = brcmf_fil_iovar_data_set(ifp, "tdls_endpoint", &info, sizeof(info)); if (ret < 0) bphy_err(drvr, "tdls_endpoint iovar failed: ret=%d\n", ret); return ret; } static int brcmf_cfg80211_update_conn_params(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_connect_params *sme, u32 changed) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_pub *drvr = cfg->pub; struct brcmf_if *ifp; int err; if (!(changed & UPDATE_ASSOC_IES)) return 0; ifp = netdev_priv(ndev); err = brcmf_vif_set_mgmt_ie(ifp->vif, BRCMF_VNDR_IE_ASSOCREQ_FLAG, sme->ie, sme->ie_len); if (err) bphy_err(drvr, "Set Assoc REQ IE Failed\n"); else brcmf_dbg(TRACE, "Applied Vndr IEs for Assoc request\n"); return err; } #ifdef CONFIG_PM static int brcmf_cfg80211_set_rekey_data(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_gtk_rekey_data *gtk) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_pub *drvr = cfg->pub; struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_gtk_keyinfo_le gtk_le; int ret; brcmf_dbg(TRACE, "Enter, bssidx=%d\n", ifp->bsscfgidx); memcpy(gtk_le.kck, gtk->kck, sizeof(gtk_le.kck)); memcpy(gtk_le.kek, gtk->kek, sizeof(gtk_le.kek)); memcpy(gtk_le.replay_counter, gtk->replay_ctr, sizeof(gtk_le.replay_counter)); ret = brcmf_fil_iovar_data_set(ifp, "gtk_key_info", >k_le, sizeof(gtk_le)); if (ret < 0) bphy_err(drvr, "gtk_key_info iovar failed: ret=%d\n", ret); return ret; } #endif static int brcmf_cfg80211_set_pmk(struct wiphy *wiphy, struct net_device *dev, const struct cfg80211_pmk_conf *conf) { struct brcmf_if *ifp; brcmf_dbg(TRACE, "enter\n"); /* expect using firmware supplicant for 1X */ ifp = netdev_priv(dev); if (WARN_ON(ifp->vif->profile.use_fwsup != BRCMF_PROFILE_FWSUP_1X)) return -EINVAL; if (conf->pmk_len > BRCMF_WSEC_MAX_PSK_LEN) return -ERANGE; return brcmf_set_pmk(ifp, conf->pmk, conf->pmk_len); } static int brcmf_cfg80211_del_pmk(struct wiphy *wiphy, struct net_device *dev, const u8 *aa) { struct brcmf_if *ifp; brcmf_dbg(TRACE, "enter\n"); ifp = netdev_priv(dev); if (WARN_ON(ifp->vif->profile.use_fwsup != BRCMF_PROFILE_FWSUP_1X)) return -EINVAL; return brcmf_set_pmk(ifp, NULL, 0); } static struct cfg80211_ops brcmf_cfg80211_ops = { .add_virtual_intf = brcmf_cfg80211_add_iface, .del_virtual_intf = brcmf_cfg80211_del_iface, .change_virtual_intf = brcmf_cfg80211_change_iface, .scan = brcmf_cfg80211_scan, .set_wiphy_params = brcmf_cfg80211_set_wiphy_params, .join_ibss = brcmf_cfg80211_join_ibss, .leave_ibss = brcmf_cfg80211_leave_ibss, .get_station = brcmf_cfg80211_get_station, .dump_station = brcmf_cfg80211_dump_station, .set_tx_power = brcmf_cfg80211_set_tx_power, .get_tx_power = brcmf_cfg80211_get_tx_power, .add_key = brcmf_cfg80211_add_key, .del_key = brcmf_cfg80211_del_key, .get_key = brcmf_cfg80211_get_key, .set_default_key = brcmf_cfg80211_config_default_key, .set_default_mgmt_key = brcmf_cfg80211_config_default_mgmt_key, .set_power_mgmt = brcmf_cfg80211_set_power_mgmt, .connect = brcmf_cfg80211_connect, .disconnect = brcmf_cfg80211_disconnect, .suspend = brcmf_cfg80211_suspend, .resume = brcmf_cfg80211_resume, .set_pmksa = brcmf_cfg80211_set_pmksa, .del_pmksa = brcmf_cfg80211_del_pmksa, .flush_pmksa = brcmf_cfg80211_flush_pmksa, .start_ap = brcmf_cfg80211_start_ap, .stop_ap = brcmf_cfg80211_stop_ap, .change_beacon = brcmf_cfg80211_change_beacon, .del_station = brcmf_cfg80211_del_station, .change_station = brcmf_cfg80211_change_station, .sched_scan_start = brcmf_cfg80211_sched_scan_start, .sched_scan_stop = brcmf_cfg80211_sched_scan_stop, .update_mgmt_frame_registrations = brcmf_cfg80211_update_mgmt_frame_registrations, .mgmt_tx = brcmf_cfg80211_mgmt_tx, .set_cqm_rssi_range_config = brcmf_cfg80211_set_cqm_rssi_range_config, .remain_on_channel = brcmf_p2p_remain_on_channel, .cancel_remain_on_channel = brcmf_cfg80211_cancel_remain_on_channel, .get_channel = brcmf_cfg80211_get_channel, .start_p2p_device = brcmf_p2p_start_device, .stop_p2p_device = brcmf_p2p_stop_device, .crit_proto_start = brcmf_cfg80211_crit_proto_start, .crit_proto_stop = brcmf_cfg80211_crit_proto_stop, .tdls_oper = brcmf_cfg80211_tdls_oper, .update_connect_params = brcmf_cfg80211_update_conn_params, .set_pmk = brcmf_cfg80211_set_pmk, .del_pmk = brcmf_cfg80211_del_pmk, }; struct cfg80211_ops *brcmf_cfg80211_get_ops(struct brcmf_mp_device *settings) { struct cfg80211_ops *ops; ops = kmemdup(&brcmf_cfg80211_ops, sizeof(brcmf_cfg80211_ops), GFP_KERNEL); if (ops && settings->roamoff) ops->update_connect_params = NULL; return ops; } struct brcmf_cfg80211_vif *brcmf_alloc_vif(struct brcmf_cfg80211_info *cfg, enum nl80211_iftype type) { struct brcmf_cfg80211_vif *vif_walk; struct brcmf_cfg80211_vif *vif; bool mbss; struct brcmf_if *ifp = brcmf_get_ifp(cfg->pub, 0); brcmf_dbg(TRACE, "allocating virtual interface (size=%zu)\n", sizeof(*vif)); vif = kzalloc(sizeof(*vif), GFP_KERNEL); if (!vif) return ERR_PTR(-ENOMEM); vif->wdev.wiphy = cfg->wiphy; vif->wdev.iftype = type; brcmf_init_prof(&vif->profile); if (type == NL80211_IFTYPE_AP && brcmf_feat_is_enabled(ifp, BRCMF_FEAT_MBSS)) { mbss = false; list_for_each_entry(vif_walk, &cfg->vif_list, list) { if (vif_walk->wdev.iftype == NL80211_IFTYPE_AP) { mbss = true; break; } } vif->mbss = mbss; } list_add_tail(&vif->list, &cfg->vif_list); return vif; } void brcmf_free_vif(struct brcmf_cfg80211_vif *vif) { list_del(&vif->list); kfree(vif); } void brcmf_cfg80211_free_netdev(struct net_device *ndev) { struct brcmf_cfg80211_vif *vif; struct brcmf_if *ifp; ifp = netdev_priv(ndev); vif = ifp->vif; if (vif) brcmf_free_vif(vif); } static bool brcmf_is_linkup(struct brcmf_cfg80211_vif *vif, const struct brcmf_event_msg *e) { u32 event = e->event_code; u32 status = e->status; if ((vif->profile.use_fwsup == BRCMF_PROFILE_FWSUP_PSK || vif->profile.use_fwsup == BRCMF_PROFILE_FWSUP_SAE) && event == BRCMF_E_PSK_SUP && status == BRCMF_E_STATUS_FWSUP_COMPLETED) set_bit(BRCMF_VIF_STATUS_EAP_SUCCESS, &vif->sme_state); if (event == BRCMF_E_SET_SSID && status == BRCMF_E_STATUS_SUCCESS) { brcmf_dbg(CONN, "Processing set ssid\n"); memcpy(vif->profile.bssid, e->addr, ETH_ALEN); if (vif->profile.use_fwsup != BRCMF_PROFILE_FWSUP_PSK && vif->profile.use_fwsup != BRCMF_PROFILE_FWSUP_SAE) return true; set_bit(BRCMF_VIF_STATUS_ASSOC_SUCCESS, &vif->sme_state); } if (test_bit(BRCMF_VIF_STATUS_EAP_SUCCESS, &vif->sme_state) && test_bit(BRCMF_VIF_STATUS_ASSOC_SUCCESS, &vif->sme_state)) { clear_bit(BRCMF_VIF_STATUS_EAP_SUCCESS, &vif->sme_state); clear_bit(BRCMF_VIF_STATUS_ASSOC_SUCCESS, &vif->sme_state); return true; } return false; } static bool brcmf_is_linkdown(struct brcmf_cfg80211_vif *vif, const struct brcmf_event_msg *e) { u32 event = e->event_code; u16 flags = e->flags; if ((event == BRCMF_E_DEAUTH) || (event == BRCMF_E_DEAUTH_IND) || (event == BRCMF_E_DISASSOC_IND) || ((event == BRCMF_E_LINK) && (!(flags & BRCMF_EVENT_MSG_LINK)))) { brcmf_dbg(CONN, "Processing link down\n"); clear_bit(BRCMF_VIF_STATUS_EAP_SUCCESS, &vif->sme_state); clear_bit(BRCMF_VIF_STATUS_ASSOC_SUCCESS, &vif->sme_state); return true; } return false; } static bool brcmf_is_nonetwork(struct brcmf_cfg80211_info *cfg, const struct brcmf_event_msg *e) { u32 event = e->event_code; u32 status = e->status; if (event == BRCMF_E_LINK && status == BRCMF_E_STATUS_NO_NETWORKS) { brcmf_dbg(CONN, "Processing Link %s & no network found\n", e->flags & BRCMF_EVENT_MSG_LINK ? "up" : "down"); return true; } if (event == BRCMF_E_SET_SSID && status != BRCMF_E_STATUS_SUCCESS) { brcmf_dbg(CONN, "Processing connecting & no network found\n"); return true; } if (event == BRCMF_E_PSK_SUP && status != BRCMF_E_STATUS_FWSUP_COMPLETED) { brcmf_dbg(CONN, "Processing failed supplicant state: %u\n", status); return true; } return false; } static void brcmf_clear_assoc_ies(struct brcmf_cfg80211_info *cfg) { struct brcmf_cfg80211_connect_info *conn_info = cfg_to_conn(cfg); kfree(conn_info->req_ie); conn_info->req_ie = NULL; conn_info->req_ie_len = 0; kfree(conn_info->resp_ie); conn_info->resp_ie = NULL; conn_info->resp_ie_len = 0; } u8 brcmf_map_prio_to_prec(void *config, u8 prio) { struct brcmf_cfg80211_info *cfg = (struct brcmf_cfg80211_info *)config; if (!cfg) return (prio == PRIO_8021D_NONE || prio == PRIO_8021D_BE) ? (prio ^ 2) : prio; /* For those AC(s) with ACM flag set to 1, convert its 4-level priority * to an 8-level precedence which is the same as BE's */ if (prio > PRIO_8021D_EE && cfg->ac_priority[prio] == cfg->ac_priority[PRIO_8021D_BE]) return cfg->ac_priority[prio] * 2; /* Conversion of 4-level priority to 8-level precedence */ if (prio == PRIO_8021D_BE || prio == PRIO_8021D_BK || prio == PRIO_8021D_CL || prio == PRIO_8021D_VO) return cfg->ac_priority[prio] * 2; else return cfg->ac_priority[prio] * 2 + 1; } u8 brcmf_map_prio_to_aci(void *config, u8 prio) { /* Prio here refers to the 802.1d priority in range of 0 to 7. * ACI here refers to the WLAN AC Index in range of 0 to 3. * This function will return ACI corresponding to input prio. */ struct brcmf_cfg80211_info *cfg = (struct brcmf_cfg80211_info *)config; if (cfg) return cfg->ac_priority[prio]; return prio; } static void brcmf_init_wmm_prio(u8 *priority) { /* Initialize AC priority array to default * 802.1d priority as per following table: * 802.1d prio 0,3 maps to BE * 802.1d prio 1,2 maps to BK * 802.1d prio 4,5 maps to VI * 802.1d prio 6,7 maps to VO */ priority[0] = BRCMF_FWS_FIFO_AC_BE; priority[3] = BRCMF_FWS_FIFO_AC_BE; priority[1] = BRCMF_FWS_FIFO_AC_BK; priority[2] = BRCMF_FWS_FIFO_AC_BK; priority[4] = BRCMF_FWS_FIFO_AC_VI; priority[5] = BRCMF_FWS_FIFO_AC_VI; priority[6] = BRCMF_FWS_FIFO_AC_VO; priority[7] = BRCMF_FWS_FIFO_AC_VO; } static void brcmf_wifi_prioritize_acparams(const struct brcmf_cfg80211_edcf_acparam *acp, u8 *priority) { u8 aci; u8 aifsn; u8 ecwmin; u8 ecwmax; u8 acm; u8 ranking_basis[EDCF_AC_COUNT]; u8 aci_prio[EDCF_AC_COUNT]; /* AC_BE, AC_BK, AC_VI, AC_VO */ u8 index; for (aci = 0; aci < EDCF_AC_COUNT; aci++, acp++) { aifsn = acp->ACI & EDCF_AIFSN_MASK; acm = (acp->ACI & EDCF_ACM_MASK) ? 1 : 0; ecwmin = acp->ECW & EDCF_ECWMIN_MASK; ecwmax = (acp->ECW & EDCF_ECWMAX_MASK) >> EDCF_ECWMAX_SHIFT; brcmf_dbg(CONN, "ACI %d aifsn %d acm %d ecwmin %d ecwmax %d\n", aci, aifsn, acm, ecwmin, ecwmax); /* Default AC_VO will be the lowest ranking value */ ranking_basis[aci] = aifsn + ecwmin + ecwmax; /* Initialise priority starting at 0 (AC_BE) */ aci_prio[aci] = 0; /* If ACM is set, STA can't use this AC as per 802.11. * Change the ranking to BE */ if (aci != AC_BE && aci != AC_BK && acm == 1) ranking_basis[aci] = ranking_basis[AC_BE]; } /* Ranking method which works for AC priority * swapping when values for cwmin, cwmax and aifsn are varied * Compare each aci_prio against each other aci_prio */ for (aci = 0; aci < EDCF_AC_COUNT; aci++) { for (index = 0; index < EDCF_AC_COUNT; index++) { if (index != aci) { /* Smaller ranking value has higher priority, * so increment priority for each ACI which has * a higher ranking value */ if (ranking_basis[aci] < ranking_basis[index]) aci_prio[aci]++; } } } /* By now, aci_prio[] will be in range of 0 to 3. * Use ACI prio to get the new priority value for * each 802.1d traffic type, in this range. */ if (!(aci_prio[AC_BE] == aci_prio[AC_BK] && aci_prio[AC_BK] == aci_prio[AC_VI] && aci_prio[AC_VI] == aci_prio[AC_VO])) { /* 802.1d 0,3 maps to BE */ priority[0] = aci_prio[AC_BE]; priority[3] = aci_prio[AC_BE]; /* 802.1d 1,2 maps to BK */ priority[1] = aci_prio[AC_BK]; priority[2] = aci_prio[AC_BK]; /* 802.1d 4,5 maps to VO */ priority[4] = aci_prio[AC_VI]; priority[5] = aci_prio[AC_VI]; /* 802.1d 6,7 maps to VO */ priority[6] = aci_prio[AC_VO]; priority[7] = aci_prio[AC_VO]; } else { /* Initialize to default priority */ brcmf_init_wmm_prio(priority); } brcmf_dbg(CONN, "Adj prio BE 0->%d, BK 1->%d, BK 2->%d, BE 3->%d\n", priority[0], priority[1], priority[2], priority[3]); brcmf_dbg(CONN, "Adj prio VI 4->%d, VI 5->%d, VO 6->%d, VO 7->%d\n", priority[4], priority[5], priority[6], priority[7]); } static s32 brcmf_get_assoc_ies(struct brcmf_cfg80211_info *cfg, struct brcmf_if *ifp) { struct brcmf_pub *drvr = cfg->pub; struct brcmf_cfg80211_assoc_ielen_le *assoc_info; struct brcmf_cfg80211_connect_info *conn_info = cfg_to_conn(cfg); struct brcmf_cfg80211_edcf_acparam edcf_acparam_info[EDCF_AC_COUNT]; u32 req_len; u32 resp_len; s32 err = 0; brcmf_clear_assoc_ies(cfg); err = brcmf_fil_iovar_data_get(ifp, "assoc_info", cfg->extra_buf, WL_ASSOC_INFO_MAX); if (err) { bphy_err(drvr, "could not get assoc info (%d)\n", err); return err; } assoc_info = (struct brcmf_cfg80211_assoc_ielen_le *)cfg->extra_buf; req_len = le32_to_cpu(assoc_info->req_len); resp_len = le32_to_cpu(assoc_info->resp_len); if (req_len > WL_EXTRA_BUF_MAX || resp_len > WL_EXTRA_BUF_MAX) { bphy_err(drvr, "invalid lengths in assoc info: req %u resp %u\n", req_len, resp_len); return -EINVAL; } if (req_len) { err = brcmf_fil_iovar_data_get(ifp, "assoc_req_ies", cfg->extra_buf, WL_ASSOC_INFO_MAX); if (err) { bphy_err(drvr, "could not get assoc req (%d)\n", err); return err; } conn_info->req_ie_len = req_len; conn_info->req_ie = kmemdup(cfg->extra_buf, conn_info->req_ie_len, GFP_KERNEL); if (!conn_info->req_ie) conn_info->req_ie_len = 0; } else { conn_info->req_ie_len = 0; conn_info->req_ie = NULL; } if (resp_len) { err = brcmf_fil_iovar_data_get(ifp, "assoc_resp_ies", cfg->extra_buf, WL_ASSOC_INFO_MAX); if (err) { bphy_err(drvr, "could not get assoc resp (%d)\n", err); return err; } conn_info->resp_ie_len = resp_len; conn_info->resp_ie = kmemdup(cfg->extra_buf, conn_info->resp_ie_len, GFP_KERNEL); if (!conn_info->resp_ie) conn_info->resp_ie_len = 0; err = brcmf_fil_iovar_data_get(ifp, "wme_ac_sta", edcf_acparam_info, sizeof(edcf_acparam_info)); if (err) { brcmf_err("could not get wme_ac_sta (%d)\n", err); return err; } brcmf_wifi_prioritize_acparams(edcf_acparam_info, cfg->ac_priority); } else { conn_info->resp_ie_len = 0; conn_info->resp_ie = NULL; } brcmf_dbg(CONN, "req len (%d) resp len (%d)\n", conn_info->req_ie_len, conn_info->resp_ie_len); return err; } static s32 brcmf_bss_roaming_done(struct brcmf_cfg80211_info *cfg, struct net_device *ndev, const struct brcmf_event_msg *e) { struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_cfg80211_profile *profile = &ifp->vif->profile; struct brcmf_cfg80211_connect_info *conn_info = cfg_to_conn(cfg); struct wiphy *wiphy = cfg_to_wiphy(cfg); struct ieee80211_channel *notify_channel = NULL; struct ieee80211_supported_band *band; struct brcmf_bss_info_le *bi; struct brcmu_chan ch; struct cfg80211_roam_info roam_info = {}; u32 freq; s32 err = 0; u8 *buf; brcmf_dbg(TRACE, "Enter\n"); brcmf_get_assoc_ies(cfg, ifp); memcpy(profile->bssid, e->addr, ETH_ALEN); brcmf_update_bss_info(cfg, ifp); buf = kzalloc(WL_BSS_INFO_MAX, GFP_KERNEL); if (buf == NULL) { err = -ENOMEM; goto done; } /* data sent to dongle has to be little endian */ *(__le32 *)buf = cpu_to_le32(WL_BSS_INFO_MAX); err = brcmf_fil_cmd_data_get(ifp, BRCMF_C_GET_BSS_INFO, buf, WL_BSS_INFO_MAX); if (err) goto done; bi = (struct brcmf_bss_info_le *)(buf + 4); ch.chspec = le16_to_cpu(bi->chanspec); cfg->d11inf.decchspec(&ch); if (ch.band == BRCMU_CHAN_BAND_2G) band = wiphy->bands[NL80211_BAND_2GHZ]; else band = wiphy->bands[NL80211_BAND_5GHZ]; freq = ieee80211_channel_to_frequency(ch.control_ch_num, band->band); notify_channel = ieee80211_get_channel(wiphy, freq); done: kfree(buf); roam_info.links[0].channel = notify_channel; roam_info.links[0].bssid = profile->bssid; roam_info.req_ie = conn_info->req_ie; roam_info.req_ie_len = conn_info->req_ie_len; roam_info.resp_ie = conn_info->resp_ie; roam_info.resp_ie_len = conn_info->resp_ie_len; cfg80211_roamed(ndev, &roam_info, GFP_KERNEL); brcmf_dbg(CONN, "Report roaming result\n"); if (profile->use_fwsup == BRCMF_PROFILE_FWSUP_1X && profile->is_ft) { cfg80211_port_authorized(ndev, profile->bssid, NULL, 0, GFP_KERNEL); brcmf_dbg(CONN, "Report port authorized\n"); } set_bit(BRCMF_VIF_STATUS_CONNECTED, &ifp->vif->sme_state); brcmf_dbg(TRACE, "Exit\n"); return err; } static s32 brcmf_bss_connect_done(struct brcmf_cfg80211_info *cfg, struct net_device *ndev, const struct brcmf_event_msg *e, bool completed) { struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_cfg80211_profile *profile = &ifp->vif->profile; struct brcmf_cfg80211_connect_info *conn_info = cfg_to_conn(cfg); struct cfg80211_connect_resp_params conn_params; brcmf_dbg(TRACE, "Enter\n"); if (test_and_clear_bit(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state)) { memset(&conn_params, 0, sizeof(conn_params)); if (completed) { brcmf_get_assoc_ies(cfg, ifp); brcmf_update_bss_info(cfg, ifp); set_bit(BRCMF_VIF_STATUS_CONNECTED, &ifp->vif->sme_state); conn_params.status = WLAN_STATUS_SUCCESS; } else { clear_bit(BRCMF_VIF_STATUS_EAP_SUCCESS, &ifp->vif->sme_state); clear_bit(BRCMF_VIF_STATUS_ASSOC_SUCCESS, &ifp->vif->sme_state); conn_params.status = WLAN_STATUS_AUTH_TIMEOUT; } conn_params.links[0].bssid = profile->bssid; conn_params.req_ie = conn_info->req_ie; conn_params.req_ie_len = conn_info->req_ie_len; conn_params.resp_ie = conn_info->resp_ie; conn_params.resp_ie_len = conn_info->resp_ie_len; cfg80211_connect_done(ndev, &conn_params, GFP_KERNEL); brcmf_dbg(CONN, "Report connect result - connection %s\n", completed ? "succeeded" : "failed"); } brcmf_dbg(TRACE, "Exit\n"); return 0; } static s32 brcmf_notify_connect_status_ap(struct brcmf_cfg80211_info *cfg, struct net_device *ndev, const struct brcmf_event_msg *e, void *data) { struct brcmf_pub *drvr = cfg->pub; static int generation; u32 event = e->event_code; u32 reason = e->reason; struct station_info *sinfo; brcmf_dbg(CONN, "event %s (%u), reason %d\n", brcmf_fweh_event_name(event), event, reason); if (event == BRCMF_E_LINK && reason == BRCMF_E_REASON_LINK_BSSCFG_DIS && ndev != cfg_to_ndev(cfg)) { brcmf_dbg(CONN, "AP mode link down\n"); complete(&cfg->vif_disabled); return 0; } if (((event == BRCMF_E_ASSOC_IND) || (event == BRCMF_E_REASSOC_IND)) && (reason == BRCMF_E_STATUS_SUCCESS)) { if (!data) { bphy_err(drvr, "No IEs present in ASSOC/REASSOC_IND\n"); return -EINVAL; } sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL); if (!sinfo) return -ENOMEM; sinfo->assoc_req_ies = data; sinfo->assoc_req_ies_len = e->datalen; generation++; sinfo->generation = generation; cfg80211_new_sta(ndev, e->addr, sinfo, GFP_KERNEL); kfree(sinfo); } else if ((event == BRCMF_E_DISASSOC_IND) || (event == BRCMF_E_DEAUTH_IND) || (event == BRCMF_E_DEAUTH)) { cfg80211_del_sta(ndev, e->addr, GFP_KERNEL); } return 0; } static s32 brcmf_notify_connect_status(struct brcmf_if *ifp, const struct brcmf_event_msg *e, void *data) { struct brcmf_cfg80211_info *cfg = ifp->drvr->config; struct net_device *ndev = ifp->ndev; struct brcmf_cfg80211_profile *profile = &ifp->vif->profile; struct ieee80211_channel *chan; s32 err = 0; if ((e->event_code == BRCMF_E_DEAUTH) || (e->event_code == BRCMF_E_DEAUTH_IND) || (e->event_code == BRCMF_E_DISASSOC_IND) || ((e->event_code == BRCMF_E_LINK) && (!e->flags))) { brcmf_proto_delete_peer(ifp->drvr, ifp->ifidx, (u8 *)e->addr); } if (brcmf_is_apmode(ifp->vif)) { err = brcmf_notify_connect_status_ap(cfg, ndev, e, data); } else if (brcmf_is_linkup(ifp->vif, e)) { brcmf_dbg(CONN, "Linkup\n"); if (brcmf_is_ibssmode(ifp->vif)) { brcmf_inform_ibss(cfg, ndev, e->addr); chan = ieee80211_get_channel(cfg->wiphy, cfg->channel); memcpy(profile->bssid, e->addr, ETH_ALEN); cfg80211_ibss_joined(ndev, e->addr, chan, GFP_KERNEL); clear_bit(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state); set_bit(BRCMF_VIF_STATUS_CONNECTED, &ifp->vif->sme_state); } else brcmf_bss_connect_done(cfg, ndev, e, true); brcmf_net_setcarrier(ifp, true); } else if (brcmf_is_linkdown(ifp->vif, e)) { brcmf_dbg(CONN, "Linkdown\n"); if (!brcmf_is_ibssmode(ifp->vif) && (test_bit(BRCMF_VIF_STATUS_CONNECTED, &ifp->vif->sme_state) || test_bit(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state))) { if (test_bit(BRCMF_VIF_STATUS_CONNECTED, &ifp->vif->sme_state) && memcmp(profile->bssid, e->addr, ETH_ALEN)) return err; brcmf_bss_connect_done(cfg, ndev, e, false); brcmf_link_down(ifp->vif, brcmf_map_fw_linkdown_reason(e), e->event_code & (BRCMF_E_DEAUTH_IND | BRCMF_E_DISASSOC_IND) ? false : true); brcmf_init_prof(ndev_to_prof(ndev)); if (ndev != cfg_to_ndev(cfg)) complete(&cfg->vif_disabled); brcmf_net_setcarrier(ifp, false); } } else if (brcmf_is_nonetwork(cfg, e)) { if (brcmf_is_ibssmode(ifp->vif)) clear_bit(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state); else brcmf_bss_connect_done(cfg, ndev, e, false); } return err; } static s32 brcmf_notify_roaming_status(struct brcmf_if *ifp, const struct brcmf_event_msg *e, void *data) { struct brcmf_cfg80211_info *cfg = ifp->drvr->config; u32 event = e->event_code; u32 status = e->status; if (event == BRCMF_E_ROAM && status == BRCMF_E_STATUS_SUCCESS) { if (test_bit(BRCMF_VIF_STATUS_CONNECTED, &ifp->vif->sme_state)) { brcmf_bss_roaming_done(cfg, ifp->ndev, e); } else { brcmf_bss_connect_done(cfg, ifp->ndev, e, true); brcmf_net_setcarrier(ifp, true); } } return 0; } static s32 brcmf_notify_mic_status(struct brcmf_if *ifp, const struct brcmf_event_msg *e, void *data) { u16 flags = e->flags; enum nl80211_key_type key_type; if (flags & BRCMF_EVENT_MSG_GROUP) key_type = NL80211_KEYTYPE_GROUP; else key_type = NL80211_KEYTYPE_PAIRWISE; cfg80211_michael_mic_failure(ifp->ndev, (u8 *)&e->addr, key_type, -1, NULL, GFP_KERNEL); return 0; } static s32 brcmf_notify_rssi(struct brcmf_if *ifp, const struct brcmf_event_msg *e, void *data) { struct brcmf_cfg80211_vif *vif = ifp->vif; struct brcmf_rssi_be *info = data; s32 rssi, snr = 0, noise = 0; s32 low, high, last; if (e->datalen >= sizeof(*info)) { rssi = be32_to_cpu(info->rssi); snr = be32_to_cpu(info->snr); noise = be32_to_cpu(info->noise); } else if (e->datalen >= sizeof(rssi)) { rssi = be32_to_cpu(*(__be32 *)data); } else { brcmf_err("insufficient RSSI event data\n"); return 0; } low = vif->cqm_rssi_low; high = vif->cqm_rssi_high; last = vif->cqm_rssi_last; brcmf_dbg(TRACE, "rssi=%d snr=%d noise=%d low=%d high=%d last=%d\n", rssi, snr, noise, low, high, last); vif->cqm_rssi_last = rssi; if (rssi <= low || rssi == 0) { brcmf_dbg(INFO, "LOW rssi=%d\n", rssi); cfg80211_cqm_rssi_notify(ifp->ndev, NL80211_CQM_RSSI_THRESHOLD_EVENT_LOW, rssi, GFP_KERNEL); } else if (rssi > high) { brcmf_dbg(INFO, "HIGH rssi=%d\n", rssi); cfg80211_cqm_rssi_notify(ifp->ndev, NL80211_CQM_RSSI_THRESHOLD_EVENT_HIGH, rssi, GFP_KERNEL); } return 0; } static s32 brcmf_notify_vif_event(struct brcmf_if *ifp, const struct brcmf_event_msg *e, void *data) { struct brcmf_cfg80211_info *cfg = ifp->drvr->config; struct brcmf_if_event *ifevent = (struct brcmf_if_event *)data; struct brcmf_cfg80211_vif_event *event = &cfg->vif_event; struct brcmf_cfg80211_vif *vif; brcmf_dbg(TRACE, "Enter: action %u flags %u ifidx %u bsscfgidx %u\n", ifevent->action, ifevent->flags, ifevent->ifidx, ifevent->bsscfgidx); spin_lock(&event->vif_event_lock); event->action = ifevent->action; vif = event->vif; switch (ifevent->action) { case BRCMF_E_IF_ADD: /* waiting process may have timed out */ if (!cfg->vif_event.vif) { spin_unlock(&event->vif_event_lock); return -EBADF; } ifp->vif = vif; vif->ifp = ifp; if (ifp->ndev) { vif->wdev.netdev = ifp->ndev; ifp->ndev->ieee80211_ptr = &vif->wdev; SET_NETDEV_DEV(ifp->ndev, wiphy_dev(cfg->wiphy)); } spin_unlock(&event->vif_event_lock); wake_up(&event->vif_wq); return 0; case BRCMF_E_IF_DEL: spin_unlock(&event->vif_event_lock); /* event may not be upon user request */ if (brcmf_cfg80211_vif_event_armed(cfg)) wake_up(&event->vif_wq); return 0; case BRCMF_E_IF_CHANGE: spin_unlock(&event->vif_event_lock); wake_up(&event->vif_wq); return 0; default: spin_unlock(&event->vif_event_lock); break; } return -EINVAL; } static void brcmf_init_conf(struct brcmf_cfg80211_conf *conf) { conf->frag_threshold = (u32)-1; conf->rts_threshold = (u32)-1; conf->retry_short = (u32)-1; conf->retry_long = (u32)-1; } static void brcmf_register_event_handlers(struct brcmf_cfg80211_info *cfg) { brcmf_fweh_register(cfg->pub, BRCMF_E_LINK, brcmf_notify_connect_status); brcmf_fweh_register(cfg->pub, BRCMF_E_DEAUTH_IND, brcmf_notify_connect_status); brcmf_fweh_register(cfg->pub, BRCMF_E_DEAUTH, brcmf_notify_connect_status); brcmf_fweh_register(cfg->pub, BRCMF_E_DISASSOC_IND, brcmf_notify_connect_status); brcmf_fweh_register(cfg->pub, BRCMF_E_ASSOC_IND, brcmf_notify_connect_status); brcmf_fweh_register(cfg->pub, BRCMF_E_REASSOC_IND, brcmf_notify_connect_status); brcmf_fweh_register(cfg->pub, BRCMF_E_ROAM, brcmf_notify_roaming_status); brcmf_fweh_register(cfg->pub, BRCMF_E_MIC_ERROR, brcmf_notify_mic_status); brcmf_fweh_register(cfg->pub, BRCMF_E_SET_SSID, brcmf_notify_connect_status); brcmf_fweh_register(cfg->pub, BRCMF_E_PFN_NET_FOUND, brcmf_notify_sched_scan_results); brcmf_fweh_register(cfg->pub, BRCMF_E_IF, brcmf_notify_vif_event); brcmf_fweh_register(cfg->pub, BRCMF_E_P2P_PROBEREQ_MSG, brcmf_p2p_notify_rx_mgmt_p2p_probereq); brcmf_fweh_register(cfg->pub, BRCMF_E_P2P_DISC_LISTEN_COMPLETE, brcmf_p2p_notify_listen_complete); brcmf_fweh_register(cfg->pub, BRCMF_E_ACTION_FRAME_RX, brcmf_p2p_notify_action_frame_rx); brcmf_fweh_register(cfg->pub, BRCMF_E_ACTION_FRAME_COMPLETE, brcmf_p2p_notify_action_tx_complete); brcmf_fweh_register(cfg->pub, BRCMF_E_ACTION_FRAME_OFF_CHAN_COMPLETE, brcmf_p2p_notify_action_tx_complete); brcmf_fweh_register(cfg->pub, BRCMF_E_PSK_SUP, brcmf_notify_connect_status); brcmf_fweh_register(cfg->pub, BRCMF_E_RSSI, brcmf_notify_rssi); } static void brcmf_deinit_priv_mem(struct brcmf_cfg80211_info *cfg) { kfree(cfg->conf); cfg->conf = NULL; kfree(cfg->extra_buf); cfg->extra_buf = NULL; kfree(cfg->wowl.nd); cfg->wowl.nd = NULL; kfree(cfg->wowl.nd_info); cfg->wowl.nd_info = NULL; kfree(cfg->escan_info.escan_buf); cfg->escan_info.escan_buf = NULL; } static s32 brcmf_init_priv_mem(struct brcmf_cfg80211_info *cfg) { cfg->conf = kzalloc(sizeof(*cfg->conf), GFP_KERNEL); if (!cfg->conf) goto init_priv_mem_out; cfg->extra_buf = kzalloc(WL_EXTRA_BUF_MAX, GFP_KERNEL); if (!cfg->extra_buf) goto init_priv_mem_out; cfg->wowl.nd = kzalloc(sizeof(*cfg->wowl.nd) + sizeof(u32), GFP_KERNEL); if (!cfg->wowl.nd) goto init_priv_mem_out; cfg->wowl.nd_info = kzalloc(sizeof(*cfg->wowl.nd_info) + sizeof(struct cfg80211_wowlan_nd_match *), GFP_KERNEL); if (!cfg->wowl.nd_info) goto init_priv_mem_out; cfg->escan_info.escan_buf = kzalloc(BRCMF_ESCAN_BUF_SIZE, GFP_KERNEL); if (!cfg->escan_info.escan_buf) goto init_priv_mem_out; return 0; init_priv_mem_out: brcmf_deinit_priv_mem(cfg); return -ENOMEM; } static s32 wl_init_priv(struct brcmf_cfg80211_info *cfg) { s32 err = 0; cfg->scan_request = NULL; cfg->pwr_save = true; cfg->dongle_up = false; /* dongle is not up yet */ err = brcmf_init_priv_mem(cfg); if (err) return err; brcmf_register_event_handlers(cfg); mutex_init(&cfg->usr_sync); brcmf_init_escan(cfg); brcmf_init_conf(cfg->conf); brcmf_init_wmm_prio(cfg->ac_priority); init_completion(&cfg->vif_disabled); return err; } static void wl_deinit_priv(struct brcmf_cfg80211_info *cfg) { cfg->dongle_up = false; /* dongle down */ brcmf_abort_scanning(cfg); brcmf_deinit_priv_mem(cfg); brcmf_clear_assoc_ies(cfg); } static void init_vif_event(struct brcmf_cfg80211_vif_event *event) { init_waitqueue_head(&event->vif_wq); spin_lock_init(&event->vif_event_lock); } static s32 brcmf_dongle_roam(struct brcmf_if *ifp) { struct brcmf_pub *drvr = ifp->drvr; s32 err; u32 bcn_timeout; __le32 roamtrigger[2]; __le32 roam_delta[2]; /* Configure beacon timeout value based upon roaming setting */ if (ifp->drvr->settings->roamoff) bcn_timeout = BRCMF_DEFAULT_BCN_TIMEOUT_ROAM_OFF; else bcn_timeout = BRCMF_DEFAULT_BCN_TIMEOUT_ROAM_ON; err = brcmf_fil_iovar_int_set(ifp, "bcn_timeout", bcn_timeout); if (err) { bphy_err(drvr, "bcn_timeout error (%d)\n", err); goto roam_setup_done; } /* Enable/Disable built-in roaming to allow supplicant to take care of * roaming. */ brcmf_dbg(INFO, "Internal Roaming = %s\n", ifp->drvr->settings->roamoff ? "Off" : "On"); err = brcmf_fil_iovar_int_set(ifp, "roam_off", ifp->drvr->settings->roamoff); if (err) { bphy_err(drvr, "roam_off error (%d)\n", err); goto roam_setup_done; } roamtrigger[0] = cpu_to_le32(WL_ROAM_TRIGGER_LEVEL); roamtrigger[1] = cpu_to_le32(BRCM_BAND_ALL); err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SET_ROAM_TRIGGER, (void *)roamtrigger, sizeof(roamtrigger)); if (err) bphy_err(drvr, "WLC_SET_ROAM_TRIGGER error (%d)\n", err); roam_delta[0] = cpu_to_le32(WL_ROAM_DELTA); roam_delta[1] = cpu_to_le32(BRCM_BAND_ALL); err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SET_ROAM_DELTA, (void *)roam_delta, sizeof(roam_delta)); if (err) bphy_err(drvr, "WLC_SET_ROAM_DELTA error (%d)\n", err); return 0; roam_setup_done: return err; } static s32 brcmf_dongle_scantime(struct brcmf_if *ifp) { struct brcmf_pub *drvr = ifp->drvr; s32 err = 0; err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_SCAN_CHANNEL_TIME, BRCMF_SCAN_CHANNEL_TIME); if (err) { bphy_err(drvr, "Scan assoc time error (%d)\n", err); goto dongle_scantime_out; } err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_SCAN_UNASSOC_TIME, BRCMF_SCAN_UNASSOC_TIME); if (err) { bphy_err(drvr, "Scan unassoc time error (%d)\n", err); goto dongle_scantime_out; } err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_SCAN_PASSIVE_TIME, BRCMF_SCAN_PASSIVE_TIME); if (err) { bphy_err(drvr, "Scan passive time error (%d)\n", err); goto dongle_scantime_out; } dongle_scantime_out: return err; } static void brcmf_update_bw40_channel_flag(struct ieee80211_channel *channel, struct brcmu_chan *ch) { u32 ht40_flag; ht40_flag = channel->flags & IEEE80211_CHAN_NO_HT40; if (ch->sb == BRCMU_CHAN_SB_U) { if (ht40_flag == IEEE80211_CHAN_NO_HT40) channel->flags &= ~IEEE80211_CHAN_NO_HT40; channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; } else { /* It should be one of * IEEE80211_CHAN_NO_HT40 or * IEEE80211_CHAN_NO_HT40PLUS */ channel->flags &= ~IEEE80211_CHAN_NO_HT40; if (ht40_flag == IEEE80211_CHAN_NO_HT40) channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; } } static int brcmf_construct_chaninfo(struct brcmf_cfg80211_info *cfg, u32 bw_cap[]) { struct wiphy *wiphy = cfg_to_wiphy(cfg); struct brcmf_pub *drvr = cfg->pub; struct brcmf_if *ifp = brcmf_get_ifp(drvr, 0); struct ieee80211_supported_band *band; struct ieee80211_channel *channel; struct brcmf_chanspec_list *list; struct brcmu_chan ch; int err; u8 *pbuf; u32 i, j; u32 total; u32 chaninfo; pbuf = kzalloc(BRCMF_DCMD_MEDLEN, GFP_KERNEL); if (pbuf == NULL) return -ENOMEM; list = (struct brcmf_chanspec_list *)pbuf; err = brcmf_fil_iovar_data_get(ifp, "chanspecs", pbuf, BRCMF_DCMD_MEDLEN); if (err) { bphy_err(drvr, "get chanspecs error (%d)\n", err); goto fail_pbuf; } band = wiphy->bands[NL80211_BAND_2GHZ]; if (band) for (i = 0; i < band->n_channels; i++) band->channels[i].flags = IEEE80211_CHAN_DISABLED; band = wiphy->bands[NL80211_BAND_5GHZ]; if (band) for (i = 0; i < band->n_channels; i++) band->channels[i].flags = IEEE80211_CHAN_DISABLED; total = le32_to_cpu(list->count); if (total > BRCMF_MAX_CHANSPEC_LIST) { bphy_err(drvr, "Invalid count of channel Spec. (%u)\n", total); err = -EINVAL; goto fail_pbuf; } for (i = 0; i < total; i++) { ch.chspec = (u16)le32_to_cpu(list->element[i]); cfg->d11inf.decchspec(&ch); if (ch.band == BRCMU_CHAN_BAND_2G) { band = wiphy->bands[NL80211_BAND_2GHZ]; } else if (ch.band == BRCMU_CHAN_BAND_5G) { band = wiphy->bands[NL80211_BAND_5GHZ]; } else { bphy_err(drvr, "Invalid channel Spec. 0x%x.\n", ch.chspec); continue; } if (!band) continue; if (!(bw_cap[band->band] & WLC_BW_40MHZ_BIT) && ch.bw == BRCMU_CHAN_BW_40) continue; if (!(bw_cap[band->band] & WLC_BW_80MHZ_BIT) && ch.bw == BRCMU_CHAN_BW_80) continue; channel = NULL; for (j = 0; j < band->n_channels; j++) { if (band->channels[j].hw_value == ch.control_ch_num) { channel = &band->channels[j]; break; } } if (!channel) { /* It seems firmware supports some channel we never * considered. Something new in IEEE standard? */ bphy_err(drvr, "Ignoring unexpected firmware channel %d\n", ch.control_ch_num); continue; } if (channel->orig_flags & IEEE80211_CHAN_DISABLED) continue; /* assuming the chanspecs order is HT20, * HT40 upper, HT40 lower, and VHT80. */ switch (ch.bw) { case BRCMU_CHAN_BW_160: channel->flags &= ~IEEE80211_CHAN_NO_160MHZ; break; case BRCMU_CHAN_BW_80: channel->flags &= ~IEEE80211_CHAN_NO_80MHZ; break; case BRCMU_CHAN_BW_40: brcmf_update_bw40_channel_flag(channel, &ch); break; default: wiphy_warn(wiphy, "Firmware reported unsupported bandwidth %d\n", ch.bw); fallthrough; case BRCMU_CHAN_BW_20: /* enable the channel and disable other bandwidths * for now as mentioned order assure they are enabled * for subsequent chanspecs. */ channel->flags = IEEE80211_CHAN_NO_HT40 | IEEE80211_CHAN_NO_80MHZ | IEEE80211_CHAN_NO_160MHZ; ch.bw = BRCMU_CHAN_BW_20; cfg->d11inf.encchspec(&ch); chaninfo = ch.chspec; err = brcmf_fil_bsscfg_int_get(ifp, "per_chan_info", &chaninfo); if (!err) { if (chaninfo & WL_CHAN_RADAR) channel->flags |= (IEEE80211_CHAN_RADAR | IEEE80211_CHAN_NO_IR); if (chaninfo & WL_CHAN_PASSIVE) channel->flags |= IEEE80211_CHAN_NO_IR; } } } fail_pbuf: kfree(pbuf); return err; } static int brcmf_enable_bw40_2g(struct brcmf_cfg80211_info *cfg) { struct brcmf_pub *drvr = cfg->pub; struct brcmf_if *ifp = brcmf_get_ifp(drvr, 0); struct ieee80211_supported_band *band; struct brcmf_fil_bwcap_le band_bwcap; struct brcmf_chanspec_list *list; u8 *pbuf; u32 val; int err; struct brcmu_chan ch; u32 num_chan; int i, j; /* verify support for bw_cap command */ val = WLC_BAND_5G; err = brcmf_fil_iovar_int_get(ifp, "bw_cap", &val); if (!err) { /* only set 2G bandwidth using bw_cap command */ band_bwcap.band = cpu_to_le32(WLC_BAND_2G); band_bwcap.bw_cap = cpu_to_le32(WLC_BW_CAP_40MHZ); err = brcmf_fil_iovar_data_set(ifp, "bw_cap", &band_bwcap, sizeof(band_bwcap)); } else { brcmf_dbg(INFO, "fallback to mimo_bw_cap\n"); val = WLC_N_BW_40ALL; err = brcmf_fil_iovar_int_set(ifp, "mimo_bw_cap", val); } if (!err) { /* update channel info in 2G band */ pbuf = kzalloc(BRCMF_DCMD_MEDLEN, GFP_KERNEL); if (pbuf == NULL) return -ENOMEM; ch.band = BRCMU_CHAN_BAND_2G; ch.bw = BRCMU_CHAN_BW_40; ch.sb = BRCMU_CHAN_SB_NONE; ch.chnum = 0; cfg->d11inf.encchspec(&ch); /* pass encoded chanspec in query */ *(__le16 *)pbuf = cpu_to_le16(ch.chspec); err = brcmf_fil_iovar_data_get(ifp, "chanspecs", pbuf, BRCMF_DCMD_MEDLEN); if (err) { bphy_err(drvr, "get chanspecs error (%d)\n", err); kfree(pbuf); return err; } band = cfg_to_wiphy(cfg)->bands[NL80211_BAND_2GHZ]; list = (struct brcmf_chanspec_list *)pbuf; num_chan = le32_to_cpu(list->count); if (num_chan > BRCMF_MAX_CHANSPEC_LIST) { bphy_err(drvr, "Invalid count of channel Spec. (%u)\n", num_chan); kfree(pbuf); return -EINVAL; } for (i = 0; i < num_chan; i++) { ch.chspec = (u16)le32_to_cpu(list->element[i]); cfg->d11inf.decchspec(&ch); if (WARN_ON(ch.band != BRCMU_CHAN_BAND_2G)) continue; if (WARN_ON(ch.bw != BRCMU_CHAN_BW_40)) continue; for (j = 0; j < band->n_channels; j++) { if (band->channels[j].hw_value == ch.control_ch_num) break; } if (WARN_ON(j == band->n_channels)) continue; brcmf_update_bw40_channel_flag(&band->channels[j], &ch); } kfree(pbuf); } return err; } static void brcmf_get_bwcap(struct brcmf_if *ifp, u32 bw_cap[]) { struct brcmf_pub *drvr = ifp->drvr; u32 band, mimo_bwcap; int err; band = WLC_BAND_2G; err = brcmf_fil_iovar_int_get(ifp, "bw_cap", &band); if (!err) { bw_cap[NL80211_BAND_2GHZ] = band; band = WLC_BAND_5G; err = brcmf_fil_iovar_int_get(ifp, "bw_cap", &band); if (!err) { bw_cap[NL80211_BAND_5GHZ] = band; return; } WARN_ON(1); return; } brcmf_dbg(INFO, "fallback to mimo_bw_cap info\n"); mimo_bwcap = 0; err = brcmf_fil_iovar_int_get(ifp, "mimo_bw_cap", &mimo_bwcap); if (err) /* assume 20MHz if firmware does not give a clue */ mimo_bwcap = WLC_N_BW_20ALL; switch (mimo_bwcap) { case WLC_N_BW_40ALL: bw_cap[NL80211_BAND_2GHZ] |= WLC_BW_40MHZ_BIT; fallthrough; case WLC_N_BW_20IN2G_40IN5G: bw_cap[NL80211_BAND_5GHZ] |= WLC_BW_40MHZ_BIT; fallthrough; case WLC_N_BW_20ALL: bw_cap[NL80211_BAND_2GHZ] |= WLC_BW_20MHZ_BIT; bw_cap[NL80211_BAND_5GHZ] |= WLC_BW_20MHZ_BIT; break; default: bphy_err(drvr, "invalid mimo_bw_cap value\n"); } } static void brcmf_update_ht_cap(struct ieee80211_supported_band *band, u32 bw_cap[2], u32 nchain) { band->ht_cap.ht_supported = true; if (bw_cap[band->band] & WLC_BW_40MHZ_BIT) { band->ht_cap.cap |= IEEE80211_HT_CAP_SGI_40; band->ht_cap.cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40; } band->ht_cap.cap |= IEEE80211_HT_CAP_SGI_20; band->ht_cap.cap |= IEEE80211_HT_CAP_DSSSCCK40; band->ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K; band->ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_16; memset(band->ht_cap.mcs.rx_mask, 0xff, nchain); band->ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED; } static __le16 brcmf_get_mcs_map(u32 nchain, enum ieee80211_vht_mcs_support supp) { u16 mcs_map; int i; for (i = 0, mcs_map = 0xFFFF; i < nchain; i++) mcs_map = (mcs_map << 2) | supp; return cpu_to_le16(mcs_map); } static void brcmf_update_vht_cap(struct ieee80211_supported_band *band, u32 bw_cap[2], u32 nchain, u32 txstreams, u32 txbf_bfe_cap, u32 txbf_bfr_cap) { __le16 mcs_map; /* not allowed in 2.4G band */ if (band->band == NL80211_BAND_2GHZ) return; band->vht_cap.vht_supported = true; /* 80MHz is mandatory */ band->vht_cap.cap |= IEEE80211_VHT_CAP_SHORT_GI_80; if (bw_cap[band->band] & WLC_BW_160MHZ_BIT) { band->vht_cap.cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ; band->vht_cap.cap |= IEEE80211_VHT_CAP_SHORT_GI_160; } /* all support 256-QAM */ mcs_map = brcmf_get_mcs_map(nchain, IEEE80211_VHT_MCS_SUPPORT_0_9); band->vht_cap.vht_mcs.rx_mcs_map = mcs_map; band->vht_cap.vht_mcs.tx_mcs_map = mcs_map; /* Beamforming support information */ if (txbf_bfe_cap & BRCMF_TXBF_SU_BFE_CAP) band->vht_cap.cap |= IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE; if (txbf_bfe_cap & BRCMF_TXBF_MU_BFE_CAP) band->vht_cap.cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE; if (txbf_bfr_cap & BRCMF_TXBF_SU_BFR_CAP) band->vht_cap.cap |= IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE; if (txbf_bfr_cap & BRCMF_TXBF_MU_BFR_CAP) band->vht_cap.cap |= IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE; if ((txbf_bfe_cap || txbf_bfr_cap) && (txstreams > 1)) { band->vht_cap.cap |= (2 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT); band->vht_cap.cap |= ((txstreams - 1) << IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT); band->vht_cap.cap |= IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_MRQ_MFB; } } static int brcmf_setup_wiphybands(struct brcmf_cfg80211_info *cfg) { struct brcmf_pub *drvr = cfg->pub; struct brcmf_if *ifp = brcmf_get_ifp(drvr, 0); struct wiphy *wiphy = cfg_to_wiphy(cfg); u32 nmode = 0; u32 vhtmode = 0; u32 bw_cap[2] = { WLC_BW_20MHZ_BIT, WLC_BW_20MHZ_BIT }; u32 rxchain; u32 nchain; int err; s32 i; struct ieee80211_supported_band *band; u32 txstreams = 0; u32 txbf_bfe_cap = 0; u32 txbf_bfr_cap = 0; (void)brcmf_fil_iovar_int_get(ifp, "vhtmode", &vhtmode); err = brcmf_fil_iovar_int_get(ifp, "nmode", &nmode); if (err) { bphy_err(drvr, "nmode error (%d)\n", err); } else { brcmf_get_bwcap(ifp, bw_cap); } brcmf_dbg(INFO, "nmode=%d, vhtmode=%d, bw_cap=(%d, %d)\n", nmode, vhtmode, bw_cap[NL80211_BAND_2GHZ], bw_cap[NL80211_BAND_5GHZ]); err = brcmf_fil_iovar_int_get(ifp, "rxchain", &rxchain); if (err) { /* rxchain unsupported by firmware of older chips */ if (err == -EBADE) bphy_info_once(drvr, "rxchain unsupported\n"); else bphy_err(drvr, "rxchain error (%d)\n", err); nchain = 1; } else { for (nchain = 0; rxchain; nchain++) rxchain = rxchain & (rxchain - 1); } brcmf_dbg(INFO, "nchain=%d\n", nchain); err = brcmf_construct_chaninfo(cfg, bw_cap); if (err) { bphy_err(drvr, "brcmf_construct_chaninfo failed (%d)\n", err); return err; } if (vhtmode) { (void)brcmf_fil_iovar_int_get(ifp, "txstreams", &txstreams); (void)brcmf_fil_iovar_int_get(ifp, "txbf_bfe_cap", &txbf_bfe_cap); (void)brcmf_fil_iovar_int_get(ifp, "txbf_bfr_cap", &txbf_bfr_cap); } for (i = 0; i < ARRAY_SIZE(wiphy->bands); i++) { band = wiphy->bands[i]; if (band == NULL) continue; if (nmode) brcmf_update_ht_cap(band, bw_cap, nchain); if (vhtmode) brcmf_update_vht_cap(band, bw_cap, nchain, txstreams, txbf_bfe_cap, txbf_bfr_cap); } return 0; } static const struct ieee80211_txrx_stypes brcmf_txrx_stypes[NUM_NL80211_IFTYPES] = { [NL80211_IFTYPE_STATION] = { .tx = 0xffff, .rx = BIT(IEEE80211_STYPE_ACTION >> 4) | BIT(IEEE80211_STYPE_PROBE_REQ >> 4) }, [NL80211_IFTYPE_P2P_CLIENT] = { .tx = 0xffff, .rx = BIT(IEEE80211_STYPE_ACTION >> 4) | BIT(IEEE80211_STYPE_PROBE_REQ >> 4) }, [NL80211_IFTYPE_P2P_GO] = { .tx = 0xffff, .rx = BIT(IEEE80211_STYPE_ASSOC_REQ >> 4) | BIT(IEEE80211_STYPE_REASSOC_REQ >> 4) | BIT(IEEE80211_STYPE_PROBE_REQ >> 4) | BIT(IEEE80211_STYPE_DISASSOC >> 4) | BIT(IEEE80211_STYPE_AUTH >> 4) | BIT(IEEE80211_STYPE_DEAUTH >> 4) | BIT(IEEE80211_STYPE_ACTION >> 4) }, [NL80211_IFTYPE_P2P_DEVICE] = { .tx = 0xffff, .rx = BIT(IEEE80211_STYPE_ACTION >> 4) | BIT(IEEE80211_STYPE_PROBE_REQ >> 4) }, [NL80211_IFTYPE_AP] = { .tx = 0xffff, .rx = BIT(IEEE80211_STYPE_ASSOC_REQ >> 4) | BIT(IEEE80211_STYPE_REASSOC_REQ >> 4) | BIT(IEEE80211_STYPE_PROBE_REQ >> 4) | BIT(IEEE80211_STYPE_DISASSOC >> 4) | BIT(IEEE80211_STYPE_AUTH >> 4) | BIT(IEEE80211_STYPE_DEAUTH >> 4) | BIT(IEEE80211_STYPE_ACTION >> 4) } }; /** * brcmf_setup_ifmodes() - determine interface modes and combinations. * * @wiphy: wiphy object. * @ifp: interface object needed for feat module api. * * The interface modes and combinations are determined dynamically here * based on firmware functionality. * * no p2p and no mbss: * * #STA <= 1, #AP <= 1, channels = 1, 2 total * * no p2p and mbss: * * #STA <= 1, #AP <= 1, channels = 1, 2 total * #AP <= 4, matching BI, channels = 1, 4 total * * no p2p and rsdb: * #STA <= 1, #AP <= 2, channels = 2, 4 total * * p2p, no mchan, and mbss: * * #STA <= 1, #P2P-DEV <= 1, #{P2P-CL, P2P-GO} <= 1, channels = 1, 3 total * #STA <= 1, #P2P-DEV <= 1, #AP <= 1, #P2P-CL <= 1, channels = 1, 4 total * #AP <= 4, matching BI, channels = 1, 4 total * * p2p, mchan, and mbss: * * #STA <= 2, #P2P-DEV <= 1, #{P2P-CL, P2P-GO} <= 1, channels = 2, 3 total * #STA <= 1, #P2P-DEV <= 1, #AP <= 1, #P2P-CL <= 1, channels = 1, 4 total * #AP <= 4, matching BI, channels = 1, 4 total * * p2p, rsdb, and no mbss: * #STA <= 1, #P2P-DEV <= 1, #{P2P-CL, P2P-GO} <= 2, AP <= 2, * channels = 2, 4 total */ static int brcmf_setup_ifmodes(struct wiphy *wiphy, struct brcmf_if *ifp) { struct ieee80211_iface_combination *combo = NULL; struct ieee80211_iface_limit *c0_limits = NULL; struct ieee80211_iface_limit *p2p_limits = NULL; struct ieee80211_iface_limit *mbss_limits = NULL; bool mon_flag, mbss, p2p, rsdb, mchan; int i, c, n_combos, n_limits; mon_flag = brcmf_feat_is_enabled(ifp, BRCMF_FEAT_MONITOR_FLAG); mbss = brcmf_feat_is_enabled(ifp, BRCMF_FEAT_MBSS); p2p = brcmf_feat_is_enabled(ifp, BRCMF_FEAT_P2P); rsdb = brcmf_feat_is_enabled(ifp, BRCMF_FEAT_RSDB); mchan = brcmf_feat_is_enabled(ifp, BRCMF_FEAT_MCHAN); n_combos = 1 + !!(p2p && !rsdb) + !!mbss; combo = kcalloc(n_combos, sizeof(*combo), GFP_KERNEL); if (!combo) goto err; wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_ADHOC) | BIT(NL80211_IFTYPE_AP); if (mon_flag) wiphy->interface_modes |= BIT(NL80211_IFTYPE_MONITOR); if (p2p) wiphy->interface_modes |= BIT(NL80211_IFTYPE_P2P_CLIENT) | BIT(NL80211_IFTYPE_P2P_GO) | BIT(NL80211_IFTYPE_P2P_DEVICE); c = 0; i = 0; n_limits = 1 + mon_flag + (p2p ? 2 : 0) + (rsdb || !p2p); c0_limits = kcalloc(n_limits, sizeof(*c0_limits), GFP_KERNEL); if (!c0_limits) goto err; combo[c].num_different_channels = 1 + (rsdb || (p2p && mchan)); c0_limits[i].max = 1 + (p2p && mchan); c0_limits[i++].types = BIT(NL80211_IFTYPE_STATION); if (mon_flag) { c0_limits[i].max = 1; c0_limits[i++].types = BIT(NL80211_IFTYPE_MONITOR); } if (p2p) { c0_limits[i].max = 1; c0_limits[i++].types = BIT(NL80211_IFTYPE_P2P_DEVICE); c0_limits[i].max = 1 + rsdb; c0_limits[i++].types = BIT(NL80211_IFTYPE_P2P_CLIENT) | BIT(NL80211_IFTYPE_P2P_GO); } if (p2p && rsdb) { c0_limits[i].max = 2; c0_limits[i++].types = BIT(NL80211_IFTYPE_AP); combo[c].max_interfaces = 4; } else if (p2p) { combo[c].max_interfaces = i; } else if (rsdb) { c0_limits[i].max = 2; c0_limits[i++].types = BIT(NL80211_IFTYPE_AP); combo[c].max_interfaces = 3; } else { c0_limits[i].max = 1; c0_limits[i++].types = BIT(NL80211_IFTYPE_AP); combo[c].max_interfaces = i; } combo[c].n_limits = i; combo[c].limits = c0_limits; if (p2p && !rsdb) { c++; i = 0; p2p_limits = kcalloc(4, sizeof(*p2p_limits), GFP_KERNEL); if (!p2p_limits) goto err; p2p_limits[i].max = 1; p2p_limits[i++].types = BIT(NL80211_IFTYPE_STATION); p2p_limits[i].max = 1; p2p_limits[i++].types = BIT(NL80211_IFTYPE_AP); p2p_limits[i].max = 1; p2p_limits[i++].types = BIT(NL80211_IFTYPE_P2P_CLIENT); p2p_limits[i].max = 1; p2p_limits[i++].types = BIT(NL80211_IFTYPE_P2P_DEVICE); combo[c].num_different_channels = 1; combo[c].max_interfaces = i; combo[c].n_limits = i; combo[c].limits = p2p_limits; } if (mbss) { c++; i = 0; n_limits = 1 + mon_flag; mbss_limits = kcalloc(n_limits, sizeof(*mbss_limits), GFP_KERNEL); if (!mbss_limits) goto err; mbss_limits[i].max = 4; mbss_limits[i++].types = BIT(NL80211_IFTYPE_AP); if (mon_flag) { mbss_limits[i].max = 1; mbss_limits[i++].types = BIT(NL80211_IFTYPE_MONITOR); } combo[c].beacon_int_infra_match = true; combo[c].num_different_channels = 1; combo[c].max_interfaces = 4 + mon_flag; combo[c].n_limits = i; combo[c].limits = mbss_limits; } wiphy->n_iface_combinations = n_combos; wiphy->iface_combinations = combo; return 0; err: kfree(c0_limits); kfree(p2p_limits); kfree(mbss_limits); kfree(combo); return -ENOMEM; } #ifdef CONFIG_PM static const struct wiphy_wowlan_support brcmf_wowlan_support = { .flags = WIPHY_WOWLAN_MAGIC_PKT | WIPHY_WOWLAN_DISCONNECT, .n_patterns = BRCMF_WOWL_MAXPATTERNS, .pattern_max_len = BRCMF_WOWL_MAXPATTERNSIZE, .pattern_min_len = 1, .max_pkt_offset = 1500, }; #endif static void brcmf_wiphy_wowl_params(struct wiphy *wiphy, struct brcmf_if *ifp) { #ifdef CONFIG_PM struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_pub *drvr = cfg->pub; struct wiphy_wowlan_support *wowl; wowl = kmemdup(&brcmf_wowlan_support, sizeof(brcmf_wowlan_support), GFP_KERNEL); if (!wowl) { bphy_err(drvr, "only support basic wowlan features\n"); wiphy->wowlan = &brcmf_wowlan_support; return; } if (brcmf_feat_is_enabled(ifp, BRCMF_FEAT_PNO)) { if (brcmf_feat_is_enabled(ifp, BRCMF_FEAT_WOWL_ND)) { wowl->flags |= WIPHY_WOWLAN_NET_DETECT; wowl->max_nd_match_sets = BRCMF_PNO_MAX_PFN_COUNT; init_waitqueue_head(&cfg->wowl.nd_data_wait); } } if (brcmf_feat_is_enabled(ifp, BRCMF_FEAT_WOWL_GTK)) { wowl->flags |= WIPHY_WOWLAN_SUPPORTS_GTK_REKEY; wowl->flags |= WIPHY_WOWLAN_GTK_REKEY_FAILURE; } wiphy->wowlan = wowl; #endif } static int brcmf_setup_wiphy(struct wiphy *wiphy, struct brcmf_if *ifp) { struct brcmf_pub *drvr = ifp->drvr; const struct ieee80211_iface_combination *combo; struct ieee80211_supported_band *band; u16 max_interfaces = 0; bool gscan; __le32 bandlist[3]; u32 n_bands; int err, i; wiphy->max_scan_ssids = WL_NUM_SCAN_MAX; wiphy->max_scan_ie_len = BRCMF_SCAN_IE_LEN_MAX; wiphy->max_num_pmkids = BRCMF_MAXPMKID; err = brcmf_setup_ifmodes(wiphy, ifp); if (err) return err; for (i = 0, combo = wiphy->iface_combinations; i < wiphy->n_iface_combinations; i++, combo++) { max_interfaces = max(max_interfaces, combo->max_interfaces); } for (i = 0; i < max_interfaces && i < ARRAY_SIZE(drvr->addresses); i++) { u8 *addr = drvr->addresses[i].addr; memcpy(addr, drvr->mac, ETH_ALEN); if (i) { addr[0] |= BIT(1); addr[ETH_ALEN - 1] ^= i; } } wiphy->addresses = drvr->addresses; wiphy->n_addresses = i; wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM; wiphy->cipher_suites = brcmf_cipher_suites; wiphy->n_cipher_suites = ARRAY_SIZE(brcmf_cipher_suites); if (!brcmf_feat_is_enabled(ifp, BRCMF_FEAT_MFP)) wiphy->n_cipher_suites--; wiphy->bss_select_support = BIT(NL80211_BSS_SELECT_ATTR_RSSI) | BIT(NL80211_BSS_SELECT_ATTR_BAND_PREF) | BIT(NL80211_BSS_SELECT_ATTR_RSSI_ADJUST); wiphy->flags |= WIPHY_FLAG_NETNS_OK | WIPHY_FLAG_PS_ON_BY_DEFAULT | WIPHY_FLAG_HAVE_AP_SME | WIPHY_FLAG_OFFCHAN_TX | WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL; if (brcmf_feat_is_enabled(ifp, BRCMF_FEAT_TDLS)) wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS; if (!ifp->drvr->settings->roamoff) wiphy->flags |= WIPHY_FLAG_SUPPORTS_FW_ROAM; if (brcmf_feat_is_enabled(ifp, BRCMF_FEAT_FWSUP)) { wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_4WAY_HANDSHAKE_STA_PSK); wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_4WAY_HANDSHAKE_STA_1X); if (brcmf_feat_is_enabled(ifp, BRCMF_FEAT_SAE)) wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_SAE_OFFLOAD); } if (brcmf_feat_is_enabled(ifp, BRCMF_FEAT_FWAUTH)) { wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_4WAY_HANDSHAKE_AP_PSK); if (brcmf_feat_is_enabled(ifp, BRCMF_FEAT_SAE)) wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_SAE_OFFLOAD_AP); } wiphy->mgmt_stypes = brcmf_txrx_stypes; wiphy->max_remain_on_channel_duration = 5000; if (brcmf_feat_is_enabled(ifp, BRCMF_FEAT_PNO)) { gscan = brcmf_feat_is_enabled(ifp, BRCMF_FEAT_GSCAN); brcmf_pno_wiphy_params(wiphy, gscan); } /* vendor commands/events support */ wiphy->vendor_commands = brcmf_vendor_cmds; wiphy->n_vendor_commands = BRCMF_VNDR_CMDS_LAST - 1; if (brcmf_feat_is_enabled(ifp, BRCMF_FEAT_WOWL)) brcmf_wiphy_wowl_params(wiphy, ifp); err = brcmf_fil_cmd_data_get(ifp, BRCMF_C_GET_BANDLIST, &bandlist, sizeof(bandlist)); if (err) { bphy_err(drvr, "could not obtain band info: err=%d\n", err); return err; } /* first entry in bandlist is number of bands */ n_bands = le32_to_cpu(bandlist[0]); for (i = 1; i <= n_bands && i < ARRAY_SIZE(bandlist); i++) { if (bandlist[i] == cpu_to_le32(WLC_BAND_2G)) { band = kmemdup(&__wl_band_2ghz, sizeof(__wl_band_2ghz), GFP_KERNEL); if (!band) return -ENOMEM; band->channels = kmemdup(&__wl_2ghz_channels, sizeof(__wl_2ghz_channels), GFP_KERNEL); if (!band->channels) { kfree(band); return -ENOMEM; } band->n_channels = ARRAY_SIZE(__wl_2ghz_channels); wiphy->bands[NL80211_BAND_2GHZ] = band; } if (bandlist[i] == cpu_to_le32(WLC_BAND_5G)) { band = kmemdup(&__wl_band_5ghz, sizeof(__wl_band_5ghz), GFP_KERNEL); if (!band) return -ENOMEM; band->channels = kmemdup(&__wl_5ghz_channels, sizeof(__wl_5ghz_channels), GFP_KERNEL); if (!band->channels) { kfree(band); return -ENOMEM; } band->n_channels = ARRAY_SIZE(__wl_5ghz_channels); wiphy->bands[NL80211_BAND_5GHZ] = band; } } if (wiphy->bands[NL80211_BAND_5GHZ] && brcmf_feat_is_enabled(ifp, BRCMF_FEAT_DOT11H)) wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_DFS_OFFLOAD); wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST); wiphy_read_of_freq_limits(wiphy); return 0; } static s32 brcmf_config_dongle(struct brcmf_cfg80211_info *cfg) { struct brcmf_pub *drvr = cfg->pub; struct net_device *ndev; struct wireless_dev *wdev; struct brcmf_if *ifp; s32 power_mode; s32 err = 0; if (cfg->dongle_up) return err; ndev = cfg_to_ndev(cfg); wdev = ndev->ieee80211_ptr; ifp = netdev_priv(ndev); /* make sure RF is ready for work */ brcmf_fil_cmd_int_set(ifp, BRCMF_C_UP, 0); brcmf_dongle_scantime(ifp); power_mode = cfg->pwr_save ? PM_FAST : PM_OFF; err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_PM, power_mode); if (err) goto default_conf_out; brcmf_dbg(INFO, "power save set to %s\n", (power_mode ? "enabled" : "disabled")); err = brcmf_dongle_roam(ifp); if (err) goto default_conf_out; err = brcmf_cfg80211_change_iface(wdev->wiphy, ndev, wdev->iftype, NULL); if (err) goto default_conf_out; brcmf_configure_arp_nd_offload(ifp, true); err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_FAKEFRAG, 1); if (err) { bphy_err(drvr, "failed to set frameburst mode\n"); goto default_conf_out; } cfg->dongle_up = true; default_conf_out: return err; } static s32 __brcmf_cfg80211_up(struct brcmf_if *ifp) { set_bit(BRCMF_VIF_STATUS_READY, &ifp->vif->sme_state); return brcmf_config_dongle(ifp->drvr->config); } static s32 __brcmf_cfg80211_down(struct brcmf_if *ifp) { struct brcmf_cfg80211_info *cfg = ifp->drvr->config; /* * While going down, if associated with AP disassociate * from AP to save power */ if (check_vif_up(ifp->vif)) { brcmf_link_down(ifp->vif, WLAN_REASON_UNSPECIFIED, true); /* Make sure WPA_Supplicant receives all the event generated due to DISASSOC call to the fw to keep the state fw and WPA_Supplicant state consistent */ brcmf_delay(500); } brcmf_abort_scanning(cfg); clear_bit(BRCMF_VIF_STATUS_READY, &ifp->vif->sme_state); return 0; } s32 brcmf_cfg80211_up(struct net_device *ndev) { struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_cfg80211_info *cfg = ifp->drvr->config; s32 err = 0; mutex_lock(&cfg->usr_sync); err = __brcmf_cfg80211_up(ifp); mutex_unlock(&cfg->usr_sync); return err; } s32 brcmf_cfg80211_down(struct net_device *ndev) { struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_cfg80211_info *cfg = ifp->drvr->config; s32 err = 0; mutex_lock(&cfg->usr_sync); err = __brcmf_cfg80211_down(ifp); mutex_unlock(&cfg->usr_sync); return err; } enum nl80211_iftype brcmf_cfg80211_get_iftype(struct brcmf_if *ifp) { struct wireless_dev *wdev = &ifp->vif->wdev; return wdev->iftype; } bool brcmf_get_vif_state_any(struct brcmf_cfg80211_info *cfg, unsigned long state) { struct brcmf_cfg80211_vif *vif; list_for_each_entry(vif, &cfg->vif_list, list) { if (test_bit(state, &vif->sme_state)) return true; } return false; } static inline bool vif_event_equals(struct brcmf_cfg80211_vif_event *event, u8 action) { u8 evt_action; spin_lock(&event->vif_event_lock); evt_action = event->action; spin_unlock(&event->vif_event_lock); return evt_action == action; } void brcmf_cfg80211_arm_vif_event(struct brcmf_cfg80211_info *cfg, struct brcmf_cfg80211_vif *vif) { struct brcmf_cfg80211_vif_event *event = &cfg->vif_event; spin_lock(&event->vif_event_lock); event->vif = vif; event->action = 0; spin_unlock(&event->vif_event_lock); } bool brcmf_cfg80211_vif_event_armed(struct brcmf_cfg80211_info *cfg) { struct brcmf_cfg80211_vif_event *event = &cfg->vif_event; bool armed; spin_lock(&event->vif_event_lock); armed = event->vif != NULL; spin_unlock(&event->vif_event_lock); return armed; } int brcmf_cfg80211_wait_vif_event(struct brcmf_cfg80211_info *cfg, u8 action, ulong timeout) { struct brcmf_cfg80211_vif_event *event = &cfg->vif_event; return wait_event_timeout(event->vif_wq, vif_event_equals(event, action), timeout); } static bool brmcf_use_iso3166_ccode_fallback(struct brcmf_pub *drvr) { if (drvr->settings->trivial_ccode_map) return true; switch (drvr->bus_if->chip) { case BRCM_CC_43430_CHIP_ID: case BRCM_CC_4345_CHIP_ID: case BRCM_CC_43602_CHIP_ID: return true; default: return false; } } static s32 brcmf_translate_country_code(struct brcmf_pub *drvr, char alpha2[2], struct brcmf_fil_country_le *ccreq) { struct brcmfmac_pd_cc *country_codes; struct brcmfmac_pd_cc_entry *cc; s32 found_index; int i; if ((alpha2[0] == ccreq->country_abbrev[0]) && (alpha2[1] == ccreq->country_abbrev[1])) { brcmf_dbg(TRACE, "Country code already set\n"); return -EAGAIN; } country_codes = drvr->settings->country_codes; if (!country_codes) { if (brmcf_use_iso3166_ccode_fallback(drvr)) { brcmf_dbg(TRACE, "No country codes configured for device, using ISO3166 code and 0 rev\n"); memset(ccreq, 0, sizeof(*ccreq)); ccreq->country_abbrev[0] = alpha2[0]; ccreq->country_abbrev[1] = alpha2[1]; ccreq->ccode[0] = alpha2[0]; ccreq->ccode[1] = alpha2[1]; return 0; } brcmf_dbg(TRACE, "No country codes configured for device\n"); return -EINVAL; } found_index = -1; for (i = 0; i < country_codes->table_size; i++) { cc = &country_codes->table[i]; if ((cc->iso3166[0] == '\0') && (found_index == -1)) found_index = i; if ((cc->iso3166[0] == alpha2[0]) && (cc->iso3166[1] == alpha2[1])) { found_index = i; break; } } if (found_index == -1) { brcmf_dbg(TRACE, "No country code match found\n"); return -EINVAL; } memset(ccreq, 0, sizeof(*ccreq)); ccreq->rev = cpu_to_le32(country_codes->table[found_index].rev); memcpy(ccreq->ccode, country_codes->table[found_index].cc, BRCMF_COUNTRY_BUF_SZ); ccreq->country_abbrev[0] = alpha2[0]; ccreq->country_abbrev[1] = alpha2[1]; ccreq->country_abbrev[2] = 0; return 0; } static int brcmf_parse_dump_obss(char *buf, struct brcmf_dump_survey *survey) { int i; char *token; char delim[] = "\n "; unsigned long val; int err = 0; token = strsep(&buf, delim); while (token) { if (!strcmp(token, "OBSS")) { for (i = 0; i < OBSS_TOKEN_IDX; i++) token = strsep(&buf, delim); err = kstrtoul(token, 10, &val); if (err) break; survey->obss = val; } if (!strcmp(token, "IBSS")) { for (i = 0; i < IBSS_TOKEN_IDX; i++) token = strsep(&buf, delim); err = kstrtoul(token, 10, &val); if (err) break; survey->ibss = val; } if (!strcmp(token, "TXDur")) { for (i = 0; i < TX_TOKEN_IDX; i++) token = strsep(&buf, delim); err = kstrtoul(token, 10, &val); if (err) break; survey->tx = val; } if (!strcmp(token, "Category")) { for (i = 0; i < CTG_TOKEN_IDX; i++) token = strsep(&buf, delim); err = kstrtoul(token, 10, &val); if (err) break; survey->no_ctg = val; } if (!strcmp(token, "Packet")) { for (i = 0; i < PKT_TOKEN_IDX; i++) token = strsep(&buf, delim); err = kstrtoul(token, 10, &val); if (err) break; survey->no_pckt = val; } if (!strcmp(token, "Opp(time):")) { for (i = 0; i < IDLE_TOKEN_IDX; i++) token = strsep(&buf, delim); err = kstrtoul(token, 10, &val); if (err) break; survey->idle = val; } token = strsep(&buf, delim); } return err; } static int brcmf_dump_obss(struct brcmf_if *ifp, struct cca_msrmnt_query req, struct brcmf_dump_survey *survey) { struct cca_stats_n_flags *results; char *buf; int err; buf = kzalloc(sizeof(char) * BRCMF_DCMD_MEDLEN, GFP_KERNEL); if (!buf) return -ENOMEM; memcpy(buf, &req, sizeof(struct cca_msrmnt_query)); err = brcmf_fil_iovar_data_get(ifp, "dump_obss", buf, BRCMF_DCMD_MEDLEN); if (err) { brcmf_err("dump_obss error (%d)\n", err); err = -EINVAL; goto exit; } results = (struct cca_stats_n_flags *)(buf); if (req.msrmnt_query) brcmf_parse_dump_obss(results->buf, survey); exit: kfree(buf); return err; } static s32 brcmf_set_channel(struct brcmf_cfg80211_info *cfg, struct ieee80211_channel *chan) { u16 chspec = 0; int err = 0; struct brcmf_if *ifp = netdev_priv(cfg_to_ndev(cfg)); if (chan->flags & IEEE80211_CHAN_DISABLED) return -EINVAL; /* set_channel */ chspec = channel_to_chanspec(&cfg->d11inf, chan); if (chspec != INVCHANSPEC) { err = brcmf_fil_iovar_int_set(ifp, "chanspec", chspec); if (err) { brcmf_err("set chanspec 0x%04x fail, reason %d\n", chspec, err); err = -EINVAL; } } else { brcmf_err("failed to convert host chanspec to fw chanspec\n"); err = -EINVAL; } return err; } static int brcmf_cfg80211_dump_survey(struct wiphy *wiphy, struct net_device *ndev, int idx, struct survey_info *info) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_if *ifp = netdev_priv(cfg_to_ndev(cfg)); struct brcmf_dump_survey survey = {}; struct ieee80211_supported_band *band; enum nl80211_band band_id; struct cca_msrmnt_query req; u32 noise; int err; brcmf_dbg(TRACE, "Enter: channel idx=%d\n", idx); /* Do not run survey when VIF in CONNECTING / CONNECTED states */ if ((test_bit(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state)) || (test_bit(BRCMF_VIF_STATUS_CONNECTED, &ifp->vif->sme_state))) { return -EBUSY; } for (band_id = 0; band_id < NUM_NL80211_BANDS; band_id++) { band = wiphy->bands[band_id]; if (!band) continue; if (idx >= band->n_channels) { idx -= band->n_channels; continue; } info->channel = &band->channels[idx]; break; } if (band_id == NUM_NL80211_BANDS) return -ENOENT; /* Setting current channel to the requested channel */ info->filled = 0; if (brcmf_set_channel(cfg, info->channel)) return 0; /* Disable mpc */ brcmf_set_mpc(ifp, 0); /* Set interface up, explicitly. */ err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_UP, 1); if (err) { brcmf_err("set interface up failed, err = %d\n", err); goto exit; } /* Get noise value */ err = brcmf_fil_cmd_int_get(ifp, BRCMF_C_GET_PHY_NOISE, &noise); if (err) { brcmf_err("Get Phy Noise failed, use dummy value\n"); noise = CHAN_NOISE_DUMMY; } /* Start Measurement for obss stats on current channel */ req.msrmnt_query = 0; req.time_req = ACS_MSRMNT_DELAY; err = brcmf_dump_obss(ifp, req, &survey); if (err) goto exit; /* Add 10 ms for IOVAR completion */ msleep(ACS_MSRMNT_DELAY + 10); /* Issue IOVAR to collect measurement results */ req.msrmnt_query = 1; err = brcmf_dump_obss(ifp, req, &survey); if (err) goto exit; info->noise = noise; info->time = ACS_MSRMNT_DELAY; info->time_busy = ACS_MSRMNT_DELAY - survey.idle; info->time_rx = survey.obss + survey.ibss + survey.no_ctg + survey.no_pckt; info->time_tx = survey.tx; info->filled = SURVEY_INFO_NOISE_DBM | SURVEY_INFO_TIME | SURVEY_INFO_TIME_BUSY | SURVEY_INFO_TIME_RX | SURVEY_INFO_TIME_TX; brcmf_dbg(INFO, "OBSS dump: channel %d: survey duration %d\n", ieee80211_frequency_to_channel(info->channel->center_freq), ACS_MSRMNT_DELAY); brcmf_dbg(INFO, "noise(%d) busy(%llu) rx(%llu) tx(%llu)\n", info->noise, info->time_busy, info->time_rx, info->time_tx); exit: if (!brcmf_is_apmode(ifp->vif)) brcmf_set_mpc(ifp, 1); return err; } static void brcmf_cfg80211_reg_notifier(struct wiphy *wiphy, struct regulatory_request *req) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_if *ifp = brcmf_get_ifp(cfg->pub, 0); struct brcmf_pub *drvr = cfg->pub; struct brcmf_fil_country_le ccreq; s32 err; int i; /* The country code gets set to "00" by default at boot, ignore */ if (req->alpha2[0] == '0' && req->alpha2[1] == '0') return; /* ignore non-ISO3166 country codes */ for (i = 0; i < 2; i++) if (req->alpha2[i] < 'A' || req->alpha2[i] > 'Z') { bphy_err(drvr, "not an ISO3166 code (0x%02x 0x%02x)\n", req->alpha2[0], req->alpha2[1]); return; } brcmf_dbg(TRACE, "Enter: initiator=%d, alpha=%c%c\n", req->initiator, req->alpha2[0], req->alpha2[1]); err = brcmf_fil_iovar_data_get(ifp, "country", &ccreq, sizeof(ccreq)); if (err) { bphy_err(drvr, "Country code iovar returned err = %d\n", err); return; } err = brcmf_translate_country_code(ifp->drvr, req->alpha2, &ccreq); if (err) return; err = brcmf_fil_iovar_data_set(ifp, "country", &ccreq, sizeof(ccreq)); if (err) { bphy_err(drvr, "Firmware rejected country setting\n"); return; } brcmf_setup_wiphybands(cfg); } static void brcmf_free_wiphy(struct wiphy *wiphy) { int i; if (!wiphy) return; if (wiphy->iface_combinations) { for (i = 0; i < wiphy->n_iface_combinations; i++) kfree(wiphy->iface_combinations[i].limits); } kfree(wiphy->iface_combinations); if (wiphy->bands[NL80211_BAND_2GHZ]) { kfree(wiphy->bands[NL80211_BAND_2GHZ]->channels); kfree(wiphy->bands[NL80211_BAND_2GHZ]); } if (wiphy->bands[NL80211_BAND_5GHZ]) { kfree(wiphy->bands[NL80211_BAND_5GHZ]->channels); kfree(wiphy->bands[NL80211_BAND_5GHZ]); } #if IS_ENABLED(CONFIG_PM) if (wiphy->wowlan != &brcmf_wowlan_support) kfree(wiphy->wowlan); #endif } struct brcmf_cfg80211_info *brcmf_cfg80211_attach(struct brcmf_pub *drvr, struct cfg80211_ops *ops, bool p2pdev_forced) { struct wiphy *wiphy = drvr->wiphy; struct net_device *ndev = brcmf_get_ifp(drvr, 0)->ndev; struct brcmf_cfg80211_info *cfg; struct brcmf_cfg80211_vif *vif; struct brcmf_if *ifp; s32 err = 0; s32 io_type; u16 *cap = NULL; if (!ndev) { bphy_err(drvr, "ndev is invalid\n"); return NULL; } cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); if (!cfg) { bphy_err(drvr, "Could not allocate wiphy device\n"); return NULL; } cfg->wiphy = wiphy; cfg->pub = drvr; init_vif_event(&cfg->vif_event); INIT_LIST_HEAD(&cfg->vif_list); vif = brcmf_alloc_vif(cfg, NL80211_IFTYPE_STATION); if (IS_ERR(vif)) goto wiphy_out; ifp = netdev_priv(ndev); vif->ifp = ifp; vif->wdev.netdev = ndev; ndev->ieee80211_ptr = &vif->wdev; SET_NETDEV_DEV(ndev, wiphy_dev(cfg->wiphy)); err = wl_init_priv(cfg); if (err) { bphy_err(drvr, "Failed to init iwm_priv (%d)\n", err); brcmf_free_vif(vif); goto wiphy_out; } ifp->vif = vif; /* determine d11 io type before wiphy setup */ err = brcmf_fil_cmd_int_get(ifp, BRCMF_C_GET_VERSION, &io_type); if (err) { bphy_err(drvr, "Failed to get D11 version (%d)\n", err); goto priv_out; } cfg->d11inf.io_type = (u8)io_type; brcmu_d11_attach(&cfg->d11inf); /* regulatory notifer below needs access to cfg so * assign it now. */ drvr->config = cfg; err = brcmf_setup_wiphy(wiphy, ifp); if (err < 0) goto priv_out; brcmf_dbg(INFO, "Registering custom regulatory\n"); wiphy->reg_notifier = brcmf_cfg80211_reg_notifier; wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; wiphy_apply_custom_regulatory(wiphy, &brcmf_regdom); /* firmware defaults to 40MHz disabled in 2G band. We signal * cfg80211 here that we do and have it decide we can enable * it. But first check if device does support 2G operation. */ if (wiphy->bands[NL80211_BAND_2GHZ]) { cap = &wiphy->bands[NL80211_BAND_2GHZ]->ht_cap.cap; *cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40; } #ifdef CONFIG_PM if (brcmf_feat_is_enabled(ifp, BRCMF_FEAT_WOWL_GTK)) ops->set_rekey_data = brcmf_cfg80211_set_rekey_data; #endif if (brcmf_feat_is_enabled(ifp, BRCMF_FEAT_DUMP_OBSS)) ops->dump_survey = brcmf_cfg80211_dump_survey; err = wiphy_register(wiphy); if (err < 0) { bphy_err(drvr, "Could not register wiphy device (%d)\n", err); goto priv_out; } err = brcmf_setup_wiphybands(cfg); if (err) { bphy_err(drvr, "Setting wiphy bands failed (%d)\n", err); goto wiphy_unreg_out; } /* If cfg80211 didn't disable 40MHz HT CAP in wiphy_register(), * setup 40MHz in 2GHz band and enable OBSS scanning. */ if (cap && (*cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40)) { err = brcmf_enable_bw40_2g(cfg); if (!err) err = brcmf_fil_iovar_int_set(ifp, "obss_coex", BRCMF_OBSS_COEX_AUTO); else *cap &= ~IEEE80211_HT_CAP_SUP_WIDTH_20_40; } err = brcmf_fweh_activate_events(ifp); if (err) { bphy_err(drvr, "FWEH activation failed (%d)\n", err); goto wiphy_unreg_out; } err = brcmf_p2p_attach(cfg, p2pdev_forced); if (err) { bphy_err(drvr, "P2P initialisation failed (%d)\n", err); goto wiphy_unreg_out; } err = brcmf_btcoex_attach(cfg); if (err) { bphy_err(drvr, "BT-coex initialisation failed (%d)\n", err); brcmf_p2p_detach(&cfg->p2p); goto wiphy_unreg_out; } err = brcmf_pno_attach(cfg); if (err) { bphy_err(drvr, "PNO initialisation failed (%d)\n", err); brcmf_btcoex_detach(cfg); brcmf_p2p_detach(&cfg->p2p); goto wiphy_unreg_out; } if (brcmf_feat_is_enabled(ifp, BRCMF_FEAT_TDLS)) { err = brcmf_fil_iovar_int_set(ifp, "tdls_enable", 1); if (err) { brcmf_dbg(INFO, "TDLS not enabled (%d)\n", err); wiphy->flags &= ~WIPHY_FLAG_SUPPORTS_TDLS; } else { brcmf_fweh_register(cfg->pub, BRCMF_E_TDLS_PEER_EVENT, brcmf_notify_tdls_peer_event); } } /* (re-) activate FWEH event handling */ err = brcmf_fweh_activate_events(ifp); if (err) { bphy_err(drvr, "FWEH activation failed (%d)\n", err); goto detach; } /* Fill in some of the advertised nl80211 supported features */ if (brcmf_feat_is_enabled(ifp, BRCMF_FEAT_SCAN_RANDOM_MAC)) { wiphy->features |= NL80211_FEATURE_SCHED_SCAN_RANDOM_MAC_ADDR; #ifdef CONFIG_PM if (wiphy->wowlan && wiphy->wowlan->flags & WIPHY_WOWLAN_NET_DETECT) wiphy->features |= NL80211_FEATURE_ND_RANDOM_MAC_ADDR; #endif } return cfg; detach: brcmf_pno_detach(cfg); brcmf_btcoex_detach(cfg); brcmf_p2p_detach(&cfg->p2p); wiphy_unreg_out: wiphy_unregister(cfg->wiphy); priv_out: wl_deinit_priv(cfg); brcmf_free_vif(vif); ifp->vif = NULL; wiphy_out: brcmf_free_wiphy(wiphy); kfree(cfg); return NULL; } void brcmf_cfg80211_detach(struct brcmf_cfg80211_info *cfg) { if (!cfg) return; brcmf_pno_detach(cfg); brcmf_btcoex_detach(cfg); wiphy_unregister(cfg->wiphy); wl_deinit_priv(cfg); brcmf_free_wiphy(cfg->wiphy); kfree(cfg); }