// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause /* * Copyright (C) 2007-2015, 2018-2022 Intel Corporation * Copyright (C) 2013-2015 Intel Mobile Communications GmbH * Copyright (C) 2016-2017 Intel Deutschland GmbH */ #include #include #include #include #include #include #include #include #include #include #include "iwl-drv.h" #include "iwl-trans.h" #include "iwl-csr.h" #include "iwl-prph.h" #include "iwl-scd.h" #include "iwl-agn-hw.h" #include "fw/error-dump.h" #include "fw/dbg.h" #include "fw/api/tx.h" #include "mei/iwl-mei.h" #include "internal.h" #include "iwl-fh.h" #include "iwl-context-info-gen3.h" /* extended range in FW SRAM */ #define IWL_FW_MEM_EXTENDED_START 0x40000 #define IWL_FW_MEM_EXTENDED_END 0x57FFF void iwl_trans_pcie_dump_regs(struct iwl_trans *trans) { #define PCI_DUMP_SIZE 352 #define PCI_MEM_DUMP_SIZE 64 #define PCI_PARENT_DUMP_SIZE 524 #define PREFIX_LEN 32 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct pci_dev *pdev = trans_pcie->pci_dev; u32 i, pos, alloc_size, *ptr, *buf; char *prefix; if (trans_pcie->pcie_dbg_dumped_once) return; /* Should be a multiple of 4 */ BUILD_BUG_ON(PCI_DUMP_SIZE > 4096 || PCI_DUMP_SIZE & 0x3); BUILD_BUG_ON(PCI_MEM_DUMP_SIZE > 4096 || PCI_MEM_DUMP_SIZE & 0x3); BUILD_BUG_ON(PCI_PARENT_DUMP_SIZE > 4096 || PCI_PARENT_DUMP_SIZE & 0x3); /* Alloc a max size buffer */ alloc_size = PCI_ERR_ROOT_ERR_SRC + 4 + PREFIX_LEN; alloc_size = max_t(u32, alloc_size, PCI_DUMP_SIZE + PREFIX_LEN); alloc_size = max_t(u32, alloc_size, PCI_MEM_DUMP_SIZE + PREFIX_LEN); alloc_size = max_t(u32, alloc_size, PCI_PARENT_DUMP_SIZE + PREFIX_LEN); buf = kmalloc(alloc_size, GFP_ATOMIC); if (!buf) return; prefix = (char *)buf + alloc_size - PREFIX_LEN; IWL_ERR(trans, "iwlwifi transaction failed, dumping registers\n"); /* Print wifi device registers */ sprintf(prefix, "iwlwifi %s: ", pci_name(pdev)); IWL_ERR(trans, "iwlwifi device config registers:\n"); for (i = 0, ptr = buf; i < PCI_DUMP_SIZE; i += 4, ptr++) if (pci_read_config_dword(pdev, i, ptr)) goto err_read; print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET, 32, 4, buf, i, 0); IWL_ERR(trans, "iwlwifi device memory mapped registers:\n"); for (i = 0, ptr = buf; i < PCI_MEM_DUMP_SIZE; i += 4, ptr++) *ptr = iwl_read32(trans, i); print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET, 32, 4, buf, i, 0); pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ERR); if (pos) { IWL_ERR(trans, "iwlwifi device AER capability structure:\n"); for (i = 0, ptr = buf; i < PCI_ERR_ROOT_COMMAND; i += 4, ptr++) if (pci_read_config_dword(pdev, pos + i, ptr)) goto err_read; print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET, 32, 4, buf, i, 0); } /* Print parent device registers next */ if (!pdev->bus->self) goto out; pdev = pdev->bus->self; sprintf(prefix, "iwlwifi %s: ", pci_name(pdev)); IWL_ERR(trans, "iwlwifi parent port (%s) config registers:\n", pci_name(pdev)); for (i = 0, ptr = buf; i < PCI_PARENT_DUMP_SIZE; i += 4, ptr++) if (pci_read_config_dword(pdev, i, ptr)) goto err_read; print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET, 32, 4, buf, i, 0); /* Print root port AER registers */ pos = 0; pdev = pcie_find_root_port(pdev); if (pdev) pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ERR); if (pos) { IWL_ERR(trans, "iwlwifi root port (%s) AER cap structure:\n", pci_name(pdev)); sprintf(prefix, "iwlwifi %s: ", pci_name(pdev)); for (i = 0, ptr = buf; i <= PCI_ERR_ROOT_ERR_SRC; i += 4, ptr++) if (pci_read_config_dword(pdev, pos + i, ptr)) goto err_read; print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET, 32, 4, buf, i, 0); } goto out; err_read: print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET, 32, 4, buf, i, 0); IWL_ERR(trans, "Read failed at 0x%X\n", i); out: trans_pcie->pcie_dbg_dumped_once = 1; kfree(buf); } static int iwl_trans_pcie_sw_reset(struct iwl_trans *trans, bool retake_ownership) { /* Reset entire device - do controller reset (results in SHRD_HW_RST) */ if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_SW_RESET); else iwl_set_bit(trans, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET); usleep_range(5000, 6000); if (retake_ownership) return iwl_pcie_prepare_card_hw(trans); return 0; } static void iwl_pcie_free_fw_monitor(struct iwl_trans *trans) { struct iwl_dram_data *fw_mon = &trans->dbg.fw_mon; if (!fw_mon->size) return; dma_free_coherent(trans->dev, fw_mon->size, fw_mon->block, fw_mon->physical); fw_mon->block = NULL; fw_mon->physical = 0; fw_mon->size = 0; } static void iwl_pcie_alloc_fw_monitor_block(struct iwl_trans *trans, u8 max_power, u8 min_power) { struct iwl_dram_data *fw_mon = &trans->dbg.fw_mon; void *block = NULL; dma_addr_t physical = 0; u32 size = 0; u8 power; if (fw_mon->size) return; for (power = max_power; power >= min_power; power--) { size = BIT(power); block = dma_alloc_coherent(trans->dev, size, &physical, GFP_KERNEL | __GFP_NOWARN); if (!block) continue; IWL_INFO(trans, "Allocated 0x%08x bytes for firmware monitor.\n", size); break; } if (WARN_ON_ONCE(!block)) return; if (power != max_power) IWL_ERR(trans, "Sorry - debug buffer is only %luK while you requested %luK\n", (unsigned long)BIT(power - 10), (unsigned long)BIT(max_power - 10)); fw_mon->block = block; fw_mon->physical = physical; fw_mon->size = size; } void iwl_pcie_alloc_fw_monitor(struct iwl_trans *trans, u8 max_power) { if (!max_power) { /* default max_power is maximum */ max_power = 26; } else { max_power += 11; } if (WARN(max_power > 26, "External buffer size for monitor is too big %d, check the FW TLV\n", max_power)) return; if (trans->dbg.fw_mon.size) return; iwl_pcie_alloc_fw_monitor_block(trans, max_power, 11); } static u32 iwl_trans_pcie_read_shr(struct iwl_trans *trans, u32 reg) { iwl_write32(trans, HEEP_CTRL_WRD_PCIEX_CTRL_REG, ((reg & 0x0000ffff) | (2 << 28))); return iwl_read32(trans, HEEP_CTRL_WRD_PCIEX_DATA_REG); } static void iwl_trans_pcie_write_shr(struct iwl_trans *trans, u32 reg, u32 val) { iwl_write32(trans, HEEP_CTRL_WRD_PCIEX_DATA_REG, val); iwl_write32(trans, HEEP_CTRL_WRD_PCIEX_CTRL_REG, ((reg & 0x0000ffff) | (3 << 28))); } static void iwl_pcie_set_pwr(struct iwl_trans *trans, bool vaux) { if (trans->cfg->apmg_not_supported) return; if (vaux && pci_pme_capable(to_pci_dev(trans->dev), PCI_D3cold)) iwl_set_bits_mask_prph(trans, APMG_PS_CTRL_REG, APMG_PS_CTRL_VAL_PWR_SRC_VAUX, ~APMG_PS_CTRL_MSK_PWR_SRC); else iwl_set_bits_mask_prph(trans, APMG_PS_CTRL_REG, APMG_PS_CTRL_VAL_PWR_SRC_VMAIN, ~APMG_PS_CTRL_MSK_PWR_SRC); } /* PCI registers */ #define PCI_CFG_RETRY_TIMEOUT 0x041 void iwl_pcie_apm_config(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); u16 lctl; u16 cap; /* * L0S states have been found to be unstable with our devices * and in newer hardware they are not officially supported at * all, so we must always set the L0S_DISABLED bit. */ iwl_set_bit(trans, CSR_GIO_REG, CSR_GIO_REG_VAL_L0S_DISABLED); pcie_capability_read_word(trans_pcie->pci_dev, PCI_EXP_LNKCTL, &lctl); trans->pm_support = !(lctl & PCI_EXP_LNKCTL_ASPM_L0S); pcie_capability_read_word(trans_pcie->pci_dev, PCI_EXP_DEVCTL2, &cap); trans->ltr_enabled = cap & PCI_EXP_DEVCTL2_LTR_EN; IWL_DEBUG_POWER(trans, "L1 %sabled - LTR %sabled\n", (lctl & PCI_EXP_LNKCTL_ASPM_L1) ? "En" : "Dis", trans->ltr_enabled ? "En" : "Dis"); } /* * Start up NIC's basic functionality after it has been reset * (e.g. after platform boot, or shutdown via iwl_pcie_apm_stop()) * NOTE: This does not load uCode nor start the embedded processor */ static int iwl_pcie_apm_init(struct iwl_trans *trans) { int ret; IWL_DEBUG_INFO(trans, "Init card's basic functions\n"); /* * Use "set_bit" below rather than "write", to preserve any hardware * bits already set by default after reset. */ /* Disable L0S exit timer (platform NMI Work/Around) */ if (trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_8000) iwl_set_bit(trans, CSR_GIO_CHICKEN_BITS, CSR_GIO_CHICKEN_BITS_REG_BIT_DIS_L0S_EXIT_TIMER); /* * Disable L0s without affecting L1; * don't wait for ICH L0s (ICH bug W/A) */ iwl_set_bit(trans, CSR_GIO_CHICKEN_BITS, CSR_GIO_CHICKEN_BITS_REG_BIT_L1A_NO_L0S_RX); /* Set FH wait threshold to maximum (HW error during stress W/A) */ iwl_set_bit(trans, CSR_DBG_HPET_MEM_REG, CSR_DBG_HPET_MEM_REG_VAL); /* * Enable HAP INTA (interrupt from management bus) to * wake device's PCI Express link L1a -> L0s */ iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG, CSR_HW_IF_CONFIG_REG_BIT_HAP_WAKE_L1A); iwl_pcie_apm_config(trans); /* Configure analog phase-lock-loop before activating to D0A */ if (trans->trans_cfg->base_params->pll_cfg) iwl_set_bit(trans, CSR_ANA_PLL_CFG, CSR50_ANA_PLL_CFG_VAL); ret = iwl_finish_nic_init(trans); if (ret) return ret; if (trans->cfg->host_interrupt_operation_mode) { /* * This is a bit of an abuse - This is needed for 7260 / 3160 * only check host_interrupt_operation_mode even if this is * not related to host_interrupt_operation_mode. * * Enable the oscillator to count wake up time for L1 exit. This * consumes slightly more power (100uA) - but allows to be sure * that we wake up from L1 on time. * * This looks weird: read twice the same register, discard the * value, set a bit, and yet again, read that same register * just to discard the value. But that's the way the hardware * seems to like it. */ iwl_read_prph(trans, OSC_CLK); iwl_read_prph(trans, OSC_CLK); iwl_set_bits_prph(trans, OSC_CLK, OSC_CLK_FORCE_CONTROL); iwl_read_prph(trans, OSC_CLK); iwl_read_prph(trans, OSC_CLK); } /* * Enable DMA clock and wait for it to stabilize. * * Write to "CLK_EN_REG"; "1" bits enable clocks, while "0" * bits do not disable clocks. This preserves any hardware * bits already set by default in "CLK_CTRL_REG" after reset. */ if (!trans->cfg->apmg_not_supported) { iwl_write_prph(trans, APMG_CLK_EN_REG, APMG_CLK_VAL_DMA_CLK_RQT); udelay(20); /* Disable L1-Active */ iwl_set_bits_prph(trans, APMG_PCIDEV_STT_REG, APMG_PCIDEV_STT_VAL_L1_ACT_DIS); /* Clear the interrupt in APMG if the NIC is in RFKILL */ iwl_write_prph(trans, APMG_RTC_INT_STT_REG, APMG_RTC_INT_STT_RFKILL); } set_bit(STATUS_DEVICE_ENABLED, &trans->status); return 0; } /* * Enable LP XTAL to avoid HW bug where device may consume much power if * FW is not loaded after device reset. LP XTAL is disabled by default * after device HW reset. Do it only if XTAL is fed by internal source. * Configure device's "persistence" mode to avoid resetting XTAL again when * SHRD_HW_RST occurs in S3. */ static void iwl_pcie_apm_lp_xtal_enable(struct iwl_trans *trans) { int ret; u32 apmg_gp1_reg; u32 apmg_xtal_cfg_reg; u32 dl_cfg_reg; /* Force XTAL ON */ __iwl_trans_pcie_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_XTAL_ON); ret = iwl_trans_pcie_sw_reset(trans, true); if (!ret) ret = iwl_finish_nic_init(trans); if (WARN_ON(ret)) { /* Release XTAL ON request */ __iwl_trans_pcie_clear_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_XTAL_ON); return; } /* * Clear "disable persistence" to avoid LP XTAL resetting when * SHRD_HW_RST is applied in S3. */ iwl_clear_bits_prph(trans, APMG_PCIDEV_STT_REG, APMG_PCIDEV_STT_VAL_PERSIST_DIS); /* * Force APMG XTAL to be active to prevent its disabling by HW * caused by APMG idle state. */ apmg_xtal_cfg_reg = iwl_trans_pcie_read_shr(trans, SHR_APMG_XTAL_CFG_REG); iwl_trans_pcie_write_shr(trans, SHR_APMG_XTAL_CFG_REG, apmg_xtal_cfg_reg | SHR_APMG_XTAL_CFG_XTAL_ON_REQ); ret = iwl_trans_pcie_sw_reset(trans, true); if (ret) IWL_ERR(trans, "iwl_pcie_apm_lp_xtal_enable: failed to retake NIC ownership\n"); /* Enable LP XTAL by indirect access through CSR */ apmg_gp1_reg = iwl_trans_pcie_read_shr(trans, SHR_APMG_GP1_REG); iwl_trans_pcie_write_shr(trans, SHR_APMG_GP1_REG, apmg_gp1_reg | SHR_APMG_GP1_WF_XTAL_LP_EN | SHR_APMG_GP1_CHICKEN_BIT_SELECT); /* Clear delay line clock power up */ dl_cfg_reg = iwl_trans_pcie_read_shr(trans, SHR_APMG_DL_CFG_REG); iwl_trans_pcie_write_shr(trans, SHR_APMG_DL_CFG_REG, dl_cfg_reg & ~SHR_APMG_DL_CFG_DL_CLOCK_POWER_UP); /* * Enable persistence mode to avoid LP XTAL resetting when * SHRD_HW_RST is applied in S3. */ iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG, CSR_HW_IF_CONFIG_REG_PERSIST_MODE); /* * Clear "initialization complete" bit to move adapter from * D0A* (powered-up Active) --> D0U* (Uninitialized) state. */ iwl_clear_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE); /* Activates XTAL resources monitor */ __iwl_trans_pcie_set_bit(trans, CSR_MONITOR_CFG_REG, CSR_MONITOR_XTAL_RESOURCES); /* Release XTAL ON request */ __iwl_trans_pcie_clear_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_XTAL_ON); udelay(10); /* Release APMG XTAL */ iwl_trans_pcie_write_shr(trans, SHR_APMG_XTAL_CFG_REG, apmg_xtal_cfg_reg & ~SHR_APMG_XTAL_CFG_XTAL_ON_REQ); } void iwl_pcie_apm_stop_master(struct iwl_trans *trans) { int ret; /* stop device's busmaster DMA activity */ if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) { iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_BUS_MASTER_DISABLE_REQ); ret = iwl_poll_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_BUS_MASTER_DISABLE_STATUS, CSR_GP_CNTRL_REG_FLAG_BUS_MASTER_DISABLE_STATUS, 100); msleep(100); } else { iwl_set_bit(trans, CSR_RESET, CSR_RESET_REG_FLAG_STOP_MASTER); ret = iwl_poll_bit(trans, CSR_RESET, CSR_RESET_REG_FLAG_MASTER_DISABLED, CSR_RESET_REG_FLAG_MASTER_DISABLED, 100); } if (ret < 0) IWL_WARN(trans, "Master Disable Timed Out, 100 usec\n"); IWL_DEBUG_INFO(trans, "stop master\n"); } static void iwl_pcie_apm_stop(struct iwl_trans *trans, bool op_mode_leave) { IWL_DEBUG_INFO(trans, "Stop card, put in low power state\n"); if (op_mode_leave) { if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status)) iwl_pcie_apm_init(trans); /* inform ME that we are leaving */ if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) iwl_set_bits_prph(trans, APMG_PCIDEV_STT_REG, APMG_PCIDEV_STT_VAL_WAKE_ME); else if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_8000) { iwl_set_bit(trans, CSR_DBG_LINK_PWR_MGMT_REG, CSR_RESET_LINK_PWR_MGMT_DISABLED); iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG, CSR_HW_IF_CONFIG_REG_PREPARE | CSR_HW_IF_CONFIG_REG_ENABLE_PME); mdelay(1); iwl_clear_bit(trans, CSR_DBG_LINK_PWR_MGMT_REG, CSR_RESET_LINK_PWR_MGMT_DISABLED); } mdelay(5); } clear_bit(STATUS_DEVICE_ENABLED, &trans->status); /* Stop device's DMA activity */ iwl_pcie_apm_stop_master(trans); if (trans->cfg->lp_xtal_workaround) { iwl_pcie_apm_lp_xtal_enable(trans); return; } iwl_trans_pcie_sw_reset(trans, false); /* * Clear "initialization complete" bit to move adapter from * D0A* (powered-up Active) --> D0U* (Uninitialized) state. */ iwl_clear_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE); } static int iwl_pcie_nic_init(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); int ret; /* nic_init */ spin_lock_bh(&trans_pcie->irq_lock); ret = iwl_pcie_apm_init(trans); spin_unlock_bh(&trans_pcie->irq_lock); if (ret) return ret; iwl_pcie_set_pwr(trans, false); iwl_op_mode_nic_config(trans->op_mode); /* Allocate the RX queue, or reset if it is already allocated */ ret = iwl_pcie_rx_init(trans); if (ret) return ret; /* Allocate or reset and init all Tx and Command queues */ if (iwl_pcie_tx_init(trans)) { iwl_pcie_rx_free(trans); return -ENOMEM; } if (trans->trans_cfg->base_params->shadow_reg_enable) { /* enable shadow regs in HW */ iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTRL, 0x800FFFFF); IWL_DEBUG_INFO(trans, "Enabling shadow registers in device\n"); } return 0; } #define HW_READY_TIMEOUT (50) /* Note: returns poll_bit return value, which is >= 0 if success */ static int iwl_pcie_set_hw_ready(struct iwl_trans *trans) { int ret; iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG, CSR_HW_IF_CONFIG_REG_BIT_NIC_READY); /* See if we got it */ ret = iwl_poll_bit(trans, CSR_HW_IF_CONFIG_REG, CSR_HW_IF_CONFIG_REG_BIT_NIC_READY, CSR_HW_IF_CONFIG_REG_BIT_NIC_READY, HW_READY_TIMEOUT); if (ret >= 0) iwl_set_bit(trans, CSR_MBOX_SET_REG, CSR_MBOX_SET_REG_OS_ALIVE); IWL_DEBUG_INFO(trans, "hardware%s ready\n", ret < 0 ? " not" : ""); return ret; } /* Note: returns standard 0/-ERROR code */ int iwl_pcie_prepare_card_hw(struct iwl_trans *trans) { int ret; int iter; IWL_DEBUG_INFO(trans, "iwl_trans_prepare_card_hw enter\n"); ret = iwl_pcie_set_hw_ready(trans); /* If the card is ready, exit 0 */ if (ret >= 0) { trans->csme_own = false; return 0; } iwl_set_bit(trans, CSR_DBG_LINK_PWR_MGMT_REG, CSR_RESET_LINK_PWR_MGMT_DISABLED); usleep_range(1000, 2000); for (iter = 0; iter < 10; iter++) { int t = 0; /* If HW is not ready, prepare the conditions to check again */ iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG, CSR_HW_IF_CONFIG_REG_PREPARE); do { ret = iwl_pcie_set_hw_ready(trans); if (ret >= 0) { trans->csme_own = false; return 0; } if (iwl_mei_is_connected()) { IWL_DEBUG_INFO(trans, "Couldn't prepare the card but SAP is connected\n"); trans->csme_own = true; if (trans->trans_cfg->device_family != IWL_DEVICE_FAMILY_9000) IWL_ERR(trans, "SAP not supported for this NIC family\n"); return -EBUSY; } usleep_range(200, 1000); t += 200; } while (t < 150000); msleep(25); } IWL_ERR(trans, "Couldn't prepare the card\n"); return ret; } /* * ucode */ static void iwl_pcie_load_firmware_chunk_fh(struct iwl_trans *trans, u32 dst_addr, dma_addr_t phy_addr, u32 byte_cnt) { iwl_write32(trans, FH_TCSR_CHNL_TX_CONFIG_REG(FH_SRVC_CHNL), FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE); iwl_write32(trans, FH_SRVC_CHNL_SRAM_ADDR_REG(FH_SRVC_CHNL), dst_addr); iwl_write32(trans, FH_TFDIB_CTRL0_REG(FH_SRVC_CHNL), phy_addr & FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK); iwl_write32(trans, FH_TFDIB_CTRL1_REG(FH_SRVC_CHNL), (iwl_get_dma_hi_addr(phy_addr) << FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt); iwl_write32(trans, FH_TCSR_CHNL_TX_BUF_STS_REG(FH_SRVC_CHNL), BIT(FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM) | BIT(FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX) | FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID); iwl_write32(trans, FH_TCSR_CHNL_TX_CONFIG_REG(FH_SRVC_CHNL), FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE | FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE | FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD); } static int iwl_pcie_load_firmware_chunk(struct iwl_trans *trans, u32 dst_addr, dma_addr_t phy_addr, u32 byte_cnt) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); int ret; trans_pcie->ucode_write_complete = false; if (!iwl_trans_grab_nic_access(trans)) return -EIO; iwl_pcie_load_firmware_chunk_fh(trans, dst_addr, phy_addr, byte_cnt); iwl_trans_release_nic_access(trans); ret = wait_event_timeout(trans_pcie->ucode_write_waitq, trans_pcie->ucode_write_complete, 5 * HZ); if (!ret) { IWL_ERR(trans, "Failed to load firmware chunk!\n"); iwl_trans_pcie_dump_regs(trans); return -ETIMEDOUT; } return 0; } static int iwl_pcie_load_section(struct iwl_trans *trans, u8 section_num, const struct fw_desc *section) { u8 *v_addr; dma_addr_t p_addr; u32 offset, chunk_sz = min_t(u32, FH_MEM_TB_MAX_LENGTH, section->len); int ret = 0; IWL_DEBUG_FW(trans, "[%d] uCode section being loaded...\n", section_num); v_addr = dma_alloc_coherent(trans->dev, chunk_sz, &p_addr, GFP_KERNEL | __GFP_NOWARN); if (!v_addr) { IWL_DEBUG_INFO(trans, "Falling back to small chunks of DMA\n"); chunk_sz = PAGE_SIZE; v_addr = dma_alloc_coherent(trans->dev, chunk_sz, &p_addr, GFP_KERNEL); if (!v_addr) return -ENOMEM; } for (offset = 0; offset < section->len; offset += chunk_sz) { u32 copy_size, dst_addr; bool extended_addr = false; copy_size = min_t(u32, chunk_sz, section->len - offset); dst_addr = section->offset + offset; if (dst_addr >= IWL_FW_MEM_EXTENDED_START && dst_addr <= IWL_FW_MEM_EXTENDED_END) extended_addr = true; if (extended_addr) iwl_set_bits_prph(trans, LMPM_CHICK, LMPM_CHICK_EXTENDED_ADDR_SPACE); memcpy(v_addr, (const u8 *)section->data + offset, copy_size); ret = iwl_pcie_load_firmware_chunk(trans, dst_addr, p_addr, copy_size); if (extended_addr) iwl_clear_bits_prph(trans, LMPM_CHICK, LMPM_CHICK_EXTENDED_ADDR_SPACE); if (ret) { IWL_ERR(trans, "Could not load the [%d] uCode section\n", section_num); break; } } dma_free_coherent(trans->dev, chunk_sz, v_addr, p_addr); return ret; } static int iwl_pcie_load_cpu_sections_8000(struct iwl_trans *trans, const struct fw_img *image, int cpu, int *first_ucode_section) { int shift_param; int i, ret = 0, sec_num = 0x1; u32 val, last_read_idx = 0; if (cpu == 1) { shift_param = 0; *first_ucode_section = 0; } else { shift_param = 16; (*first_ucode_section)++; } for (i = *first_ucode_section; i < image->num_sec; i++) { last_read_idx = i; /* * CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between * CPU1 to CPU2. * PAGING_SEPARATOR_SECTION delimiter - separate between * CPU2 non paged to CPU2 paging sec. */ if (!image->sec[i].data || image->sec[i].offset == CPU1_CPU2_SEPARATOR_SECTION || image->sec[i].offset == PAGING_SEPARATOR_SECTION) { IWL_DEBUG_FW(trans, "Break since Data not valid or Empty section, sec = %d\n", i); break; } ret = iwl_pcie_load_section(trans, i, &image->sec[i]); if (ret) return ret; /* Notify ucode of loaded section number and status */ val = iwl_read_direct32(trans, FH_UCODE_LOAD_STATUS); val = val | (sec_num << shift_param); iwl_write_direct32(trans, FH_UCODE_LOAD_STATUS, val); sec_num = (sec_num << 1) | 0x1; } *first_ucode_section = last_read_idx; iwl_enable_interrupts(trans); if (trans->trans_cfg->use_tfh) { if (cpu == 1) iwl_write_prph(trans, UREG_UCODE_LOAD_STATUS, 0xFFFF); else iwl_write_prph(trans, UREG_UCODE_LOAD_STATUS, 0xFFFFFFFF); } else { if (cpu == 1) iwl_write_direct32(trans, FH_UCODE_LOAD_STATUS, 0xFFFF); else iwl_write_direct32(trans, FH_UCODE_LOAD_STATUS, 0xFFFFFFFF); } return 0; } static int iwl_pcie_load_cpu_sections(struct iwl_trans *trans, const struct fw_img *image, int cpu, int *first_ucode_section) { int i, ret = 0; u32 last_read_idx = 0; if (cpu == 1) *first_ucode_section = 0; else (*first_ucode_section)++; for (i = *first_ucode_section; i < image->num_sec; i++) { last_read_idx = i; /* * CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between * CPU1 to CPU2. * PAGING_SEPARATOR_SECTION delimiter - separate between * CPU2 non paged to CPU2 paging sec. */ if (!image->sec[i].data || image->sec[i].offset == CPU1_CPU2_SEPARATOR_SECTION || image->sec[i].offset == PAGING_SEPARATOR_SECTION) { IWL_DEBUG_FW(trans, "Break since Data not valid or Empty section, sec = %d\n", i); break; } ret = iwl_pcie_load_section(trans, i, &image->sec[i]); if (ret) return ret; } *first_ucode_section = last_read_idx; return 0; } static void iwl_pcie_apply_destination_ini(struct iwl_trans *trans) { enum iwl_fw_ini_allocation_id alloc_id = IWL_FW_INI_ALLOCATION_ID_DBGC1; struct iwl_fw_ini_allocation_tlv *fw_mon_cfg = &trans->dbg.fw_mon_cfg[alloc_id]; struct iwl_dram_data *frag; if (!iwl_trans_dbg_ini_valid(trans)) return; if (le32_to_cpu(fw_mon_cfg->buf_location) == IWL_FW_INI_LOCATION_SRAM_PATH) { IWL_DEBUG_FW(trans, "WRT: Applying SMEM buffer destination\n"); /* set sram monitor by enabling bit 7 */ iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG, CSR_HW_IF_CONFIG_REG_BIT_MONITOR_SRAM); return; } if (le32_to_cpu(fw_mon_cfg->buf_location) != IWL_FW_INI_LOCATION_DRAM_PATH || !trans->dbg.fw_mon_ini[alloc_id].num_frags) return; frag = &trans->dbg.fw_mon_ini[alloc_id].frags[0]; IWL_DEBUG_FW(trans, "WRT: Applying DRAM destination (alloc_id=%u)\n", alloc_id); iwl_write_umac_prph(trans, MON_BUFF_BASE_ADDR_VER2, frag->physical >> MON_BUFF_SHIFT_VER2); iwl_write_umac_prph(trans, MON_BUFF_END_ADDR_VER2, (frag->physical + frag->size - 256) >> MON_BUFF_SHIFT_VER2); } void iwl_pcie_apply_destination(struct iwl_trans *trans) { const struct iwl_fw_dbg_dest_tlv_v1 *dest = trans->dbg.dest_tlv; const struct iwl_dram_data *fw_mon = &trans->dbg.fw_mon; int i; if (iwl_trans_dbg_ini_valid(trans)) { iwl_pcie_apply_destination_ini(trans); return; } IWL_INFO(trans, "Applying debug destination %s\n", get_fw_dbg_mode_string(dest->monitor_mode)); if (dest->monitor_mode == EXTERNAL_MODE) iwl_pcie_alloc_fw_monitor(trans, dest->size_power); else IWL_WARN(trans, "PCI should have external buffer debug\n"); for (i = 0; i < trans->dbg.n_dest_reg; i++) { u32 addr = le32_to_cpu(dest->reg_ops[i].addr); u32 val = le32_to_cpu(dest->reg_ops[i].val); switch (dest->reg_ops[i].op) { case CSR_ASSIGN: iwl_write32(trans, addr, val); break; case CSR_SETBIT: iwl_set_bit(trans, addr, BIT(val)); break; case CSR_CLEARBIT: iwl_clear_bit(trans, addr, BIT(val)); break; case PRPH_ASSIGN: iwl_write_prph(trans, addr, val); break; case PRPH_SETBIT: iwl_set_bits_prph(trans, addr, BIT(val)); break; case PRPH_CLEARBIT: iwl_clear_bits_prph(trans, addr, BIT(val)); break; case PRPH_BLOCKBIT: if (iwl_read_prph(trans, addr) & BIT(val)) { IWL_ERR(trans, "BIT(%u) in address 0x%x is 1, stopping FW configuration\n", val, addr); goto monitor; } break; default: IWL_ERR(trans, "FW debug - unknown OP %d\n", dest->reg_ops[i].op); break; } } monitor: if (dest->monitor_mode == EXTERNAL_MODE && fw_mon->size) { iwl_write_prph(trans, le32_to_cpu(dest->base_reg), fw_mon->physical >> dest->base_shift); if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_8000) iwl_write_prph(trans, le32_to_cpu(dest->end_reg), (fw_mon->physical + fw_mon->size - 256) >> dest->end_shift); else iwl_write_prph(trans, le32_to_cpu(dest->end_reg), (fw_mon->physical + fw_mon->size) >> dest->end_shift); } } static int iwl_pcie_load_given_ucode(struct iwl_trans *trans, const struct fw_img *image) { int ret = 0; int first_ucode_section; IWL_DEBUG_FW(trans, "working with %s CPU\n", image->is_dual_cpus ? "Dual" : "Single"); /* load to FW the binary non secured sections of CPU1 */ ret = iwl_pcie_load_cpu_sections(trans, image, 1, &first_ucode_section); if (ret) return ret; if (image->is_dual_cpus) { /* set CPU2 header address */ iwl_write_prph(trans, LMPM_SECURE_UCODE_LOAD_CPU2_HDR_ADDR, LMPM_SECURE_CPU2_HDR_MEM_SPACE); /* load to FW the binary sections of CPU2 */ ret = iwl_pcie_load_cpu_sections(trans, image, 2, &first_ucode_section); if (ret) return ret; } if (iwl_pcie_dbg_on(trans)) iwl_pcie_apply_destination(trans); iwl_enable_interrupts(trans); /* release CPU reset */ iwl_write32(trans, CSR_RESET, 0); return 0; } static int iwl_pcie_load_given_ucode_8000(struct iwl_trans *trans, const struct fw_img *image) { int ret = 0; int first_ucode_section; IWL_DEBUG_FW(trans, "working with %s CPU\n", image->is_dual_cpus ? "Dual" : "Single"); if (iwl_pcie_dbg_on(trans)) iwl_pcie_apply_destination(trans); IWL_DEBUG_POWER(trans, "Original WFPM value = 0x%08X\n", iwl_read_prph(trans, WFPM_GP2)); /* * Set default value. On resume reading the values that were * zeored can provide debug data on the resume flow. * This is for debugging only and has no functional impact. */ iwl_write_prph(trans, WFPM_GP2, 0x01010101); /* configure the ucode to be ready to get the secured image */ /* release CPU reset */ iwl_write_prph(trans, RELEASE_CPU_RESET, RELEASE_CPU_RESET_BIT); /* load to FW the binary Secured sections of CPU1 */ ret = iwl_pcie_load_cpu_sections_8000(trans, image, 1, &first_ucode_section); if (ret) return ret; /* load to FW the binary sections of CPU2 */ return iwl_pcie_load_cpu_sections_8000(trans, image, 2, &first_ucode_section); } bool iwl_pcie_check_hw_rf_kill(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); bool hw_rfkill = iwl_is_rfkill_set(trans); bool prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status); bool report; if (hw_rfkill) { set_bit(STATUS_RFKILL_HW, &trans->status); set_bit(STATUS_RFKILL_OPMODE, &trans->status); } else { clear_bit(STATUS_RFKILL_HW, &trans->status); if (trans_pcie->opmode_down) clear_bit(STATUS_RFKILL_OPMODE, &trans->status); } report = test_bit(STATUS_RFKILL_OPMODE, &trans->status); if (prev != report) iwl_trans_pcie_rf_kill(trans, report); return hw_rfkill; } struct iwl_causes_list { u16 mask_reg; u8 bit; u8 addr; }; #define IWL_CAUSE(reg, mask) \ { \ .mask_reg = reg, \ .bit = ilog2(mask), \ .addr = ilog2(mask) + \ ((reg) == CSR_MSIX_FH_INT_MASK_AD ? -16 : \ (reg) == CSR_MSIX_HW_INT_MASK_AD ? 16 : \ 0xffff), /* causes overflow warning */ \ } static const struct iwl_causes_list causes_list_common[] = { IWL_CAUSE(CSR_MSIX_FH_INT_MASK_AD, MSIX_FH_INT_CAUSES_D2S_CH0_NUM), IWL_CAUSE(CSR_MSIX_FH_INT_MASK_AD, MSIX_FH_INT_CAUSES_D2S_CH1_NUM), IWL_CAUSE(CSR_MSIX_FH_INT_MASK_AD, MSIX_FH_INT_CAUSES_S2D), IWL_CAUSE(CSR_MSIX_FH_INT_MASK_AD, MSIX_FH_INT_CAUSES_FH_ERR), IWL_CAUSE(CSR_MSIX_HW_INT_MASK_AD, MSIX_HW_INT_CAUSES_REG_ALIVE), IWL_CAUSE(CSR_MSIX_HW_INT_MASK_AD, MSIX_HW_INT_CAUSES_REG_WAKEUP), IWL_CAUSE(CSR_MSIX_HW_INT_MASK_AD, MSIX_HW_INT_CAUSES_REG_RESET_DONE), IWL_CAUSE(CSR_MSIX_HW_INT_MASK_AD, MSIX_HW_INT_CAUSES_REG_CT_KILL), IWL_CAUSE(CSR_MSIX_HW_INT_MASK_AD, MSIX_HW_INT_CAUSES_REG_RF_KILL), IWL_CAUSE(CSR_MSIX_HW_INT_MASK_AD, MSIX_HW_INT_CAUSES_REG_PERIODIC), IWL_CAUSE(CSR_MSIX_HW_INT_MASK_AD, MSIX_HW_INT_CAUSES_REG_SCD), IWL_CAUSE(CSR_MSIX_HW_INT_MASK_AD, MSIX_HW_INT_CAUSES_REG_FH_TX), IWL_CAUSE(CSR_MSIX_HW_INT_MASK_AD, MSIX_HW_INT_CAUSES_REG_HW_ERR), IWL_CAUSE(CSR_MSIX_HW_INT_MASK_AD, MSIX_HW_INT_CAUSES_REG_HAP), }; static const struct iwl_causes_list causes_list_pre_bz[] = { IWL_CAUSE(CSR_MSIX_HW_INT_MASK_AD, MSIX_HW_INT_CAUSES_REG_SW_ERR), }; static const struct iwl_causes_list causes_list_bz[] = { IWL_CAUSE(CSR_MSIX_HW_INT_MASK_AD, MSIX_HW_INT_CAUSES_REG_SW_ERR_BZ), }; static void iwl_pcie_map_list(struct iwl_trans *trans, const struct iwl_causes_list *causes, int arr_size, int val) { int i; for (i = 0; i < arr_size; i++) { iwl_write8(trans, CSR_MSIX_IVAR(causes[i].addr), val); iwl_clear_bit(trans, causes[i].mask_reg, BIT(causes[i].bit)); } } static void iwl_pcie_map_non_rx_causes(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); int val = trans_pcie->def_irq | MSIX_NON_AUTO_CLEAR_CAUSE; /* * Access all non RX causes and map them to the default irq. * In case we are missing at least one interrupt vector, * the first interrupt vector will serve non-RX and FBQ causes. */ iwl_pcie_map_list(trans, causes_list_common, ARRAY_SIZE(causes_list_common), val); if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) iwl_pcie_map_list(trans, causes_list_bz, ARRAY_SIZE(causes_list_bz), val); else iwl_pcie_map_list(trans, causes_list_pre_bz, ARRAY_SIZE(causes_list_pre_bz), val); } static void iwl_pcie_map_rx_causes(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); u32 offset = trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS ? 1 : 0; u32 val, idx; /* * The first RX queue - fallback queue, which is designated for * management frame, command responses etc, is always mapped to the * first interrupt vector. The other RX queues are mapped to * the other (N - 2) interrupt vectors. */ val = BIT(MSIX_FH_INT_CAUSES_Q(0)); for (idx = 1; idx < trans->num_rx_queues; idx++) { iwl_write8(trans, CSR_MSIX_RX_IVAR(idx), MSIX_FH_INT_CAUSES_Q(idx - offset)); val |= BIT(MSIX_FH_INT_CAUSES_Q(idx)); } iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD, ~val); val = MSIX_FH_INT_CAUSES_Q(0); if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) val |= MSIX_NON_AUTO_CLEAR_CAUSE; iwl_write8(trans, CSR_MSIX_RX_IVAR(0), val); if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) iwl_write8(trans, CSR_MSIX_RX_IVAR(1), val); } void iwl_pcie_conf_msix_hw(struct iwl_trans_pcie *trans_pcie) { struct iwl_trans *trans = trans_pcie->trans; if (!trans_pcie->msix_enabled) { if (trans->trans_cfg->mq_rx_supported && test_bit(STATUS_DEVICE_ENABLED, &trans->status)) iwl_write_umac_prph(trans, UREG_CHICK, UREG_CHICK_MSI_ENABLE); return; } /* * The IVAR table needs to be configured again after reset, * but if the device is disabled, we can't write to * prph. */ if (test_bit(STATUS_DEVICE_ENABLED, &trans->status)) iwl_write_umac_prph(trans, UREG_CHICK, UREG_CHICK_MSIX_ENABLE); /* * Each cause from the causes list above and the RX causes is * represented as a byte in the IVAR table. The first nibble * represents the bound interrupt vector of the cause, the second * represents no auto clear for this cause. This will be set if its * interrupt vector is bound to serve other causes. */ iwl_pcie_map_rx_causes(trans); iwl_pcie_map_non_rx_causes(trans); } static void iwl_pcie_init_msix(struct iwl_trans_pcie *trans_pcie) { struct iwl_trans *trans = trans_pcie->trans; iwl_pcie_conf_msix_hw(trans_pcie); if (!trans_pcie->msix_enabled) return; trans_pcie->fh_init_mask = ~iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD); trans_pcie->fh_mask = trans_pcie->fh_init_mask; trans_pcie->hw_init_mask = ~iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD); trans_pcie->hw_mask = trans_pcie->hw_init_mask; } static void _iwl_trans_pcie_stop_device(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); lockdep_assert_held(&trans_pcie->mutex); if (trans_pcie->is_down) return; trans_pcie->is_down = true; /* tell the device to stop sending interrupts */ iwl_disable_interrupts(trans); /* device going down, Stop using ICT table */ iwl_pcie_disable_ict(trans); /* * If a HW restart happens during firmware loading, * then the firmware loading might call this function * and later it might be called again due to the * restart. So don't process again if the device is * already dead. */ if (test_and_clear_bit(STATUS_DEVICE_ENABLED, &trans->status)) { IWL_DEBUG_INFO(trans, "DEVICE_ENABLED bit was set and is now cleared\n"); iwl_pcie_tx_stop(trans); iwl_pcie_rx_stop(trans); /* Power-down device's busmaster DMA clocks */ if (!trans->cfg->apmg_not_supported) { iwl_write_prph(trans, APMG_CLK_DIS_REG, APMG_CLK_VAL_DMA_CLK_RQT); udelay(5); } } /* Make sure (redundant) we've released our request to stay awake */ if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) iwl_clear_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_BZ_MAC_ACCESS_REQ); else iwl_clear_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); /* Stop the device, and put it in low power state */ iwl_pcie_apm_stop(trans, false); /* re-take ownership to prevent other users from stealing the device */ iwl_trans_pcie_sw_reset(trans, true); /* * Upon stop, the IVAR table gets erased, so msi-x won't * work. This causes a bug in RF-KILL flows, since the interrupt * that enables radio won't fire on the correct irq, and the * driver won't be able to handle the interrupt. * Configure the IVAR table again after reset. */ iwl_pcie_conf_msix_hw(trans_pcie); /* * Upon stop, the APM issues an interrupt if HW RF kill is set. * This is a bug in certain verions of the hardware. * Certain devices also keep sending HW RF kill interrupt all * the time, unless the interrupt is ACKed even if the interrupt * should be masked. Re-ACK all the interrupts here. */ iwl_disable_interrupts(trans); /* clear all status bits */ clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); clear_bit(STATUS_INT_ENABLED, &trans->status); clear_bit(STATUS_TPOWER_PMI, &trans->status); /* * Even if we stop the HW, we still want the RF kill * interrupt */ iwl_enable_rfkill_int(trans); } void iwl_pcie_synchronize_irqs(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); if (trans_pcie->msix_enabled) { int i; for (i = 0; i < trans_pcie->alloc_vecs; i++) synchronize_irq(trans_pcie->msix_entries[i].vector); } else { synchronize_irq(trans_pcie->pci_dev->irq); } } static int iwl_trans_pcie_start_fw(struct iwl_trans *trans, const struct fw_img *fw, bool run_in_rfkill) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); bool hw_rfkill; int ret; /* This may fail if AMT took ownership of the device */ if (iwl_pcie_prepare_card_hw(trans)) { IWL_WARN(trans, "Exit HW not ready\n"); return -EIO; } iwl_enable_rfkill_int(trans); iwl_write32(trans, CSR_INT, 0xFFFFFFFF); /* * We enabled the RF-Kill interrupt and the handler may very * well be running. Disable the interrupts to make sure no other * interrupt can be fired. */ iwl_disable_interrupts(trans); /* Make sure it finished running */ iwl_pcie_synchronize_irqs(trans); mutex_lock(&trans_pcie->mutex); /* If platform's RF_KILL switch is NOT set to KILL */ hw_rfkill = iwl_pcie_check_hw_rf_kill(trans); if (hw_rfkill && !run_in_rfkill) { ret = -ERFKILL; goto out; } /* Someone called stop_device, don't try to start_fw */ if (trans_pcie->is_down) { IWL_WARN(trans, "Can't start_fw since the HW hasn't been started\n"); ret = -EIO; goto out; } /* make sure rfkill handshake bits are cleared */ iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL); iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED); /* clear (again), then enable host interrupts */ iwl_write32(trans, CSR_INT, 0xFFFFFFFF); ret = iwl_pcie_nic_init(trans); if (ret) { IWL_ERR(trans, "Unable to init nic\n"); goto out; } /* * Now, we load the firmware and don't want to be interrupted, even * by the RF-Kill interrupt (hence mask all the interrupt besides the * FH_TX interrupt which is needed to load the firmware). If the * RF-Kill switch is toggled, we will find out after having loaded * the firmware and return the proper value to the caller. */ iwl_enable_fw_load_int(trans); /* really make sure rfkill handshake bits are cleared */ iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL); iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL); /* Load the given image to the HW */ if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_8000) ret = iwl_pcie_load_given_ucode_8000(trans, fw); else ret = iwl_pcie_load_given_ucode(trans, fw); /* re-check RF-Kill state since we may have missed the interrupt */ hw_rfkill = iwl_pcie_check_hw_rf_kill(trans); if (hw_rfkill && !run_in_rfkill) ret = -ERFKILL; out: mutex_unlock(&trans_pcie->mutex); return ret; } static void iwl_trans_pcie_fw_alive(struct iwl_trans *trans, u32 scd_addr) { iwl_pcie_reset_ict(trans); iwl_pcie_tx_start(trans, scd_addr); } void iwl_trans_pcie_handle_stop_rfkill(struct iwl_trans *trans, bool was_in_rfkill) { bool hw_rfkill; /* * Check again since the RF kill state may have changed while * all the interrupts were disabled, in this case we couldn't * receive the RF kill interrupt and update the state in the * op_mode. * Don't call the op_mode if the rkfill state hasn't changed. * This allows the op_mode to call stop_device from the rfkill * notification without endless recursion. Under very rare * circumstances, we might have a small recursion if the rfkill * state changed exactly now while we were called from stop_device. * This is very unlikely but can happen and is supported. */ hw_rfkill = iwl_is_rfkill_set(trans); if (hw_rfkill) { set_bit(STATUS_RFKILL_HW, &trans->status); set_bit(STATUS_RFKILL_OPMODE, &trans->status); } else { clear_bit(STATUS_RFKILL_HW, &trans->status); clear_bit(STATUS_RFKILL_OPMODE, &trans->status); } if (hw_rfkill != was_in_rfkill) iwl_trans_pcie_rf_kill(trans, hw_rfkill); } static void iwl_trans_pcie_stop_device(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); bool was_in_rfkill; iwl_op_mode_time_point(trans->op_mode, IWL_FW_INI_TIME_POINT_HOST_DEVICE_DISABLE, NULL); mutex_lock(&trans_pcie->mutex); trans_pcie->opmode_down = true; was_in_rfkill = test_bit(STATUS_RFKILL_OPMODE, &trans->status); _iwl_trans_pcie_stop_device(trans); iwl_trans_pcie_handle_stop_rfkill(trans, was_in_rfkill); mutex_unlock(&trans_pcie->mutex); } void iwl_trans_pcie_rf_kill(struct iwl_trans *trans, bool state) { struct iwl_trans_pcie __maybe_unused *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); lockdep_assert_held(&trans_pcie->mutex); IWL_WARN(trans, "reporting RF_KILL (radio %s)\n", state ? "disabled" : "enabled"); if (iwl_op_mode_hw_rf_kill(trans->op_mode, state)) { if (trans->trans_cfg->gen2) _iwl_trans_pcie_gen2_stop_device(trans); else _iwl_trans_pcie_stop_device(trans); } } void iwl_pcie_d3_complete_suspend(struct iwl_trans *trans, bool test, bool reset) { iwl_disable_interrupts(trans); /* * in testing mode, the host stays awake and the * hardware won't be reset (not even partially) */ if (test) return; iwl_pcie_disable_ict(trans); iwl_pcie_synchronize_irqs(trans); iwl_clear_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); iwl_clear_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE); if (reset) { /* * reset TX queues -- some of their registers reset during S3 * so if we don't reset everything here the D3 image would try * to execute some invalid memory upon resume */ iwl_trans_pcie_tx_reset(trans); } iwl_pcie_set_pwr(trans, true); } static int iwl_pcie_d3_handshake(struct iwl_trans *trans, bool suspend) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); int ret; if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_AX210) iwl_write_umac_prph(trans, UREG_DOORBELL_TO_ISR6, suspend ? UREG_DOORBELL_TO_ISR6_SUSPEND : UREG_DOORBELL_TO_ISR6_RESUME); else if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) iwl_write32(trans, CSR_IPC_SLEEP_CONTROL, suspend ? CSR_IPC_SLEEP_CONTROL_SUSPEND : CSR_IPC_SLEEP_CONTROL_RESUME); else return 0; ret = wait_event_timeout(trans_pcie->sx_waitq, trans_pcie->sx_complete, 2 * HZ); /* Invalidate it toward next suspend or resume */ trans_pcie->sx_complete = false; if (!ret) { IWL_ERR(trans, "Timeout %s D3\n", suspend ? "entering" : "exiting"); return -ETIMEDOUT; } return 0; } static int iwl_trans_pcie_d3_suspend(struct iwl_trans *trans, bool test, bool reset) { int ret; if (!reset) /* Enable persistence mode to avoid reset */ iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG, CSR_HW_IF_CONFIG_REG_PERSIST_MODE); ret = iwl_pcie_d3_handshake(trans, true); if (ret) return ret; iwl_pcie_d3_complete_suspend(trans, test, reset); return 0; } static int iwl_trans_pcie_d3_resume(struct iwl_trans *trans, enum iwl_d3_status *status, bool test, bool reset) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); u32 val; int ret; if (test) { iwl_enable_interrupts(trans); *status = IWL_D3_STATUS_ALIVE; ret = 0; goto out; } iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); ret = iwl_finish_nic_init(trans); if (ret) return ret; /* * Reconfigure IVAR table in case of MSIX or reset ict table in * MSI mode since HW reset erased it. * Also enables interrupts - none will happen as * the device doesn't know we're waking it up, only when * the opmode actually tells it after this call. */ iwl_pcie_conf_msix_hw(trans_pcie); if (!trans_pcie->msix_enabled) iwl_pcie_reset_ict(trans); iwl_enable_interrupts(trans); iwl_pcie_set_pwr(trans, false); if (!reset) { iwl_clear_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); } else { iwl_trans_pcie_tx_reset(trans); ret = iwl_pcie_rx_init(trans); if (ret) { IWL_ERR(trans, "Failed to resume the device (RX reset)\n"); return ret; } } IWL_DEBUG_POWER(trans, "WFPM value upon resume = 0x%08X\n", iwl_read_umac_prph(trans, WFPM_GP2)); val = iwl_read32(trans, CSR_RESET); if (val & CSR_RESET_REG_FLAG_NEVO_RESET) *status = IWL_D3_STATUS_RESET; else *status = IWL_D3_STATUS_ALIVE; out: if (*status == IWL_D3_STATUS_ALIVE) ret = iwl_pcie_d3_handshake(trans, false); return ret; } static void iwl_pcie_set_interrupt_capa(struct pci_dev *pdev, struct iwl_trans *trans, const struct iwl_cfg_trans_params *cfg_trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); int max_irqs, num_irqs, i, ret; u16 pci_cmd; u32 max_rx_queues = IWL_MAX_RX_HW_QUEUES; if (!cfg_trans->mq_rx_supported) goto enable_msi; if (cfg_trans->device_family <= IWL_DEVICE_FAMILY_9000) max_rx_queues = IWL_9000_MAX_RX_HW_QUEUES; max_irqs = min_t(u32, num_online_cpus() + 2, max_rx_queues); for (i = 0; i < max_irqs; i++) trans_pcie->msix_entries[i].entry = i; num_irqs = pci_enable_msix_range(pdev, trans_pcie->msix_entries, MSIX_MIN_INTERRUPT_VECTORS, max_irqs); if (num_irqs < 0) { IWL_DEBUG_INFO(trans, "Failed to enable msi-x mode (ret %d). Moving to msi mode.\n", num_irqs); goto enable_msi; } trans_pcie->def_irq = (num_irqs == max_irqs) ? num_irqs - 1 : 0; IWL_DEBUG_INFO(trans, "MSI-X enabled. %d interrupt vectors were allocated\n", num_irqs); /* * In case the OS provides fewer interrupts than requested, different * causes will share the same interrupt vector as follows: * One interrupt less: non rx causes shared with FBQ. * Two interrupts less: non rx causes shared with FBQ and RSS. * More than two interrupts: we will use fewer RSS queues. */ if (num_irqs <= max_irqs - 2) { trans_pcie->trans->num_rx_queues = num_irqs + 1; trans_pcie->shared_vec_mask = IWL_SHARED_IRQ_NON_RX | IWL_SHARED_IRQ_FIRST_RSS; } else if (num_irqs == max_irqs - 1) { trans_pcie->trans->num_rx_queues = num_irqs; trans_pcie->shared_vec_mask = IWL_SHARED_IRQ_NON_RX; } else { trans_pcie->trans->num_rx_queues = num_irqs - 1; } IWL_DEBUG_INFO(trans, "MSI-X enabled with rx queues %d, vec mask 0x%x\n", trans_pcie->trans->num_rx_queues, trans_pcie->shared_vec_mask); WARN_ON(trans_pcie->trans->num_rx_queues > IWL_MAX_RX_HW_QUEUES); trans_pcie->alloc_vecs = num_irqs; trans_pcie->msix_enabled = true; return; enable_msi: ret = pci_enable_msi(pdev); if (ret) { dev_err(&pdev->dev, "pci_enable_msi failed - %d\n", ret); /* enable rfkill interrupt: hw bug w/a */ pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd); if (pci_cmd & PCI_COMMAND_INTX_DISABLE) { pci_cmd &= ~PCI_COMMAND_INTX_DISABLE; pci_write_config_word(pdev, PCI_COMMAND, pci_cmd); } } } static void iwl_pcie_irq_set_affinity(struct iwl_trans *trans) { int iter_rx_q, i, ret, cpu, offset; struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); i = trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS ? 0 : 1; iter_rx_q = trans_pcie->trans->num_rx_queues - 1 + i; offset = 1 + i; for (; i < iter_rx_q ; i++) { /* * Get the cpu prior to the place to search * (i.e. return will be > i - 1). */ cpu = cpumask_next(i - offset, cpu_online_mask); cpumask_set_cpu(cpu, &trans_pcie->affinity_mask[i]); ret = irq_set_affinity_hint(trans_pcie->msix_entries[i].vector, &trans_pcie->affinity_mask[i]); if (ret) IWL_ERR(trans_pcie->trans, "Failed to set affinity mask for IRQ %d\n", trans_pcie->msix_entries[i].vector); } } static int iwl_pcie_init_msix_handler(struct pci_dev *pdev, struct iwl_trans_pcie *trans_pcie) { int i; for (i = 0; i < trans_pcie->alloc_vecs; i++) { int ret; struct msix_entry *msix_entry; const char *qname = queue_name(&pdev->dev, trans_pcie, i); if (!qname) return -ENOMEM; msix_entry = &trans_pcie->msix_entries[i]; ret = devm_request_threaded_irq(&pdev->dev, msix_entry->vector, iwl_pcie_msix_isr, (i == trans_pcie->def_irq) ? iwl_pcie_irq_msix_handler : iwl_pcie_irq_rx_msix_handler, IRQF_SHARED, qname, msix_entry); if (ret) { IWL_ERR(trans_pcie->trans, "Error allocating IRQ %d\n", i); return ret; } } iwl_pcie_irq_set_affinity(trans_pcie->trans); return 0; } static int iwl_trans_pcie_clear_persistence_bit(struct iwl_trans *trans) { u32 hpm, wprot; switch (trans->trans_cfg->device_family) { case IWL_DEVICE_FAMILY_9000: wprot = PREG_PRPH_WPROT_9000; break; case IWL_DEVICE_FAMILY_22000: wprot = PREG_PRPH_WPROT_22000; break; default: return 0; } hpm = iwl_read_umac_prph_no_grab(trans, HPM_DEBUG); if (hpm != 0xa5a5a5a0 && (hpm & PERSISTENCE_BIT)) { u32 wprot_val = iwl_read_umac_prph_no_grab(trans, wprot); if (wprot_val & PREG_WFPM_ACCESS) { IWL_ERR(trans, "Error, can not clear persistence bit\n"); return -EPERM; } iwl_write_umac_prph_no_grab(trans, HPM_DEBUG, hpm & ~PERSISTENCE_BIT); } return 0; } static int iwl_pcie_gen2_force_power_gating(struct iwl_trans *trans) { int ret; ret = iwl_finish_nic_init(trans); if (ret < 0) return ret; iwl_set_bits_prph(trans, HPM_HIPM_GEN_CFG, HPM_HIPM_GEN_CFG_CR_FORCE_ACTIVE); udelay(20); iwl_set_bits_prph(trans, HPM_HIPM_GEN_CFG, HPM_HIPM_GEN_CFG_CR_PG_EN | HPM_HIPM_GEN_CFG_CR_SLP_EN); udelay(20); iwl_clear_bits_prph(trans, HPM_HIPM_GEN_CFG, HPM_HIPM_GEN_CFG_CR_FORCE_ACTIVE); return iwl_trans_pcie_sw_reset(trans, true); } static int _iwl_trans_pcie_start_hw(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); int err; lockdep_assert_held(&trans_pcie->mutex); err = iwl_pcie_prepare_card_hw(trans); if (err) { IWL_ERR(trans, "Error while preparing HW: %d\n", err); return err; } err = iwl_trans_pcie_clear_persistence_bit(trans); if (err) return err; err = iwl_trans_pcie_sw_reset(trans, true); if (err) return err; if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_22000 && trans->trans_cfg->integrated) { err = iwl_pcie_gen2_force_power_gating(trans); if (err) return err; } err = iwl_pcie_apm_init(trans); if (err) return err; iwl_pcie_init_msix(trans_pcie); /* From now on, the op_mode will be kept updated about RF kill state */ iwl_enable_rfkill_int(trans); trans_pcie->opmode_down = false; /* Set is_down to false here so that...*/ trans_pcie->is_down = false; /* ...rfkill can call stop_device and set it false if needed */ iwl_pcie_check_hw_rf_kill(trans); return 0; } static int iwl_trans_pcie_start_hw(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); int ret; mutex_lock(&trans_pcie->mutex); ret = _iwl_trans_pcie_start_hw(trans); mutex_unlock(&trans_pcie->mutex); return ret; } static void iwl_trans_pcie_op_mode_leave(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); mutex_lock(&trans_pcie->mutex); /* disable interrupts - don't enable HW RF kill interrupt */ iwl_disable_interrupts(trans); iwl_pcie_apm_stop(trans, true); iwl_disable_interrupts(trans); iwl_pcie_disable_ict(trans); mutex_unlock(&trans_pcie->mutex); iwl_pcie_synchronize_irqs(trans); } static void iwl_trans_pcie_write8(struct iwl_trans *trans, u32 ofs, u8 val) { writeb(val, IWL_TRANS_GET_PCIE_TRANS(trans)->hw_base + ofs); } static void iwl_trans_pcie_write32(struct iwl_trans *trans, u32 ofs, u32 val) { writel(val, IWL_TRANS_GET_PCIE_TRANS(trans)->hw_base + ofs); } static u32 iwl_trans_pcie_read32(struct iwl_trans *trans, u32 ofs) { return readl(IWL_TRANS_GET_PCIE_TRANS(trans)->hw_base + ofs); } static u32 iwl_trans_pcie_prph_msk(struct iwl_trans *trans) { if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) return 0x00FFFFFF; else return 0x000FFFFF; } static u32 iwl_trans_pcie_read_prph(struct iwl_trans *trans, u32 reg) { u32 mask = iwl_trans_pcie_prph_msk(trans); iwl_trans_pcie_write32(trans, HBUS_TARG_PRPH_RADDR, ((reg & mask) | (3 << 24))); return iwl_trans_pcie_read32(trans, HBUS_TARG_PRPH_RDAT); } static void iwl_trans_pcie_write_prph(struct iwl_trans *trans, u32 addr, u32 val) { u32 mask = iwl_trans_pcie_prph_msk(trans); iwl_trans_pcie_write32(trans, HBUS_TARG_PRPH_WADDR, ((addr & mask) | (3 << 24))); iwl_trans_pcie_write32(trans, HBUS_TARG_PRPH_WDAT, val); } static void iwl_trans_pcie_configure(struct iwl_trans *trans, const struct iwl_trans_config *trans_cfg) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); /* free all first - we might be reconfigured for a different size */ iwl_pcie_free_rbs_pool(trans); trans->txqs.cmd.q_id = trans_cfg->cmd_queue; trans->txqs.cmd.fifo = trans_cfg->cmd_fifo; trans->txqs.cmd.wdg_timeout = trans_cfg->cmd_q_wdg_timeout; trans->txqs.page_offs = trans_cfg->cb_data_offs; trans->txqs.dev_cmd_offs = trans_cfg->cb_data_offs + sizeof(void *); trans->txqs.queue_alloc_cmd_ver = trans_cfg->queue_alloc_cmd_ver; if (WARN_ON(trans_cfg->n_no_reclaim_cmds > MAX_NO_RECLAIM_CMDS)) trans_pcie->n_no_reclaim_cmds = 0; else trans_pcie->n_no_reclaim_cmds = trans_cfg->n_no_reclaim_cmds; if (trans_pcie->n_no_reclaim_cmds) memcpy(trans_pcie->no_reclaim_cmds, trans_cfg->no_reclaim_cmds, trans_pcie->n_no_reclaim_cmds * sizeof(u8)); trans_pcie->rx_buf_size = trans_cfg->rx_buf_size; trans_pcie->rx_page_order = iwl_trans_get_rb_size_order(trans_pcie->rx_buf_size); trans_pcie->rx_buf_bytes = iwl_trans_get_rb_size(trans_pcie->rx_buf_size); trans_pcie->supported_dma_mask = DMA_BIT_MASK(12); if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) trans_pcie->supported_dma_mask = DMA_BIT_MASK(11); trans->txqs.bc_table_dword = trans_cfg->bc_table_dword; trans_pcie->scd_set_active = trans_cfg->scd_set_active; trans->command_groups = trans_cfg->command_groups; trans->command_groups_size = trans_cfg->command_groups_size; /* Initialize NAPI here - it should be before registering to mac80211 * in the opmode but after the HW struct is allocated. * As this function may be called again in some corner cases don't * do anything if NAPI was already initialized. */ if (trans_pcie->napi_dev.reg_state != NETREG_DUMMY) init_dummy_netdev(&trans_pcie->napi_dev); trans_pcie->fw_reset_handshake = trans_cfg->fw_reset_handshake; } void iwl_trans_pcie_free(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); int i; iwl_pcie_synchronize_irqs(trans); if (trans->trans_cfg->gen2) iwl_txq_gen2_tx_free(trans); else iwl_pcie_tx_free(trans); iwl_pcie_rx_free(trans); if (trans_pcie->rba.alloc_wq) { destroy_workqueue(trans_pcie->rba.alloc_wq); trans_pcie->rba.alloc_wq = NULL; } if (trans_pcie->msix_enabled) { for (i = 0; i < trans_pcie->alloc_vecs; i++) { irq_set_affinity_hint( trans_pcie->msix_entries[i].vector, NULL); } trans_pcie->msix_enabled = false; } else { iwl_pcie_free_ict(trans); } iwl_pcie_free_fw_monitor(trans); if (trans_pcie->pnvm_dram.size) dma_free_coherent(trans->dev, trans_pcie->pnvm_dram.size, trans_pcie->pnvm_dram.block, trans_pcie->pnvm_dram.physical); if (trans_pcie->reduce_power_dram.size) dma_free_coherent(trans->dev, trans_pcie->reduce_power_dram.size, trans_pcie->reduce_power_dram.block, trans_pcie->reduce_power_dram.physical); mutex_destroy(&trans_pcie->mutex); iwl_trans_free(trans); } static void iwl_trans_pcie_set_pmi(struct iwl_trans *trans, bool state) { if (state) set_bit(STATUS_TPOWER_PMI, &trans->status); else clear_bit(STATUS_TPOWER_PMI, &trans->status); } struct iwl_trans_pcie_removal { struct pci_dev *pdev; struct work_struct work; bool rescan; }; static void iwl_trans_pcie_removal_wk(struct work_struct *wk) { struct iwl_trans_pcie_removal *removal = container_of(wk, struct iwl_trans_pcie_removal, work); struct pci_dev *pdev = removal->pdev; static char *prop[] = {"EVENT=INACCESSIBLE", NULL}; struct pci_bus *bus = pdev->bus; dev_err(&pdev->dev, "Device gone - attempting removal\n"); kobject_uevent_env(&pdev->dev.kobj, KOBJ_CHANGE, prop); pci_lock_rescan_remove(); pci_dev_put(pdev); pci_stop_and_remove_bus_device(pdev); if (removal->rescan) pci_rescan_bus(bus->parent); pci_unlock_rescan_remove(); kfree(removal); module_put(THIS_MODULE); } void iwl_trans_pcie_remove(struct iwl_trans *trans, bool rescan) { struct iwl_trans_pcie_removal *removal; if (test_bit(STATUS_TRANS_DEAD, &trans->status)) return; IWL_ERR(trans, "Device gone - scheduling removal!\n"); /* * get a module reference to avoid doing this * while unloading anyway and to avoid * scheduling a work with code that's being * removed. */ if (!try_module_get(THIS_MODULE)) { IWL_ERR(trans, "Module is being unloaded - abort\n"); return; } removal = kzalloc(sizeof(*removal), GFP_ATOMIC); if (!removal) { module_put(THIS_MODULE); return; } /* * we don't need to clear this flag, because * the trans will be freed and reallocated. */ set_bit(STATUS_TRANS_DEAD, &trans->status); removal->pdev = to_pci_dev(trans->dev); removal->rescan = rescan; INIT_WORK(&removal->work, iwl_trans_pcie_removal_wk); pci_dev_get(removal->pdev); schedule_work(&removal->work); } EXPORT_SYMBOL(iwl_trans_pcie_remove); /* * This version doesn't disable BHs but rather assumes they're * already disabled. */ bool __iwl_trans_pcie_grab_nic_access(struct iwl_trans *trans) { int ret; struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); u32 write = CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ; u32 mask = CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY | CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP; u32 poll = CSR_GP_CNTRL_REG_VAL_MAC_ACCESS_EN; spin_lock(&trans_pcie->reg_lock); if (trans_pcie->cmd_hold_nic_awake) goto out; if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) { write = CSR_GP_CNTRL_REG_FLAG_BZ_MAC_ACCESS_REQ; mask = CSR_GP_CNTRL_REG_FLAG_MAC_STATUS; poll = CSR_GP_CNTRL_REG_FLAG_MAC_STATUS; } /* this bit wakes up the NIC */ __iwl_trans_pcie_set_bit(trans, CSR_GP_CNTRL, write); if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_8000) udelay(2); /* * These bits say the device is running, and should keep running for * at least a short while (at least as long as MAC_ACCESS_REQ stays 1), * but they do not indicate that embedded SRAM is restored yet; * HW with volatile SRAM must save/restore contents to/from * host DRAM when sleeping/waking for power-saving. * Each direction takes approximately 1/4 millisecond; with this * overhead, it's a good idea to grab and hold MAC_ACCESS_REQUEST if a * series of register accesses are expected (e.g. reading Event Log), * to keep device from sleeping. * * CSR_UCODE_DRV_GP1 register bit MAC_SLEEP == 0 indicates that * SRAM is okay/restored. We don't check that here because this call * is just for hardware register access; but GP1 MAC_SLEEP * check is a good idea before accessing the SRAM of HW with * volatile SRAM (e.g. reading Event Log). * * 5000 series and later (including 1000 series) have non-volatile SRAM, * and do not save/restore SRAM when power cycling. */ ret = iwl_poll_bit(trans, CSR_GP_CNTRL, poll, mask, 15000); if (unlikely(ret < 0)) { u32 cntrl = iwl_read32(trans, CSR_GP_CNTRL); WARN_ONCE(1, "Timeout waiting for hardware access (CSR_GP_CNTRL 0x%08x)\n", cntrl); iwl_trans_pcie_dump_regs(trans); if (iwlwifi_mod_params.remove_when_gone && cntrl == ~0U) iwl_trans_pcie_remove(trans, false); else iwl_write32(trans, CSR_RESET, CSR_RESET_REG_FLAG_FORCE_NMI); spin_unlock(&trans_pcie->reg_lock); return false; } out: /* * Fool sparse by faking we release the lock - sparse will * track nic_access anyway. */ __release(&trans_pcie->reg_lock); return true; } static bool iwl_trans_pcie_grab_nic_access(struct iwl_trans *trans) { bool ret; local_bh_disable(); ret = __iwl_trans_pcie_grab_nic_access(trans); if (ret) { /* keep BHs disabled until iwl_trans_pcie_release_nic_access */ return ret; } local_bh_enable(); return false; } static void iwl_trans_pcie_release_nic_access(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); lockdep_assert_held(&trans_pcie->reg_lock); /* * Fool sparse by faking we acquiring the lock - sparse will * track nic_access anyway. */ __acquire(&trans_pcie->reg_lock); if (trans_pcie->cmd_hold_nic_awake) goto out; if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) __iwl_trans_pcie_clear_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_BZ_MAC_ACCESS_REQ); else __iwl_trans_pcie_clear_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); /* * Above we read the CSR_GP_CNTRL register, which will flush * any previous writes, but we need the write that clears the * MAC_ACCESS_REQ bit to be performed before any other writes * scheduled on different CPUs (after we drop reg_lock). */ out: spin_unlock_bh(&trans_pcie->reg_lock); } static int iwl_trans_pcie_read_mem(struct iwl_trans *trans, u32 addr, void *buf, int dwords) { int offs = 0; u32 *vals = buf; while (offs < dwords) { /* limit the time we spin here under lock to 1/2s */ unsigned long end = jiffies + HZ / 2; bool resched = false; if (iwl_trans_grab_nic_access(trans)) { iwl_write32(trans, HBUS_TARG_MEM_RADDR, addr + 4 * offs); while (offs < dwords) { vals[offs] = iwl_read32(trans, HBUS_TARG_MEM_RDAT); offs++; if (time_after(jiffies, end)) { resched = true; break; } } iwl_trans_release_nic_access(trans); if (resched) cond_resched(); } else { return -EBUSY; } } return 0; } static int iwl_trans_pcie_write_mem(struct iwl_trans *trans, u32 addr, const void *buf, int dwords) { int offs, ret = 0; const u32 *vals = buf; if (iwl_trans_grab_nic_access(trans)) { iwl_write32(trans, HBUS_TARG_MEM_WADDR, addr); for (offs = 0; offs < dwords; offs++) iwl_write32(trans, HBUS_TARG_MEM_WDAT, vals ? vals[offs] : 0); iwl_trans_release_nic_access(trans); } else { ret = -EBUSY; } return ret; } static int iwl_trans_pcie_read_config32(struct iwl_trans *trans, u32 ofs, u32 *val) { return pci_read_config_dword(IWL_TRANS_GET_PCIE_TRANS(trans)->pci_dev, ofs, val); } static void iwl_trans_pcie_block_txq_ptrs(struct iwl_trans *trans, bool block) { int i; for (i = 0; i < trans->trans_cfg->base_params->num_of_queues; i++) { struct iwl_txq *txq = trans->txqs.txq[i]; if (i == trans->txqs.cmd.q_id) continue; spin_lock_bh(&txq->lock); if (!block && !(WARN_ON_ONCE(!txq->block))) { txq->block--; if (!txq->block) { iwl_write32(trans, HBUS_TARG_WRPTR, txq->write_ptr | (i << 8)); } } else if (block) { txq->block++; } spin_unlock_bh(&txq->lock); } } #define IWL_FLUSH_WAIT_MS 2000 static int iwl_trans_pcie_rxq_dma_data(struct iwl_trans *trans, int queue, struct iwl_trans_rxq_dma_data *data) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); if (queue >= trans->num_rx_queues || !trans_pcie->rxq) return -EINVAL; data->fr_bd_cb = trans_pcie->rxq[queue].bd_dma; data->urbd_stts_wrptr = trans_pcie->rxq[queue].rb_stts_dma; data->ur_bd_cb = trans_pcie->rxq[queue].used_bd_dma; data->fr_bd_wid = 0; return 0; } static int iwl_trans_pcie_wait_txq_empty(struct iwl_trans *trans, int txq_idx) { struct iwl_txq *txq; unsigned long now = jiffies; bool overflow_tx; u8 wr_ptr; /* Make sure the NIC is still alive in the bus */ if (test_bit(STATUS_TRANS_DEAD, &trans->status)) return -ENODEV; if (!test_bit(txq_idx, trans->txqs.queue_used)) return -EINVAL; IWL_DEBUG_TX_QUEUES(trans, "Emptying queue %d...\n", txq_idx); txq = trans->txqs.txq[txq_idx]; spin_lock_bh(&txq->lock); overflow_tx = txq->overflow_tx || !skb_queue_empty(&txq->overflow_q); spin_unlock_bh(&txq->lock); wr_ptr = READ_ONCE(txq->write_ptr); while ((txq->read_ptr != READ_ONCE(txq->write_ptr) || overflow_tx) && !time_after(jiffies, now + msecs_to_jiffies(IWL_FLUSH_WAIT_MS))) { u8 write_ptr = READ_ONCE(txq->write_ptr); /* * If write pointer moved during the wait, warn only * if the TX came from op mode. In case TX came from * trans layer (overflow TX) don't warn. */ if (WARN_ONCE(wr_ptr != write_ptr && !overflow_tx, "WR pointer moved while flushing %d -> %d\n", wr_ptr, write_ptr)) return -ETIMEDOUT; wr_ptr = write_ptr; usleep_range(1000, 2000); spin_lock_bh(&txq->lock); overflow_tx = txq->overflow_tx || !skb_queue_empty(&txq->overflow_q); spin_unlock_bh(&txq->lock); } if (txq->read_ptr != txq->write_ptr) { IWL_ERR(trans, "fail to flush all tx fifo queues Q %d\n", txq_idx); iwl_txq_log_scd_error(trans, txq); return -ETIMEDOUT; } IWL_DEBUG_TX_QUEUES(trans, "Queue %d is now empty.\n", txq_idx); return 0; } static int iwl_trans_pcie_wait_txqs_empty(struct iwl_trans *trans, u32 txq_bm) { int cnt; int ret = 0; /* waiting for all the tx frames complete might take a while */ for (cnt = 0; cnt < trans->trans_cfg->base_params->num_of_queues; cnt++) { if (cnt == trans->txqs.cmd.q_id) continue; if (!test_bit(cnt, trans->txqs.queue_used)) continue; if (!(BIT(cnt) & txq_bm)) continue; ret = iwl_trans_pcie_wait_txq_empty(trans, cnt); if (ret) break; } return ret; } static void iwl_trans_pcie_set_bits_mask(struct iwl_trans *trans, u32 reg, u32 mask, u32 value) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); spin_lock_bh(&trans_pcie->reg_lock); __iwl_trans_pcie_set_bits_mask(trans, reg, mask, value); spin_unlock_bh(&trans_pcie->reg_lock); } static const char *get_csr_string(int cmd) { #define IWL_CMD(x) case x: return #x switch (cmd) { IWL_CMD(CSR_HW_IF_CONFIG_REG); IWL_CMD(CSR_INT_COALESCING); IWL_CMD(CSR_INT); IWL_CMD(CSR_INT_MASK); IWL_CMD(CSR_FH_INT_STATUS); IWL_CMD(CSR_GPIO_IN); IWL_CMD(CSR_RESET); IWL_CMD(CSR_GP_CNTRL); IWL_CMD(CSR_HW_REV); IWL_CMD(CSR_EEPROM_REG); IWL_CMD(CSR_EEPROM_GP); IWL_CMD(CSR_OTP_GP_REG); IWL_CMD(CSR_GIO_REG); IWL_CMD(CSR_GP_UCODE_REG); IWL_CMD(CSR_GP_DRIVER_REG); IWL_CMD(CSR_UCODE_DRV_GP1); IWL_CMD(CSR_UCODE_DRV_GP2); IWL_CMD(CSR_LED_REG); IWL_CMD(CSR_DRAM_INT_TBL_REG); IWL_CMD(CSR_GIO_CHICKEN_BITS); IWL_CMD(CSR_ANA_PLL_CFG); IWL_CMD(CSR_HW_REV_WA_REG); IWL_CMD(CSR_MONITOR_STATUS_REG); IWL_CMD(CSR_DBG_HPET_MEM_REG); default: return "UNKNOWN"; } #undef IWL_CMD } void iwl_pcie_dump_csr(struct iwl_trans *trans) { int i; static const u32 csr_tbl[] = { CSR_HW_IF_CONFIG_REG, CSR_INT_COALESCING, CSR_INT, CSR_INT_MASK, CSR_FH_INT_STATUS, CSR_GPIO_IN, CSR_RESET, CSR_GP_CNTRL, CSR_HW_REV, CSR_EEPROM_REG, CSR_EEPROM_GP, CSR_OTP_GP_REG, CSR_GIO_REG, CSR_GP_UCODE_REG, CSR_GP_DRIVER_REG, CSR_UCODE_DRV_GP1, CSR_UCODE_DRV_GP2, CSR_LED_REG, CSR_DRAM_INT_TBL_REG, CSR_GIO_CHICKEN_BITS, CSR_ANA_PLL_CFG, CSR_MONITOR_STATUS_REG, CSR_HW_REV_WA_REG, CSR_DBG_HPET_MEM_REG }; IWL_ERR(trans, "CSR values:\n"); IWL_ERR(trans, "(2nd byte of CSR_INT_COALESCING is " "CSR_INT_PERIODIC_REG)\n"); for (i = 0; i < ARRAY_SIZE(csr_tbl); i++) { IWL_ERR(trans, " %25s: 0X%08x\n", get_csr_string(csr_tbl[i]), iwl_read32(trans, csr_tbl[i])); } } #ifdef CONFIG_IWLWIFI_DEBUGFS /* create and remove of files */ #define DEBUGFS_ADD_FILE(name, parent, mode) do { \ debugfs_create_file(#name, mode, parent, trans, \ &iwl_dbgfs_##name##_ops); \ } while (0) /* file operation */ #define DEBUGFS_READ_FILE_OPS(name) \ static const struct file_operations iwl_dbgfs_##name##_ops = { \ .read = iwl_dbgfs_##name##_read, \ .open = simple_open, \ .llseek = generic_file_llseek, \ }; #define DEBUGFS_WRITE_FILE_OPS(name) \ static const struct file_operations iwl_dbgfs_##name##_ops = { \ .write = iwl_dbgfs_##name##_write, \ .open = simple_open, \ .llseek = generic_file_llseek, \ }; #define DEBUGFS_READ_WRITE_FILE_OPS(name) \ static const struct file_operations iwl_dbgfs_##name##_ops = { \ .write = iwl_dbgfs_##name##_write, \ .read = iwl_dbgfs_##name##_read, \ .open = simple_open, \ .llseek = generic_file_llseek, \ }; struct iwl_dbgfs_tx_queue_priv { struct iwl_trans *trans; }; struct iwl_dbgfs_tx_queue_state { loff_t pos; }; static void *iwl_dbgfs_tx_queue_seq_start(struct seq_file *seq, loff_t *pos) { struct iwl_dbgfs_tx_queue_priv *priv = seq->private; struct iwl_dbgfs_tx_queue_state *state; if (*pos >= priv->trans->trans_cfg->base_params->num_of_queues) return NULL; state = kmalloc(sizeof(*state), GFP_KERNEL); if (!state) return NULL; state->pos = *pos; return state; } static void *iwl_dbgfs_tx_queue_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct iwl_dbgfs_tx_queue_priv *priv = seq->private; struct iwl_dbgfs_tx_queue_state *state = v; *pos = ++state->pos; if (*pos >= priv->trans->trans_cfg->base_params->num_of_queues) return NULL; return state; } static void iwl_dbgfs_tx_queue_seq_stop(struct seq_file *seq, void *v) { kfree(v); } static int iwl_dbgfs_tx_queue_seq_show(struct seq_file *seq, void *v) { struct iwl_dbgfs_tx_queue_priv *priv = seq->private; struct iwl_dbgfs_tx_queue_state *state = v; struct iwl_trans *trans = priv->trans; struct iwl_txq *txq = trans->txqs.txq[state->pos]; seq_printf(seq, "hwq %.3u: used=%d stopped=%d ", (unsigned int)state->pos, !!test_bit(state->pos, trans->txqs.queue_used), !!test_bit(state->pos, trans->txqs.queue_stopped)); if (txq) seq_printf(seq, "read=%u write=%u need_update=%d frozen=%d n_window=%d ampdu=%d", txq->read_ptr, txq->write_ptr, txq->need_update, txq->frozen, txq->n_window, txq->ampdu); else seq_puts(seq, "(unallocated)"); if (state->pos == trans->txqs.cmd.q_id) seq_puts(seq, " (HCMD)"); seq_puts(seq, "\n"); return 0; } static const struct seq_operations iwl_dbgfs_tx_queue_seq_ops = { .start = iwl_dbgfs_tx_queue_seq_start, .next = iwl_dbgfs_tx_queue_seq_next, .stop = iwl_dbgfs_tx_queue_seq_stop, .show = iwl_dbgfs_tx_queue_seq_show, }; static int iwl_dbgfs_tx_queue_open(struct inode *inode, struct file *filp) { struct iwl_dbgfs_tx_queue_priv *priv; priv = __seq_open_private(filp, &iwl_dbgfs_tx_queue_seq_ops, sizeof(*priv)); if (!priv) return -ENOMEM; priv->trans = inode->i_private; return 0; } static ssize_t iwl_dbgfs_rx_queue_read(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { struct iwl_trans *trans = file->private_data; struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); char *buf; int pos = 0, i, ret; size_t bufsz; bufsz = sizeof(char) * 121 * trans->num_rx_queues; if (!trans_pcie->rxq) return -EAGAIN; buf = kzalloc(bufsz, GFP_KERNEL); if (!buf) return -ENOMEM; for (i = 0; i < trans->num_rx_queues && pos < bufsz; i++) { struct iwl_rxq *rxq = &trans_pcie->rxq[i]; pos += scnprintf(buf + pos, bufsz - pos, "queue#: %2d\n", i); pos += scnprintf(buf + pos, bufsz - pos, "\tread: %u\n", rxq->read); pos += scnprintf(buf + pos, bufsz - pos, "\twrite: %u\n", rxq->write); pos += scnprintf(buf + pos, bufsz - pos, "\twrite_actual: %u\n", rxq->write_actual); pos += scnprintf(buf + pos, bufsz - pos, "\tneed_update: %2d\n", rxq->need_update); pos += scnprintf(buf + pos, bufsz - pos, "\tfree_count: %u\n", rxq->free_count); if (rxq->rb_stts) { u32 r = __le16_to_cpu(iwl_get_closed_rb_stts(trans, rxq)); pos += scnprintf(buf + pos, bufsz - pos, "\tclosed_rb_num: %u\n", r & 0x0FFF); } else { pos += scnprintf(buf + pos, bufsz - pos, "\tclosed_rb_num: Not Allocated\n"); } } ret = simple_read_from_buffer(user_buf, count, ppos, buf, pos); kfree(buf); return ret; } static ssize_t iwl_dbgfs_interrupt_read(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { struct iwl_trans *trans = file->private_data; struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct isr_statistics *isr_stats = &trans_pcie->isr_stats; int pos = 0; char *buf; int bufsz = 24 * 64; /* 24 items * 64 char per item */ ssize_t ret; buf = kzalloc(bufsz, GFP_KERNEL); if (!buf) return -ENOMEM; pos += scnprintf(buf + pos, bufsz - pos, "Interrupt Statistics Report:\n"); pos += scnprintf(buf + pos, bufsz - pos, "HW Error:\t\t\t %u\n", isr_stats->hw); pos += scnprintf(buf + pos, bufsz - pos, "SW Error:\t\t\t %u\n", isr_stats->sw); if (isr_stats->sw || isr_stats->hw) { pos += scnprintf(buf + pos, bufsz - pos, "\tLast Restarting Code: 0x%X\n", isr_stats->err_code); } #ifdef CONFIG_IWLWIFI_DEBUG pos += scnprintf(buf + pos, bufsz - pos, "Frame transmitted:\t\t %u\n", isr_stats->sch); pos += scnprintf(buf + pos, bufsz - pos, "Alive interrupt:\t\t %u\n", isr_stats->alive); #endif pos += scnprintf(buf + pos, bufsz - pos, "HW RF KILL switch toggled:\t %u\n", isr_stats->rfkill); pos += scnprintf(buf + pos, bufsz - pos, "CT KILL:\t\t\t %u\n", isr_stats->ctkill); pos += scnprintf(buf + pos, bufsz - pos, "Wakeup Interrupt:\t\t %u\n", isr_stats->wakeup); pos += scnprintf(buf + pos, bufsz - pos, "Rx command responses:\t\t %u\n", isr_stats->rx); pos += scnprintf(buf + pos, bufsz - pos, "Tx/FH interrupt:\t\t %u\n", isr_stats->tx); pos += scnprintf(buf + pos, bufsz - pos, "Unexpected INTA:\t\t %u\n", isr_stats->unhandled); ret = simple_read_from_buffer(user_buf, count, ppos, buf, pos); kfree(buf); return ret; } static ssize_t iwl_dbgfs_interrupt_write(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { struct iwl_trans *trans = file->private_data; struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct isr_statistics *isr_stats = &trans_pcie->isr_stats; u32 reset_flag; int ret; ret = kstrtou32_from_user(user_buf, count, 16, &reset_flag); if (ret) return ret; if (reset_flag == 0) memset(isr_stats, 0, sizeof(*isr_stats)); return count; } static ssize_t iwl_dbgfs_csr_write(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { struct iwl_trans *trans = file->private_data; iwl_pcie_dump_csr(trans); return count; } static ssize_t iwl_dbgfs_fh_reg_read(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { struct iwl_trans *trans = file->private_data; char *buf = NULL; ssize_t ret; ret = iwl_dump_fh(trans, &buf); if (ret < 0) return ret; if (!buf) return -EINVAL; ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); kfree(buf); return ret; } static ssize_t iwl_dbgfs_rfkill_read(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { struct iwl_trans *trans = file->private_data; struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); char buf[100]; int pos; pos = scnprintf(buf, sizeof(buf), "debug: %d\nhw: %d\n", trans_pcie->debug_rfkill, !(iwl_read32(trans, CSR_GP_CNTRL) & CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW)); return simple_read_from_buffer(user_buf, count, ppos, buf, pos); } static ssize_t iwl_dbgfs_rfkill_write(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { struct iwl_trans *trans = file->private_data; struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); bool new_value; int ret; ret = kstrtobool_from_user(user_buf, count, &new_value); if (ret) return ret; if (new_value == trans_pcie->debug_rfkill) return count; IWL_WARN(trans, "changing debug rfkill %d->%d\n", trans_pcie->debug_rfkill, new_value); trans_pcie->debug_rfkill = new_value; iwl_pcie_handle_rfkill_irq(trans); return count; } static int iwl_dbgfs_monitor_data_open(struct inode *inode, struct file *file) { struct iwl_trans *trans = inode->i_private; struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); if (!trans->dbg.dest_tlv || trans->dbg.dest_tlv->monitor_mode != EXTERNAL_MODE) { IWL_ERR(trans, "Debug destination is not set to DRAM\n"); return -ENOENT; } if (trans_pcie->fw_mon_data.state != IWL_FW_MON_DBGFS_STATE_CLOSED) return -EBUSY; trans_pcie->fw_mon_data.state = IWL_FW_MON_DBGFS_STATE_OPEN; return simple_open(inode, file); } static int iwl_dbgfs_monitor_data_release(struct inode *inode, struct file *file) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(inode->i_private); if (trans_pcie->fw_mon_data.state == IWL_FW_MON_DBGFS_STATE_OPEN) trans_pcie->fw_mon_data.state = IWL_FW_MON_DBGFS_STATE_CLOSED; return 0; } static bool iwl_write_to_user_buf(char __user *user_buf, ssize_t count, void *buf, ssize_t *size, ssize_t *bytes_copied) { ssize_t buf_size_left = count - *bytes_copied; buf_size_left = buf_size_left - (buf_size_left % sizeof(u32)); if (*size > buf_size_left) *size = buf_size_left; *size -= copy_to_user(user_buf, buf, *size); *bytes_copied += *size; if (buf_size_left == *size) return true; return false; } static ssize_t iwl_dbgfs_monitor_data_read(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { struct iwl_trans *trans = file->private_data; struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); u8 *cpu_addr = (void *)trans->dbg.fw_mon.block, *curr_buf; struct cont_rec *data = &trans_pcie->fw_mon_data; u32 write_ptr_addr, wrap_cnt_addr, write_ptr, wrap_cnt; ssize_t size, bytes_copied = 0; bool b_full; if (trans->dbg.dest_tlv) { write_ptr_addr = le32_to_cpu(trans->dbg.dest_tlv->write_ptr_reg); wrap_cnt_addr = le32_to_cpu(trans->dbg.dest_tlv->wrap_count); } else { write_ptr_addr = MON_BUFF_WRPTR; wrap_cnt_addr = MON_BUFF_CYCLE_CNT; } if (unlikely(!trans->dbg.rec_on)) return 0; mutex_lock(&data->mutex); if (data->state == IWL_FW_MON_DBGFS_STATE_DISABLED) { mutex_unlock(&data->mutex); return 0; } /* write_ptr position in bytes rather then DW */ write_ptr = iwl_read_prph(trans, write_ptr_addr) * sizeof(u32); wrap_cnt = iwl_read_prph(trans, wrap_cnt_addr); if (data->prev_wrap_cnt == wrap_cnt) { size = write_ptr - data->prev_wr_ptr; curr_buf = cpu_addr + data->prev_wr_ptr; b_full = iwl_write_to_user_buf(user_buf, count, curr_buf, &size, &bytes_copied); data->prev_wr_ptr += size; } else if (data->prev_wrap_cnt == wrap_cnt - 1 && write_ptr < data->prev_wr_ptr) { size = trans->dbg.fw_mon.size - data->prev_wr_ptr; curr_buf = cpu_addr + data->prev_wr_ptr; b_full = iwl_write_to_user_buf(user_buf, count, curr_buf, &size, &bytes_copied); data->prev_wr_ptr += size; if (!b_full) { size = write_ptr; b_full = iwl_write_to_user_buf(user_buf, count, cpu_addr, &size, &bytes_copied); data->prev_wr_ptr = size; data->prev_wrap_cnt++; } } else { if (data->prev_wrap_cnt == wrap_cnt - 1 && write_ptr > data->prev_wr_ptr) IWL_WARN(trans, "write pointer passed previous write pointer, start copying from the beginning\n"); else if (!unlikely(data->prev_wrap_cnt == 0 && data->prev_wr_ptr == 0)) IWL_WARN(trans, "monitor data is out of sync, start copying from the beginning\n"); size = write_ptr; b_full = iwl_write_to_user_buf(user_buf, count, cpu_addr, &size, &bytes_copied); data->prev_wr_ptr = size; data->prev_wrap_cnt = wrap_cnt; } mutex_unlock(&data->mutex); return bytes_copied; } static ssize_t iwl_dbgfs_rf_read(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { struct iwl_trans *trans = file->private_data; struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); if (!trans_pcie->rf_name[0]) return -ENODEV; return simple_read_from_buffer(user_buf, count, ppos, trans_pcie->rf_name, strlen(trans_pcie->rf_name)); } DEBUGFS_READ_WRITE_FILE_OPS(interrupt); DEBUGFS_READ_FILE_OPS(fh_reg); DEBUGFS_READ_FILE_OPS(rx_queue); DEBUGFS_WRITE_FILE_OPS(csr); DEBUGFS_READ_WRITE_FILE_OPS(rfkill); DEBUGFS_READ_FILE_OPS(rf); static const struct file_operations iwl_dbgfs_tx_queue_ops = { .owner = THIS_MODULE, .open = iwl_dbgfs_tx_queue_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release_private, }; static const struct file_operations iwl_dbgfs_monitor_data_ops = { .read = iwl_dbgfs_monitor_data_read, .open = iwl_dbgfs_monitor_data_open, .release = iwl_dbgfs_monitor_data_release, }; /* Create the debugfs files and directories */ void iwl_trans_pcie_dbgfs_register(struct iwl_trans *trans) { struct dentry *dir = trans->dbgfs_dir; DEBUGFS_ADD_FILE(rx_queue, dir, 0400); DEBUGFS_ADD_FILE(tx_queue, dir, 0400); DEBUGFS_ADD_FILE(interrupt, dir, 0600); DEBUGFS_ADD_FILE(csr, dir, 0200); DEBUGFS_ADD_FILE(fh_reg, dir, 0400); DEBUGFS_ADD_FILE(rfkill, dir, 0600); DEBUGFS_ADD_FILE(monitor_data, dir, 0400); DEBUGFS_ADD_FILE(rf, dir, 0400); } static void iwl_trans_pcie_debugfs_cleanup(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct cont_rec *data = &trans_pcie->fw_mon_data; mutex_lock(&data->mutex); data->state = IWL_FW_MON_DBGFS_STATE_DISABLED; mutex_unlock(&data->mutex); } #endif /*CONFIG_IWLWIFI_DEBUGFS */ static u32 iwl_trans_pcie_get_cmdlen(struct iwl_trans *trans, void *tfd) { u32 cmdlen = 0; int i; for (i = 0; i < trans->txqs.tfd.max_tbs; i++) cmdlen += iwl_txq_gen1_tfd_tb_get_len(trans, tfd, i); return cmdlen; } static u32 iwl_trans_pcie_dump_rbs(struct iwl_trans *trans, struct iwl_fw_error_dump_data **data, int allocated_rb_nums) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); int max_len = trans_pcie->rx_buf_bytes; /* Dump RBs is supported only for pre-9000 devices (1 queue) */ struct iwl_rxq *rxq = &trans_pcie->rxq[0]; u32 i, r, j, rb_len = 0; spin_lock(&rxq->lock); r = le16_to_cpu(iwl_get_closed_rb_stts(trans, rxq)) & 0x0FFF; for (i = rxq->read, j = 0; i != r && j < allocated_rb_nums; i = (i + 1) & RX_QUEUE_MASK, j++) { struct iwl_rx_mem_buffer *rxb = rxq->queue[i]; struct iwl_fw_error_dump_rb *rb; dma_sync_single_for_cpu(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE); rb_len += sizeof(**data) + sizeof(*rb) + max_len; (*data)->type = cpu_to_le32(IWL_FW_ERROR_DUMP_RB); (*data)->len = cpu_to_le32(sizeof(*rb) + max_len); rb = (void *)(*data)->data; rb->index = cpu_to_le32(i); memcpy(rb->data, page_address(rxb->page), max_len); *data = iwl_fw_error_next_data(*data); } spin_unlock(&rxq->lock); return rb_len; } #define IWL_CSR_TO_DUMP (0x250) static u32 iwl_trans_pcie_dump_csr(struct iwl_trans *trans, struct iwl_fw_error_dump_data **data) { u32 csr_len = sizeof(**data) + IWL_CSR_TO_DUMP; __le32 *val; int i; (*data)->type = cpu_to_le32(IWL_FW_ERROR_DUMP_CSR); (*data)->len = cpu_to_le32(IWL_CSR_TO_DUMP); val = (void *)(*data)->data; for (i = 0; i < IWL_CSR_TO_DUMP; i += 4) *val++ = cpu_to_le32(iwl_trans_pcie_read32(trans, i)); *data = iwl_fw_error_next_data(*data); return csr_len; } static u32 iwl_trans_pcie_fh_regs_dump(struct iwl_trans *trans, struct iwl_fw_error_dump_data **data) { u32 fh_regs_len = FH_MEM_UPPER_BOUND - FH_MEM_LOWER_BOUND; __le32 *val; int i; if (!iwl_trans_grab_nic_access(trans)) return 0; (*data)->type = cpu_to_le32(IWL_FW_ERROR_DUMP_FH_REGS); (*data)->len = cpu_to_le32(fh_regs_len); val = (void *)(*data)->data; if (!trans->trans_cfg->gen2) for (i = FH_MEM_LOWER_BOUND; i < FH_MEM_UPPER_BOUND; i += sizeof(u32)) *val++ = cpu_to_le32(iwl_trans_pcie_read32(trans, i)); else for (i = iwl_umac_prph(trans, FH_MEM_LOWER_BOUND_GEN2); i < iwl_umac_prph(trans, FH_MEM_UPPER_BOUND_GEN2); i += sizeof(u32)) *val++ = cpu_to_le32(iwl_trans_pcie_read_prph(trans, i)); iwl_trans_release_nic_access(trans); *data = iwl_fw_error_next_data(*data); return sizeof(**data) + fh_regs_len; } static u32 iwl_trans_pci_dump_marbh_monitor(struct iwl_trans *trans, struct iwl_fw_error_dump_fw_mon *fw_mon_data, u32 monitor_len) { u32 buf_size_in_dwords = (monitor_len >> 2); u32 *buffer = (u32 *)fw_mon_data->data; u32 i; if (!iwl_trans_grab_nic_access(trans)) return 0; iwl_write_umac_prph_no_grab(trans, MON_DMARB_RD_CTL_ADDR, 0x1); for (i = 0; i < buf_size_in_dwords; i++) buffer[i] = iwl_read_umac_prph_no_grab(trans, MON_DMARB_RD_DATA_ADDR); iwl_write_umac_prph_no_grab(trans, MON_DMARB_RD_CTL_ADDR, 0x0); iwl_trans_release_nic_access(trans); return monitor_len; } static void iwl_trans_pcie_dump_pointers(struct iwl_trans *trans, struct iwl_fw_error_dump_fw_mon *fw_mon_data) { u32 base, base_high, write_ptr, write_ptr_val, wrap_cnt; if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { base = DBGC_CUR_DBGBUF_BASE_ADDR_LSB; base_high = DBGC_CUR_DBGBUF_BASE_ADDR_MSB; write_ptr = DBGC_CUR_DBGBUF_STATUS; wrap_cnt = DBGC_DBGBUF_WRAP_AROUND; } else if (trans->dbg.dest_tlv) { write_ptr = le32_to_cpu(trans->dbg.dest_tlv->write_ptr_reg); wrap_cnt = le32_to_cpu(trans->dbg.dest_tlv->wrap_count); base = le32_to_cpu(trans->dbg.dest_tlv->base_reg); } else { base = MON_BUFF_BASE_ADDR; write_ptr = MON_BUFF_WRPTR; wrap_cnt = MON_BUFF_CYCLE_CNT; } write_ptr_val = iwl_read_prph(trans, write_ptr); fw_mon_data->fw_mon_cycle_cnt = cpu_to_le32(iwl_read_prph(trans, wrap_cnt)); fw_mon_data->fw_mon_base_ptr = cpu_to_le32(iwl_read_prph(trans, base)); if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { fw_mon_data->fw_mon_base_high_ptr = cpu_to_le32(iwl_read_prph(trans, base_high)); write_ptr_val &= DBGC_CUR_DBGBUF_STATUS_OFFSET_MSK; /* convert wrtPtr to DWs, to align with all HWs */ write_ptr_val >>= 2; } fw_mon_data->fw_mon_wr_ptr = cpu_to_le32(write_ptr_val); } static u32 iwl_trans_pcie_dump_monitor(struct iwl_trans *trans, struct iwl_fw_error_dump_data **data, u32 monitor_len) { struct iwl_dram_data *fw_mon = &trans->dbg.fw_mon; u32 len = 0; if (trans->dbg.dest_tlv || (fw_mon->size && (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000 || trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210))) { struct iwl_fw_error_dump_fw_mon *fw_mon_data; (*data)->type = cpu_to_le32(IWL_FW_ERROR_DUMP_FW_MONITOR); fw_mon_data = (void *)(*data)->data; iwl_trans_pcie_dump_pointers(trans, fw_mon_data); len += sizeof(**data) + sizeof(*fw_mon_data); if (fw_mon->size) { memcpy(fw_mon_data->data, fw_mon->block, fw_mon->size); monitor_len = fw_mon->size; } else if (trans->dbg.dest_tlv->monitor_mode == SMEM_MODE) { u32 base = le32_to_cpu(fw_mon_data->fw_mon_base_ptr); /* * Update pointers to reflect actual values after * shifting */ if (trans->dbg.dest_tlv->version) { base = (iwl_read_prph(trans, base) & IWL_LDBG_M2S_BUF_BA_MSK) << trans->dbg.dest_tlv->base_shift; base *= IWL_M2S_UNIT_SIZE; base += trans->cfg->smem_offset; } else { base = iwl_read_prph(trans, base) << trans->dbg.dest_tlv->base_shift; } iwl_trans_read_mem(trans, base, fw_mon_data->data, monitor_len / sizeof(u32)); } else if (trans->dbg.dest_tlv->monitor_mode == MARBH_MODE) { monitor_len = iwl_trans_pci_dump_marbh_monitor(trans, fw_mon_data, monitor_len); } else { /* Didn't match anything - output no monitor data */ monitor_len = 0; } len += monitor_len; (*data)->len = cpu_to_le32(monitor_len + sizeof(*fw_mon_data)); } return len; } static int iwl_trans_get_fw_monitor_len(struct iwl_trans *trans, u32 *len) { if (trans->dbg.fw_mon.size) { *len += sizeof(struct iwl_fw_error_dump_data) + sizeof(struct iwl_fw_error_dump_fw_mon) + trans->dbg.fw_mon.size; return trans->dbg.fw_mon.size; } else if (trans->dbg.dest_tlv) { u32 base, end, cfg_reg, monitor_len; if (trans->dbg.dest_tlv->version == 1) { cfg_reg = le32_to_cpu(trans->dbg.dest_tlv->base_reg); cfg_reg = iwl_read_prph(trans, cfg_reg); base = (cfg_reg & IWL_LDBG_M2S_BUF_BA_MSK) << trans->dbg.dest_tlv->base_shift; base *= IWL_M2S_UNIT_SIZE; base += trans->cfg->smem_offset; monitor_len = (cfg_reg & IWL_LDBG_M2S_BUF_SIZE_MSK) >> trans->dbg.dest_tlv->end_shift; monitor_len *= IWL_M2S_UNIT_SIZE; } else { base = le32_to_cpu(trans->dbg.dest_tlv->base_reg); end = le32_to_cpu(trans->dbg.dest_tlv->end_reg); base = iwl_read_prph(trans, base) << trans->dbg.dest_tlv->base_shift; end = iwl_read_prph(trans, end) << trans->dbg.dest_tlv->end_shift; /* Make "end" point to the actual end */ if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_8000 || trans->dbg.dest_tlv->monitor_mode == MARBH_MODE) end += (1 << trans->dbg.dest_tlv->end_shift); monitor_len = end - base; } *len += sizeof(struct iwl_fw_error_dump_data) + sizeof(struct iwl_fw_error_dump_fw_mon) + monitor_len; return monitor_len; } return 0; } static struct iwl_trans_dump_data * iwl_trans_pcie_dump_data(struct iwl_trans *trans, u32 dump_mask, const struct iwl_dump_sanitize_ops *sanitize_ops, void *sanitize_ctx) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct iwl_fw_error_dump_data *data; struct iwl_txq *cmdq = trans->txqs.txq[trans->txqs.cmd.q_id]; struct iwl_fw_error_dump_txcmd *txcmd; struct iwl_trans_dump_data *dump_data; u32 len, num_rbs = 0, monitor_len = 0; int i, ptr; bool dump_rbs = test_bit(STATUS_FW_ERROR, &trans->status) && !trans->trans_cfg->mq_rx_supported && dump_mask & BIT(IWL_FW_ERROR_DUMP_RB); if (!dump_mask) return NULL; /* transport dump header */ len = sizeof(*dump_data); /* host commands */ if (dump_mask & BIT(IWL_FW_ERROR_DUMP_TXCMD) && cmdq) len += sizeof(*data) + cmdq->n_window * (sizeof(*txcmd) + TFD_MAX_PAYLOAD_SIZE); /* FW monitor */ if (dump_mask & BIT(IWL_FW_ERROR_DUMP_FW_MONITOR)) monitor_len = iwl_trans_get_fw_monitor_len(trans, &len); /* CSR registers */ if (dump_mask & BIT(IWL_FW_ERROR_DUMP_CSR)) len += sizeof(*data) + IWL_CSR_TO_DUMP; /* FH registers */ if (dump_mask & BIT(IWL_FW_ERROR_DUMP_FH_REGS)) { if (trans->trans_cfg->gen2) len += sizeof(*data) + (iwl_umac_prph(trans, FH_MEM_UPPER_BOUND_GEN2) - iwl_umac_prph(trans, FH_MEM_LOWER_BOUND_GEN2)); else len += sizeof(*data) + (FH_MEM_UPPER_BOUND - FH_MEM_LOWER_BOUND); } if (dump_rbs) { /* Dump RBs is supported only for pre-9000 devices (1 queue) */ struct iwl_rxq *rxq = &trans_pcie->rxq[0]; /* RBs */ num_rbs = le16_to_cpu(iwl_get_closed_rb_stts(trans, rxq)) & 0x0FFF; num_rbs = (num_rbs - rxq->read) & RX_QUEUE_MASK; len += num_rbs * (sizeof(*data) + sizeof(struct iwl_fw_error_dump_rb) + (PAGE_SIZE << trans_pcie->rx_page_order)); } /* Paged memory for gen2 HW */ if (trans->trans_cfg->gen2 && dump_mask & BIT(IWL_FW_ERROR_DUMP_PAGING)) for (i = 0; i < trans->init_dram.paging_cnt; i++) len += sizeof(*data) + sizeof(struct iwl_fw_error_dump_paging) + trans->init_dram.paging[i].size; dump_data = vzalloc(len); if (!dump_data) return NULL; len = 0; data = (void *)dump_data->data; if (dump_mask & BIT(IWL_FW_ERROR_DUMP_TXCMD) && cmdq) { u16 tfd_size = trans->txqs.tfd.size; data->type = cpu_to_le32(IWL_FW_ERROR_DUMP_TXCMD); txcmd = (void *)data->data; spin_lock_bh(&cmdq->lock); ptr = cmdq->write_ptr; for (i = 0; i < cmdq->n_window; i++) { u8 idx = iwl_txq_get_cmd_index(cmdq, ptr); u8 tfdidx; u32 caplen, cmdlen; if (trans->trans_cfg->use_tfh) tfdidx = idx; else tfdidx = ptr; cmdlen = iwl_trans_pcie_get_cmdlen(trans, (u8 *)cmdq->tfds + tfd_size * tfdidx); caplen = min_t(u32, TFD_MAX_PAYLOAD_SIZE, cmdlen); if (cmdlen) { len += sizeof(*txcmd) + caplen; txcmd->cmdlen = cpu_to_le32(cmdlen); txcmd->caplen = cpu_to_le32(caplen); memcpy(txcmd->data, cmdq->entries[idx].cmd, caplen); if (sanitize_ops && sanitize_ops->frob_hcmd) sanitize_ops->frob_hcmd(sanitize_ctx, txcmd->data, caplen); txcmd = (void *)((u8 *)txcmd->data + caplen); } ptr = iwl_txq_dec_wrap(trans, ptr); } spin_unlock_bh(&cmdq->lock); data->len = cpu_to_le32(len); len += sizeof(*data); data = iwl_fw_error_next_data(data); } if (dump_mask & BIT(IWL_FW_ERROR_DUMP_CSR)) len += iwl_trans_pcie_dump_csr(trans, &data); if (dump_mask & BIT(IWL_FW_ERROR_DUMP_FH_REGS)) len += iwl_trans_pcie_fh_regs_dump(trans, &data); if (dump_rbs) len += iwl_trans_pcie_dump_rbs(trans, &data, num_rbs); /* Paged memory for gen2 HW */ if (trans->trans_cfg->gen2 && dump_mask & BIT(IWL_FW_ERROR_DUMP_PAGING)) { for (i = 0; i < trans->init_dram.paging_cnt; i++) { struct iwl_fw_error_dump_paging *paging; u32 page_len = trans->init_dram.paging[i].size; data->type = cpu_to_le32(IWL_FW_ERROR_DUMP_PAGING); data->len = cpu_to_le32(sizeof(*paging) + page_len); paging = (void *)data->data; paging->index = cpu_to_le32(i); memcpy(paging->data, trans->init_dram.paging[i].block, page_len); data = iwl_fw_error_next_data(data); len += sizeof(*data) + sizeof(*paging) + page_len; } } if (dump_mask & BIT(IWL_FW_ERROR_DUMP_FW_MONITOR)) len += iwl_trans_pcie_dump_monitor(trans, &data, monitor_len); dump_data->len = len; return dump_data; } static void iwl_trans_pci_interrupts(struct iwl_trans *trans, bool enable) { if (enable) iwl_enable_interrupts(trans); else iwl_disable_interrupts(trans); } static void iwl_trans_pcie_sync_nmi(struct iwl_trans *trans) { u32 inta_addr, sw_err_bit; struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); if (trans_pcie->msix_enabled) { inta_addr = CSR_MSIX_HW_INT_CAUSES_AD; if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) sw_err_bit = MSIX_HW_INT_CAUSES_REG_SW_ERR_BZ; else sw_err_bit = MSIX_HW_INT_CAUSES_REG_SW_ERR; } else { inta_addr = CSR_INT; sw_err_bit = CSR_INT_BIT_SW_ERR; } iwl_trans_sync_nmi_with_addr(trans, inta_addr, sw_err_bit); } #define IWL_TRANS_COMMON_OPS \ .op_mode_leave = iwl_trans_pcie_op_mode_leave, \ .write8 = iwl_trans_pcie_write8, \ .write32 = iwl_trans_pcie_write32, \ .read32 = iwl_trans_pcie_read32, \ .read_prph = iwl_trans_pcie_read_prph, \ .write_prph = iwl_trans_pcie_write_prph, \ .read_mem = iwl_trans_pcie_read_mem, \ .write_mem = iwl_trans_pcie_write_mem, \ .read_config32 = iwl_trans_pcie_read_config32, \ .configure = iwl_trans_pcie_configure, \ .set_pmi = iwl_trans_pcie_set_pmi, \ .sw_reset = iwl_trans_pcie_sw_reset, \ .grab_nic_access = iwl_trans_pcie_grab_nic_access, \ .release_nic_access = iwl_trans_pcie_release_nic_access, \ .set_bits_mask = iwl_trans_pcie_set_bits_mask, \ .dump_data = iwl_trans_pcie_dump_data, \ .d3_suspend = iwl_trans_pcie_d3_suspend, \ .d3_resume = iwl_trans_pcie_d3_resume, \ .interrupts = iwl_trans_pci_interrupts, \ .sync_nmi = iwl_trans_pcie_sync_nmi, \ .imr_dma_data = iwl_trans_pcie_copy_imr \ static const struct iwl_trans_ops trans_ops_pcie = { IWL_TRANS_COMMON_OPS, .start_hw = iwl_trans_pcie_start_hw, .fw_alive = iwl_trans_pcie_fw_alive, .start_fw = iwl_trans_pcie_start_fw, .stop_device = iwl_trans_pcie_stop_device, .send_cmd = iwl_pcie_enqueue_hcmd, .tx = iwl_trans_pcie_tx, .reclaim = iwl_txq_reclaim, .txq_disable = iwl_trans_pcie_txq_disable, .txq_enable = iwl_trans_pcie_txq_enable, .txq_set_shared_mode = iwl_trans_pcie_txq_set_shared_mode, .wait_tx_queues_empty = iwl_trans_pcie_wait_txqs_empty, .freeze_txq_timer = iwl_trans_txq_freeze_timer, .block_txq_ptrs = iwl_trans_pcie_block_txq_ptrs, #ifdef CONFIG_IWLWIFI_DEBUGFS .debugfs_cleanup = iwl_trans_pcie_debugfs_cleanup, #endif }; static const struct iwl_trans_ops trans_ops_pcie_gen2 = { IWL_TRANS_COMMON_OPS, .start_hw = iwl_trans_pcie_start_hw, .fw_alive = iwl_trans_pcie_gen2_fw_alive, .start_fw = iwl_trans_pcie_gen2_start_fw, .stop_device = iwl_trans_pcie_gen2_stop_device, .send_cmd = iwl_pcie_gen2_enqueue_hcmd, .tx = iwl_txq_gen2_tx, .reclaim = iwl_txq_reclaim, .set_q_ptrs = iwl_txq_set_q_ptrs, .txq_alloc = iwl_txq_dyn_alloc, .txq_free = iwl_txq_dyn_free, .wait_txq_empty = iwl_trans_pcie_wait_txq_empty, .rxq_dma_data = iwl_trans_pcie_rxq_dma_data, .set_pnvm = iwl_trans_pcie_ctx_info_gen3_set_pnvm, .set_reduce_power = iwl_trans_pcie_ctx_info_gen3_set_reduce_power, #ifdef CONFIG_IWLWIFI_DEBUGFS .debugfs_cleanup = iwl_trans_pcie_debugfs_cleanup, #endif }; struct iwl_trans *iwl_trans_pcie_alloc(struct pci_dev *pdev, const struct pci_device_id *ent, const struct iwl_cfg_trans_params *cfg_trans) { struct iwl_trans_pcie *trans_pcie; struct iwl_trans *trans; int ret, addr_size; const struct iwl_trans_ops *ops = &trans_ops_pcie_gen2; void __iomem * const *table; if (!cfg_trans->gen2) ops = &trans_ops_pcie; ret = pcim_enable_device(pdev); if (ret) return ERR_PTR(ret); trans = iwl_trans_alloc(sizeof(struct iwl_trans_pcie), &pdev->dev, ops, cfg_trans); if (!trans) return ERR_PTR(-ENOMEM); trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); trans_pcie->trans = trans; trans_pcie->opmode_down = true; spin_lock_init(&trans_pcie->irq_lock); spin_lock_init(&trans_pcie->reg_lock); spin_lock_init(&trans_pcie->alloc_page_lock); mutex_init(&trans_pcie->mutex); init_waitqueue_head(&trans_pcie->ucode_write_waitq); init_waitqueue_head(&trans_pcie->fw_reset_waitq); init_waitqueue_head(&trans_pcie->imr_waitq); trans_pcie->rba.alloc_wq = alloc_workqueue("rb_allocator", WQ_HIGHPRI | WQ_UNBOUND, 1); if (!trans_pcie->rba.alloc_wq) { ret = -ENOMEM; goto out_free_trans; } INIT_WORK(&trans_pcie->rba.rx_alloc, iwl_pcie_rx_allocator_work); trans_pcie->debug_rfkill = -1; if (!cfg_trans->base_params->pcie_l1_allowed) { /* * W/A - seems to solve weird behavior. We need to remove this * if we don't want to stay in L1 all the time. This wastes a * lot of power. */ pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM); } trans_pcie->def_rx_queue = 0; pci_set_master(pdev); addr_size = trans->txqs.tfd.addr_size; ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(addr_size)); if (ret) { ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); /* both attempts failed: */ if (ret) { dev_err(&pdev->dev, "No suitable DMA available\n"); goto out_no_pci; } } ret = pcim_iomap_regions_request_all(pdev, BIT(0), DRV_NAME); if (ret) { dev_err(&pdev->dev, "pcim_iomap_regions_request_all failed\n"); goto out_no_pci; } table = pcim_iomap_table(pdev); if (!table) { dev_err(&pdev->dev, "pcim_iomap_table failed\n"); ret = -ENOMEM; goto out_no_pci; } trans_pcie->hw_base = table[0]; if (!trans_pcie->hw_base) { dev_err(&pdev->dev, "couldn't find IO mem in first BAR\n"); ret = -ENODEV; goto out_no_pci; } /* We disable the RETRY_TIMEOUT register (0x41) to keep * PCI Tx retries from interfering with C3 CPU state */ pci_write_config_byte(pdev, PCI_CFG_RETRY_TIMEOUT, 0x00); trans_pcie->pci_dev = pdev; iwl_disable_interrupts(trans); trans->hw_rev = iwl_read32(trans, CSR_HW_REV); if (trans->hw_rev == 0xffffffff) { dev_err(&pdev->dev, "HW_REV=0xFFFFFFFF, PCI issues?\n"); ret = -EIO; goto out_no_pci; } /* * In the 8000 HW family the format of the 4 bytes of CSR_HW_REV have * changed, and now the revision step also includes bit 0-1 (no more * "dash" value). To keep hw_rev backwards compatible - we'll store it * in the old format. */ if (cfg_trans->device_family >= IWL_DEVICE_FAMILY_8000) trans->hw_rev_step = trans->hw_rev & 0xF; else trans->hw_rev_step = (trans->hw_rev & 0xC) >> 2; IWL_DEBUG_INFO(trans, "HW REV: 0x%0x\n", trans->hw_rev); iwl_pcie_set_interrupt_capa(pdev, trans, cfg_trans); trans->hw_id = (pdev->device << 16) + pdev->subsystem_device; snprintf(trans->hw_id_str, sizeof(trans->hw_id_str), "PCI ID: 0x%04X:0x%04X", pdev->device, pdev->subsystem_device); init_waitqueue_head(&trans_pcie->sx_waitq); if (trans_pcie->msix_enabled) { ret = iwl_pcie_init_msix_handler(pdev, trans_pcie); if (ret) goto out_no_pci; } else { ret = iwl_pcie_alloc_ict(trans); if (ret) goto out_no_pci; ret = devm_request_threaded_irq(&pdev->dev, pdev->irq, iwl_pcie_isr, iwl_pcie_irq_handler, IRQF_SHARED, DRV_NAME, trans); if (ret) { IWL_ERR(trans, "Error allocating IRQ %d\n", pdev->irq); goto out_free_ict; } } #ifdef CONFIG_IWLWIFI_DEBUGFS trans_pcie->fw_mon_data.state = IWL_FW_MON_DBGFS_STATE_CLOSED; mutex_init(&trans_pcie->fw_mon_data.mutex); #endif iwl_dbg_tlv_init(trans); return trans; out_free_ict: iwl_pcie_free_ict(trans); out_no_pci: destroy_workqueue(trans_pcie->rba.alloc_wq); out_free_trans: iwl_trans_free(trans); return ERR_PTR(ret); } void iwl_trans_pcie_copy_imr_fh(struct iwl_trans *trans, u32 dst_addr, u64 src_addr, u32 byte_cnt) { iwl_write_prph(trans, IMR_UREG_CHICK, iwl_read_prph(trans, IMR_UREG_CHICK) | IMR_UREG_CHICK_HALT_UMAC_PERMANENTLY_MSK); iwl_write_prph(trans, IMR_TFH_SRV_DMA_CHNL0_SRAM_ADDR, dst_addr); iwl_write_prph(trans, IMR_TFH_SRV_DMA_CHNL0_DRAM_ADDR_LSB, (u32)(src_addr & 0xFFFFFFFF)); iwl_write_prph(trans, IMR_TFH_SRV_DMA_CHNL0_DRAM_ADDR_MSB, iwl_get_dma_hi_addr(src_addr)); iwl_write_prph(trans, IMR_TFH_SRV_DMA_CHNL0_BC, byte_cnt); iwl_write_prph(trans, IMR_TFH_SRV_DMA_CHNL0_CTRL, IMR_TFH_SRV_DMA_CHNL0_CTRL_D2S_IRQ_TARGET_POS | IMR_TFH_SRV_DMA_CHNL0_CTRL_D2S_DMA_EN_POS | IMR_TFH_SRV_DMA_CHNL0_CTRL_D2S_RS_MSK); } int iwl_trans_pcie_copy_imr(struct iwl_trans *trans, u32 dst_addr, u64 src_addr, u32 byte_cnt) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); int ret = -1; trans_pcie->imr_status = IMR_D2S_REQUESTED; iwl_trans_pcie_copy_imr_fh(trans, dst_addr, src_addr, byte_cnt); ret = wait_event_timeout(trans_pcie->imr_waitq, trans_pcie->imr_status != IMR_D2S_REQUESTED, 5 * HZ); if (!ret || trans_pcie->imr_status == IMR_D2S_ERROR) { IWL_ERR(trans, "Failed to copy IMR Memory chunk!\n"); iwl_trans_pcie_dump_regs(trans); return -ETIMEDOUT; } trans_pcie->imr_status = IMR_D2S_IDLE; return 0; }