// SPDX-License-Identifier: GPL-2.0-or-later /* * TI BQ25890 charger driver * * Copyright (C) 2015 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #define BQ25890_MANUFACTURER "Texas Instruments" #define BQ25890_IRQ_PIN "bq25890_irq" #define BQ25890_ID 3 #define BQ25895_ID 7 #define BQ25896_ID 0 #define PUMP_EXPRESS_START_DELAY (5 * HZ) #define PUMP_EXPRESS_MAX_TRIES 6 #define PUMP_EXPRESS_VBUS_MARGIN_uV 1000000 enum bq25890_chip_version { BQ25890, BQ25892, BQ25895, BQ25896, }; static const char *const bq25890_chip_name[] = { "BQ25890", "BQ25892", "BQ25895", "BQ25896", }; enum bq25890_fields { F_EN_HIZ, F_EN_ILIM, F_IINLIM, /* Reg00 */ F_BHOT, F_BCOLD, F_VINDPM_OFS, /* Reg01 */ F_CONV_START, F_CONV_RATE, F_BOOSTF, F_ICO_EN, F_HVDCP_EN, F_MAXC_EN, F_FORCE_DPM, F_AUTO_DPDM_EN, /* Reg02 */ F_BAT_LOAD_EN, F_WD_RST, F_OTG_CFG, F_CHG_CFG, F_SYSVMIN, F_MIN_VBAT_SEL, /* Reg03 */ F_PUMPX_EN, F_ICHG, /* Reg04 */ F_IPRECHG, F_ITERM, /* Reg05 */ F_VREG, F_BATLOWV, F_VRECHG, /* Reg06 */ F_TERM_EN, F_STAT_DIS, F_WD, F_TMR_EN, F_CHG_TMR, F_JEITA_ISET, /* Reg07 */ F_BATCMP, F_VCLAMP, F_TREG, /* Reg08 */ F_FORCE_ICO, F_TMR2X_EN, F_BATFET_DIS, F_JEITA_VSET, F_BATFET_DLY, F_BATFET_RST_EN, F_PUMPX_UP, F_PUMPX_DN, /* Reg09 */ F_BOOSTV, F_PFM_OTG_DIS, F_BOOSTI, /* Reg0A */ F_VBUS_STAT, F_CHG_STAT, F_PG_STAT, F_SDP_STAT, F_0B_RSVD, F_VSYS_STAT, /* Reg0B */ F_WD_FAULT, F_BOOST_FAULT, F_CHG_FAULT, F_BAT_FAULT, F_NTC_FAULT, /* Reg0C */ F_FORCE_VINDPM, F_VINDPM, /* Reg0D */ F_THERM_STAT, F_BATV, /* Reg0E */ F_SYSV, /* Reg0F */ F_TSPCT, /* Reg10 */ F_VBUS_GD, F_VBUSV, /* Reg11 */ F_ICHGR, /* Reg12 */ F_VDPM_STAT, F_IDPM_STAT, F_IDPM_LIM, /* Reg13 */ F_REG_RST, F_ICO_OPTIMIZED, F_PN, F_TS_PROFILE, F_DEV_REV, /* Reg14 */ F_MAX_FIELDS }; /* initial field values, converted to register values */ struct bq25890_init_data { u8 ichg; /* charge current */ u8 vreg; /* regulation voltage */ u8 iterm; /* termination current */ u8 iprechg; /* precharge current */ u8 sysvmin; /* minimum system voltage limit */ u8 boostv; /* boost regulation voltage */ u8 boosti; /* boost current limit */ u8 boostf; /* boost frequency */ u8 ilim_en; /* enable ILIM pin */ u8 treg; /* thermal regulation threshold */ u8 rbatcomp; /* IBAT sense resistor value */ u8 vclamp; /* IBAT compensation voltage limit */ }; struct bq25890_state { u8 online; u8 hiz; u8 chrg_status; u8 chrg_fault; u8 vsys_status; u8 boost_fault; u8 bat_fault; u8 ntc_fault; }; struct bq25890_device { struct i2c_client *client; struct device *dev; struct power_supply *charger; struct power_supply *secondary_chrg; struct power_supply_desc desc; char name[28]; /* "bq25890-charger-%d" */ int id; struct usb_phy *usb_phy; struct notifier_block usb_nb; struct work_struct usb_work; struct delayed_work pump_express_work; unsigned long usb_event; struct regmap *rmap; struct regmap_field *rmap_fields[F_MAX_FIELDS]; bool skip_reset; bool read_back_init_data; bool force_hiz; u32 pump_express_vbus_max; u32 iinlim_percentage; enum bq25890_chip_version chip_version; struct bq25890_init_data init_data; struct bq25890_state state; struct mutex lock; /* protect state data */ }; static DEFINE_IDR(bq25890_id); static DEFINE_MUTEX(bq25890_id_mutex); static const struct regmap_range bq25890_readonly_reg_ranges[] = { regmap_reg_range(0x0b, 0x0c), regmap_reg_range(0x0e, 0x13), }; static const struct regmap_access_table bq25890_writeable_regs = { .no_ranges = bq25890_readonly_reg_ranges, .n_no_ranges = ARRAY_SIZE(bq25890_readonly_reg_ranges), }; static const struct regmap_range bq25890_volatile_reg_ranges[] = { regmap_reg_range(0x00, 0x00), regmap_reg_range(0x02, 0x02), regmap_reg_range(0x09, 0x09), regmap_reg_range(0x0b, 0x14), }; static const struct regmap_access_table bq25890_volatile_regs = { .yes_ranges = bq25890_volatile_reg_ranges, .n_yes_ranges = ARRAY_SIZE(bq25890_volatile_reg_ranges), }; static const struct regmap_config bq25890_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = 0x14, .cache_type = REGCACHE_RBTREE, .wr_table = &bq25890_writeable_regs, .volatile_table = &bq25890_volatile_regs, }; static const struct reg_field bq25890_reg_fields[] = { /* REG00 */ [F_EN_HIZ] = REG_FIELD(0x00, 7, 7), [F_EN_ILIM] = REG_FIELD(0x00, 6, 6), [F_IINLIM] = REG_FIELD(0x00, 0, 5), /* REG01 */ [F_BHOT] = REG_FIELD(0x01, 6, 7), [F_BCOLD] = REG_FIELD(0x01, 5, 5), [F_VINDPM_OFS] = REG_FIELD(0x01, 0, 4), /* REG02 */ [F_CONV_START] = REG_FIELD(0x02, 7, 7), [F_CONV_RATE] = REG_FIELD(0x02, 6, 6), [F_BOOSTF] = REG_FIELD(0x02, 5, 5), [F_ICO_EN] = REG_FIELD(0x02, 4, 4), [F_HVDCP_EN] = REG_FIELD(0x02, 3, 3), // reserved on BQ25896 [F_MAXC_EN] = REG_FIELD(0x02, 2, 2), // reserved on BQ25896 [F_FORCE_DPM] = REG_FIELD(0x02, 1, 1), [F_AUTO_DPDM_EN] = REG_FIELD(0x02, 0, 0), /* REG03 */ [F_BAT_LOAD_EN] = REG_FIELD(0x03, 7, 7), [F_WD_RST] = REG_FIELD(0x03, 6, 6), [F_OTG_CFG] = REG_FIELD(0x03, 5, 5), [F_CHG_CFG] = REG_FIELD(0x03, 4, 4), [F_SYSVMIN] = REG_FIELD(0x03, 1, 3), [F_MIN_VBAT_SEL] = REG_FIELD(0x03, 0, 0), // BQ25896 only /* REG04 */ [F_PUMPX_EN] = REG_FIELD(0x04, 7, 7), [F_ICHG] = REG_FIELD(0x04, 0, 6), /* REG05 */ [F_IPRECHG] = REG_FIELD(0x05, 4, 7), [F_ITERM] = REG_FIELD(0x05, 0, 3), /* REG06 */ [F_VREG] = REG_FIELD(0x06, 2, 7), [F_BATLOWV] = REG_FIELD(0x06, 1, 1), [F_VRECHG] = REG_FIELD(0x06, 0, 0), /* REG07 */ [F_TERM_EN] = REG_FIELD(0x07, 7, 7), [F_STAT_DIS] = REG_FIELD(0x07, 6, 6), [F_WD] = REG_FIELD(0x07, 4, 5), [F_TMR_EN] = REG_FIELD(0x07, 3, 3), [F_CHG_TMR] = REG_FIELD(0x07, 1, 2), [F_JEITA_ISET] = REG_FIELD(0x07, 0, 0), // reserved on BQ25895 /* REG08 */ [F_BATCMP] = REG_FIELD(0x08, 5, 7), [F_VCLAMP] = REG_FIELD(0x08, 2, 4), [F_TREG] = REG_FIELD(0x08, 0, 1), /* REG09 */ [F_FORCE_ICO] = REG_FIELD(0x09, 7, 7), [F_TMR2X_EN] = REG_FIELD(0x09, 6, 6), [F_BATFET_DIS] = REG_FIELD(0x09, 5, 5), [F_JEITA_VSET] = REG_FIELD(0x09, 4, 4), // reserved on BQ25895 [F_BATFET_DLY] = REG_FIELD(0x09, 3, 3), [F_BATFET_RST_EN] = REG_FIELD(0x09, 2, 2), [F_PUMPX_UP] = REG_FIELD(0x09, 1, 1), [F_PUMPX_DN] = REG_FIELD(0x09, 0, 0), /* REG0A */ [F_BOOSTV] = REG_FIELD(0x0A, 4, 7), [F_BOOSTI] = REG_FIELD(0x0A, 0, 2), // reserved on BQ25895 [F_PFM_OTG_DIS] = REG_FIELD(0x0A, 3, 3), // BQ25896 only /* REG0B */ [F_VBUS_STAT] = REG_FIELD(0x0B, 5, 7), [F_CHG_STAT] = REG_FIELD(0x0B, 3, 4), [F_PG_STAT] = REG_FIELD(0x0B, 2, 2), [F_SDP_STAT] = REG_FIELD(0x0B, 1, 1), // reserved on BQ25896 [F_VSYS_STAT] = REG_FIELD(0x0B, 0, 0), /* REG0C */ [F_WD_FAULT] = REG_FIELD(0x0C, 7, 7), [F_BOOST_FAULT] = REG_FIELD(0x0C, 6, 6), [F_CHG_FAULT] = REG_FIELD(0x0C, 4, 5), [F_BAT_FAULT] = REG_FIELD(0x0C, 3, 3), [F_NTC_FAULT] = REG_FIELD(0x0C, 0, 2), /* REG0D */ [F_FORCE_VINDPM] = REG_FIELD(0x0D, 7, 7), [F_VINDPM] = REG_FIELD(0x0D, 0, 6), /* REG0E */ [F_THERM_STAT] = REG_FIELD(0x0E, 7, 7), [F_BATV] = REG_FIELD(0x0E, 0, 6), /* REG0F */ [F_SYSV] = REG_FIELD(0x0F, 0, 6), /* REG10 */ [F_TSPCT] = REG_FIELD(0x10, 0, 6), /* REG11 */ [F_VBUS_GD] = REG_FIELD(0x11, 7, 7), [F_VBUSV] = REG_FIELD(0x11, 0, 6), /* REG12 */ [F_ICHGR] = REG_FIELD(0x12, 0, 6), /* REG13 */ [F_VDPM_STAT] = REG_FIELD(0x13, 7, 7), [F_IDPM_STAT] = REG_FIELD(0x13, 6, 6), [F_IDPM_LIM] = REG_FIELD(0x13, 0, 5), /* REG14 */ [F_REG_RST] = REG_FIELD(0x14, 7, 7), [F_ICO_OPTIMIZED] = REG_FIELD(0x14, 6, 6), [F_PN] = REG_FIELD(0x14, 3, 5), [F_TS_PROFILE] = REG_FIELD(0x14, 2, 2), [F_DEV_REV] = REG_FIELD(0x14, 0, 1) }; /* * Most of the val -> idx conversions can be computed, given the minimum, * maximum and the step between values. For the rest of conversions, we use * lookup tables. */ enum bq25890_table_ids { /* range tables */ TBL_ICHG, TBL_ITERM, TBL_IINLIM, TBL_VREG, TBL_BOOSTV, TBL_SYSVMIN, TBL_VBUSV, TBL_VBATCOMP, TBL_RBATCOMP, /* lookup tables */ TBL_TREG, TBL_BOOSTI, TBL_TSPCT, }; /* Thermal Regulation Threshold lookup table, in degrees Celsius */ static const u32 bq25890_treg_tbl[] = { 60, 80, 100, 120 }; #define BQ25890_TREG_TBL_SIZE ARRAY_SIZE(bq25890_treg_tbl) /* Boost mode current limit lookup table, in uA */ static const u32 bq25890_boosti_tbl[] = { 500000, 700000, 1100000, 1300000, 1600000, 1800000, 2100000, 2400000 }; #define BQ25890_BOOSTI_TBL_SIZE ARRAY_SIZE(bq25890_boosti_tbl) /* NTC 10K temperature lookup table in tenths of a degree */ static const u32 bq25890_tspct_tbl[] = { 850, 840, 830, 820, 810, 800, 790, 780, 770, 760, 750, 740, 730, 720, 710, 700, 690, 685, 680, 675, 670, 660, 650, 645, 640, 630, 620, 615, 610, 600, 590, 585, 580, 570, 565, 560, 550, 540, 535, 530, 520, 515, 510, 500, 495, 490, 480, 475, 470, 460, 455, 450, 440, 435, 430, 425, 420, 410, 405, 400, 390, 385, 380, 370, 365, 360, 355, 350, 340, 335, 330, 320, 310, 305, 300, 290, 285, 280, 275, 270, 260, 250, 245, 240, 230, 225, 220, 210, 205, 200, 190, 180, 175, 170, 160, 150, 145, 140, 130, 120, 115, 110, 100, 90, 80, 70, 60, 50, 40, 30, 20, 10, 0, -10, -20, -30, -40, -60, -70, -80, -90, -10, -120, -140, -150, -170, -190, -210, }; #define BQ25890_TSPCT_TBL_SIZE ARRAY_SIZE(bq25890_tspct_tbl) struct bq25890_range { u32 min; u32 max; u32 step; }; struct bq25890_lookup { const u32 *tbl; u32 size; }; static const union { struct bq25890_range rt; struct bq25890_lookup lt; } bq25890_tables[] = { /* range tables */ /* TODO: BQ25896 has max ICHG 3008 mA */ [TBL_ICHG] = { .rt = {0, 5056000, 64000} }, /* uA */ [TBL_ITERM] = { .rt = {64000, 1024000, 64000} }, /* uA */ [TBL_IINLIM] = { .rt = {100000, 3250000, 50000} }, /* uA */ [TBL_VREG] = { .rt = {3840000, 4608000, 16000} }, /* uV */ [TBL_BOOSTV] = { .rt = {4550000, 5510000, 64000} }, /* uV */ [TBL_SYSVMIN] = { .rt = {3000000, 3700000, 100000} }, /* uV */ [TBL_VBUSV] = { .rt = {2600000, 15300000, 100000} }, /* uV */ [TBL_VBATCOMP] = { .rt = {0, 224000, 32000} }, /* uV */ [TBL_RBATCOMP] = { .rt = {0, 140000, 20000} }, /* uOhm */ /* lookup tables */ [TBL_TREG] = { .lt = {bq25890_treg_tbl, BQ25890_TREG_TBL_SIZE} }, [TBL_BOOSTI] = { .lt = {bq25890_boosti_tbl, BQ25890_BOOSTI_TBL_SIZE} }, [TBL_TSPCT] = { .lt = {bq25890_tspct_tbl, BQ25890_TSPCT_TBL_SIZE} } }; static int bq25890_field_read(struct bq25890_device *bq, enum bq25890_fields field_id) { int ret; int val; ret = regmap_field_read(bq->rmap_fields[field_id], &val); if (ret < 0) return ret; return val; } static int bq25890_field_write(struct bq25890_device *bq, enum bq25890_fields field_id, u8 val) { return regmap_field_write(bq->rmap_fields[field_id], val); } static u8 bq25890_find_idx(u32 value, enum bq25890_table_ids id) { u8 idx; if (id >= TBL_TREG) { const u32 *tbl = bq25890_tables[id].lt.tbl; u32 tbl_size = bq25890_tables[id].lt.size; for (idx = 1; idx < tbl_size && tbl[idx] <= value; idx++) ; } else { const struct bq25890_range *rtbl = &bq25890_tables[id].rt; u8 rtbl_size; rtbl_size = (rtbl->max - rtbl->min) / rtbl->step + 1; for (idx = 1; idx < rtbl_size && (idx * rtbl->step + rtbl->min <= value); idx++) ; } return idx - 1; } static u32 bq25890_find_val(u8 idx, enum bq25890_table_ids id) { const struct bq25890_range *rtbl; /* lookup table? */ if (id >= TBL_TREG) return bq25890_tables[id].lt.tbl[idx]; /* range table */ rtbl = &bq25890_tables[id].rt; return (rtbl->min + idx * rtbl->step); } enum bq25890_status { STATUS_NOT_CHARGING, STATUS_PRE_CHARGING, STATUS_FAST_CHARGING, STATUS_TERMINATION_DONE, }; enum bq25890_chrg_fault { CHRG_FAULT_NORMAL, CHRG_FAULT_INPUT, CHRG_FAULT_THERMAL_SHUTDOWN, CHRG_FAULT_TIMER_EXPIRED, }; enum bq25890_ntc_fault { NTC_FAULT_NORMAL = 0, NTC_FAULT_WARM = 2, NTC_FAULT_COOL = 3, NTC_FAULT_COLD = 5, NTC_FAULT_HOT = 6, }; static bool bq25890_is_adc_property(enum power_supply_property psp) { switch (psp) { case POWER_SUPPLY_PROP_VOLTAGE_NOW: case POWER_SUPPLY_PROP_CURRENT_NOW: case POWER_SUPPLY_PROP_TEMP: return true; default: return false; } } static irqreturn_t __bq25890_handle_irq(struct bq25890_device *bq); static int bq25890_get_vbus_voltage(struct bq25890_device *bq) { int ret; ret = bq25890_field_read(bq, F_VBUSV); if (ret < 0) return ret; return bq25890_find_val(ret, TBL_VBUSV); } static void bq25890_update_state(struct bq25890_device *bq, enum power_supply_property psp, struct bq25890_state *state) { bool do_adc_conv; int ret; mutex_lock(&bq->lock); /* update state in case we lost an interrupt */ __bq25890_handle_irq(bq); *state = bq->state; do_adc_conv = (!state->online || state->hiz) && bq25890_is_adc_property(psp); if (do_adc_conv) bq25890_field_write(bq, F_CONV_START, 1); mutex_unlock(&bq->lock); if (do_adc_conv) regmap_field_read_poll_timeout(bq->rmap_fields[F_CONV_START], ret, !ret, 25000, 1000000); } static int bq25890_power_supply_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct bq25890_device *bq = power_supply_get_drvdata(psy); struct bq25890_state state; int ret; bq25890_update_state(bq, psp, &state); switch (psp) { case POWER_SUPPLY_PROP_STATUS: if (!state.online || state.hiz) val->intval = POWER_SUPPLY_STATUS_DISCHARGING; else if (state.chrg_status == STATUS_NOT_CHARGING) val->intval = POWER_SUPPLY_STATUS_NOT_CHARGING; else if (state.chrg_status == STATUS_PRE_CHARGING || state.chrg_status == STATUS_FAST_CHARGING) val->intval = POWER_SUPPLY_STATUS_CHARGING; else if (state.chrg_status == STATUS_TERMINATION_DONE) val->intval = POWER_SUPPLY_STATUS_FULL; else val->intval = POWER_SUPPLY_STATUS_UNKNOWN; break; case POWER_SUPPLY_PROP_CHARGE_TYPE: if (!state.online || state.hiz || state.chrg_status == STATUS_NOT_CHARGING || state.chrg_status == STATUS_TERMINATION_DONE) val->intval = POWER_SUPPLY_CHARGE_TYPE_NONE; else if (state.chrg_status == STATUS_PRE_CHARGING) val->intval = POWER_SUPPLY_CHARGE_TYPE_STANDARD; else if (state.chrg_status == STATUS_FAST_CHARGING) val->intval = POWER_SUPPLY_CHARGE_TYPE_FAST; else /* unreachable */ val->intval = POWER_SUPPLY_CHARGE_TYPE_UNKNOWN; break; case POWER_SUPPLY_PROP_MANUFACTURER: val->strval = BQ25890_MANUFACTURER; break; case POWER_SUPPLY_PROP_MODEL_NAME: val->strval = bq25890_chip_name[bq->chip_version]; break; case POWER_SUPPLY_PROP_ONLINE: val->intval = state.online && !state.hiz; break; case POWER_SUPPLY_PROP_HEALTH: if (!state.chrg_fault && !state.bat_fault && !state.boost_fault) val->intval = POWER_SUPPLY_HEALTH_GOOD; else if (state.bat_fault) val->intval = POWER_SUPPLY_HEALTH_OVERVOLTAGE; else if (state.chrg_fault == CHRG_FAULT_TIMER_EXPIRED) val->intval = POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE; else if (state.chrg_fault == CHRG_FAULT_THERMAL_SHUTDOWN) val->intval = POWER_SUPPLY_HEALTH_OVERHEAT; else val->intval = POWER_SUPPLY_HEALTH_UNSPEC_FAILURE; break; case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: val->intval = bq25890_find_val(bq->init_data.iprechg, TBL_ITERM); break; case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: val->intval = bq25890_find_val(bq->init_data.iterm, TBL_ITERM); break; case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: ret = bq25890_field_read(bq, F_IINLIM); if (ret < 0) return ret; val->intval = bq25890_find_val(ret, TBL_IINLIM); break; case POWER_SUPPLY_PROP_CURRENT_NOW: /* I_BAT now */ /* * This is ADC-sampled immediate charge current supplied * from charger to battery. The property name is confusing, * for clarification refer to: * Documentation/ABI/testing/sysfs-class-power * /sys/class/power_supply//current_now */ ret = bq25890_field_read(bq, F_ICHGR); /* read measured value */ if (ret < 0) return ret; /* converted_val = ADC_val * 50mA (table 10.3.19) */ val->intval = ret * -50000; break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: /* I_BAT user limit */ /* * This is user-configured constant charge current supplied * from charger to battery in first phase of charging, when * battery voltage is below constant charge voltage. * * This value reflects the current hardware setting. * * The POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX is the * maximum value of this property. */ ret = bq25890_field_read(bq, F_ICHG); if (ret < 0) return ret; val->intval = bq25890_find_val(ret, TBL_ICHG); /* When temperature is too low, charge current is decreased */ if (bq->state.ntc_fault == NTC_FAULT_COOL) { ret = bq25890_field_read(bq, F_JEITA_ISET); if (ret < 0) return ret; if (ret) val->intval /= 5; else val->intval /= 2; } break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: /* I_BAT max */ /* * This is maximum allowed constant charge current supplied * from charger to battery in first phase of charging, when * battery voltage is below constant charge voltage. * * This value is constant for each battery and set from DT. */ val->intval = bq25890_find_val(bq->init_data.ichg, TBL_ICHG); break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: /* V_BAT now */ /* * This is ADC-sampled immediate charge voltage supplied * from charger to battery. The property name is confusing, * for clarification refer to: * Documentation/ABI/testing/sysfs-class-power * /sys/class/power_supply//voltage_now */ ret = bq25890_field_read(bq, F_BATV); /* read measured value */ if (ret < 0) return ret; /* converted_val = 2.304V + ADC_val * 20mV (table 10.3.15) */ val->intval = 2304000 + ret * 20000; break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: /* V_BAT user limit */ /* * This is user-configured constant charge voltage supplied * from charger to battery in second phase of charging, when * battery voltage reached constant charge voltage. * * This value reflects the current hardware setting. * * The POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX is the * maximum value of this property. */ ret = bq25890_field_read(bq, F_VREG); if (ret < 0) return ret; val->intval = bq25890_find_val(ret, TBL_VREG); break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: /* V_BAT max */ /* * This is maximum allowed constant charge voltage supplied * from charger to battery in second phase of charging, when * battery voltage reached constant charge voltage. * * This value is constant for each battery and set from DT. */ val->intval = bq25890_find_val(bq->init_data.vreg, TBL_VREG); break; case POWER_SUPPLY_PROP_TEMP: ret = bq25890_field_read(bq, F_TSPCT); if (ret < 0) return ret; /* convert TS percentage into rough temperature */ val->intval = bq25890_find_val(ret, TBL_TSPCT); break; default: return -EINVAL; } return 0; } static int bq25890_power_supply_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct bq25890_device *bq = power_supply_get_drvdata(psy); struct bq25890_state state; int maxval, ret; u8 lval; switch (psp) { case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: maxval = bq25890_find_val(bq->init_data.ichg, TBL_ICHG); lval = bq25890_find_idx(min(val->intval, maxval), TBL_ICHG); return bq25890_field_write(bq, F_ICHG, lval); case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: maxval = bq25890_find_val(bq->init_data.vreg, TBL_VREG); lval = bq25890_find_idx(min(val->intval, maxval), TBL_VREG); return bq25890_field_write(bq, F_VREG, lval); case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: lval = bq25890_find_idx(val->intval, TBL_IINLIM); return bq25890_field_write(bq, F_IINLIM, lval); case POWER_SUPPLY_PROP_ONLINE: ret = bq25890_field_write(bq, F_EN_HIZ, !val->intval); if (!ret) bq->force_hiz = !val->intval; bq25890_update_state(bq, psp, &state); return ret; default: return -EINVAL; } } static int bq25890_power_supply_property_is_writeable(struct power_supply *psy, enum power_supply_property psp) { switch (psp) { case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: case POWER_SUPPLY_PROP_ONLINE: return true; default: return false; } } /* * If there are multiple chargers the maximum current the external power-supply * can deliver needs to be divided over the chargers. This is done according * to the bq->iinlim_percentage setting. */ static int bq25890_charger_get_scaled_iinlim_regval(struct bq25890_device *bq, int iinlim_ua) { iinlim_ua = iinlim_ua * bq->iinlim_percentage / 100; return bq25890_find_idx(iinlim_ua, TBL_IINLIM); } /* On the BQ25892 try to get charger-type info from our supplier */ static void bq25890_charger_external_power_changed(struct power_supply *psy) { struct bq25890_device *bq = power_supply_get_drvdata(psy); union power_supply_propval val; int input_current_limit, ret; if (bq->chip_version != BQ25892) return; ret = power_supply_get_property_from_supplier(psy, POWER_SUPPLY_PROP_USB_TYPE, &val); if (ret) return; switch (val.intval) { case POWER_SUPPLY_USB_TYPE_DCP: input_current_limit = bq25890_charger_get_scaled_iinlim_regval(bq, 2000000); if (bq->pump_express_vbus_max) { queue_delayed_work(system_power_efficient_wq, &bq->pump_express_work, PUMP_EXPRESS_START_DELAY); } break; case POWER_SUPPLY_USB_TYPE_CDP: case POWER_SUPPLY_USB_TYPE_ACA: input_current_limit = bq25890_charger_get_scaled_iinlim_regval(bq, 1500000); break; case POWER_SUPPLY_USB_TYPE_SDP: default: input_current_limit = bq25890_charger_get_scaled_iinlim_regval(bq, 500000); } bq25890_field_write(bq, F_IINLIM, input_current_limit); power_supply_changed(psy); } static int bq25890_get_chip_state(struct bq25890_device *bq, struct bq25890_state *state) { int i, ret; struct { enum bq25890_fields id; u8 *data; } state_fields[] = { {F_CHG_STAT, &state->chrg_status}, {F_PG_STAT, &state->online}, {F_EN_HIZ, &state->hiz}, {F_VSYS_STAT, &state->vsys_status}, {F_BOOST_FAULT, &state->boost_fault}, {F_BAT_FAULT, &state->bat_fault}, {F_CHG_FAULT, &state->chrg_fault}, {F_NTC_FAULT, &state->ntc_fault} }; for (i = 0; i < ARRAY_SIZE(state_fields); i++) { ret = bq25890_field_read(bq, state_fields[i].id); if (ret < 0) return ret; *state_fields[i].data = ret; } dev_dbg(bq->dev, "S:CHG/PG/HIZ/VSYS=%d/%d/%d/%d, F:CHG/BOOST/BAT/NTC=%d/%d/%d/%d\n", state->chrg_status, state->online, state->hiz, state->vsys_status, state->chrg_fault, state->boost_fault, state->bat_fault, state->ntc_fault); return 0; } static irqreturn_t __bq25890_handle_irq(struct bq25890_device *bq) { bool adc_conv_rate, new_adc_conv_rate; struct bq25890_state new_state; int ret; ret = bq25890_get_chip_state(bq, &new_state); if (ret < 0) return IRQ_NONE; if (!memcmp(&bq->state, &new_state, sizeof(new_state))) return IRQ_NONE; /* * Restore HiZ bit in case it was set by user. The chip does not retain * this bit on cable replug, hence the bit must be reset manually here. */ if (new_state.online && !bq->state.online && bq->force_hiz) { ret = bq25890_field_write(bq, F_EN_HIZ, bq->force_hiz); if (ret < 0) goto error; new_state.hiz = 1; } /* Should period ADC sampling be enabled? */ adc_conv_rate = bq->state.online && !bq->state.hiz; new_adc_conv_rate = new_state.online && !new_state.hiz; if (new_adc_conv_rate != adc_conv_rate) { ret = bq25890_field_write(bq, F_CONV_RATE, new_adc_conv_rate); if (ret < 0) goto error; } bq->state = new_state; power_supply_changed(bq->charger); return IRQ_HANDLED; error: dev_err(bq->dev, "Error communicating with the chip: %pe\n", ERR_PTR(ret)); return IRQ_HANDLED; } static irqreturn_t bq25890_irq_handler_thread(int irq, void *private) { struct bq25890_device *bq = private; irqreturn_t ret; mutex_lock(&bq->lock); ret = __bq25890_handle_irq(bq); mutex_unlock(&bq->lock); return ret; } static int bq25890_chip_reset(struct bq25890_device *bq) { int ret; int rst_check_counter = 10; ret = bq25890_field_write(bq, F_REG_RST, 1); if (ret < 0) return ret; do { ret = bq25890_field_read(bq, F_REG_RST); if (ret < 0) return ret; usleep_range(5, 10); } while (ret == 1 && --rst_check_counter); if (!rst_check_counter) return -ETIMEDOUT; return 0; } static int bq25890_rw_init_data(struct bq25890_device *bq) { bool write = !bq->read_back_init_data; int ret; int i; const struct { enum bq25890_fields id; u8 *value; } init_data[] = { {F_ICHG, &bq->init_data.ichg}, {F_VREG, &bq->init_data.vreg}, {F_ITERM, &bq->init_data.iterm}, {F_IPRECHG, &bq->init_data.iprechg}, {F_SYSVMIN, &bq->init_data.sysvmin}, {F_BOOSTV, &bq->init_data.boostv}, {F_BOOSTI, &bq->init_data.boosti}, {F_BOOSTF, &bq->init_data.boostf}, {F_EN_ILIM, &bq->init_data.ilim_en}, {F_TREG, &bq->init_data.treg}, {F_BATCMP, &bq->init_data.rbatcomp}, {F_VCLAMP, &bq->init_data.vclamp}, }; for (i = 0; i < ARRAY_SIZE(init_data); i++) { if (write) { ret = bq25890_field_write(bq, init_data[i].id, *init_data[i].value); } else { ret = bq25890_field_read(bq, init_data[i].id); if (ret >= 0) *init_data[i].value = ret; } if (ret < 0) { dev_dbg(bq->dev, "Accessing init data failed %d\n", ret); return ret; } } return 0; } static int bq25890_hw_init(struct bq25890_device *bq) { int ret; if (!bq->skip_reset) { ret = bq25890_chip_reset(bq); if (ret < 0) { dev_dbg(bq->dev, "Reset failed %d\n", ret); return ret; } } else { /* * Ensure charging is enabled, on some boards where the fw * takes care of initalizition F_CHG_CFG is set to 0 before * handing control over to the OS. */ ret = bq25890_field_write(bq, F_CHG_CFG, 1); if (ret < 0) { dev_dbg(bq->dev, "Enabling charging failed %d\n", ret); return ret; } } /* disable watchdog */ ret = bq25890_field_write(bq, F_WD, 0); if (ret < 0) { dev_dbg(bq->dev, "Disabling watchdog failed %d\n", ret); return ret; } /* initialize currents/voltages and other parameters */ ret = bq25890_rw_init_data(bq); if (ret) return ret; ret = bq25890_get_chip_state(bq, &bq->state); if (ret < 0) { dev_dbg(bq->dev, "Get state failed %d\n", ret); return ret; } /* Configure ADC for continuous conversions when charging */ ret = bq25890_field_write(bq, F_CONV_RATE, bq->state.online && !bq->state.hiz); if (ret < 0) { dev_dbg(bq->dev, "Config ADC failed %d\n", ret); return ret; } return 0; } static const enum power_supply_property bq25890_power_supply_props[] = { POWER_SUPPLY_PROP_MANUFACTURER, POWER_SUPPLY_PROP_MODEL_NAME, POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_CHARGE_TYPE, POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX, POWER_SUPPLY_PROP_PRECHARGE_CURRENT, POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT, POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_TEMP, }; static char *bq25890_charger_supplied_to[] = { "main-battery", }; static const struct power_supply_desc bq25890_power_supply_desc = { .type = POWER_SUPPLY_TYPE_USB, .properties = bq25890_power_supply_props, .num_properties = ARRAY_SIZE(bq25890_power_supply_props), .get_property = bq25890_power_supply_get_property, .set_property = bq25890_power_supply_set_property, .property_is_writeable = bq25890_power_supply_property_is_writeable, .external_power_changed = bq25890_charger_external_power_changed, }; static int bq25890_power_supply_init(struct bq25890_device *bq) { struct power_supply_config psy_cfg = { .drv_data = bq, }; /* Get ID for the device */ mutex_lock(&bq25890_id_mutex); bq->id = idr_alloc(&bq25890_id, bq, 0, 0, GFP_KERNEL); mutex_unlock(&bq25890_id_mutex); if (bq->id < 0) return bq->id; snprintf(bq->name, sizeof(bq->name), "bq25890-charger-%d", bq->id); bq->desc = bq25890_power_supply_desc; bq->desc.name = bq->name; psy_cfg.supplied_to = bq25890_charger_supplied_to; psy_cfg.num_supplicants = ARRAY_SIZE(bq25890_charger_supplied_to); bq->charger = devm_power_supply_register(bq->dev, &bq->desc, &psy_cfg); return PTR_ERR_OR_ZERO(bq->charger); } static int bq25890_set_otg_cfg(struct bq25890_device *bq, u8 val) { int ret; ret = bq25890_field_write(bq, F_OTG_CFG, val); if (ret < 0) dev_err(bq->dev, "Error switching to boost/charger mode: %d\n", ret); return ret; } static void bq25890_pump_express_work(struct work_struct *data) { struct bq25890_device *bq = container_of(data, struct bq25890_device, pump_express_work.work); union power_supply_propval value; int voltage, i, ret; dev_dbg(bq->dev, "Start to request input voltage increasing\n"); /* If there is a second charger put in Hi-Z mode */ if (bq->secondary_chrg) { value.intval = 0; power_supply_set_property(bq->secondary_chrg, POWER_SUPPLY_PROP_ONLINE, &value); } /* Enable current pulse voltage control protocol */ ret = bq25890_field_write(bq, F_PUMPX_EN, 1); if (ret < 0) goto error_print; for (i = 0; i < PUMP_EXPRESS_MAX_TRIES; i++) { voltage = bq25890_get_vbus_voltage(bq); if (voltage < 0) goto error_print; dev_dbg(bq->dev, "input voltage = %d uV\n", voltage); if ((voltage + PUMP_EXPRESS_VBUS_MARGIN_uV) > bq->pump_express_vbus_max) break; ret = bq25890_field_write(bq, F_PUMPX_UP, 1); if (ret < 0) goto error_print; /* Note a single PUMPX up pulse-sequence takes 2.1s */ ret = regmap_field_read_poll_timeout(bq->rmap_fields[F_PUMPX_UP], ret, !ret, 100000, 3000000); if (ret < 0) goto error_print; /* Make sure ADC has sampled Vbus before checking again */ msleep(1000); } bq25890_field_write(bq, F_PUMPX_EN, 0); if (bq->secondary_chrg) { value.intval = 1; power_supply_set_property(bq->secondary_chrg, POWER_SUPPLY_PROP_ONLINE, &value); } dev_info(bq->dev, "Hi-voltage charging requested, input voltage is %d mV\n", voltage); power_supply_changed(bq->charger); return; error_print: bq25890_field_write(bq, F_PUMPX_EN, 0); dev_err(bq->dev, "Failed to request hi-voltage charging\n"); } static void bq25890_usb_work(struct work_struct *data) { int ret; struct bq25890_device *bq = container_of(data, struct bq25890_device, usb_work); switch (bq->usb_event) { case USB_EVENT_ID: /* Enable boost mode */ bq25890_set_otg_cfg(bq, 1); break; case USB_EVENT_NONE: /* Disable boost mode */ ret = bq25890_set_otg_cfg(bq, 0); if (ret == 0) power_supply_changed(bq->charger); break; } } static int bq25890_usb_notifier(struct notifier_block *nb, unsigned long val, void *priv) { struct bq25890_device *bq = container_of(nb, struct bq25890_device, usb_nb); bq->usb_event = val; queue_work(system_power_efficient_wq, &bq->usb_work); return NOTIFY_OK; } #ifdef CONFIG_REGULATOR static int bq25890_vbus_enable(struct regulator_dev *rdev) { struct bq25890_device *bq = rdev_get_drvdata(rdev); union power_supply_propval val = { .intval = 0, }; /* * When enabling 5V boost / Vbus output, we need to put the secondary * charger in Hi-Z mode to avoid it trying to charge the secondary * battery from the 5V boost output. */ if (bq->secondary_chrg) power_supply_set_property(bq->secondary_chrg, POWER_SUPPLY_PROP_ONLINE, &val); return bq25890_set_otg_cfg(bq, 1); } static int bq25890_vbus_disable(struct regulator_dev *rdev) { struct bq25890_device *bq = rdev_get_drvdata(rdev); union power_supply_propval val = { .intval = 1, }; int ret; ret = bq25890_set_otg_cfg(bq, 0); if (ret) return ret; if (bq->secondary_chrg) power_supply_set_property(bq->secondary_chrg, POWER_SUPPLY_PROP_ONLINE, &val); return 0; } static int bq25890_vbus_is_enabled(struct regulator_dev *rdev) { struct bq25890_device *bq = rdev_get_drvdata(rdev); return bq25890_field_read(bq, F_OTG_CFG); } static int bq25890_vbus_get_voltage(struct regulator_dev *rdev) { struct bq25890_device *bq = rdev_get_drvdata(rdev); return bq25890_get_vbus_voltage(bq); } static int bq25890_vsys_get_voltage(struct regulator_dev *rdev) { struct bq25890_device *bq = rdev_get_drvdata(rdev); int ret; /* Should be some output voltage ? */ ret = bq25890_field_read(bq, F_SYSV); /* read measured value */ if (ret < 0) return ret; /* converted_val = 2.304V + ADC_val * 20mV (table 10.3.15) */ return 2304000 + ret * 20000; } static const struct regulator_ops bq25890_vbus_ops = { .enable = bq25890_vbus_enable, .disable = bq25890_vbus_disable, .is_enabled = bq25890_vbus_is_enabled, .get_voltage = bq25890_vbus_get_voltage, }; static const struct regulator_desc bq25890_vbus_desc = { .name = "usb_otg_vbus", .of_match = "usb-otg-vbus", .type = REGULATOR_VOLTAGE, .owner = THIS_MODULE, .ops = &bq25890_vbus_ops, }; static const struct regulator_ops bq25890_vsys_ops = { .get_voltage = bq25890_vsys_get_voltage, }; static const struct regulator_desc bq25890_vsys_desc = { .name = "vsys", .of_match = "vsys", .type = REGULATOR_VOLTAGE, .owner = THIS_MODULE, .ops = &bq25890_vsys_ops, }; static int bq25890_register_regulator(struct bq25890_device *bq) { struct bq25890_platform_data *pdata = dev_get_platdata(bq->dev); struct regulator_config cfg = { .dev = bq->dev, .driver_data = bq, }; struct regulator_dev *reg; if (pdata) cfg.init_data = pdata->regulator_init_data; reg = devm_regulator_register(bq->dev, &bq25890_vbus_desc, &cfg); if (IS_ERR(reg)) { return dev_err_probe(bq->dev, PTR_ERR(reg), "registering vbus regulator"); } /* pdata->regulator_init_data is for vbus only */ cfg.init_data = NULL; reg = devm_regulator_register(bq->dev, &bq25890_vsys_desc, &cfg); if (IS_ERR(reg)) { return dev_err_probe(bq->dev, PTR_ERR(reg), "registering vsys regulator"); } return 0; } #else static inline int bq25890_register_regulator(struct bq25890_device *bq) { return 0; } #endif static int bq25890_get_chip_version(struct bq25890_device *bq) { int id, rev; id = bq25890_field_read(bq, F_PN); if (id < 0) { dev_err(bq->dev, "Cannot read chip ID: %d\n", id); return id; } rev = bq25890_field_read(bq, F_DEV_REV); if (rev < 0) { dev_err(bq->dev, "Cannot read chip revision: %d\n", rev); return rev; } switch (id) { case BQ25890_ID: bq->chip_version = BQ25890; break; /* BQ25892 and BQ25896 share same ID 0 */ case BQ25896_ID: switch (rev) { case 2: bq->chip_version = BQ25896; break; case 1: bq->chip_version = BQ25892; break; default: dev_err(bq->dev, "Unknown device revision %d, assume BQ25892\n", rev); bq->chip_version = BQ25892; } break; case BQ25895_ID: bq->chip_version = BQ25895; break; default: dev_err(bq->dev, "Unknown chip ID %d\n", id); return -ENODEV; } return 0; } static int bq25890_irq_probe(struct bq25890_device *bq) { struct gpio_desc *irq; irq = devm_gpiod_get(bq->dev, BQ25890_IRQ_PIN, GPIOD_IN); if (IS_ERR(irq)) return dev_err_probe(bq->dev, PTR_ERR(irq), "Could not probe irq pin.\n"); return gpiod_to_irq(irq); } static int bq25890_fw_read_u32_props(struct bq25890_device *bq) { int ret; u32 property; int i; struct bq25890_init_data *init = &bq->init_data; struct { char *name; bool optional; enum bq25890_table_ids tbl_id; u8 *conv_data; /* holds converted value from given property */ } props[] = { /* required properties */ {"ti,charge-current", false, TBL_ICHG, &init->ichg}, {"ti,battery-regulation-voltage", false, TBL_VREG, &init->vreg}, {"ti,termination-current", false, TBL_ITERM, &init->iterm}, {"ti,precharge-current", false, TBL_ITERM, &init->iprechg}, {"ti,minimum-sys-voltage", false, TBL_SYSVMIN, &init->sysvmin}, {"ti,boost-voltage", false, TBL_BOOSTV, &init->boostv}, {"ti,boost-max-current", false, TBL_BOOSTI, &init->boosti}, /* optional properties */ {"ti,thermal-regulation-threshold", true, TBL_TREG, &init->treg}, {"ti,ibatcomp-micro-ohms", true, TBL_RBATCOMP, &init->rbatcomp}, {"ti,ibatcomp-clamp-microvolt", true, TBL_VBATCOMP, &init->vclamp}, }; /* initialize data for optional properties */ init->treg = 3; /* 120 degrees Celsius */ init->rbatcomp = init->vclamp = 0; /* IBAT compensation disabled */ for (i = 0; i < ARRAY_SIZE(props); i++) { ret = device_property_read_u32(bq->dev, props[i].name, &property); if (ret < 0) { if (props[i].optional) continue; dev_err(bq->dev, "Unable to read property %d %s\n", ret, props[i].name); return ret; } *props[i].conv_data = bq25890_find_idx(property, props[i].tbl_id); } return 0; } static int bq25890_fw_probe(struct bq25890_device *bq) { int ret; struct bq25890_init_data *init = &bq->init_data; const char *str; u32 val; ret = device_property_read_string(bq->dev, "linux,secondary-charger-name", &str); if (ret == 0) { bq->secondary_chrg = power_supply_get_by_name(str); if (!bq->secondary_chrg) return -EPROBE_DEFER; } /* Optional, left at 0 if property is not present */ device_property_read_u32(bq->dev, "linux,pump-express-vbus-max", &bq->pump_express_vbus_max); ret = device_property_read_u32(bq->dev, "linux,iinlim-percentage", &val); if (ret == 0) { if (val > 100) { dev_err(bq->dev, "Error linux,iinlim-percentage %u > 100\n", val); return -EINVAL; } bq->iinlim_percentage = val; } else { bq->iinlim_percentage = 100; } bq->skip_reset = device_property_read_bool(bq->dev, "linux,skip-reset"); bq->read_back_init_data = device_property_read_bool(bq->dev, "linux,read-back-settings"); if (bq->read_back_init_data) return 0; ret = bq25890_fw_read_u32_props(bq); if (ret < 0) return ret; init->ilim_en = device_property_read_bool(bq->dev, "ti,use-ilim-pin"); init->boostf = device_property_read_bool(bq->dev, "ti,boost-low-freq"); return 0; } static void bq25890_non_devm_cleanup(void *data) { struct bq25890_device *bq = data; cancel_delayed_work_sync(&bq->pump_express_work); if (bq->id >= 0) { mutex_lock(&bq25890_id_mutex); idr_remove(&bq25890_id, bq->id); mutex_unlock(&bq25890_id_mutex); } } static int bq25890_probe(struct i2c_client *client) { struct device *dev = &client->dev; struct bq25890_device *bq; int ret; bq = devm_kzalloc(dev, sizeof(*bq), GFP_KERNEL); if (!bq) return -ENOMEM; bq->client = client; bq->dev = dev; bq->id = -1; mutex_init(&bq->lock); INIT_DELAYED_WORK(&bq->pump_express_work, bq25890_pump_express_work); bq->rmap = devm_regmap_init_i2c(client, &bq25890_regmap_config); if (IS_ERR(bq->rmap)) return dev_err_probe(dev, PTR_ERR(bq->rmap), "failed to allocate register map\n"); ret = devm_regmap_field_bulk_alloc(dev, bq->rmap, bq->rmap_fields, bq25890_reg_fields, F_MAX_FIELDS); if (ret) return ret; i2c_set_clientdata(client, bq); ret = bq25890_get_chip_version(bq); if (ret) { dev_err(dev, "Cannot read chip ID or unknown chip: %d\n", ret); return ret; } ret = bq25890_fw_probe(bq); if (ret < 0) return dev_err_probe(dev, ret, "reading device properties\n"); ret = bq25890_hw_init(bq); if (ret < 0) { dev_err(dev, "Cannot initialize the chip: %d\n", ret); return ret; } if (client->irq <= 0) client->irq = bq25890_irq_probe(bq); if (client->irq < 0) { dev_err(dev, "No irq resource found.\n"); return client->irq; } /* OTG reporting */ bq->usb_phy = devm_usb_get_phy(dev, USB_PHY_TYPE_USB2); /* * This must be before bq25890_power_supply_init(), so that it runs * after devm unregisters the power_supply. */ ret = devm_add_action_or_reset(dev, bq25890_non_devm_cleanup, bq); if (ret) return ret; ret = bq25890_register_regulator(bq); if (ret) return ret; ret = bq25890_power_supply_init(bq); if (ret < 0) return dev_err_probe(dev, ret, "registering power supply\n"); ret = devm_request_threaded_irq(dev, client->irq, NULL, bq25890_irq_handler_thread, IRQF_TRIGGER_FALLING | IRQF_ONESHOT, BQ25890_IRQ_PIN, bq); if (ret) return ret; if (!IS_ERR_OR_NULL(bq->usb_phy)) { INIT_WORK(&bq->usb_work, bq25890_usb_work); bq->usb_nb.notifier_call = bq25890_usb_notifier; usb_register_notifier(bq->usb_phy, &bq->usb_nb); } return 0; } static void bq25890_remove(struct i2c_client *client) { struct bq25890_device *bq = i2c_get_clientdata(client); if (!IS_ERR_OR_NULL(bq->usb_phy)) { usb_unregister_notifier(bq->usb_phy, &bq->usb_nb); cancel_work_sync(&bq->usb_work); } if (!bq->skip_reset) { /* reset all registers to default values */ bq25890_chip_reset(bq); } } static void bq25890_shutdown(struct i2c_client *client) { struct bq25890_device *bq = i2c_get_clientdata(client); /* * TODO this if + return should probably be removed, but that would * introduce a function change for boards using the usb-phy framework. * This needs to be tested on such a board before making this change. */ if (!IS_ERR_OR_NULL(bq->usb_phy)) return; /* * Turn off the 5v Boost regulator which outputs Vbus to the device's * Micro-USB or Type-C USB port. Leaving this on drains power and * this avoids the PMIC on some device-models seeing this as Vbus * getting inserted after shutdown, causing the device to immediately * power-up again. */ bq25890_set_otg_cfg(bq, 0); } #ifdef CONFIG_PM_SLEEP static int bq25890_suspend(struct device *dev) { struct bq25890_device *bq = dev_get_drvdata(dev); /* * If charger is removed, while in suspend, make sure ADC is diabled * since it consumes slightly more power. */ return bq25890_field_write(bq, F_CONV_RATE, 0); } static int bq25890_resume(struct device *dev) { int ret; struct bq25890_device *bq = dev_get_drvdata(dev); mutex_lock(&bq->lock); ret = bq25890_get_chip_state(bq, &bq->state); if (ret < 0) goto unlock; /* Re-enable ADC only if charger is plugged in. */ if (bq->state.online) { ret = bq25890_field_write(bq, F_CONV_RATE, 1); if (ret < 0) goto unlock; } /* signal userspace, maybe state changed while suspended */ power_supply_changed(bq->charger); unlock: mutex_unlock(&bq->lock); return ret; } #endif static const struct dev_pm_ops bq25890_pm = { SET_SYSTEM_SLEEP_PM_OPS(bq25890_suspend, bq25890_resume) }; static const struct i2c_device_id bq25890_i2c_ids[] = { { "bq25890", 0 }, { "bq25892", 0 }, { "bq25895", 0 }, { "bq25896", 0 }, {}, }; MODULE_DEVICE_TABLE(i2c, bq25890_i2c_ids); static const struct of_device_id bq25890_of_match[] = { { .compatible = "ti,bq25890", }, { .compatible = "ti,bq25892", }, { .compatible = "ti,bq25895", }, { .compatible = "ti,bq25896", }, { }, }; MODULE_DEVICE_TABLE(of, bq25890_of_match); #ifdef CONFIG_ACPI static const struct acpi_device_id bq25890_acpi_match[] = { {"BQ258900", 0}, {}, }; MODULE_DEVICE_TABLE(acpi, bq25890_acpi_match); #endif static struct i2c_driver bq25890_driver = { .driver = { .name = "bq25890-charger", .of_match_table = of_match_ptr(bq25890_of_match), .acpi_match_table = ACPI_PTR(bq25890_acpi_match), .pm = &bq25890_pm, }, .probe_new = bq25890_probe, .remove = bq25890_remove, .shutdown = bq25890_shutdown, .id_table = bq25890_i2c_ids, }; module_i2c_driver(bq25890_driver); MODULE_AUTHOR("Laurentiu Palcu "); MODULE_DESCRIPTION("bq25890 charger driver"); MODULE_LICENSE("GPL");