// SPDX-License-Identifier: GPL-2.0-only /* * Socionext SPI flash controller F_OSPI driver * Copyright (C) 2021 Socionext Inc. */ #include #include #include #include #include #include #include #include #include #include /* Registers */ #define OSPI_PROT_CTL_INDIR 0x00 #define OSPI_PROT_MODE_DATA_MASK GENMASK(31, 30) #define OSPI_PROT_MODE_ALT_MASK GENMASK(29, 28) #define OSPI_PROT_MODE_ADDR_MASK GENMASK(27, 26) #define OSPI_PROT_MODE_CODE_MASK GENMASK(25, 24) #define OSPI_PROT_MODE_SINGLE 0 #define OSPI_PROT_MODE_DUAL 1 #define OSPI_PROT_MODE_QUAD 2 #define OSPI_PROT_MODE_OCTAL 3 #define OSPI_PROT_DATA_RATE_DATA BIT(23) #define OSPI_PROT_DATA_RATE_ALT BIT(22) #define OSPI_PROT_DATA_RATE_ADDR BIT(21) #define OSPI_PROT_DATA_RATE_CODE BIT(20) #define OSPI_PROT_SDR 0 #define OSPI_PROT_DDR 1 #define OSPI_PROT_BIT_POS_DATA BIT(19) #define OSPI_PROT_BIT_POS_ALT BIT(18) #define OSPI_PROT_BIT_POS_ADDR BIT(17) #define OSPI_PROT_BIT_POS_CODE BIT(16) #define OSPI_PROT_SAMP_EDGE BIT(12) #define OSPI_PROT_DATA_UNIT_MASK GENMASK(11, 10) #define OSPI_PROT_DATA_UNIT_1B 0 #define OSPI_PROT_DATA_UNIT_2B 1 #define OSPI_PROT_DATA_UNIT_4B 3 #define OSPI_PROT_TRANS_DIR_WRITE BIT(9) #define OSPI_PROT_DATA_EN BIT(8) #define OSPI_PROT_ALT_SIZE_MASK GENMASK(7, 5) #define OSPI_PROT_ADDR_SIZE_MASK GENMASK(4, 2) #define OSPI_PROT_CODE_SIZE_MASK GENMASK(1, 0) #define OSPI_CLK_CTL 0x10 #define OSPI_CLK_CTL_BOOT_INT_CLK_EN BIT(16) #define OSPI_CLK_CTL_PHA BIT(12) #define OSPI_CLK_CTL_PHA_180 0 #define OSPI_CLK_CTL_PHA_90 1 #define OSPI_CLK_CTL_DIV GENMASK(9, 8) #define OSPI_CLK_CTL_DIV_1 0 #define OSPI_CLK_CTL_DIV_2 1 #define OSPI_CLK_CTL_DIV_4 2 #define OSPI_CLK_CTL_DIV_8 3 #define OSPI_CLK_CTL_INT_CLK_EN BIT(0) #define OSPI_CS_CTL1 0x14 #define OSPI_CS_CTL2 0x18 #define OSPI_SSEL 0x20 #define OSPI_CMD_IDX_INDIR 0x40 #define OSPI_ADDR 0x50 #define OSPI_ALT_INDIR 0x60 #define OSPI_DMY_INDIR 0x70 #define OSPI_DAT 0x80 #define OSPI_DAT_SWP_INDIR 0x90 #define OSPI_DAT_SIZE_INDIR 0xA0 #define OSPI_DAT_SIZE_EN BIT(15) #define OSPI_DAT_SIZE_MASK GENMASK(10, 0) #define OSPI_DAT_SIZE_MAX (OSPI_DAT_SIZE_MASK + 1) #define OSPI_TRANS_CTL 0xC0 #define OSPI_TRANS_CTL_STOP_REQ BIT(1) /* RW1AC */ #define OSPI_TRANS_CTL_START_REQ BIT(0) /* RW1AC */ #define OSPI_ACC_MODE 0xC4 #define OSPI_ACC_MODE_BOOT_DISABLE BIT(0) #define OSPI_SWRST 0xD0 #define OSPI_SWRST_INDIR_WRITE_FIFO BIT(9) /* RW1AC */ #define OSPI_SWRST_INDIR_READ_FIFO BIT(8) /* RW1AC */ #define OSPI_STAT 0xE0 #define OSPI_STAT_IS_AXI_WRITING BIT(10) #define OSPI_STAT_IS_AXI_READING BIT(9) #define OSPI_STAT_IS_SPI_INT_CLK_STOP BIT(4) #define OSPI_STAT_IS_SPI_IDLE BIT(3) #define OSPI_IRQ 0xF0 #define OSPI_IRQ_CS_DEASSERT BIT(8) #define OSPI_IRQ_WRITE_BUF_READY BIT(2) #define OSPI_IRQ_READ_BUF_READY BIT(1) #define OSPI_IRQ_CS_TRANS_COMP BIT(0) #define OSPI_IRQ_ALL \ (OSPI_IRQ_CS_DEASSERT | OSPI_IRQ_WRITE_BUF_READY \ | OSPI_IRQ_READ_BUF_READY | OSPI_IRQ_CS_TRANS_COMP) #define OSPI_IRQ_STAT_EN 0xF4 #define OSPI_IRQ_SIG_EN 0xF8 /* Parameters */ #define OSPI_NUM_CS 4 #define OSPI_DUMMY_CYCLE_MAX 255 #define OSPI_WAIT_MAX_MSEC 100 struct f_ospi { void __iomem *base; struct device *dev; struct clk *clk; struct mutex mlock; }; static u32 f_ospi_get_dummy_cycle(const struct spi_mem_op *op) { return (op->dummy.nbytes * 8) / op->dummy.buswidth; } static void f_ospi_clear_irq(struct f_ospi *ospi) { writel(OSPI_IRQ_CS_DEASSERT | OSPI_IRQ_CS_TRANS_COMP, ospi->base + OSPI_IRQ); } static void f_ospi_enable_irq_status(struct f_ospi *ospi, u32 irq_bits) { u32 val; val = readl(ospi->base + OSPI_IRQ_STAT_EN); val |= irq_bits; writel(val, ospi->base + OSPI_IRQ_STAT_EN); } static void f_ospi_disable_irq_status(struct f_ospi *ospi, u32 irq_bits) { u32 val; val = readl(ospi->base + OSPI_IRQ_STAT_EN); val &= ~irq_bits; writel(val, ospi->base + OSPI_IRQ_STAT_EN); } static void f_ospi_disable_irq_output(struct f_ospi *ospi, u32 irq_bits) { u32 val; val = readl(ospi->base + OSPI_IRQ_SIG_EN); val &= ~irq_bits; writel(val, ospi->base + OSPI_IRQ_SIG_EN); } static int f_ospi_prepare_config(struct f_ospi *ospi) { u32 val, stat0, stat1; /* G4: Disable internal clock */ val = readl(ospi->base + OSPI_CLK_CTL); val &= ~(OSPI_CLK_CTL_BOOT_INT_CLK_EN | OSPI_CLK_CTL_INT_CLK_EN); writel(val, ospi->base + OSPI_CLK_CTL); /* G5: Wait for stop */ stat0 = OSPI_STAT_IS_AXI_WRITING | OSPI_STAT_IS_AXI_READING; stat1 = OSPI_STAT_IS_SPI_IDLE | OSPI_STAT_IS_SPI_INT_CLK_STOP; return readl_poll_timeout(ospi->base + OSPI_STAT, val, (val & (stat0 | stat1)) == stat1, 0, OSPI_WAIT_MAX_MSEC); } static int f_ospi_unprepare_config(struct f_ospi *ospi) { u32 val; /* G11: Enable internal clock */ val = readl(ospi->base + OSPI_CLK_CTL); val |= OSPI_CLK_CTL_BOOT_INT_CLK_EN | OSPI_CLK_CTL_INT_CLK_EN; writel(val, ospi->base + OSPI_CLK_CTL); /* G12: Wait for clock to start */ return readl_poll_timeout(ospi->base + OSPI_STAT, val, !(val & OSPI_STAT_IS_SPI_INT_CLK_STOP), 0, OSPI_WAIT_MAX_MSEC); } static void f_ospi_config_clk(struct f_ospi *ospi, u32 device_hz) { long rate_hz = clk_get_rate(ospi->clk); u32 div = DIV_ROUND_UP(rate_hz, device_hz); u32 div_reg; u32 val; if (rate_hz < device_hz) { dev_warn(ospi->dev, "Device frequency too large: %d\n", device_hz); div_reg = OSPI_CLK_CTL_DIV_1; } else { if (div == 1) { div_reg = OSPI_CLK_CTL_DIV_1; } else if (div == 2) { div_reg = OSPI_CLK_CTL_DIV_2; } else if (div <= 4) { div_reg = OSPI_CLK_CTL_DIV_4; } else if (div <= 8) { div_reg = OSPI_CLK_CTL_DIV_8; } else { dev_warn(ospi->dev, "Device frequency too small: %d\n", device_hz); div_reg = OSPI_CLK_CTL_DIV_8; } } /* * G7: Set clock mode * clock phase is fixed at 180 degrees and configure edge direction * instead. */ val = readl(ospi->base + OSPI_CLK_CTL); val &= ~(OSPI_CLK_CTL_PHA | OSPI_CLK_CTL_DIV); val |= FIELD_PREP(OSPI_CLK_CTL_PHA, OSPI_CLK_CTL_PHA_180) | FIELD_PREP(OSPI_CLK_CTL_DIV, div_reg); writel(val, ospi->base + OSPI_CLK_CTL); } static void f_ospi_config_dll(struct f_ospi *ospi) { /* G8: Configure DLL, nothing */ } static u8 f_ospi_get_mode(struct f_ospi *ospi, int width, int data_size) { u8 mode = OSPI_PROT_MODE_SINGLE; switch (width) { case 1: mode = OSPI_PROT_MODE_SINGLE; break; case 2: mode = OSPI_PROT_MODE_DUAL; break; case 4: mode = OSPI_PROT_MODE_QUAD; break; case 8: mode = OSPI_PROT_MODE_OCTAL; break; default: if (data_size) dev_err(ospi->dev, "Invalid buswidth: %d\n", width); break; } return mode; } static void f_ospi_config_indir_protocol(struct f_ospi *ospi, struct spi_mem *mem, const struct spi_mem_op *op) { struct spi_device *spi = mem->spi; u8 mode; u32 prot = 0, val; int unit; /* Set one chip select */ writel(BIT(spi->chip_select), ospi->base + OSPI_SSEL); mode = f_ospi_get_mode(ospi, op->cmd.buswidth, 1); prot |= FIELD_PREP(OSPI_PROT_MODE_CODE_MASK, mode); mode = f_ospi_get_mode(ospi, op->addr.buswidth, op->addr.nbytes); prot |= FIELD_PREP(OSPI_PROT_MODE_ADDR_MASK, mode); mode = f_ospi_get_mode(ospi, op->data.buswidth, op->data.nbytes); prot |= FIELD_PREP(OSPI_PROT_MODE_DATA_MASK, mode); prot |= FIELD_PREP(OSPI_PROT_DATA_RATE_DATA, OSPI_PROT_SDR); prot |= FIELD_PREP(OSPI_PROT_DATA_RATE_ALT, OSPI_PROT_SDR); prot |= FIELD_PREP(OSPI_PROT_DATA_RATE_ADDR, OSPI_PROT_SDR); prot |= FIELD_PREP(OSPI_PROT_DATA_RATE_CODE, OSPI_PROT_SDR); if (spi->mode & SPI_LSB_FIRST) prot |= OSPI_PROT_BIT_POS_DATA | OSPI_PROT_BIT_POS_ALT | OSPI_PROT_BIT_POS_ADDR | OSPI_PROT_BIT_POS_CODE; if (spi->mode & SPI_CPHA) prot |= OSPI_PROT_SAMP_EDGE; /* Examine nbytes % 4 */ switch (op->data.nbytes & 0x3) { case 0: unit = OSPI_PROT_DATA_UNIT_4B; val = 0; break; case 2: unit = OSPI_PROT_DATA_UNIT_2B; val = OSPI_DAT_SIZE_EN | (op->data.nbytes - 1); break; default: unit = OSPI_PROT_DATA_UNIT_1B; val = OSPI_DAT_SIZE_EN | (op->data.nbytes - 1); break; } prot |= FIELD_PREP(OSPI_PROT_DATA_UNIT_MASK, unit); switch (op->data.dir) { case SPI_MEM_DATA_IN: prot |= OSPI_PROT_DATA_EN; break; case SPI_MEM_DATA_OUT: prot |= OSPI_PROT_TRANS_DIR_WRITE | OSPI_PROT_DATA_EN; break; case SPI_MEM_NO_DATA: prot |= OSPI_PROT_TRANS_DIR_WRITE; break; default: dev_warn(ospi->dev, "Unsupported direction"); break; } prot |= FIELD_PREP(OSPI_PROT_ADDR_SIZE_MASK, op->addr.nbytes); prot |= FIELD_PREP(OSPI_PROT_CODE_SIZE_MASK, 1); /* 1byte */ writel(prot, ospi->base + OSPI_PROT_CTL_INDIR); writel(val, ospi->base + OSPI_DAT_SIZE_INDIR); } static int f_ospi_indir_prepare_op(struct f_ospi *ospi, struct spi_mem *mem, const struct spi_mem_op *op) { struct spi_device *spi = mem->spi; u32 irq_stat_en; int ret; ret = f_ospi_prepare_config(ospi); if (ret) return ret; f_ospi_config_clk(ospi, spi->max_speed_hz); f_ospi_config_indir_protocol(ospi, mem, op); writel(f_ospi_get_dummy_cycle(op), ospi->base + OSPI_DMY_INDIR); writel(op->addr.val, ospi->base + OSPI_ADDR); writel(op->cmd.opcode, ospi->base + OSPI_CMD_IDX_INDIR); f_ospi_clear_irq(ospi); switch (op->data.dir) { case SPI_MEM_DATA_IN: irq_stat_en = OSPI_IRQ_READ_BUF_READY | OSPI_IRQ_CS_TRANS_COMP; break; case SPI_MEM_DATA_OUT: irq_stat_en = OSPI_IRQ_WRITE_BUF_READY | OSPI_IRQ_CS_TRANS_COMP; break; case SPI_MEM_NO_DATA: irq_stat_en = OSPI_IRQ_CS_TRANS_COMP; break; default: dev_warn(ospi->dev, "Unsupported direction"); irq_stat_en = 0; } f_ospi_disable_irq_status(ospi, ~irq_stat_en); f_ospi_enable_irq_status(ospi, irq_stat_en); return f_ospi_unprepare_config(ospi); } static void f_ospi_indir_start_xfer(struct f_ospi *ospi) { /* Write only 1, auto cleared */ writel(OSPI_TRANS_CTL_START_REQ, ospi->base + OSPI_TRANS_CTL); } static void f_ospi_indir_stop_xfer(struct f_ospi *ospi) { /* Write only 1, auto cleared */ writel(OSPI_TRANS_CTL_STOP_REQ, ospi->base + OSPI_TRANS_CTL); } static int f_ospi_indir_wait_xfer_complete(struct f_ospi *ospi) { u32 val; return readl_poll_timeout(ospi->base + OSPI_IRQ, val, val & OSPI_IRQ_CS_TRANS_COMP, 0, OSPI_WAIT_MAX_MSEC); } static int f_ospi_indir_read(struct f_ospi *ospi, struct spi_mem *mem, const struct spi_mem_op *op) { u8 *buf = op->data.buf.in; u32 val; int i, ret; mutex_lock(&ospi->mlock); /* E1-2: Prepare transfer operation */ ret = f_ospi_indir_prepare_op(ospi, mem, op); if (ret) goto out; f_ospi_indir_start_xfer(ospi); /* E3-4: Wait for ready and read data */ for (i = 0; i < op->data.nbytes; i++) { ret = readl_poll_timeout(ospi->base + OSPI_IRQ, val, val & OSPI_IRQ_READ_BUF_READY, 0, OSPI_WAIT_MAX_MSEC); if (ret) goto out; buf[i] = readl(ospi->base + OSPI_DAT) & 0xFF; } /* E5-6: Stop transfer if data size is nothing */ if (!(readl(ospi->base + OSPI_DAT_SIZE_INDIR) & OSPI_DAT_SIZE_EN)) f_ospi_indir_stop_xfer(ospi); /* E7-8: Wait for completion and clear */ ret = f_ospi_indir_wait_xfer_complete(ospi); if (ret) goto out; writel(OSPI_IRQ_CS_TRANS_COMP, ospi->base + OSPI_IRQ); /* E9: Do nothing if data size is valid */ if (readl(ospi->base + OSPI_DAT_SIZE_INDIR) & OSPI_DAT_SIZE_EN) goto out; /* E10-11: Reset and check read fifo */ writel(OSPI_SWRST_INDIR_READ_FIFO, ospi->base + OSPI_SWRST); ret = readl_poll_timeout(ospi->base + OSPI_SWRST, val, !(val & OSPI_SWRST_INDIR_READ_FIFO), 0, OSPI_WAIT_MAX_MSEC); out: mutex_unlock(&ospi->mlock); return ret; } static int f_ospi_indir_write(struct f_ospi *ospi, struct spi_mem *mem, const struct spi_mem_op *op) { u8 *buf = (u8 *)op->data.buf.out; u32 val; int i, ret; mutex_lock(&ospi->mlock); /* F1-3: Prepare transfer operation */ ret = f_ospi_indir_prepare_op(ospi, mem, op); if (ret) goto out; f_ospi_indir_start_xfer(ospi); if (!(readl(ospi->base + OSPI_PROT_CTL_INDIR) & OSPI_PROT_DATA_EN)) goto nodata; /* F4-5: Wait for buffer ready and write data */ for (i = 0; i < op->data.nbytes; i++) { ret = readl_poll_timeout(ospi->base + OSPI_IRQ, val, val & OSPI_IRQ_WRITE_BUF_READY, 0, OSPI_WAIT_MAX_MSEC); if (ret) goto out; writel(buf[i], ospi->base + OSPI_DAT); } /* F6-7: Stop transfer if data size is nothing */ if (!(readl(ospi->base + OSPI_DAT_SIZE_INDIR) & OSPI_DAT_SIZE_EN)) f_ospi_indir_stop_xfer(ospi); nodata: /* F8-9: Wait for completion and clear */ ret = f_ospi_indir_wait_xfer_complete(ospi); if (ret) goto out; writel(OSPI_IRQ_CS_TRANS_COMP, ospi->base + OSPI_IRQ); out: mutex_unlock(&ospi->mlock); return ret; } static int f_ospi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) { struct f_ospi *ospi = spi_controller_get_devdata(mem->spi->master); int err = 0; switch (op->data.dir) { case SPI_MEM_DATA_IN: err = f_ospi_indir_read(ospi, mem, op); break; case SPI_MEM_DATA_OUT: fallthrough; case SPI_MEM_NO_DATA: err = f_ospi_indir_write(ospi, mem, op); break; default: dev_warn(ospi->dev, "Unsupported direction"); err = -EOPNOTSUPP; } return err; } static bool f_ospi_supports_op_width(struct spi_mem *mem, const struct spi_mem_op *op) { u8 width_available[] = { 0, 1, 2, 4, 8 }; u8 width_op[] = { op->cmd.buswidth, op->addr.buswidth, op->dummy.buswidth, op->data.buswidth }; bool is_match_found; int i, j; for (i = 0; i < ARRAY_SIZE(width_op); i++) { is_match_found = false; for (j = 0; j < ARRAY_SIZE(width_available); j++) { if (width_op[i] == width_available[j]) { is_match_found = true; break; } } if (!is_match_found) return false; } return true; } static bool f_ospi_supports_op(struct spi_mem *mem, const struct spi_mem_op *op) { if (f_ospi_get_dummy_cycle(op) > OSPI_DUMMY_CYCLE_MAX) return false; if (op->addr.nbytes > 4) return false; if (!f_ospi_supports_op_width(mem, op)) return false; return spi_mem_default_supports_op(mem, op); } static int f_ospi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) { op->data.nbytes = min((int)op->data.nbytes, (int)(OSPI_DAT_SIZE_MAX)); return 0; } static const struct spi_controller_mem_ops f_ospi_mem_ops = { .adjust_op_size = f_ospi_adjust_op_size, .supports_op = f_ospi_supports_op, .exec_op = f_ospi_exec_op, }; static int f_ospi_init(struct f_ospi *ospi) { int ret; ret = f_ospi_prepare_config(ospi); if (ret) return ret; /* Disable boot signal */ writel(OSPI_ACC_MODE_BOOT_DISABLE, ospi->base + OSPI_ACC_MODE); f_ospi_config_dll(ospi); /* Disable IRQ */ f_ospi_clear_irq(ospi); f_ospi_disable_irq_status(ospi, OSPI_IRQ_ALL); f_ospi_disable_irq_output(ospi, OSPI_IRQ_ALL); return f_ospi_unprepare_config(ospi); } static int f_ospi_probe(struct platform_device *pdev) { struct spi_controller *ctlr; struct device *dev = &pdev->dev; struct f_ospi *ospi; u32 num_cs = OSPI_NUM_CS; int ret; ctlr = spi_alloc_master(dev, sizeof(*ospi)); if (!ctlr) return -ENOMEM; ctlr->mode_bits = SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL | SPI_MODE_0 | SPI_MODE_1 | SPI_LSB_FIRST; ctlr->mem_ops = &f_ospi_mem_ops; ctlr->bus_num = -1; of_property_read_u32(dev->of_node, "num-cs", &num_cs); if (num_cs > OSPI_NUM_CS) { dev_err(dev, "num-cs too large: %d\n", num_cs); return -ENOMEM; } ctlr->num_chipselect = num_cs; ctlr->dev.of_node = dev->of_node; ospi = spi_controller_get_devdata(ctlr); ospi->dev = dev; platform_set_drvdata(pdev, ospi); ospi->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(ospi->base)) { ret = PTR_ERR(ospi->base); goto err_put_ctlr; } ospi->clk = devm_clk_get(dev, NULL); if (IS_ERR(ospi->clk)) { ret = PTR_ERR(ospi->clk); goto err_put_ctlr; } ret = clk_prepare_enable(ospi->clk); if (ret) { dev_err(dev, "Failed to enable the clock\n"); goto err_disable_clk; } mutex_init(&ospi->mlock); ret = f_ospi_init(ospi); if (ret) goto err_destroy_mutex; ret = devm_spi_register_controller(dev, ctlr); if (ret) goto err_destroy_mutex; return 0; err_destroy_mutex: mutex_destroy(&ospi->mlock); err_disable_clk: clk_disable_unprepare(ospi->clk); err_put_ctlr: spi_controller_put(ctlr); return ret; } static int f_ospi_remove(struct platform_device *pdev) { struct f_ospi *ospi = platform_get_drvdata(pdev); clk_disable_unprepare(ospi->clk); mutex_destroy(&ospi->mlock); return 0; } static const struct of_device_id f_ospi_dt_ids[] = { { .compatible = "socionext,f-ospi" }, {} }; MODULE_DEVICE_TABLE(of, f_ospi_dt_ids); static struct platform_driver f_ospi_driver = { .driver = { .name = "socionext,f-ospi", .of_match_table = f_ospi_dt_ids, }, .probe = f_ospi_probe, .remove = f_ospi_remove, }; module_platform_driver(f_ospi_driver); MODULE_DESCRIPTION("Socionext F_OSPI controller driver"); MODULE_AUTHOR("Socionext Inc."); MODULE_AUTHOR("Kunihiko Hayashi "); MODULE_LICENSE("GPL");