// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2015 MediaTek Inc. * Author: Hanyi Wu * Sascha Hauer * Dawei Chien * Louis Yu */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../thermal_hwmon.h" /* AUXADC Registers */ #define AUXADC_CON1_SET_V 0x008 #define AUXADC_CON1_CLR_V 0x00c #define AUXADC_CON2_V 0x010 #define AUXADC_DATA(channel) (0x14 + (channel) * 4) #define APMIXED_SYS_TS_CON1 0x604 /* Thermal Controller Registers */ #define TEMP_MONCTL0 0x000 #define TEMP_MONCTL1 0x004 #define TEMP_MONCTL2 0x008 #define TEMP_MONIDET0 0x014 #define TEMP_MONIDET1 0x018 #define TEMP_MSRCTL0 0x038 #define TEMP_MSRCTL1 0x03c #define TEMP_AHBPOLL 0x040 #define TEMP_AHBTO 0x044 #define TEMP_ADCPNP0 0x048 #define TEMP_ADCPNP1 0x04c #define TEMP_ADCPNP2 0x050 #define TEMP_ADCPNP3 0x0b4 #define TEMP_ADCMUX 0x054 #define TEMP_ADCEN 0x060 #define TEMP_PNPMUXADDR 0x064 #define TEMP_ADCMUXADDR 0x068 #define TEMP_ADCENADDR 0x074 #define TEMP_ADCVALIDADDR 0x078 #define TEMP_ADCVOLTADDR 0x07c #define TEMP_RDCTRL 0x080 #define TEMP_ADCVALIDMASK 0x084 #define TEMP_ADCVOLTAGESHIFT 0x088 #define TEMP_ADCWRITECTRL 0x08c #define TEMP_MSR0 0x090 #define TEMP_MSR1 0x094 #define TEMP_MSR2 0x098 #define TEMP_MSR3 0x0B8 #define TEMP_SPARE0 0x0f0 #define TEMP_ADCPNP0_1 0x148 #define TEMP_ADCPNP1_1 0x14c #define TEMP_ADCPNP2_1 0x150 #define TEMP_MSR0_1 0x190 #define TEMP_MSR1_1 0x194 #define TEMP_MSR2_1 0x198 #define TEMP_ADCPNP3_1 0x1b4 #define TEMP_MSR3_1 0x1B8 #define PTPCORESEL 0x400 #define TEMP_MONCTL1_PERIOD_UNIT(x) ((x) & 0x3ff) #define TEMP_MONCTL2_FILTER_INTERVAL(x) (((x) & 0x3ff) << 16) #define TEMP_MONCTL2_SENSOR_INTERVAL(x) ((x) & 0x3ff) #define TEMP_AHBPOLL_ADC_POLL_INTERVAL(x) (x) #define TEMP_ADCWRITECTRL_ADC_PNP_WRITE BIT(0) #define TEMP_ADCWRITECTRL_ADC_MUX_WRITE BIT(1) #define TEMP_ADCVALIDMASK_VALID_HIGH BIT(5) #define TEMP_ADCVALIDMASK_VALID_POS(bit) (bit) /* MT8173 thermal sensors */ #define MT8173_TS1 0 #define MT8173_TS2 1 #define MT8173_TS3 2 #define MT8173_TS4 3 #define MT8173_TSABB 4 /* AUXADC channel 11 is used for the temperature sensors */ #define MT8173_TEMP_AUXADC_CHANNEL 11 /* The total number of temperature sensors in the MT8173 */ #define MT8173_NUM_SENSORS 5 /* The number of banks in the MT8173 */ #define MT8173_NUM_ZONES 4 /* The number of sensing points per bank */ #define MT8173_NUM_SENSORS_PER_ZONE 4 /* The number of controller in the MT8173 */ #define MT8173_NUM_CONTROLLER 1 /* The calibration coefficient of sensor */ #define MT8173_CALIBRATION 165 /* * Layout of the fuses providing the calibration data * These macros could be used for MT8183, MT8173, MT2701, and MT2712. * MT8183 has 6 sensors and needs 6 VTS calibration data. * MT8173 has 5 sensors and needs 5 VTS calibration data. * MT2701 has 3 sensors and needs 3 VTS calibration data. * MT2712 has 4 sensors and needs 4 VTS calibration data. */ #define CALIB_BUF0_VALID_V1 BIT(0) #define CALIB_BUF1_ADC_GE_V1(x) (((x) >> 22) & 0x3ff) #define CALIB_BUF0_VTS_TS1_V1(x) (((x) >> 17) & 0x1ff) #define CALIB_BUF0_VTS_TS2_V1(x) (((x) >> 8) & 0x1ff) #define CALIB_BUF1_VTS_TS3_V1(x) (((x) >> 0) & 0x1ff) #define CALIB_BUF2_VTS_TS4_V1(x) (((x) >> 23) & 0x1ff) #define CALIB_BUF2_VTS_TS5_V1(x) (((x) >> 5) & 0x1ff) #define CALIB_BUF2_VTS_TSABB_V1(x) (((x) >> 14) & 0x1ff) #define CALIB_BUF0_DEGC_CALI_V1(x) (((x) >> 1) & 0x3f) #define CALIB_BUF0_O_SLOPE_V1(x) (((x) >> 26) & 0x3f) #define CALIB_BUF0_O_SLOPE_SIGN_V1(x) (((x) >> 7) & 0x1) #define CALIB_BUF1_ID_V1(x) (((x) >> 9) & 0x1) /* * Layout of the fuses providing the calibration data * These macros could be used for MT7622. */ #define CALIB_BUF0_ADC_OE_V2(x) (((x) >> 22) & 0x3ff) #define CALIB_BUF0_ADC_GE_V2(x) (((x) >> 12) & 0x3ff) #define CALIB_BUF0_DEGC_CALI_V2(x) (((x) >> 6) & 0x3f) #define CALIB_BUF0_O_SLOPE_V2(x) (((x) >> 0) & 0x3f) #define CALIB_BUF1_VTS_TS1_V2(x) (((x) >> 23) & 0x1ff) #define CALIB_BUF1_VTS_TS2_V2(x) (((x) >> 14) & 0x1ff) #define CALIB_BUF1_VTS_TSABB_V2(x) (((x) >> 5) & 0x1ff) #define CALIB_BUF1_VALID_V2(x) (((x) >> 4) & 0x1) #define CALIB_BUF1_O_SLOPE_SIGN_V2(x) (((x) >> 3) & 0x1) /* * Layout of the fuses providing the calibration data * These macros can be used for MT7981 and MT7986. */ #define CALIB_BUF0_ADC_GE_V3(x) (((x) >> 0) & 0x3ff) #define CALIB_BUF0_DEGC_CALI_V3(x) (((x) >> 20) & 0x3f) #define CALIB_BUF0_O_SLOPE_V3(x) (((x) >> 26) & 0x3f) #define CALIB_BUF1_VTS_TS1_V3(x) (((x) >> 0) & 0x1ff) #define CALIB_BUF1_VTS_TS2_V3(x) (((x) >> 21) & 0x1ff) #define CALIB_BUF1_VTS_TSABB_V3(x) (((x) >> 9) & 0x1ff) #define CALIB_BUF1_VALID_V3(x) (((x) >> 18) & 0x1) #define CALIB_BUF1_O_SLOPE_SIGN_V3(x) (((x) >> 19) & 0x1) #define CALIB_BUF1_ID_V3(x) (((x) >> 20) & 0x1) enum { VTS1, VTS2, VTS3, VTS4, VTS5, VTSABB, MAX_NUM_VTS, }; enum mtk_thermal_version { MTK_THERMAL_V1 = 1, MTK_THERMAL_V2, MTK_THERMAL_V3, }; /* MT2701 thermal sensors */ #define MT2701_TS1 0 #define MT2701_TS2 1 #define MT2701_TSABB 2 /* AUXADC channel 11 is used for the temperature sensors */ #define MT2701_TEMP_AUXADC_CHANNEL 11 /* The total number of temperature sensors in the MT2701 */ #define MT2701_NUM_SENSORS 3 /* The number of sensing points per bank */ #define MT2701_NUM_SENSORS_PER_ZONE 3 /* The number of controller in the MT2701 */ #define MT2701_NUM_CONTROLLER 1 /* The calibration coefficient of sensor */ #define MT2701_CALIBRATION 165 /* MT2712 thermal sensors */ #define MT2712_TS1 0 #define MT2712_TS2 1 #define MT2712_TS3 2 #define MT2712_TS4 3 /* AUXADC channel 11 is used for the temperature sensors */ #define MT2712_TEMP_AUXADC_CHANNEL 11 /* The total number of temperature sensors in the MT2712 */ #define MT2712_NUM_SENSORS 4 /* The number of sensing points per bank */ #define MT2712_NUM_SENSORS_PER_ZONE 4 /* The number of controller in the MT2712 */ #define MT2712_NUM_CONTROLLER 1 /* The calibration coefficient of sensor */ #define MT2712_CALIBRATION 165 #define MT7622_TEMP_AUXADC_CHANNEL 11 #define MT7622_NUM_SENSORS 1 #define MT7622_NUM_ZONES 1 #define MT7622_NUM_SENSORS_PER_ZONE 1 #define MT7622_TS1 0 #define MT7622_NUM_CONTROLLER 1 /* The maximum number of banks */ #define MAX_NUM_ZONES 8 /* The calibration coefficient of sensor */ #define MT7622_CALIBRATION 165 /* MT8183 thermal sensors */ #define MT8183_TS1 0 #define MT8183_TS2 1 #define MT8183_TS3 2 #define MT8183_TS4 3 #define MT8183_TS5 4 #define MT8183_TSABB 5 /* AUXADC channel is used for the temperature sensors */ #define MT8183_TEMP_AUXADC_CHANNEL 11 /* The total number of temperature sensors in the MT8183 */ #define MT8183_NUM_SENSORS 6 /* The number of banks in the MT8183 */ #define MT8183_NUM_ZONES 1 /* The number of sensing points per bank */ #define MT8183_NUM_SENSORS_PER_ZONE 6 /* The number of controller in the MT8183 */ #define MT8183_NUM_CONTROLLER 2 /* The calibration coefficient of sensor */ #define MT8183_CALIBRATION 153 /* AUXADC channel 11 is used for the temperature sensors */ #define MT7986_TEMP_AUXADC_CHANNEL 11 /* The total number of temperature sensors in the MT7986 */ #define MT7986_NUM_SENSORS 1 /* The number of banks in the MT7986 */ #define MT7986_NUM_ZONES 1 /* The number of sensing points per bank */ #define MT7986_NUM_SENSORS_PER_ZONE 1 /* MT7986 thermal sensors */ #define MT7986_TS1 0 /* The number of controller in the MT7986 */ #define MT7986_NUM_CONTROLLER 1 /* The calibration coefficient of sensor */ #define MT7986_CALIBRATION 165 struct mtk_thermal; struct thermal_bank_cfg { unsigned int num_sensors; const int *sensors; }; struct mtk_thermal_bank { struct mtk_thermal *mt; int id; }; struct mtk_thermal_data { s32 num_banks; s32 num_sensors; s32 auxadc_channel; const int *vts_index; const int *sensor_mux_values; const int *msr; const int *adcpnp; const int cali_val; const int num_controller; const int *controller_offset; bool need_switch_bank; struct thermal_bank_cfg bank_data[MAX_NUM_ZONES]; enum mtk_thermal_version version; }; struct mtk_thermal { struct device *dev; void __iomem *thermal_base; struct clk *clk_peri_therm; struct clk *clk_auxadc; /* lock: for getting and putting banks */ struct mutex lock; /* Calibration values */ s32 adc_ge; s32 adc_oe; s32 degc_cali; s32 o_slope; s32 o_slope_sign; s32 vts[MAX_NUM_VTS]; const struct mtk_thermal_data *conf; struct mtk_thermal_bank banks[MAX_NUM_ZONES]; int (*raw_to_mcelsius)(struct mtk_thermal *mt, int sensno, s32 raw); }; /* MT8183 thermal sensor data */ static const int mt8183_bank_data[MT8183_NUM_SENSORS] = { MT8183_TS1, MT8183_TS2, MT8183_TS3, MT8183_TS4, MT8183_TS5, MT8183_TSABB }; static const int mt8183_msr[MT8183_NUM_SENSORS_PER_ZONE] = { TEMP_MSR0_1, TEMP_MSR1_1, TEMP_MSR2_1, TEMP_MSR1, TEMP_MSR0, TEMP_MSR3_1 }; static const int mt8183_adcpnp[MT8183_NUM_SENSORS_PER_ZONE] = { TEMP_ADCPNP0_1, TEMP_ADCPNP1_1, TEMP_ADCPNP2_1, TEMP_ADCPNP1, TEMP_ADCPNP0, TEMP_ADCPNP3_1 }; static const int mt8183_mux_values[MT8183_NUM_SENSORS] = { 0, 1, 2, 3, 4, 0 }; static const int mt8183_tc_offset[MT8183_NUM_CONTROLLER] = {0x0, 0x100}; static const int mt8183_vts_index[MT8183_NUM_SENSORS] = { VTS1, VTS2, VTS3, VTS4, VTS5, VTSABB }; /* MT8173 thermal sensor data */ static const int mt8173_bank_data[MT8173_NUM_ZONES][3] = { { MT8173_TS2, MT8173_TS3 }, { MT8173_TS2, MT8173_TS4 }, { MT8173_TS1, MT8173_TS2, MT8173_TSABB }, { MT8173_TS2 }, }; static const int mt8173_msr[MT8173_NUM_SENSORS_PER_ZONE] = { TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3 }; static const int mt8173_adcpnp[MT8173_NUM_SENSORS_PER_ZONE] = { TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3 }; static const int mt8173_mux_values[MT8173_NUM_SENSORS] = { 0, 1, 2, 3, 16 }; static const int mt8173_tc_offset[MT8173_NUM_CONTROLLER] = { 0x0, }; static const int mt8173_vts_index[MT8173_NUM_SENSORS] = { VTS1, VTS2, VTS3, VTS4, VTSABB }; /* MT2701 thermal sensor data */ static const int mt2701_bank_data[MT2701_NUM_SENSORS] = { MT2701_TS1, MT2701_TS2, MT2701_TSABB }; static const int mt2701_msr[MT2701_NUM_SENSORS_PER_ZONE] = { TEMP_MSR0, TEMP_MSR1, TEMP_MSR2 }; static const int mt2701_adcpnp[MT2701_NUM_SENSORS_PER_ZONE] = { TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2 }; static const int mt2701_mux_values[MT2701_NUM_SENSORS] = { 0, 1, 16 }; static const int mt2701_tc_offset[MT2701_NUM_CONTROLLER] = { 0x0, }; static const int mt2701_vts_index[MT2701_NUM_SENSORS] = { VTS1, VTS2, VTS3 }; /* MT2712 thermal sensor data */ static const int mt2712_bank_data[MT2712_NUM_SENSORS] = { MT2712_TS1, MT2712_TS2, MT2712_TS3, MT2712_TS4 }; static const int mt2712_msr[MT2712_NUM_SENSORS_PER_ZONE] = { TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3 }; static const int mt2712_adcpnp[MT2712_NUM_SENSORS_PER_ZONE] = { TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3 }; static const int mt2712_mux_values[MT2712_NUM_SENSORS] = { 0, 1, 2, 3 }; static const int mt2712_tc_offset[MT2712_NUM_CONTROLLER] = { 0x0, }; static const int mt2712_vts_index[MT2712_NUM_SENSORS] = { VTS1, VTS2, VTS3, VTS4 }; /* MT7622 thermal sensor data */ static const int mt7622_bank_data[MT7622_NUM_SENSORS] = { MT7622_TS1, }; static const int mt7622_msr[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_MSR0, }; static const int mt7622_adcpnp[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_ADCPNP0, }; static const int mt7622_mux_values[MT7622_NUM_SENSORS] = { 0, }; static const int mt7622_vts_index[MT7622_NUM_SENSORS] = { VTS1 }; static const int mt7622_tc_offset[MT7622_NUM_CONTROLLER] = { 0x0, }; /* MT7986 thermal sensor data */ static const int mt7986_bank_data[MT7986_NUM_SENSORS] = { MT7986_TS1, }; static const int mt7986_msr[MT7986_NUM_SENSORS_PER_ZONE] = { TEMP_MSR0, }; static const int mt7986_adcpnp[MT7986_NUM_SENSORS_PER_ZONE] = { TEMP_ADCPNP0, }; static const int mt7986_mux_values[MT7986_NUM_SENSORS] = { 0, }; static const int mt7986_vts_index[MT7986_NUM_SENSORS] = { VTS1 }; static const int mt7986_tc_offset[MT7986_NUM_CONTROLLER] = { 0x0, }; /* * The MT8173 thermal controller has four banks. Each bank can read up to * four temperature sensors simultaneously. The MT8173 has a total of 5 * temperature sensors. We use each bank to measure a certain area of the * SoC. Since TS2 is located centrally in the SoC it is influenced by multiple * areas, hence is used in different banks. * * The thermal core only gets the maximum temperature of all banks, so * the bank concept wouldn't be necessary here. However, the SVS (Smart * Voltage Scaling) unit makes its decisions based on the same bank * data, and this indeed needs the temperatures of the individual banks * for making better decisions. */ static const struct mtk_thermal_data mt8173_thermal_data = { .auxadc_channel = MT8173_TEMP_AUXADC_CHANNEL, .num_banks = MT8173_NUM_ZONES, .num_sensors = MT8173_NUM_SENSORS, .vts_index = mt8173_vts_index, .cali_val = MT8173_CALIBRATION, .num_controller = MT8173_NUM_CONTROLLER, .controller_offset = mt8173_tc_offset, .need_switch_bank = true, .bank_data = { { .num_sensors = 2, .sensors = mt8173_bank_data[0], }, { .num_sensors = 2, .sensors = mt8173_bank_data[1], }, { .num_sensors = 3, .sensors = mt8173_bank_data[2], }, { .num_sensors = 1, .sensors = mt8173_bank_data[3], }, }, .msr = mt8173_msr, .adcpnp = mt8173_adcpnp, .sensor_mux_values = mt8173_mux_values, .version = MTK_THERMAL_V1, }; /* * The MT2701 thermal controller has one bank, which can read up to * three temperature sensors simultaneously. The MT2701 has a total of 3 * temperature sensors. * * The thermal core only gets the maximum temperature of this one bank, * so the bank concept wouldn't be necessary here. However, the SVS (Smart * Voltage Scaling) unit makes its decisions based on the same bank * data. */ static const struct mtk_thermal_data mt2701_thermal_data = { .auxadc_channel = MT2701_TEMP_AUXADC_CHANNEL, .num_banks = 1, .num_sensors = MT2701_NUM_SENSORS, .vts_index = mt2701_vts_index, .cali_val = MT2701_CALIBRATION, .num_controller = MT2701_NUM_CONTROLLER, .controller_offset = mt2701_tc_offset, .need_switch_bank = true, .bank_data = { { .num_sensors = 3, .sensors = mt2701_bank_data, }, }, .msr = mt2701_msr, .adcpnp = mt2701_adcpnp, .sensor_mux_values = mt2701_mux_values, .version = MTK_THERMAL_V1, }; /* * The MT2712 thermal controller has one bank, which can read up to * four temperature sensors simultaneously. The MT2712 has a total of 4 * temperature sensors. * * The thermal core only gets the maximum temperature of this one bank, * so the bank concept wouldn't be necessary here. However, the SVS (Smart * Voltage Scaling) unit makes its decisions based on the same bank * data. */ static const struct mtk_thermal_data mt2712_thermal_data = { .auxadc_channel = MT2712_TEMP_AUXADC_CHANNEL, .num_banks = 1, .num_sensors = MT2712_NUM_SENSORS, .vts_index = mt2712_vts_index, .cali_val = MT2712_CALIBRATION, .num_controller = MT2712_NUM_CONTROLLER, .controller_offset = mt2712_tc_offset, .need_switch_bank = true, .bank_data = { { .num_sensors = 4, .sensors = mt2712_bank_data, }, }, .msr = mt2712_msr, .adcpnp = mt2712_adcpnp, .sensor_mux_values = mt2712_mux_values, .version = MTK_THERMAL_V1, }; /* * MT7622 have only one sensing point which uses AUXADC Channel 11 for raw data * access. */ static const struct mtk_thermal_data mt7622_thermal_data = { .auxadc_channel = MT7622_TEMP_AUXADC_CHANNEL, .num_banks = MT7622_NUM_ZONES, .num_sensors = MT7622_NUM_SENSORS, .vts_index = mt7622_vts_index, .cali_val = MT7622_CALIBRATION, .num_controller = MT7622_NUM_CONTROLLER, .controller_offset = mt7622_tc_offset, .need_switch_bank = true, .bank_data = { { .num_sensors = 1, .sensors = mt7622_bank_data, }, }, .msr = mt7622_msr, .adcpnp = mt7622_adcpnp, .sensor_mux_values = mt7622_mux_values, .version = MTK_THERMAL_V2, }; /* * The MT8183 thermal controller has one bank for the current SW framework. * The MT8183 has a total of 6 temperature sensors. * There are two thermal controller to control the six sensor. * The first one bind 2 sensor, and the other bind 4 sensors. * The thermal core only gets the maximum temperature of all sensor, so * the bank concept wouldn't be necessary here. However, the SVS (Smart * Voltage Scaling) unit makes its decisions based on the same bank * data, and this indeed needs the temperatures of the individual banks * for making better decisions. */ static const struct mtk_thermal_data mt8183_thermal_data = { .auxadc_channel = MT8183_TEMP_AUXADC_CHANNEL, .num_banks = MT8183_NUM_ZONES, .num_sensors = MT8183_NUM_SENSORS, .vts_index = mt8183_vts_index, .cali_val = MT8183_CALIBRATION, .num_controller = MT8183_NUM_CONTROLLER, .controller_offset = mt8183_tc_offset, .need_switch_bank = false, .bank_data = { { .num_sensors = 6, .sensors = mt8183_bank_data, }, }, .msr = mt8183_msr, .adcpnp = mt8183_adcpnp, .sensor_mux_values = mt8183_mux_values, .version = MTK_THERMAL_V1, }; /* * MT7986 uses AUXADC Channel 11 for raw data access. */ static const struct mtk_thermal_data mt7986_thermal_data = { .auxadc_channel = MT7986_TEMP_AUXADC_CHANNEL, .num_banks = MT7986_NUM_ZONES, .num_sensors = MT7986_NUM_SENSORS, .vts_index = mt7986_vts_index, .cali_val = MT7986_CALIBRATION, .num_controller = MT7986_NUM_CONTROLLER, .controller_offset = mt7986_tc_offset, .need_switch_bank = true, .bank_data = { { .num_sensors = 1, .sensors = mt7986_bank_data, }, }, .msr = mt7986_msr, .adcpnp = mt7986_adcpnp, .sensor_mux_values = mt7986_mux_values, .version = MTK_THERMAL_V3, }; /** * raw_to_mcelsius_v1 - convert a raw ADC value to mcelsius * @mt: The thermal controller * @sensno: sensor number * @raw: raw ADC value * * This converts the raw ADC value to mcelsius using the SoC specific * calibration constants */ static int raw_to_mcelsius_v1(struct mtk_thermal *mt, int sensno, s32 raw) { s32 tmp; raw &= 0xfff; tmp = 203450520 << 3; tmp /= mt->conf->cali_val + mt->o_slope; tmp /= 10000 + mt->adc_ge; tmp *= raw - mt->vts[sensno] - 3350; tmp >>= 3; return mt->degc_cali * 500 - tmp; } static int raw_to_mcelsius_v2(struct mtk_thermal *mt, int sensno, s32 raw) { s32 format_1; s32 format_2; s32 g_oe; s32 g_gain; s32 g_x_roomt; s32 tmp; if (raw == 0) return 0; raw &= 0xfff; g_gain = 10000 + (((mt->adc_ge - 512) * 10000) >> 12); g_oe = mt->adc_oe - 512; format_1 = mt->vts[VTS2] + 3105 - g_oe; format_2 = (mt->degc_cali * 10) >> 1; g_x_roomt = (((format_1 * 10000) >> 12) * 10000) / g_gain; tmp = (((((raw - g_oe) * 10000) >> 12) * 10000) / g_gain) - g_x_roomt; tmp = tmp * 10 * 100 / 11; if (mt->o_slope_sign == 0) tmp = tmp / (165 - mt->o_slope); else tmp = tmp / (165 + mt->o_slope); return (format_2 - tmp) * 100; } static int raw_to_mcelsius_v3(struct mtk_thermal *mt, int sensno, s32 raw) { s32 tmp; if (raw == 0) return 0; raw &= 0xfff; tmp = 100000 * 15 / 16 * 10000; tmp /= 4096 - 512 + mt->adc_ge; tmp /= 1490; tmp *= raw - mt->vts[sensno] - 2900; return mt->degc_cali * 500 - tmp; } /** * mtk_thermal_get_bank - get bank * @bank: The bank * * The bank registers are banked, we have to select a bank in the * PTPCORESEL register to access it. */ static void mtk_thermal_get_bank(struct mtk_thermal_bank *bank) { struct mtk_thermal *mt = bank->mt; u32 val; if (mt->conf->need_switch_bank) { mutex_lock(&mt->lock); val = readl(mt->thermal_base + PTPCORESEL); val &= ~0xf; val |= bank->id; writel(val, mt->thermal_base + PTPCORESEL); } } /** * mtk_thermal_put_bank - release bank * @bank: The bank * * release a bank previously taken with mtk_thermal_get_bank, */ static void mtk_thermal_put_bank(struct mtk_thermal_bank *bank) { struct mtk_thermal *mt = bank->mt; if (mt->conf->need_switch_bank) mutex_unlock(&mt->lock); } /** * mtk_thermal_bank_temperature - get the temperature of a bank * @bank: The bank * * The temperature of a bank is considered the maximum temperature of * the sensors associated to the bank. */ static int mtk_thermal_bank_temperature(struct mtk_thermal_bank *bank) { struct mtk_thermal *mt = bank->mt; const struct mtk_thermal_data *conf = mt->conf; int i, temp = INT_MIN, max = INT_MIN; u32 raw; for (i = 0; i < conf->bank_data[bank->id].num_sensors; i++) { raw = readl(mt->thermal_base + conf->msr[i]); temp = mt->raw_to_mcelsius( mt, conf->bank_data[bank->id].sensors[i], raw); /* * The first read of a sensor often contains very high bogus * temperature value. Filter these out so that the system does * not immediately shut down. */ if (temp > 200000) temp = 0; if (temp > max) max = temp; } return max; } static int mtk_read_temp(struct thermal_zone_device *tz, int *temperature) { struct mtk_thermal *mt = tz->devdata; int i; int tempmax = INT_MIN; for (i = 0; i < mt->conf->num_banks; i++) { struct mtk_thermal_bank *bank = &mt->banks[i]; mtk_thermal_get_bank(bank); tempmax = max(tempmax, mtk_thermal_bank_temperature(bank)); mtk_thermal_put_bank(bank); } *temperature = tempmax; return 0; } static const struct thermal_zone_device_ops mtk_thermal_ops = { .get_temp = mtk_read_temp, }; static void mtk_thermal_init_bank(struct mtk_thermal *mt, int num, u32 apmixed_phys_base, u32 auxadc_phys_base, int ctrl_id) { struct mtk_thermal_bank *bank = &mt->banks[num]; const struct mtk_thermal_data *conf = mt->conf; int i; int offset = mt->conf->controller_offset[ctrl_id]; void __iomem *controller_base = mt->thermal_base + offset; bank->id = num; bank->mt = mt; mtk_thermal_get_bank(bank); /* bus clock 66M counting unit is 12 * 15.15ns * 256 = 46.540us */ writel(TEMP_MONCTL1_PERIOD_UNIT(12), controller_base + TEMP_MONCTL1); /* * filt interval is 1 * 46.540us = 46.54us, * sen interval is 429 * 46.540us = 19.96ms */ writel(TEMP_MONCTL2_FILTER_INTERVAL(1) | TEMP_MONCTL2_SENSOR_INTERVAL(429), controller_base + TEMP_MONCTL2); /* poll is set to 10u */ writel(TEMP_AHBPOLL_ADC_POLL_INTERVAL(768), controller_base + TEMP_AHBPOLL); /* temperature sampling control, 1 sample */ writel(0x0, controller_base + TEMP_MSRCTL0); /* exceed this polling time, IRQ would be inserted */ writel(0xffffffff, controller_base + TEMP_AHBTO); /* number of interrupts per event, 1 is enough */ writel(0x0, controller_base + TEMP_MONIDET0); writel(0x0, controller_base + TEMP_MONIDET1); /* * The MT8173 thermal controller does not have its own ADC. Instead it * uses AHB bus accesses to control the AUXADC. To do this the thermal * controller has to be programmed with the physical addresses of the * AUXADC registers and with the various bit positions in the AUXADC. * Also the thermal controller controls a mux in the APMIXEDSYS register * space. */ /* * this value will be stored to TEMP_PNPMUXADDR (TEMP_SPARE0) * automatically by hw */ writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCMUX); /* AHB address for auxadc mux selection */ writel(auxadc_phys_base + AUXADC_CON1_CLR_V, controller_base + TEMP_ADCMUXADDR); if (mt->conf->version == MTK_THERMAL_V1) { /* AHB address for pnp sensor mux selection */ writel(apmixed_phys_base + APMIXED_SYS_TS_CON1, controller_base + TEMP_PNPMUXADDR); } /* AHB value for auxadc enable */ writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCEN); /* AHB address for auxadc enable (channel 0 immediate mode selected) */ writel(auxadc_phys_base + AUXADC_CON1_SET_V, controller_base + TEMP_ADCENADDR); /* AHB address for auxadc valid bit */ writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel), controller_base + TEMP_ADCVALIDADDR); /* AHB address for auxadc voltage output */ writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel), controller_base + TEMP_ADCVOLTADDR); /* read valid & voltage are at the same register */ writel(0x0, controller_base + TEMP_RDCTRL); /* indicate where the valid bit is */ writel(TEMP_ADCVALIDMASK_VALID_HIGH | TEMP_ADCVALIDMASK_VALID_POS(12), controller_base + TEMP_ADCVALIDMASK); /* no shift */ writel(0x0, controller_base + TEMP_ADCVOLTAGESHIFT); /* enable auxadc mux write transaction */ writel(TEMP_ADCWRITECTRL_ADC_MUX_WRITE, controller_base + TEMP_ADCWRITECTRL); for (i = 0; i < conf->bank_data[num].num_sensors; i++) writel(conf->sensor_mux_values[conf->bank_data[num].sensors[i]], mt->thermal_base + conf->adcpnp[i]); writel((1 << conf->bank_data[num].num_sensors) - 1, controller_base + TEMP_MONCTL0); writel(TEMP_ADCWRITECTRL_ADC_PNP_WRITE | TEMP_ADCWRITECTRL_ADC_MUX_WRITE, controller_base + TEMP_ADCWRITECTRL); mtk_thermal_put_bank(bank); } static u64 of_get_phys_base(struct device_node *np) { u64 size64; const __be32 *regaddr_p; regaddr_p = of_get_address(np, 0, &size64, NULL); if (!regaddr_p) return OF_BAD_ADDR; return of_translate_address(np, regaddr_p); } static int mtk_thermal_extract_efuse_v1(struct mtk_thermal *mt, u32 *buf) { int i; if (!(buf[0] & CALIB_BUF0_VALID_V1)) return -EINVAL; mt->adc_ge = CALIB_BUF1_ADC_GE_V1(buf[1]); for (i = 0; i < mt->conf->num_sensors; i++) { switch (mt->conf->vts_index[i]) { case VTS1: mt->vts[VTS1] = CALIB_BUF0_VTS_TS1_V1(buf[0]); break; case VTS2: mt->vts[VTS2] = CALIB_BUF0_VTS_TS2_V1(buf[0]); break; case VTS3: mt->vts[VTS3] = CALIB_BUF1_VTS_TS3_V1(buf[1]); break; case VTS4: mt->vts[VTS4] = CALIB_BUF2_VTS_TS4_V1(buf[2]); break; case VTS5: mt->vts[VTS5] = CALIB_BUF2_VTS_TS5_V1(buf[2]); break; case VTSABB: mt->vts[VTSABB] = CALIB_BUF2_VTS_TSABB_V1(buf[2]); break; default: break; } } mt->degc_cali = CALIB_BUF0_DEGC_CALI_V1(buf[0]); if (CALIB_BUF1_ID_V1(buf[1]) & CALIB_BUF0_O_SLOPE_SIGN_V1(buf[0])) mt->o_slope = -CALIB_BUF0_O_SLOPE_V1(buf[0]); else mt->o_slope = CALIB_BUF0_O_SLOPE_V1(buf[0]); return 0; } static int mtk_thermal_extract_efuse_v2(struct mtk_thermal *mt, u32 *buf) { if (!CALIB_BUF1_VALID_V2(buf[1])) return -EINVAL; mt->adc_oe = CALIB_BUF0_ADC_OE_V2(buf[0]); mt->adc_ge = CALIB_BUF0_ADC_GE_V2(buf[0]); mt->degc_cali = CALIB_BUF0_DEGC_CALI_V2(buf[0]); mt->o_slope = CALIB_BUF0_O_SLOPE_V2(buf[0]); mt->vts[VTS1] = CALIB_BUF1_VTS_TS1_V2(buf[1]); mt->vts[VTS2] = CALIB_BUF1_VTS_TS2_V2(buf[1]); mt->vts[VTSABB] = CALIB_BUF1_VTS_TSABB_V2(buf[1]); mt->o_slope_sign = CALIB_BUF1_O_SLOPE_SIGN_V2(buf[1]); return 0; } static int mtk_thermal_extract_efuse_v3(struct mtk_thermal *mt, u32 *buf) { if (!CALIB_BUF1_VALID_V3(buf[1])) return -EINVAL; mt->adc_ge = CALIB_BUF0_ADC_GE_V3(buf[0]); mt->degc_cali = CALIB_BUF0_DEGC_CALI_V3(buf[0]); mt->o_slope = CALIB_BUF0_O_SLOPE_V3(buf[0]); mt->vts[VTS1] = CALIB_BUF1_VTS_TS1_V3(buf[1]); mt->vts[VTS2] = CALIB_BUF1_VTS_TS2_V3(buf[1]); mt->vts[VTSABB] = CALIB_BUF1_VTS_TSABB_V3(buf[1]); mt->o_slope_sign = CALIB_BUF1_O_SLOPE_SIGN_V3(buf[1]); if (CALIB_BUF1_ID_V3(buf[1]) == 0) mt->o_slope = 0; return 0; } static int mtk_thermal_get_calibration_data(struct device *dev, struct mtk_thermal *mt) { struct nvmem_cell *cell; u32 *buf; size_t len; int i, ret = 0; /* Start with default values */ mt->adc_ge = 512; mt->adc_oe = 512; for (i = 0; i < mt->conf->num_sensors; i++) mt->vts[i] = 260; mt->degc_cali = 40; mt->o_slope = 0; cell = nvmem_cell_get(dev, "calibration-data"); if (IS_ERR(cell)) { if (PTR_ERR(cell) == -EPROBE_DEFER) return PTR_ERR(cell); return 0; } buf = (u32 *)nvmem_cell_read(cell, &len); nvmem_cell_put(cell); if (IS_ERR(buf)) return PTR_ERR(buf); if (len < 3 * sizeof(u32)) { dev_warn(dev, "invalid calibration data\n"); ret = -EINVAL; goto out; } switch (mt->conf->version) { case MTK_THERMAL_V1: ret = mtk_thermal_extract_efuse_v1(mt, buf); break; case MTK_THERMAL_V2: ret = mtk_thermal_extract_efuse_v2(mt, buf); break; case MTK_THERMAL_V3: ret = mtk_thermal_extract_efuse_v3(mt, buf); break; default: ret = -EINVAL; break; } if (ret) { dev_info(dev, "Device not calibrated, using default calibration values\n"); ret = 0; } out: kfree(buf); return ret; } static const struct of_device_id mtk_thermal_of_match[] = { { .compatible = "mediatek,mt8173-thermal", .data = (void *)&mt8173_thermal_data, }, { .compatible = "mediatek,mt2701-thermal", .data = (void *)&mt2701_thermal_data, }, { .compatible = "mediatek,mt2712-thermal", .data = (void *)&mt2712_thermal_data, }, { .compatible = "mediatek,mt7622-thermal", .data = (void *)&mt7622_thermal_data, }, { .compatible = "mediatek,mt7986-thermal", .data = (void *)&mt7986_thermal_data, }, { .compatible = "mediatek,mt8183-thermal", .data = (void *)&mt8183_thermal_data, }, { }, }; MODULE_DEVICE_TABLE(of, mtk_thermal_of_match); static void mtk_thermal_turn_on_buffer(void __iomem *apmixed_base) { int tmp; tmp = readl(apmixed_base + APMIXED_SYS_TS_CON1); tmp &= ~(0x37); tmp |= 0x1; writel(tmp, apmixed_base + APMIXED_SYS_TS_CON1); udelay(200); } static void mtk_thermal_release_periodic_ts(struct mtk_thermal *mt, void __iomem *auxadc_base) { int tmp; writel(0x800, auxadc_base + AUXADC_CON1_SET_V); writel(0x1, mt->thermal_base + TEMP_MONCTL0); tmp = readl(mt->thermal_base + TEMP_MSRCTL1); writel((tmp & (~0x10e)), mt->thermal_base + TEMP_MSRCTL1); } static int mtk_thermal_probe(struct platform_device *pdev) { int ret, i, ctrl_id; struct device_node *auxadc, *apmixedsys, *np = pdev->dev.of_node; struct mtk_thermal *mt; u64 auxadc_phys_base, apmixed_phys_base; struct thermal_zone_device *tzdev; void __iomem *apmixed_base, *auxadc_base; mt = devm_kzalloc(&pdev->dev, sizeof(*mt), GFP_KERNEL); if (!mt) return -ENOMEM; mt->conf = of_device_get_match_data(&pdev->dev); mt->clk_peri_therm = devm_clk_get(&pdev->dev, "therm"); if (IS_ERR(mt->clk_peri_therm)) return PTR_ERR(mt->clk_peri_therm); mt->clk_auxadc = devm_clk_get(&pdev->dev, "auxadc"); if (IS_ERR(mt->clk_auxadc)) return PTR_ERR(mt->clk_auxadc); mt->thermal_base = devm_platform_get_and_ioremap_resource(pdev, 0, NULL); if (IS_ERR(mt->thermal_base)) return PTR_ERR(mt->thermal_base); ret = mtk_thermal_get_calibration_data(&pdev->dev, mt); if (ret) return ret; mutex_init(&mt->lock); mt->dev = &pdev->dev; auxadc = of_parse_phandle(np, "mediatek,auxadc", 0); if (!auxadc) { dev_err(&pdev->dev, "missing auxadc node\n"); return -ENODEV; } auxadc_base = devm_of_iomap(&pdev->dev, auxadc, 0, NULL); if (IS_ERR(auxadc_base)) { of_node_put(auxadc); return PTR_ERR(auxadc_base); } auxadc_phys_base = of_get_phys_base(auxadc); of_node_put(auxadc); if (auxadc_phys_base == OF_BAD_ADDR) { dev_err(&pdev->dev, "Can't get auxadc phys address\n"); return -EINVAL; } apmixedsys = of_parse_phandle(np, "mediatek,apmixedsys", 0); if (!apmixedsys) { dev_err(&pdev->dev, "missing apmixedsys node\n"); return -ENODEV; } apmixed_base = devm_of_iomap(&pdev->dev, apmixedsys, 0, NULL); if (IS_ERR(apmixed_base)) { of_node_put(apmixedsys); return PTR_ERR(apmixed_base); } apmixed_phys_base = of_get_phys_base(apmixedsys); of_node_put(apmixedsys); if (apmixed_phys_base == OF_BAD_ADDR) { dev_err(&pdev->dev, "Can't get auxadc phys address\n"); return -EINVAL; } ret = device_reset_optional(&pdev->dev); if (ret) return ret; ret = clk_prepare_enable(mt->clk_auxadc); if (ret) { dev_err(&pdev->dev, "Can't enable auxadc clk: %d\n", ret); return ret; } ret = clk_prepare_enable(mt->clk_peri_therm); if (ret) { dev_err(&pdev->dev, "Can't enable peri clk: %d\n", ret); goto err_disable_clk_auxadc; } if (mt->conf->version != MTK_THERMAL_V1) { mtk_thermal_turn_on_buffer(apmixed_base); mtk_thermal_release_periodic_ts(mt, auxadc_base); } if (mt->conf->version == MTK_THERMAL_V1) mt->raw_to_mcelsius = raw_to_mcelsius_v1; else if (mt->conf->version == MTK_THERMAL_V2) mt->raw_to_mcelsius = raw_to_mcelsius_v2; else mt->raw_to_mcelsius = raw_to_mcelsius_v3; for (ctrl_id = 0; ctrl_id < mt->conf->num_controller ; ctrl_id++) for (i = 0; i < mt->conf->num_banks; i++) mtk_thermal_init_bank(mt, i, apmixed_phys_base, auxadc_phys_base, ctrl_id); platform_set_drvdata(pdev, mt); tzdev = devm_thermal_of_zone_register(&pdev->dev, 0, mt, &mtk_thermal_ops); if (IS_ERR(tzdev)) { ret = PTR_ERR(tzdev); goto err_disable_clk_peri_therm; } ret = devm_thermal_add_hwmon_sysfs(tzdev); if (ret) dev_warn(&pdev->dev, "error in thermal_add_hwmon_sysfs"); return 0; err_disable_clk_peri_therm: clk_disable_unprepare(mt->clk_peri_therm); err_disable_clk_auxadc: clk_disable_unprepare(mt->clk_auxadc); return ret; } static int mtk_thermal_remove(struct platform_device *pdev) { struct mtk_thermal *mt = platform_get_drvdata(pdev); clk_disable_unprepare(mt->clk_peri_therm); clk_disable_unprepare(mt->clk_auxadc); return 0; } static struct platform_driver mtk_thermal_driver = { .probe = mtk_thermal_probe, .remove = mtk_thermal_remove, .driver = { .name = "mtk-thermal", .of_match_table = mtk_thermal_of_match, }, }; module_platform_driver(mtk_thermal_driver); MODULE_AUTHOR("Michael Kao "); MODULE_AUTHOR("Louis Yu "); MODULE_AUTHOR("Dawei Chien "); MODULE_AUTHOR("Sascha Hauer "); MODULE_AUTHOR("Hanyi Wu "); MODULE_DESCRIPTION("Mediatek thermal driver"); MODULE_LICENSE("GPL v2");