/* SPDX-License-Identifier: GPL-2.0-only */ #ifndef __KVM_HOST_H #define __KVM_HOST_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef KVM_MAX_VCPU_IDS #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS #endif /* * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally * used in kvm, other bits are visible for userspace which are defined in * include/linux/kvm_h. */ #define KVM_MEMSLOT_INVALID (1UL << 16) /* * Bit 63 of the memslot generation number is an "update in-progress flag", * e.g. is temporarily set for the duration of install_new_memslots(). * This flag effectively creates a unique generation number that is used to * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, * i.e. may (or may not) have come from the previous memslots generation. * * This is necessary because the actual memslots update is not atomic with * respect to the generation number update. Updating the generation number * first would allow a vCPU to cache a spte from the old memslots using the * new generation number, and updating the generation number after switching * to the new memslots would allow cache hits using the old generation number * to reference the defunct memslots. * * This mechanism is used to prevent getting hits in KVM's caches while a * memslot update is in-progress, and to prevent cache hits *after* updating * the actual generation number against accesses that were inserted into the * cache *before* the memslots were updated. */ #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) /* Two fragments for cross MMIO pages. */ #define KVM_MAX_MMIO_FRAGMENTS 2 #ifndef KVM_ADDRESS_SPACE_NUM #define KVM_ADDRESS_SPACE_NUM 1 #endif /* * For the normal pfn, the highest 12 bits should be zero, * so we can mask bit 62 ~ bit 52 to indicate the error pfn, * mask bit 63 to indicate the noslot pfn. */ #define KVM_PFN_ERR_MASK (0x7ffULL << 52) #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) #define KVM_PFN_NOSLOT (0x1ULL << 63) #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) #define KVM_PFN_ERR_SIGPENDING (KVM_PFN_ERR_MASK + 3) /* * error pfns indicate that the gfn is in slot but faild to * translate it to pfn on host. */ static inline bool is_error_pfn(kvm_pfn_t pfn) { return !!(pfn & KVM_PFN_ERR_MASK); } /* * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted * by a pending signal. Note, the signal may or may not be fatal. */ static inline bool is_sigpending_pfn(kvm_pfn_t pfn) { return pfn == KVM_PFN_ERR_SIGPENDING; } /* * error_noslot pfns indicate that the gfn can not be * translated to pfn - it is not in slot or failed to * translate it to pfn. */ static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) { return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); } /* noslot pfn indicates that the gfn is not in slot. */ static inline bool is_noslot_pfn(kvm_pfn_t pfn) { return pfn == KVM_PFN_NOSLOT; } /* * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) * provide own defines and kvm_is_error_hva */ #ifndef KVM_HVA_ERR_BAD #define KVM_HVA_ERR_BAD (PAGE_OFFSET) #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) static inline bool kvm_is_error_hva(unsigned long addr) { return addr >= PAGE_OFFSET; } #endif #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) static inline bool is_error_page(struct page *page) { return IS_ERR(page); } #define KVM_REQUEST_MASK GENMASK(7,0) #define KVM_REQUEST_NO_WAKEUP BIT(8) #define KVM_REQUEST_WAIT BIT(9) #define KVM_REQUEST_NO_ACTION BIT(10) /* * Architecture-independent vcpu->requests bit members * Bits 3-7 are reserved for more arch-independent bits. */ #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) #define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) #define KVM_REQ_UNBLOCK 2 #define KVM_REQ_DIRTY_RING_SOFT_FULL 3 #define KVM_REQUEST_ARCH_BASE 8 /* * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick" * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no * guarantee the vCPU received an IPI and has actually exited guest mode. */ #define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ }) #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, unsigned long *vcpu_bitmap); bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, struct kvm_vcpu *except); bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req, unsigned long *vcpu_bitmap); #define KVM_USERSPACE_IRQ_SOURCE_ID 0 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 extern struct mutex kvm_lock; extern struct list_head vm_list; struct kvm_io_range { gpa_t addr; int len; struct kvm_io_device *dev; }; #define NR_IOBUS_DEVS 1000 struct kvm_io_bus { int dev_count; int ioeventfd_count; struct kvm_io_range range[]; }; enum kvm_bus { KVM_MMIO_BUS, KVM_PIO_BUS, KVM_VIRTIO_CCW_NOTIFY_BUS, KVM_FAST_MMIO_BUS, KVM_NR_BUSES }; int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, int len, const void *val); int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, int len, const void *val, long cookie); int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, int len, void *val); int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, int len, struct kvm_io_device *dev); int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, struct kvm_io_device *dev); struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr); #ifdef CONFIG_KVM_ASYNC_PF struct kvm_async_pf { struct work_struct work; struct list_head link; struct list_head queue; struct kvm_vcpu *vcpu; struct mm_struct *mm; gpa_t cr2_or_gpa; unsigned long addr; struct kvm_arch_async_pf arch; bool wakeup_all; bool notpresent_injected; }; void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, unsigned long hva, struct kvm_arch_async_pf *arch); int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); #endif #ifdef KVM_ARCH_WANT_MMU_NOTIFIER struct kvm_gfn_range { struct kvm_memory_slot *slot; void *args; gfn_t start; gfn_t end; pte_t pte; bool may_block; }; bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range); bool kvm_should_clear_young(struct kvm_gfn_range *range, gfn_t gfn); bool kvm_arch_test_clear_young(struct kvm *kvm, struct kvm_gfn_range *range); #endif /* * Architectures that implement kvm_arch_test_clear_young() should override * kvm_arch_has_test_clear_young(). * * kvm_arch_has_test_clear_young() is allowed to return false positive, i.e., it * can return true if kvm_arch_test_clear_young() is supported but disabled due * to some runtime constraint. In this case, kvm_arch_test_clear_young() should * return true; otherwise, it should return false. * * For each young KVM PTE, kvm_arch_test_clear_young() should call * kvm_should_clear_young() to decide whether to clear the accessed bit. */ #ifndef kvm_arch_has_test_clear_young static inline bool kvm_arch_has_test_clear_young(void) { return false; } #endif enum { OUTSIDE_GUEST_MODE, IN_GUEST_MODE, EXITING_GUEST_MODE, READING_SHADOW_PAGE_TABLES, }; #define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA) struct kvm_host_map { /* * Only valid if the 'pfn' is managed by the host kernel (i.e. There is * a 'struct page' for it. When using mem= kernel parameter some memory * can be used as guest memory but they are not managed by host * kernel). * If 'pfn' is not managed by the host kernel, this field is * initialized to KVM_UNMAPPED_PAGE. */ struct page *page; void *hva; kvm_pfn_t pfn; kvm_pfn_t gfn; }; /* * Used to check if the mapping is valid or not. Never use 'kvm_host_map' * directly to check for that. */ static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) { return !!map->hva; } static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop) { return single_task_running() && !need_resched() && ktime_before(cur, stop); } /* * Sometimes a large or cross-page mmio needs to be broken up into separate * exits for userspace servicing. */ struct kvm_mmio_fragment { gpa_t gpa; void *data; unsigned len; }; struct kvm_vcpu { struct kvm *kvm; #ifdef CONFIG_PREEMPT_NOTIFIERS struct preempt_notifier preempt_notifier; #endif int cpu; int vcpu_id; /* id given by userspace at creation */ int vcpu_idx; /* index into kvm->vcpu_array */ int ____srcu_idx; /* Don't use this directly. You've been warned. */ #ifdef CONFIG_PROVE_RCU int srcu_depth; #endif int mode; u64 requests; unsigned long guest_debug; struct mutex mutex; struct kvm_run *run; #ifndef __KVM_HAVE_ARCH_WQP struct rcuwait wait; #endif struct pid __rcu *pid; int sigset_active; sigset_t sigset; unsigned int halt_poll_ns; bool valid_wakeup; #ifdef CONFIG_HAS_IOMEM int mmio_needed; int mmio_read_completed; int mmio_is_write; int mmio_cur_fragment; int mmio_nr_fragments; struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; #endif #ifdef CONFIG_KVM_ASYNC_PF struct { u32 queued; struct list_head queue; struct list_head done; spinlock_t lock; } async_pf; #endif #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT /* * Cpu relax intercept or pause loop exit optimization * in_spin_loop: set when a vcpu does a pause loop exit * or cpu relax intercepted. * dy_eligible: indicates whether vcpu is eligible for directed yield. */ struct { bool in_spin_loop; bool dy_eligible; } spin_loop; #endif bool preempted; bool ready; struct kvm_vcpu_arch arch; struct kvm_vcpu_stat stat; char stats_id[KVM_STATS_NAME_SIZE]; struct kvm_dirty_ring dirty_ring; /* * The most recently used memslot by this vCPU and the slots generation * for which it is valid. * No wraparound protection is needed since generations won't overflow in * thousands of years, even assuming 1M memslot operations per second. */ struct kvm_memory_slot *last_used_slot; u64 last_used_slot_gen; }; /* * Start accounting time towards a guest. * Must be called before entering guest context. */ static __always_inline void guest_timing_enter_irqoff(void) { /* * This is running in ioctl context so its safe to assume that it's the * stime pending cputime to flush. */ instrumentation_begin(); vtime_account_guest_enter(); instrumentation_end(); } /* * Enter guest context and enter an RCU extended quiescent state. * * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is * unsafe to use any code which may directly or indirectly use RCU, tracing * (including IRQ flag tracing), or lockdep. All code in this period must be * non-instrumentable. */ static __always_inline void guest_context_enter_irqoff(void) { /* * KVM does not hold any references to rcu protected data when it * switches CPU into a guest mode. In fact switching to a guest mode * is very similar to exiting to userspace from rcu point of view. In * addition CPU may stay in a guest mode for quite a long time (up to * one time slice). Lets treat guest mode as quiescent state, just like * we do with user-mode execution. */ if (!context_tracking_guest_enter()) { instrumentation_begin(); rcu_virt_note_context_switch(); instrumentation_end(); } } /* * Deprecated. Architectures should move to guest_timing_enter_irqoff() and * guest_state_enter_irqoff(). */ static __always_inline void guest_enter_irqoff(void) { guest_timing_enter_irqoff(); guest_context_enter_irqoff(); } /** * guest_state_enter_irqoff - Fixup state when entering a guest * * Entry to a guest will enable interrupts, but the kernel state is interrupts * disabled when this is invoked. Also tell RCU about it. * * 1) Trace interrupts on state * 2) Invoke context tracking if enabled to adjust RCU state * 3) Tell lockdep that interrupts are enabled * * Invoked from architecture specific code before entering a guest. * Must be called with interrupts disabled and the caller must be * non-instrumentable. * The caller has to invoke guest_timing_enter_irqoff() before this. * * Note: this is analogous to exit_to_user_mode(). */ static __always_inline void guest_state_enter_irqoff(void) { instrumentation_begin(); trace_hardirqs_on_prepare(); lockdep_hardirqs_on_prepare(); instrumentation_end(); guest_context_enter_irqoff(); lockdep_hardirqs_on(CALLER_ADDR0); } /* * Exit guest context and exit an RCU extended quiescent state. * * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is * unsafe to use any code which may directly or indirectly use RCU, tracing * (including IRQ flag tracing), or lockdep. All code in this period must be * non-instrumentable. */ static __always_inline void guest_context_exit_irqoff(void) { context_tracking_guest_exit(); } /* * Stop accounting time towards a guest. * Must be called after exiting guest context. */ static __always_inline void guest_timing_exit_irqoff(void) { instrumentation_begin(); /* Flush the guest cputime we spent on the guest */ vtime_account_guest_exit(); instrumentation_end(); } /* * Deprecated. Architectures should move to guest_state_exit_irqoff() and * guest_timing_exit_irqoff(). */ static __always_inline void guest_exit_irqoff(void) { guest_context_exit_irqoff(); guest_timing_exit_irqoff(); } static inline void guest_exit(void) { unsigned long flags; local_irq_save(flags); guest_exit_irqoff(); local_irq_restore(flags); } /** * guest_state_exit_irqoff - Establish state when returning from guest mode * * Entry from a guest disables interrupts, but guest mode is traced as * interrupts enabled. Also with NO_HZ_FULL RCU might be idle. * * 1) Tell lockdep that interrupts are disabled * 2) Invoke context tracking if enabled to reactivate RCU * 3) Trace interrupts off state * * Invoked from architecture specific code after exiting a guest. * Must be invoked with interrupts disabled and the caller must be * non-instrumentable. * The caller has to invoke guest_timing_exit_irqoff() after this. * * Note: this is analogous to enter_from_user_mode(). */ static __always_inline void guest_state_exit_irqoff(void) { lockdep_hardirqs_off(CALLER_ADDR0); guest_context_exit_irqoff(); instrumentation_begin(); trace_hardirqs_off_finish(); instrumentation_end(); } static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) { /* * The memory barrier ensures a previous write to vcpu->requests cannot * be reordered with the read of vcpu->mode. It pairs with the general * memory barrier following the write of vcpu->mode in VCPU RUN. */ smp_mb__before_atomic(); return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); } /* * Some of the bitops functions do not support too long bitmaps. * This number must be determined not to exceed such limits. */ #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) /* * Since at idle each memslot belongs to two memslot sets it has to contain * two embedded nodes for each data structure that it forms a part of. * * Two memslot sets (one active and one inactive) are necessary so the VM * continues to run on one memslot set while the other is being modified. * * These two memslot sets normally point to the same set of memslots. * They can, however, be desynchronized when performing a memslot management * operation by replacing the memslot to be modified by its copy. * After the operation is complete, both memslot sets once again point to * the same, common set of memslot data. * * The memslots themselves are independent of each other so they can be * individually added or deleted. */ struct kvm_memory_slot { struct hlist_node id_node[2]; struct interval_tree_node hva_node[2]; struct rb_node gfn_node[2]; gfn_t base_gfn; unsigned long npages; unsigned long *dirty_bitmap; struct kvm_arch_memory_slot arch; unsigned long userspace_addr; u32 flags; short id; u16 as_id; }; static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot) { return slot->flags & KVM_MEM_LOG_DIRTY_PAGES; } static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) { return ALIGN(memslot->npages, BITS_PER_LONG) / 8; } static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) { unsigned long len = kvm_dirty_bitmap_bytes(memslot); return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); } #ifndef KVM_DIRTY_LOG_MANUAL_CAPS #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE #endif struct kvm_s390_adapter_int { u64 ind_addr; u64 summary_addr; u64 ind_offset; u32 summary_offset; u32 adapter_id; }; struct kvm_hv_sint { u32 vcpu; u32 sint; }; struct kvm_xen_evtchn { u32 port; u32 vcpu_id; int vcpu_idx; u32 priority; }; struct kvm_kernel_irq_routing_entry { u32 gsi; u32 type; int (*set)(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm, int irq_source_id, int level, bool line_status); union { struct { unsigned irqchip; unsigned pin; } irqchip; struct { u32 address_lo; u32 address_hi; u32 data; u32 flags; u32 devid; } msi; struct kvm_s390_adapter_int adapter; struct kvm_hv_sint hv_sint; struct kvm_xen_evtchn xen_evtchn; }; struct hlist_node link; }; #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING struct kvm_irq_routing_table { int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; u32 nr_rt_entries; /* * Array indexed by gsi. Each entry contains list of irq chips * the gsi is connected to. */ struct hlist_head map[]; }; #endif bool kvm_arch_irqchip_in_kernel(struct kvm *kvm); #ifndef KVM_INTERNAL_MEM_SLOTS #define KVM_INTERNAL_MEM_SLOTS 0 #endif #define KVM_MEM_SLOTS_NUM SHRT_MAX #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS) #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) { return 0; } #endif struct kvm_memslots { u64 generation; atomic_long_t last_used_slot; struct rb_root_cached hva_tree; struct rb_root gfn_tree; /* * The mapping table from slot id to memslot. * * 7-bit bucket count matches the size of the old id to index array for * 512 slots, while giving good performance with this slot count. * Higher bucket counts bring only small performance improvements but * always result in higher memory usage (even for lower memslot counts). */ DECLARE_HASHTABLE(id_hash, 7); int node_idx; }; struct kvm { #ifdef KVM_HAVE_MMU_RWLOCK rwlock_t mmu_lock; #else spinlock_t mmu_lock; #endif /* KVM_HAVE_MMU_RWLOCK */ struct mutex slots_lock; /* * Protects the arch-specific fields of struct kvm_memory_slots in * use by the VM. To be used under the slots_lock (above) or in a * kvm->srcu critical section where acquiring the slots_lock would * lead to deadlock with the synchronize_srcu in * install_new_memslots. */ struct mutex slots_arch_lock; struct mm_struct *mm; /* userspace tied to this vm */ unsigned long nr_memslot_pages; /* The two memslot sets - active and inactive (per address space) */ struct kvm_memslots __memslots[KVM_ADDRESS_SPACE_NUM][2]; /* The current active memslot set for each address space */ struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM]; struct xarray vcpu_array; /* * Protected by slots_lock, but can be read outside if an * incorrect answer is acceptable. */ atomic_t nr_memslots_dirty_logging; /* Used to wait for completion of MMU notifiers. */ spinlock_t mn_invalidate_lock; unsigned long mn_active_invalidate_count; struct rcuwait mn_memslots_update_rcuwait; /* For management / invalidation of gfn_to_pfn_caches */ spinlock_t gpc_lock; struct list_head gpc_list; /* * created_vcpus is protected by kvm->lock, and is incremented * at the beginning of KVM_CREATE_VCPU. online_vcpus is only * incremented after storing the kvm_vcpu pointer in vcpus, * and is accessed atomically. */ atomic_t online_vcpus; int max_vcpus; int created_vcpus; int last_boosted_vcpu; struct list_head vm_list; struct mutex lock; struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; #ifdef CONFIG_HAVE_KVM_EVENTFD struct { spinlock_t lock; struct list_head items; /* resampler_list update side is protected by resampler_lock. */ struct list_head resampler_list; struct mutex resampler_lock; } irqfds; struct list_head ioeventfds; #endif struct kvm_vm_stat stat; struct kvm_arch arch; refcount_t users_count; #ifdef CONFIG_KVM_MMIO struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; spinlock_t ring_lock; struct list_head coalesced_zones; #endif struct mutex irq_lock; #ifdef CONFIG_HAVE_KVM_IRQCHIP /* * Update side is protected by irq_lock. */ struct kvm_irq_routing_table __rcu *irq_routing; #endif #ifdef CONFIG_HAVE_KVM_IRQFD struct hlist_head irq_ack_notifier_list; #endif #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) struct mmu_notifier mmu_notifier; unsigned long mmu_invalidate_seq; long mmu_invalidate_in_progress; unsigned long mmu_invalidate_range_start; unsigned long mmu_invalidate_range_end; #endif struct list_head devices; u64 manual_dirty_log_protect; struct dentry *debugfs_dentry; struct kvm_stat_data **debugfs_stat_data; struct srcu_struct srcu; struct srcu_struct irq_srcu; pid_t userspace_pid; bool override_halt_poll_ns; unsigned int max_halt_poll_ns; u32 dirty_ring_size; bool dirty_ring_with_bitmap; bool vm_bugged; bool vm_dead; #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER struct notifier_block pm_notifier; #endif char stats_id[KVM_STATS_NAME_SIZE]; }; #define kvm_err(fmt, ...) \ pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) #define kvm_info(fmt, ...) \ pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) #define kvm_debug(fmt, ...) \ pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) #define kvm_debug_ratelimited(fmt, ...) \ pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ ## __VA_ARGS__) #define kvm_pr_unimpl(fmt, ...) \ pr_err_ratelimited("kvm [%i]: " fmt, \ task_tgid_nr(current), ## __VA_ARGS__) /* The guest did something we don't support. */ #define vcpu_unimpl(vcpu, fmt, ...) \ kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) #define vcpu_debug(vcpu, fmt, ...) \ kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) #define vcpu_debug_ratelimited(vcpu, fmt, ...) \ kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ ## __VA_ARGS__) #define vcpu_err(vcpu, fmt, ...) \ kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) static inline void kvm_vm_dead(struct kvm *kvm) { kvm->vm_dead = true; kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD); } static inline void kvm_vm_bugged(struct kvm *kvm) { kvm->vm_bugged = true; kvm_vm_dead(kvm); } #define KVM_BUG(cond, kvm, fmt...) \ ({ \ int __ret = (cond); \ \ if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \ kvm_vm_bugged(kvm); \ unlikely(__ret); \ }) #define KVM_BUG_ON(cond, kvm) \ ({ \ int __ret = (cond); \ \ if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ kvm_vm_bugged(kvm); \ unlikely(__ret); \ }) static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu) { #ifdef CONFIG_PROVE_RCU WARN_ONCE(vcpu->srcu_depth++, "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1); #endif vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); } static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu) { srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx); #ifdef CONFIG_PROVE_RCU WARN_ONCE(--vcpu->srcu_depth, "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth); #endif } static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm) { return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET); } static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) { return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, lockdep_is_held(&kvm->slots_lock) || !refcount_read(&kvm->users_count)); } static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) { int num_vcpus = atomic_read(&kvm->online_vcpus); i = array_index_nospec(i, num_vcpus); /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ smp_rmb(); return xa_load(&kvm->vcpu_array, i); } #define kvm_for_each_vcpu(idx, vcpup, kvm) \ xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \ (atomic_read(&kvm->online_vcpus) - 1)) static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) { struct kvm_vcpu *vcpu = NULL; unsigned long i; if (id < 0) return NULL; if (id < KVM_MAX_VCPUS) vcpu = kvm_get_vcpu(kvm, id); if (vcpu && vcpu->vcpu_id == id) return vcpu; kvm_for_each_vcpu(i, vcpu, kvm) if (vcpu->vcpu_id == id) return vcpu; return NULL; } void kvm_destroy_vcpus(struct kvm *kvm); void vcpu_load(struct kvm_vcpu *vcpu); void vcpu_put(struct kvm_vcpu *vcpu); #ifdef __KVM_HAVE_IOAPIC void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); void kvm_arch_post_irq_routing_update(struct kvm *kvm); #else static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) { } static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) { } #endif #ifdef CONFIG_HAVE_KVM_IRQFD int kvm_irqfd_init(void); void kvm_irqfd_exit(void); #else static inline int kvm_irqfd_init(void) { return 0; } static inline void kvm_irqfd_exit(void) { } #endif int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module); void kvm_exit(void); void kvm_get_kvm(struct kvm *kvm); bool kvm_get_kvm_safe(struct kvm *kvm); void kvm_put_kvm(struct kvm *kvm); bool file_is_kvm(struct file *file); void kvm_put_kvm_no_destroy(struct kvm *kvm); static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) { as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM); return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, lockdep_is_held(&kvm->slots_lock) || !refcount_read(&kvm->users_count)); } static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) { return __kvm_memslots(kvm, 0); } static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) { int as_id = kvm_arch_vcpu_memslots_id(vcpu); return __kvm_memslots(vcpu->kvm, as_id); } static inline bool kvm_memslots_empty(struct kvm_memslots *slots) { return RB_EMPTY_ROOT(&slots->gfn_tree); } #define kvm_for_each_memslot(memslot, bkt, slots) \ hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \ if (WARN_ON_ONCE(!memslot->npages)) { \ } else static inline struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id) { struct kvm_memory_slot *slot; int idx = slots->node_idx; hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) { if (slot->id == id) return slot; } return NULL; } /* Iterator used for walking memslots that overlap a gfn range. */ struct kvm_memslot_iter { struct kvm_memslots *slots; struct rb_node *node; struct kvm_memory_slot *slot; }; static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter) { iter->node = rb_next(iter->node); if (!iter->node) return; iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]); } static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter, struct kvm_memslots *slots, gfn_t start) { int idx = slots->node_idx; struct rb_node *tmp; struct kvm_memory_slot *slot; iter->slots = slots; /* * Find the so called "upper bound" of a key - the first node that has * its key strictly greater than the searched one (the start gfn in our case). */ iter->node = NULL; for (tmp = slots->gfn_tree.rb_node; tmp; ) { slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]); if (start < slot->base_gfn) { iter->node = tmp; tmp = tmp->rb_left; } else { tmp = tmp->rb_right; } } /* * Find the slot with the lowest gfn that can possibly intersect with * the range, so we'll ideally have slot start <= range start */ if (iter->node) { /* * A NULL previous node means that the very first slot * already has a higher start gfn. * In this case slot start > range start. */ tmp = rb_prev(iter->node); if (tmp) iter->node = tmp; } else { /* a NULL node below means no slots */ iter->node = rb_last(&slots->gfn_tree); } if (iter->node) { iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]); /* * It is possible in the slot start < range start case that the * found slot ends before or at range start (slot end <= range start) * and so it does not overlap the requested range. * * In such non-overlapping case the next slot (if it exists) will * already have slot start > range start, otherwise the logic above * would have found it instead of the current slot. */ if (iter->slot->base_gfn + iter->slot->npages <= start) kvm_memslot_iter_next(iter); } } static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end) { if (!iter->node) return false; /* * If this slot starts beyond or at the end of the range so does * every next one */ return iter->slot->base_gfn < end; } /* Iterate over each memslot at least partially intersecting [start, end) range */ #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \ for (kvm_memslot_iter_start(iter, slots, start); \ kvm_memslot_iter_is_valid(iter, end); \ kvm_memslot_iter_next(iter)) /* * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: * - create a new memory slot * - delete an existing memory slot * - modify an existing memory slot * -- move it in the guest physical memory space * -- just change its flags * * Since flags can be changed by some of these operations, the following * differentiation is the best we can do for __kvm_set_memory_region(): */ enum kvm_mr_change { KVM_MR_CREATE, KVM_MR_DELETE, KVM_MR_MOVE, KVM_MR_FLAGS_ONLY, }; int kvm_set_memory_region(struct kvm *kvm, const struct kvm_userspace_memory_region *mem); int __kvm_set_memory_region(struct kvm *kvm, const struct kvm_userspace_memory_region *mem); void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); int kvm_arch_prepare_memory_region(struct kvm *kvm, const struct kvm_memory_slot *old, struct kvm_memory_slot *new, enum kvm_mr_change change); void kvm_arch_commit_memory_region(struct kvm *kvm, struct kvm_memory_slot *old, const struct kvm_memory_slot *new, enum kvm_mr_change change); /* flush all memory translations */ void kvm_arch_flush_shadow_all(struct kvm *kvm); /* flush memory translations pointing to 'slot' */ void kvm_arch_flush_shadow_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, struct page **pages, int nr_pages); struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, bool *writable); void kvm_release_page_clean(struct page *page); void kvm_release_page_dirty(struct page *page); kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, bool *writable); kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn); kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn); kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, bool atomic, bool interruptible, bool *async, bool write_fault, bool *writable, hva_t *hva); void kvm_release_pfn_clean(kvm_pfn_t pfn); void kvm_release_pfn_dirty(kvm_pfn_t pfn); void kvm_set_pfn_dirty(kvm_pfn_t pfn); void kvm_set_pfn_accessed(kvm_pfn_t pfn); void kvm_release_pfn(kvm_pfn_t pfn, bool dirty); int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, int len); int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, void *data, unsigned long len); int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, void *data, unsigned int offset, unsigned long len); int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, int offset, int len); int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, unsigned long len); int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, void *data, unsigned long len); int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, void *data, unsigned int offset, unsigned long len); int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, gpa_t gpa, unsigned long len); #define __kvm_get_guest(kvm, gfn, offset, v) \ ({ \ unsigned long __addr = gfn_to_hva(kvm, gfn); \ typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ int __ret = -EFAULT; \ \ if (!kvm_is_error_hva(__addr)) \ __ret = get_user(v, __uaddr); \ __ret; \ }) #define kvm_get_guest(kvm, gpa, v) \ ({ \ gpa_t __gpa = gpa; \ struct kvm *__kvm = kvm; \ \ __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \ offset_in_page(__gpa), v); \ }) #define __kvm_put_guest(kvm, gfn, offset, v) \ ({ \ unsigned long __addr = gfn_to_hva(kvm, gfn); \ typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ int __ret = -EFAULT; \ \ if (!kvm_is_error_hva(__addr)) \ __ret = put_user(v, __uaddr); \ if (!__ret) \ mark_page_dirty(kvm, gfn); \ __ret; \ }) #define kvm_put_guest(kvm, gpa, v) \ ({ \ gpa_t __gpa = gpa; \ struct kvm *__kvm = kvm; \ \ __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \ offset_in_page(__gpa), v); \ }) int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn); void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn); void mark_page_dirty(struct kvm *kvm, gfn_t gfn); struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map); void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty); unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, int len); int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len); int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len); int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, int offset, int len); int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, unsigned long len); void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); /** * kvm_gpc_init - initialize gfn_to_pfn_cache. * * @gpc: struct gfn_to_pfn_cache object. * @kvm: pointer to kvm instance. * @vcpu: vCPU to be used for marking pages dirty and to be woken on * invalidation. * @usage: indicates if the resulting host physical PFN is used while * the @vcpu is IN_GUEST_MODE (in which case invalidation of * the cache from MMU notifiers---but not for KVM memslot * changes!---will also force @vcpu to exit the guest and * refresh the cache); and/or if the PFN used directly * by KVM (and thus needs a kernel virtual mapping). * * This sets up a gfn_to_pfn_cache by initializing locks and assigning the * immutable attributes. Note, the cache must be zero-allocated (or zeroed by * the caller before init). */ void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm, struct kvm_vcpu *vcpu, enum pfn_cache_usage usage); /** * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest * physical address. * * @gpc: struct gfn_to_pfn_cache object. * @gpa: guest physical address to map. * @len: sanity check; the range being access must fit a single page. * * @return: 0 for success. * -EINVAL for a mapping which would cross a page boundary. * -EFAULT for an untranslatable guest physical address. * * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for * invalidations to be processed. Callers are required to use kvm_gpc_check() * to ensure that the cache is valid before accessing the target page. */ int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len); /** * kvm_gpc_check - check validity of a gfn_to_pfn_cache. * * @gpc: struct gfn_to_pfn_cache object. * @len: sanity check; the range being access must fit a single page. * * @return: %true if the cache is still valid and the address matches. * %false if the cache is not valid. * * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock * while calling this function, and then continue to hold the lock until the * access is complete. * * Callers in IN_GUEST_MODE may do so without locking, although they should * still hold a read lock on kvm->scru for the memslot checks. */ bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len); /** * kvm_gpc_refresh - update a previously initialized cache. * * @gpc: struct gfn_to_pfn_cache object. * @len: sanity check; the range being access must fit a single page. * * @return: 0 for success. * -EINVAL for a mapping which would cross a page boundary. * -EFAULT for an untranslatable guest physical address. * * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful * return from this function does not mean the page can be immediately * accessed because it may have raced with an invalidation. Callers must * still lock and check the cache status, as this function does not return * with the lock still held to permit access. */ int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len); /** * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache. * * @gpc: struct gfn_to_pfn_cache object. * * This removes a cache from the VM's list to be processed on MMU notifier * invocation. */ void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc); void kvm_sigset_activate(struct kvm_vcpu *vcpu); void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); void kvm_vcpu_halt(struct kvm_vcpu *vcpu); bool kvm_vcpu_block(struct kvm_vcpu *vcpu); void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); void kvm_vcpu_kick(struct kvm_vcpu *vcpu); int kvm_vcpu_yield_to(struct kvm_vcpu *target); void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode); void kvm_flush_remote_tlbs(struct kvm *kvm); #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min); int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min); int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc); void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc); void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc); #endif void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start, unsigned long end); void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start, unsigned long end); long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg); long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg); vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, struct kvm_memory_slot *slot, gfn_t gfn_offset, unsigned long mask); void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot); #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, const struct kvm_memory_slot *memslot); #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log); int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, int *is_dirty, struct kvm_memory_slot **memslot); #endif int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, bool line_status); int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap); long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg); long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg); int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, struct kvm_translation *tr); int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs); int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs); int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state); int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state); int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg); int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu); void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id); int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu); void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state); #endif #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry); #else static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {} #endif #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING int kvm_arch_hardware_enable(void); void kvm_arch_hardware_disable(void); #endif int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu); int kvm_arch_post_init_vm(struct kvm *kvm); void kvm_arch_pre_destroy_vm(struct kvm *kvm); int kvm_arch_create_vm_debugfs(struct kvm *kvm); #ifndef __KVM_HAVE_ARCH_VM_ALLOC /* * All architectures that want to use vzalloc currently also * need their own kvm_arch_alloc_vm implementation. */ static inline struct kvm *kvm_arch_alloc_vm(void) { return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT); } #endif static inline void __kvm_arch_free_vm(struct kvm *kvm) { kvfree(kvm); } #ifndef __KVM_HAVE_ARCH_VM_FREE static inline void kvm_arch_free_vm(struct kvm *kvm) { __kvm_arch_free_vm(kvm); } #endif #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm) { return -ENOTSUPP; } #endif #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA void kvm_arch_register_noncoherent_dma(struct kvm *kvm); void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); #else static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) { } static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) { } static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) { return false; } #endif #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE void kvm_arch_start_assignment(struct kvm *kvm); void kvm_arch_end_assignment(struct kvm *kvm); bool kvm_arch_has_assigned_device(struct kvm *kvm); #else static inline void kvm_arch_start_assignment(struct kvm *kvm) { } static inline void kvm_arch_end_assignment(struct kvm *kvm) { } static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm) { return false; } #endif static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu) { #ifdef __KVM_HAVE_ARCH_WQP return vcpu->arch.waitp; #else return &vcpu->wait; #endif } /* * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns * true if the vCPU was blocking and was awakened, false otherwise. */ static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) { return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu)); } static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu) { return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu)); } #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED /* * returns true if the virtual interrupt controller is initialized and * ready to accept virtual IRQ. On some architectures the virtual interrupt * controller is dynamically instantiated and this is not always true. */ bool kvm_arch_intc_initialized(struct kvm *kvm); #else static inline bool kvm_arch_intc_initialized(struct kvm *kvm) { return true; } #endif #ifdef CONFIG_GUEST_PERF_EVENTS unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu); void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)); void kvm_unregister_perf_callbacks(void); #else static inline void kvm_register_perf_callbacks(void *ign) {} static inline void kvm_unregister_perf_callbacks(void) {} #endif /* CONFIG_GUEST_PERF_EVENTS */ int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); void kvm_arch_destroy_vm(struct kvm *kvm); void kvm_arch_sync_events(struct kvm *kvm); int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn); bool kvm_is_zone_device_page(struct page *page); struct kvm_irq_ack_notifier { struct hlist_node link; unsigned gsi; void (*irq_acked)(struct kvm_irq_ack_notifier *kian); }; int kvm_irq_map_gsi(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *entries, int gsi); int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, bool line_status); int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, int irq_source_id, int level, bool line_status); int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm, int irq_source_id, int level, bool line_status); bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); void kvm_register_irq_ack_notifier(struct kvm *kvm, struct kvm_irq_ack_notifier *kian); void kvm_unregister_irq_ack_notifier(struct kvm *kvm, struct kvm_irq_ack_notifier *kian); int kvm_request_irq_source_id(struct kvm *kvm); void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); /* * Returns a pointer to the memslot if it contains gfn. * Otherwise returns NULL. */ static inline struct kvm_memory_slot * try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn) { if (!slot) return NULL; if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages) return slot; else return NULL; } /* * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL. * * With "approx" set returns the memslot also when the address falls * in a hole. In that case one of the memslots bordering the hole is * returned. */ static inline struct kvm_memory_slot * search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx) { struct kvm_memory_slot *slot; struct rb_node *node; int idx = slots->node_idx; slot = NULL; for (node = slots->gfn_tree.rb_node; node; ) { slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]); if (gfn >= slot->base_gfn) { if (gfn < slot->base_gfn + slot->npages) return slot; node = node->rb_right; } else node = node->rb_left; } return approx ? slot : NULL; } static inline struct kvm_memory_slot * ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx) { struct kvm_memory_slot *slot; slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot); slot = try_get_memslot(slot, gfn); if (slot) return slot; slot = search_memslots(slots, gfn, approx); if (slot) { atomic_long_set(&slots->last_used_slot, (unsigned long)slot); return slot; } return NULL; } /* * __gfn_to_memslot() and its descendants are here to allow arch code to inline * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline * because that would bloat other code too much. */ static inline struct kvm_memory_slot * __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) { return ____gfn_to_memslot(slots, gfn, false); } static inline unsigned long __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) { /* * The index was checked originally in search_memslots. To avoid * that a malicious guest builds a Spectre gadget out of e.g. page * table walks, do not let the processor speculate loads outside * the guest's registered memslots. */ unsigned long offset = gfn - slot->base_gfn; offset = array_index_nospec(offset, slot->npages); return slot->userspace_addr + offset * PAGE_SIZE; } static inline int memslot_id(struct kvm *kvm, gfn_t gfn) { return gfn_to_memslot(kvm, gfn)->id; } static inline gfn_t hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) { gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; return slot->base_gfn + gfn_offset; } static inline gpa_t gfn_to_gpa(gfn_t gfn) { return (gpa_t)gfn << PAGE_SHIFT; } static inline gfn_t gpa_to_gfn(gpa_t gpa) { return (gfn_t)(gpa >> PAGE_SHIFT); } static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) { return (hpa_t)pfn << PAGE_SHIFT; } static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) { unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); return kvm_is_error_hva(hva); } enum kvm_stat_kind { KVM_STAT_VM, KVM_STAT_VCPU, }; struct kvm_stat_data { struct kvm *kvm; const struct _kvm_stats_desc *desc; enum kvm_stat_kind kind; }; struct _kvm_stats_desc { struct kvm_stats_desc desc; char name[KVM_STATS_NAME_SIZE]; }; #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \ .flags = type | unit | base | \ BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \ BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \ BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \ .exponent = exp, \ .size = sz, \ .bucket_size = bsz #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ { \ { \ STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ .offset = offsetof(struct kvm_vm_stat, generic.stat) \ }, \ .name = #stat, \ } #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ { \ { \ STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \ }, \ .name = #stat, \ } #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ { \ { \ STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ .offset = offsetof(struct kvm_vm_stat, stat) \ }, \ .name = #stat, \ } #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ { \ { \ STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ .offset = offsetof(struct kvm_vcpu_stat, stat) \ }, \ .name = #stat, \ } /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */ #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \ SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz) #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \ STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \ unit, base, exponent, 1, 0) #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \ STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \ unit, base, exponent, 1, 0) #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \ STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \ unit, base, exponent, 1, 0) #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \ STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \ unit, base, exponent, sz, bsz) #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \ STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \ unit, base, exponent, sz, 0) /* Cumulative counter, read/write */ #define STATS_DESC_COUNTER(SCOPE, name) \ STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \ KVM_STATS_BASE_POW10, 0) /* Instantaneous counter, read only */ #define STATS_DESC_ICOUNTER(SCOPE, name) \ STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \ KVM_STATS_BASE_POW10, 0) /* Peak counter, read/write */ #define STATS_DESC_PCOUNTER(SCOPE, name) \ STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \ KVM_STATS_BASE_POW10, 0) /* Instantaneous boolean value, read only */ #define STATS_DESC_IBOOLEAN(SCOPE, name) \ STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ KVM_STATS_BASE_POW10, 0) /* Peak (sticky) boolean value, read/write */ #define STATS_DESC_PBOOLEAN(SCOPE, name) \ STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ KVM_STATS_BASE_POW10, 0) /* Cumulative time in nanosecond */ #define STATS_DESC_TIME_NSEC(SCOPE, name) \ STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ KVM_STATS_BASE_POW10, -9) /* Linear histogram for time in nanosecond */ #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \ STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ KVM_STATS_BASE_POW10, -9, sz, bsz) /* Logarithmic histogram for time in nanosecond */ #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \ STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ KVM_STATS_BASE_POW10, -9, sz) #define KVM_GENERIC_VM_STATS() \ STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \ STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests) #define KVM_GENERIC_VCPU_STATS() \ STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \ STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \ STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \ STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \ STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \ STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \ STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \ STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \ HALT_POLL_HIST_COUNT), \ STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \ HALT_POLL_HIST_COUNT), \ STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \ HALT_POLL_HIST_COUNT), \ STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking) extern struct dentry *kvm_debugfs_dir; ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header, const struct _kvm_stats_desc *desc, void *stats, size_t size_stats, char __user *user_buffer, size_t size, loff_t *offset); /** * kvm_stats_linear_hist_update() - Update bucket value for linear histogram * statistics data. * * @data: start address of the stats data * @size: the number of bucket of the stats data * @value: the new value used to update the linear histogram's bucket * @bucket_size: the size (width) of a bucket */ static inline void kvm_stats_linear_hist_update(u64 *data, size_t size, u64 value, size_t bucket_size) { size_t index = div64_u64(value, bucket_size); index = min(index, size - 1); ++data[index]; } /** * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram * statistics data. * * @data: start address of the stats data * @size: the number of bucket of the stats data * @value: the new value used to update the logarithmic histogram's bucket */ static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value) { size_t index = fls64(value); index = min(index, size - 1); ++data[index]; } #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \ kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize) #define KVM_STATS_LOG_HIST_UPDATE(array, value) \ kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value) extern const struct kvm_stats_header kvm_vm_stats_header; extern const struct _kvm_stats_desc kvm_vm_stats_desc[]; extern const struct kvm_stats_header kvm_vcpu_stats_header; extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[]; #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq) { if (unlikely(kvm->mmu_invalidate_in_progress)) return 1; /* * Ensure the read of mmu_invalidate_in_progress happens before * the read of mmu_invalidate_seq. This interacts with the * smp_wmb() in mmu_notifier_invalidate_range_end to make sure * that the caller either sees the old (non-zero) value of * mmu_invalidate_in_progress or the new (incremented) value of * mmu_invalidate_seq. * * PowerPC Book3s HV KVM calls this under a per-page lock rather * than under kvm->mmu_lock, for scalability, so can't rely on * kvm->mmu_lock to keep things ordered. */ smp_rmb(); if (kvm->mmu_invalidate_seq != mmu_seq) return 1; return 0; } static inline int mmu_invalidate_retry_hva(struct kvm *kvm, unsigned long mmu_seq, unsigned long hva) { lockdep_assert_held(&kvm->mmu_lock); /* * If mmu_invalidate_in_progress is non-zero, then the range maintained * by kvm_mmu_notifier_invalidate_range_start contains all addresses * that might be being invalidated. Note that it may include some false * positives, due to shortcuts when handing concurrent invalidations. */ if (unlikely(kvm->mmu_invalidate_in_progress) && hva >= kvm->mmu_invalidate_range_start && hva < kvm->mmu_invalidate_range_end) return 1; if (kvm->mmu_invalidate_seq != mmu_seq) return 1; return 0; } #endif #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ bool kvm_arch_can_set_irq_routing(struct kvm *kvm); int kvm_set_irq_routing(struct kvm *kvm, const struct kvm_irq_routing_entry *entries, unsigned nr, unsigned flags); int kvm_set_routing_entry(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e, const struct kvm_irq_routing_entry *ue); void kvm_free_irq_routing(struct kvm *kvm); #else static inline void kvm_free_irq_routing(struct kvm *kvm) {} #endif int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); #ifdef CONFIG_HAVE_KVM_EVENTFD void kvm_eventfd_init(struct kvm *kvm); int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); #ifdef CONFIG_HAVE_KVM_IRQFD int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); void kvm_irqfd_release(struct kvm *kvm); bool kvm_notify_irqfd_resampler(struct kvm *kvm, unsigned int irqchip, unsigned int pin); void kvm_irq_routing_update(struct kvm *); #else static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) { return -EINVAL; } static inline void kvm_irqfd_release(struct kvm *kvm) {} static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm, unsigned int irqchip, unsigned int pin) { return false; } #endif #else static inline void kvm_eventfd_init(struct kvm *kvm) {} static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) { return -EINVAL; } static inline void kvm_irqfd_release(struct kvm *kvm) {} #ifdef CONFIG_HAVE_KVM_IRQCHIP static inline void kvm_irq_routing_update(struct kvm *kvm) { } #endif static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) { return -ENOSYS; } #endif /* CONFIG_HAVE_KVM_EVENTFD */ void kvm_arch_irq_routing_update(struct kvm *kvm); static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu) { /* * Ensure the rest of the request is published to kvm_check_request's * caller. Paired with the smp_mb__after_atomic in kvm_check_request. */ smp_wmb(); set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); } static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) { /* * Request that don't require vCPU action should never be logged in * vcpu->requests. The vCPU won't clear the request, so it will stay * logged indefinitely and prevent the vCPU from entering the guest. */ BUILD_BUG_ON(!__builtin_constant_p(req) || (req & KVM_REQUEST_NO_ACTION)); __kvm_make_request(req, vcpu); } static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) { return READ_ONCE(vcpu->requests); } static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) { return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); } static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) { clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); } static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) { if (kvm_test_request(req, vcpu)) { kvm_clear_request(req, vcpu); /* * Ensure the rest of the request is visible to kvm_check_request's * caller. Paired with the smp_wmb in kvm_make_request. */ smp_mb__after_atomic(); return true; } else { return false; } } #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING extern bool kvm_rebooting; #endif extern unsigned int halt_poll_ns; extern unsigned int halt_poll_ns_grow; extern unsigned int halt_poll_ns_grow_start; extern unsigned int halt_poll_ns_shrink; struct kvm_device { const struct kvm_device_ops *ops; struct kvm *kvm; void *private; struct list_head vm_node; }; /* create, destroy, and name are mandatory */ struct kvm_device_ops { const char *name; /* * create is called holding kvm->lock and any operations not suitable * to do while holding the lock should be deferred to init (see * below). */ int (*create)(struct kvm_device *dev, u32 type); /* * init is called after create if create is successful and is called * outside of holding kvm->lock. */ void (*init)(struct kvm_device *dev); /* * Destroy is responsible for freeing dev. * * Destroy may be called before or after destructors are called * on emulated I/O regions, depending on whether a reference is * held by a vcpu or other kvm component that gets destroyed * after the emulated I/O. */ void (*destroy)(struct kvm_device *dev); /* * Release is an alternative method to free the device. It is * called when the device file descriptor is closed. Once * release is called, the destroy method will not be called * anymore as the device is removed from the device list of * the VM. kvm->lock is held. */ void (*release)(struct kvm_device *dev); int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, unsigned long arg); int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); }; void kvm_device_get(struct kvm_device *dev); void kvm_device_put(struct kvm_device *dev); struct kvm_device *kvm_device_from_filp(struct file *filp); int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type); void kvm_unregister_device_ops(u32 type); extern struct kvm_device_ops kvm_mpic_ops; extern struct kvm_device_ops kvm_arm_vgic_v2_ops; extern struct kvm_device_ops kvm_arm_vgic_v3_ops; #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) { vcpu->spin_loop.in_spin_loop = val; } static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) { vcpu->spin_loop.dy_eligible = val; } #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) { } static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) { } #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot) { return (memslot && memslot->id < KVM_USER_MEM_SLOTS && !(memslot->flags & KVM_MEMSLOT_INVALID)); } struct kvm_vcpu *kvm_get_running_vcpu(void); struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS bool kvm_arch_has_irq_bypass(void); int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, struct irq_bypass_producer *); void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, struct irq_bypass_producer *); void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, uint32_t guest_irq, bool set); bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *, struct kvm_kernel_irq_routing_entry *); #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS /* If we wakeup during the poll time, was it a sucessful poll? */ static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) { return vcpu->valid_wakeup; } #else static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) { return true; } #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ #ifdef CONFIG_HAVE_KVM_NO_POLL /* Callback that tells if we must not poll */ bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); #else static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) { return false; } #endif /* CONFIG_HAVE_KVM_NO_POLL */ #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg); #else static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { return -ENOIOCTLCMD; } #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, unsigned long start, unsigned long end); void kvm_arch_guest_memory_reclaimed(struct kvm *kvm); #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); #else static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) { return 0; } #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data); int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, uintptr_t data, const char *name, struct task_struct **thread_ptr); #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu) { vcpu->run->exit_reason = KVM_EXIT_INTR; vcpu->stat.signal_exits++; } #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */ /* * If more than one page is being (un)accounted, @virt must be the address of * the first page of a block of pages what were allocated together (i.e * accounted together). * * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state() * is thread-safe. */ static inline void kvm_account_pgtable_pages(void *virt, int nr) { mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr); } /* * This defines how many reserved entries we want to keep before we * kick the vcpu to the userspace to avoid dirty ring full. This * value can be tuned to higher if e.g. PML is enabled on the host. */ #define KVM_DIRTY_RING_RSVD_ENTRIES 64 /* Max number of entries allowed for each kvm dirty ring */ #define KVM_DIRTY_RING_MAX_ENTRIES 65536 #endif