615 lines
16 KiB
C
615 lines
16 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* X86 specific Hyper-V initialization code.
|
|
*
|
|
* Copyright (C) 2016, Microsoft, Inc.
|
|
*
|
|
* Author : K. Y. Srinivasan <kys@microsoft.com>
|
|
*/
|
|
|
|
#include <linux/efi.h>
|
|
#include <linux/types.h>
|
|
#include <linux/bitfield.h>
|
|
#include <linux/io.h>
|
|
#include <asm/apic.h>
|
|
#include <asm/desc.h>
|
|
#include <asm/sev.h>
|
|
#include <asm/hypervisor.h>
|
|
#include <asm/hyperv-tlfs.h>
|
|
#include <asm/mshyperv.h>
|
|
#include <asm/idtentry.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/version.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/hyperv.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/cpuhotplug.h>
|
|
#include <linux/syscore_ops.h>
|
|
#include <clocksource/hyperv_timer.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/swiotlb.h>
|
|
|
|
int hyperv_init_cpuhp;
|
|
u64 hv_current_partition_id = ~0ull;
|
|
EXPORT_SYMBOL_GPL(hv_current_partition_id);
|
|
|
|
void *hv_hypercall_pg;
|
|
EXPORT_SYMBOL_GPL(hv_hypercall_pg);
|
|
|
|
union hv_ghcb * __percpu *hv_ghcb_pg;
|
|
|
|
/* Storage to save the hypercall page temporarily for hibernation */
|
|
static void *hv_hypercall_pg_saved;
|
|
|
|
struct hv_vp_assist_page **hv_vp_assist_page;
|
|
EXPORT_SYMBOL_GPL(hv_vp_assist_page);
|
|
|
|
static int hyperv_init_ghcb(void)
|
|
{
|
|
u64 ghcb_gpa;
|
|
void *ghcb_va;
|
|
void **ghcb_base;
|
|
|
|
if (!hv_isolation_type_snp())
|
|
return 0;
|
|
|
|
if (!hv_ghcb_pg)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* GHCB page is allocated by paravisor. The address
|
|
* returned by MSR_AMD64_SEV_ES_GHCB is above shared
|
|
* memory boundary and map it here.
|
|
*/
|
|
rdmsrl(MSR_AMD64_SEV_ES_GHCB, ghcb_gpa);
|
|
ghcb_va = memremap(ghcb_gpa, HV_HYP_PAGE_SIZE, MEMREMAP_WB);
|
|
if (!ghcb_va)
|
|
return -ENOMEM;
|
|
|
|
ghcb_base = (void **)this_cpu_ptr(hv_ghcb_pg);
|
|
*ghcb_base = ghcb_va;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int hv_cpu_init(unsigned int cpu)
|
|
{
|
|
union hv_vp_assist_msr_contents msr = { 0 };
|
|
struct hv_vp_assist_page **hvp = &hv_vp_assist_page[cpu];
|
|
int ret;
|
|
|
|
ret = hv_common_cpu_init(cpu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!hv_vp_assist_page)
|
|
return 0;
|
|
|
|
if (hv_root_partition) {
|
|
/*
|
|
* For root partition we get the hypervisor provided VP assist
|
|
* page, instead of allocating a new page.
|
|
*/
|
|
rdmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
|
|
*hvp = memremap(msr.pfn << HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT,
|
|
PAGE_SIZE, MEMREMAP_WB);
|
|
} else {
|
|
/*
|
|
* The VP assist page is an "overlay" page (see Hyper-V TLFS's
|
|
* Section 5.2.1 "GPA Overlay Pages"). Here it must be zeroed
|
|
* out to make sure we always write the EOI MSR in
|
|
* hv_apic_eoi_write() *after* the EOI optimization is disabled
|
|
* in hv_cpu_die(), otherwise a CPU may not be stopped in the
|
|
* case of CPU offlining and the VM will hang.
|
|
*/
|
|
if (!*hvp)
|
|
*hvp = __vmalloc(PAGE_SIZE, GFP_KERNEL | __GFP_ZERO);
|
|
if (*hvp)
|
|
msr.pfn = vmalloc_to_pfn(*hvp);
|
|
|
|
}
|
|
if (!WARN_ON(!(*hvp))) {
|
|
msr.enable = 1;
|
|
wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
|
|
}
|
|
|
|
return hyperv_init_ghcb();
|
|
}
|
|
|
|
static void (*hv_reenlightenment_cb)(void);
|
|
|
|
static void hv_reenlightenment_notify(struct work_struct *dummy)
|
|
{
|
|
struct hv_tsc_emulation_status emu_status;
|
|
|
|
rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
|
|
|
|
/* Don't issue the callback if TSC accesses are not emulated */
|
|
if (hv_reenlightenment_cb && emu_status.inprogress)
|
|
hv_reenlightenment_cb();
|
|
}
|
|
static DECLARE_DELAYED_WORK(hv_reenlightenment_work, hv_reenlightenment_notify);
|
|
|
|
void hyperv_stop_tsc_emulation(void)
|
|
{
|
|
u64 freq;
|
|
struct hv_tsc_emulation_status emu_status;
|
|
|
|
rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
|
|
emu_status.inprogress = 0;
|
|
wrmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
|
|
|
|
rdmsrl(HV_X64_MSR_TSC_FREQUENCY, freq);
|
|
tsc_khz = div64_u64(freq, 1000);
|
|
}
|
|
EXPORT_SYMBOL_GPL(hyperv_stop_tsc_emulation);
|
|
|
|
static inline bool hv_reenlightenment_available(void)
|
|
{
|
|
/*
|
|
* Check for required features and privileges to make TSC frequency
|
|
* change notifications work.
|
|
*/
|
|
return ms_hyperv.features & HV_ACCESS_FREQUENCY_MSRS &&
|
|
ms_hyperv.misc_features & HV_FEATURE_FREQUENCY_MSRS_AVAILABLE &&
|
|
ms_hyperv.features & HV_ACCESS_REENLIGHTENMENT;
|
|
}
|
|
|
|
DEFINE_IDTENTRY_SYSVEC(sysvec_hyperv_reenlightenment)
|
|
{
|
|
ack_APIC_irq();
|
|
inc_irq_stat(irq_hv_reenlightenment_count);
|
|
schedule_delayed_work(&hv_reenlightenment_work, HZ/10);
|
|
}
|
|
|
|
void set_hv_tscchange_cb(void (*cb)(void))
|
|
{
|
|
struct hv_reenlightenment_control re_ctrl = {
|
|
.vector = HYPERV_REENLIGHTENMENT_VECTOR,
|
|
.enabled = 1,
|
|
};
|
|
struct hv_tsc_emulation_control emu_ctrl = {.enabled = 1};
|
|
|
|
if (!hv_reenlightenment_available()) {
|
|
pr_warn("Hyper-V: reenlightenment support is unavailable\n");
|
|
return;
|
|
}
|
|
|
|
if (!hv_vp_index)
|
|
return;
|
|
|
|
hv_reenlightenment_cb = cb;
|
|
|
|
/* Make sure callback is registered before we write to MSRs */
|
|
wmb();
|
|
|
|
re_ctrl.target_vp = hv_vp_index[get_cpu()];
|
|
|
|
wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
|
|
wrmsrl(HV_X64_MSR_TSC_EMULATION_CONTROL, *((u64 *)&emu_ctrl));
|
|
|
|
put_cpu();
|
|
}
|
|
EXPORT_SYMBOL_GPL(set_hv_tscchange_cb);
|
|
|
|
void clear_hv_tscchange_cb(void)
|
|
{
|
|
struct hv_reenlightenment_control re_ctrl;
|
|
|
|
if (!hv_reenlightenment_available())
|
|
return;
|
|
|
|
rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
|
|
re_ctrl.enabled = 0;
|
|
wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
|
|
|
|
hv_reenlightenment_cb = NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(clear_hv_tscchange_cb);
|
|
|
|
static int hv_cpu_die(unsigned int cpu)
|
|
{
|
|
struct hv_reenlightenment_control re_ctrl;
|
|
unsigned int new_cpu;
|
|
void **ghcb_va;
|
|
|
|
if (hv_ghcb_pg) {
|
|
ghcb_va = (void **)this_cpu_ptr(hv_ghcb_pg);
|
|
if (*ghcb_va)
|
|
memunmap(*ghcb_va);
|
|
*ghcb_va = NULL;
|
|
}
|
|
|
|
hv_common_cpu_die(cpu);
|
|
|
|
if (hv_vp_assist_page && hv_vp_assist_page[cpu]) {
|
|
union hv_vp_assist_msr_contents msr = { 0 };
|
|
if (hv_root_partition) {
|
|
/*
|
|
* For root partition the VP assist page is mapped to
|
|
* hypervisor provided page, and thus we unmap the
|
|
* page here and nullify it, so that in future we have
|
|
* correct page address mapped in hv_cpu_init.
|
|
*/
|
|
memunmap(hv_vp_assist_page[cpu]);
|
|
hv_vp_assist_page[cpu] = NULL;
|
|
rdmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
|
|
msr.enable = 0;
|
|
}
|
|
wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
|
|
}
|
|
|
|
if (hv_reenlightenment_cb == NULL)
|
|
return 0;
|
|
|
|
rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
|
|
if (re_ctrl.target_vp == hv_vp_index[cpu]) {
|
|
/*
|
|
* Reassign reenlightenment notifications to some other online
|
|
* CPU or just disable the feature if there are no online CPUs
|
|
* left (happens on hibernation).
|
|
*/
|
|
new_cpu = cpumask_any_but(cpu_online_mask, cpu);
|
|
|
|
if (new_cpu < nr_cpu_ids)
|
|
re_ctrl.target_vp = hv_vp_index[new_cpu];
|
|
else
|
|
re_ctrl.enabled = 0;
|
|
|
|
wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init hv_pci_init(void)
|
|
{
|
|
int gen2vm = efi_enabled(EFI_BOOT);
|
|
|
|
/*
|
|
* For Generation-2 VM, we exit from pci_arch_init() by returning 0.
|
|
* The purpose is to suppress the harmless warning:
|
|
* "PCI: Fatal: No config space access function found"
|
|
*/
|
|
if (gen2vm)
|
|
return 0;
|
|
|
|
/* For Generation-1 VM, we'll proceed in pci_arch_init(). */
|
|
return 1;
|
|
}
|
|
|
|
static int hv_suspend(void)
|
|
{
|
|
union hv_x64_msr_hypercall_contents hypercall_msr;
|
|
int ret;
|
|
|
|
if (hv_root_partition)
|
|
return -EPERM;
|
|
|
|
/*
|
|
* Reset the hypercall page as it is going to be invalidated
|
|
* across hibernation. Setting hv_hypercall_pg to NULL ensures
|
|
* that any subsequent hypercall operation fails safely instead of
|
|
* crashing due to an access of an invalid page. The hypercall page
|
|
* pointer is restored on resume.
|
|
*/
|
|
hv_hypercall_pg_saved = hv_hypercall_pg;
|
|
hv_hypercall_pg = NULL;
|
|
|
|
/* Disable the hypercall page in the hypervisor */
|
|
rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
|
|
hypercall_msr.enable = 0;
|
|
wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
|
|
|
|
ret = hv_cpu_die(0);
|
|
return ret;
|
|
}
|
|
|
|
static void hv_resume(void)
|
|
{
|
|
union hv_x64_msr_hypercall_contents hypercall_msr;
|
|
int ret;
|
|
|
|
ret = hv_cpu_init(0);
|
|
WARN_ON(ret);
|
|
|
|
/* Re-enable the hypercall page */
|
|
rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
|
|
hypercall_msr.enable = 1;
|
|
hypercall_msr.guest_physical_address =
|
|
vmalloc_to_pfn(hv_hypercall_pg_saved);
|
|
wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
|
|
|
|
hv_hypercall_pg = hv_hypercall_pg_saved;
|
|
hv_hypercall_pg_saved = NULL;
|
|
|
|
/*
|
|
* Reenlightenment notifications are disabled by hv_cpu_die(0),
|
|
* reenable them here if hv_reenlightenment_cb was previously set.
|
|
*/
|
|
if (hv_reenlightenment_cb)
|
|
set_hv_tscchange_cb(hv_reenlightenment_cb);
|
|
}
|
|
|
|
/* Note: when the ops are called, only CPU0 is online and IRQs are disabled. */
|
|
static struct syscore_ops hv_syscore_ops = {
|
|
.suspend = hv_suspend,
|
|
.resume = hv_resume,
|
|
};
|
|
|
|
static void (* __initdata old_setup_percpu_clockev)(void);
|
|
|
|
static void __init hv_stimer_setup_percpu_clockev(void)
|
|
{
|
|
/*
|
|
* Ignore any errors in setting up stimer clockevents
|
|
* as we can run with the LAPIC timer as a fallback.
|
|
*/
|
|
(void)hv_stimer_alloc(false);
|
|
|
|
/*
|
|
* Still register the LAPIC timer, because the direct-mode STIMER is
|
|
* not supported by old versions of Hyper-V. This also allows users
|
|
* to switch to LAPIC timer via /sys, if they want to.
|
|
*/
|
|
if (old_setup_percpu_clockev)
|
|
old_setup_percpu_clockev();
|
|
}
|
|
|
|
static void __init hv_get_partition_id(void)
|
|
{
|
|
struct hv_get_partition_id *output_page;
|
|
u64 status;
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
output_page = *this_cpu_ptr(hyperv_pcpu_output_arg);
|
|
status = hv_do_hypercall(HVCALL_GET_PARTITION_ID, NULL, output_page);
|
|
if (!hv_result_success(status)) {
|
|
/* No point in proceeding if this failed */
|
|
pr_err("Failed to get partition ID: %lld\n", status);
|
|
BUG();
|
|
}
|
|
hv_current_partition_id = output_page->partition_id;
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/*
|
|
* This function is to be invoked early in the boot sequence after the
|
|
* hypervisor has been detected.
|
|
*
|
|
* 1. Setup the hypercall page.
|
|
* 2. Register Hyper-V specific clocksource.
|
|
* 3. Setup Hyper-V specific APIC entry points.
|
|
*/
|
|
void __init hyperv_init(void)
|
|
{
|
|
u64 guest_id;
|
|
union hv_x64_msr_hypercall_contents hypercall_msr;
|
|
int cpuhp;
|
|
|
|
if (x86_hyper_type != X86_HYPER_MS_HYPERV)
|
|
return;
|
|
|
|
if (hv_common_init())
|
|
return;
|
|
|
|
hv_vp_assist_page = kcalloc(num_possible_cpus(),
|
|
sizeof(*hv_vp_assist_page), GFP_KERNEL);
|
|
if (!hv_vp_assist_page) {
|
|
ms_hyperv.hints &= ~HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
|
|
goto common_free;
|
|
}
|
|
|
|
if (hv_isolation_type_snp()) {
|
|
/* Negotiate GHCB Version. */
|
|
if (!hv_ghcb_negotiate_protocol())
|
|
hv_ghcb_terminate(SEV_TERM_SET_GEN,
|
|
GHCB_SEV_ES_PROT_UNSUPPORTED);
|
|
|
|
hv_ghcb_pg = alloc_percpu(union hv_ghcb *);
|
|
if (!hv_ghcb_pg)
|
|
goto free_vp_assist_page;
|
|
}
|
|
|
|
cpuhp = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv_init:online",
|
|
hv_cpu_init, hv_cpu_die);
|
|
if (cpuhp < 0)
|
|
goto free_ghcb_page;
|
|
|
|
/*
|
|
* Setup the hypercall page and enable hypercalls.
|
|
* 1. Register the guest ID
|
|
* 2. Enable the hypercall and register the hypercall page
|
|
*/
|
|
guest_id = hv_generate_guest_id(LINUX_VERSION_CODE);
|
|
wrmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
|
|
|
|
/* Hyper-V requires to write guest os id via ghcb in SNP IVM. */
|
|
hv_ghcb_msr_write(HV_X64_MSR_GUEST_OS_ID, guest_id);
|
|
|
|
hv_hypercall_pg = __vmalloc_node_range(PAGE_SIZE, 1, VMALLOC_START,
|
|
VMALLOC_END, GFP_KERNEL, PAGE_KERNEL_ROX,
|
|
VM_FLUSH_RESET_PERMS, NUMA_NO_NODE,
|
|
__builtin_return_address(0));
|
|
if (hv_hypercall_pg == NULL)
|
|
goto clean_guest_os_id;
|
|
|
|
rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
|
|
hypercall_msr.enable = 1;
|
|
|
|
if (hv_root_partition) {
|
|
struct page *pg;
|
|
void *src;
|
|
|
|
/*
|
|
* For the root partition, the hypervisor will set up its
|
|
* hypercall page. The hypervisor guarantees it will not show
|
|
* up in the root's address space. The root can't change the
|
|
* location of the hypercall page.
|
|
*
|
|
* Order is important here. We must enable the hypercall page
|
|
* so it is populated with code, then copy the code to an
|
|
* executable page.
|
|
*/
|
|
wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
|
|
|
|
pg = vmalloc_to_page(hv_hypercall_pg);
|
|
src = memremap(hypercall_msr.guest_physical_address << PAGE_SHIFT, PAGE_SIZE,
|
|
MEMREMAP_WB);
|
|
BUG_ON(!src);
|
|
memcpy_to_page(pg, 0, src, HV_HYP_PAGE_SIZE);
|
|
memunmap(src);
|
|
|
|
hv_remap_tsc_clocksource();
|
|
} else {
|
|
hypercall_msr.guest_physical_address = vmalloc_to_pfn(hv_hypercall_pg);
|
|
wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
|
|
}
|
|
|
|
/*
|
|
* hyperv_init() is called before LAPIC is initialized: see
|
|
* apic_intr_mode_init() -> x86_platform.apic_post_init() and
|
|
* apic_bsp_setup() -> setup_local_APIC(). The direct-mode STIMER
|
|
* depends on LAPIC, so hv_stimer_alloc() should be called from
|
|
* x86_init.timers.setup_percpu_clockev.
|
|
*/
|
|
old_setup_percpu_clockev = x86_init.timers.setup_percpu_clockev;
|
|
x86_init.timers.setup_percpu_clockev = hv_stimer_setup_percpu_clockev;
|
|
|
|
hv_apic_init();
|
|
|
|
x86_init.pci.arch_init = hv_pci_init;
|
|
|
|
register_syscore_ops(&hv_syscore_ops);
|
|
|
|
hyperv_init_cpuhp = cpuhp;
|
|
|
|
if (cpuid_ebx(HYPERV_CPUID_FEATURES) & HV_ACCESS_PARTITION_ID)
|
|
hv_get_partition_id();
|
|
|
|
BUG_ON(hv_root_partition && hv_current_partition_id == ~0ull);
|
|
|
|
#ifdef CONFIG_PCI_MSI
|
|
/*
|
|
* If we're running as root, we want to create our own PCI MSI domain.
|
|
* We can't set this in hv_pci_init because that would be too late.
|
|
*/
|
|
if (hv_root_partition)
|
|
x86_init.irqs.create_pci_msi_domain = hv_create_pci_msi_domain;
|
|
#endif
|
|
|
|
/* Query the VMs extended capability once, so that it can be cached. */
|
|
hv_query_ext_cap(0);
|
|
|
|
#ifdef CONFIG_SWIOTLB
|
|
/*
|
|
* Swiotlb bounce buffer needs to be mapped in extra address
|
|
* space. Map function doesn't work in the early place and so
|
|
* call swiotlb_update_mem_attributes() here.
|
|
*/
|
|
if (hv_is_isolation_supported())
|
|
swiotlb_update_mem_attributes();
|
|
#endif
|
|
|
|
return;
|
|
|
|
clean_guest_os_id:
|
|
wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
|
|
hv_ghcb_msr_write(HV_X64_MSR_GUEST_OS_ID, 0);
|
|
cpuhp_remove_state(cpuhp);
|
|
free_ghcb_page:
|
|
free_percpu(hv_ghcb_pg);
|
|
free_vp_assist_page:
|
|
kfree(hv_vp_assist_page);
|
|
hv_vp_assist_page = NULL;
|
|
common_free:
|
|
hv_common_free();
|
|
}
|
|
|
|
/*
|
|
* This routine is called before kexec/kdump, it does the required cleanup.
|
|
*/
|
|
void hyperv_cleanup(void)
|
|
{
|
|
union hv_x64_msr_hypercall_contents hypercall_msr;
|
|
union hv_reference_tsc_msr tsc_msr;
|
|
|
|
/* Reset our OS id */
|
|
wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
|
|
hv_ghcb_msr_write(HV_X64_MSR_GUEST_OS_ID, 0);
|
|
|
|
/*
|
|
* Reset hypercall page reference before reset the page,
|
|
* let hypercall operations fail safely rather than
|
|
* panic the kernel for using invalid hypercall page
|
|
*/
|
|
hv_hypercall_pg = NULL;
|
|
|
|
/* Reset the hypercall page */
|
|
hypercall_msr.as_uint64 = hv_get_register(HV_X64_MSR_HYPERCALL);
|
|
hypercall_msr.enable = 0;
|
|
hv_set_register(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
|
|
|
|
/* Reset the TSC page */
|
|
tsc_msr.as_uint64 = hv_get_register(HV_X64_MSR_REFERENCE_TSC);
|
|
tsc_msr.enable = 0;
|
|
hv_set_register(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
|
|
}
|
|
|
|
void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die)
|
|
{
|
|
static bool panic_reported;
|
|
u64 guest_id;
|
|
|
|
if (in_die && !panic_on_oops)
|
|
return;
|
|
|
|
/*
|
|
* We prefer to report panic on 'die' chain as we have proper
|
|
* registers to report, but if we miss it (e.g. on BUG()) we need
|
|
* to report it on 'panic'.
|
|
*/
|
|
if (panic_reported)
|
|
return;
|
|
panic_reported = true;
|
|
|
|
rdmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
|
|
|
|
wrmsrl(HV_X64_MSR_CRASH_P0, err);
|
|
wrmsrl(HV_X64_MSR_CRASH_P1, guest_id);
|
|
wrmsrl(HV_X64_MSR_CRASH_P2, regs->ip);
|
|
wrmsrl(HV_X64_MSR_CRASH_P3, regs->ax);
|
|
wrmsrl(HV_X64_MSR_CRASH_P4, regs->sp);
|
|
|
|
/*
|
|
* Let Hyper-V know there is crash data available
|
|
*/
|
|
wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
|
|
}
|
|
EXPORT_SYMBOL_GPL(hyperv_report_panic);
|
|
|
|
bool hv_is_hyperv_initialized(void)
|
|
{
|
|
union hv_x64_msr_hypercall_contents hypercall_msr;
|
|
|
|
/*
|
|
* Ensure that we're really on Hyper-V, and not a KVM or Xen
|
|
* emulation of Hyper-V
|
|
*/
|
|
if (x86_hyper_type != X86_HYPER_MS_HYPERV)
|
|
return false;
|
|
|
|
/*
|
|
* Verify that earlier initialization succeeded by checking
|
|
* that the hypercall page is setup
|
|
*/
|
|
hypercall_msr.as_uint64 = 0;
|
|
rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
|
|
|
|
return hypercall_msr.enable;
|
|
}
|
|
EXPORT_SYMBOL_GPL(hv_is_hyperv_initialized);
|