969 lines
22 KiB
C
969 lines
22 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* AMD CPU Microcode Update Driver for Linux
|
|
*
|
|
* This driver allows to upgrade microcode on F10h AMD
|
|
* CPUs and later.
|
|
*
|
|
* Copyright (C) 2008-2011 Advanced Micro Devices Inc.
|
|
* 2013-2018 Borislav Petkov <bp@alien8.de>
|
|
*
|
|
* Author: Peter Oruba <peter.oruba@amd.com>
|
|
*
|
|
* Based on work by:
|
|
* Tigran Aivazian <aivazian.tigran@gmail.com>
|
|
*
|
|
* early loader:
|
|
* Copyright (C) 2013 Advanced Micro Devices, Inc.
|
|
*
|
|
* Author: Jacob Shin <jacob.shin@amd.com>
|
|
* Fixes: Borislav Petkov <bp@suse.de>
|
|
*/
|
|
#define pr_fmt(fmt) "microcode: " fmt
|
|
|
|
#include <linux/earlycpio.h>
|
|
#include <linux/firmware.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/initrd.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/pci.h>
|
|
|
|
#include <asm/microcode_amd.h>
|
|
#include <asm/microcode.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/cpu.h>
|
|
#include <asm/msr.h>
|
|
|
|
static struct equiv_cpu_table {
|
|
unsigned int num_entries;
|
|
struct equiv_cpu_entry *entry;
|
|
} equiv_table;
|
|
|
|
/*
|
|
* This points to the current valid container of microcode patches which we will
|
|
* save from the initrd/builtin before jettisoning its contents. @mc is the
|
|
* microcode patch we found to match.
|
|
*/
|
|
struct cont_desc {
|
|
struct microcode_amd *mc;
|
|
u32 cpuid_1_eax;
|
|
u32 psize;
|
|
u8 *data;
|
|
size_t size;
|
|
};
|
|
|
|
static u32 ucode_new_rev;
|
|
|
|
/* One blob per node. */
|
|
static u8 amd_ucode_patch[MAX_NUMNODES][PATCH_MAX_SIZE];
|
|
|
|
/*
|
|
* Microcode patch container file is prepended to the initrd in cpio
|
|
* format. See Documentation/x86/microcode.rst
|
|
*/
|
|
static const char
|
|
ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";
|
|
|
|
static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig)
|
|
{
|
|
unsigned int i;
|
|
|
|
if (!et || !et->num_entries)
|
|
return 0;
|
|
|
|
for (i = 0; i < et->num_entries; i++) {
|
|
struct equiv_cpu_entry *e = &et->entry[i];
|
|
|
|
if (sig == e->installed_cpu)
|
|
return e->equiv_cpu;
|
|
|
|
e++;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check whether there is a valid microcode container file at the beginning
|
|
* of @buf of size @buf_size. Set @early to use this function in the early path.
|
|
*/
|
|
static bool verify_container(const u8 *buf, size_t buf_size, bool early)
|
|
{
|
|
u32 cont_magic;
|
|
|
|
if (buf_size <= CONTAINER_HDR_SZ) {
|
|
if (!early)
|
|
pr_debug("Truncated microcode container header.\n");
|
|
|
|
return false;
|
|
}
|
|
|
|
cont_magic = *(const u32 *)buf;
|
|
if (cont_magic != UCODE_MAGIC) {
|
|
if (!early)
|
|
pr_debug("Invalid magic value (0x%08x).\n", cont_magic);
|
|
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Check whether there is a valid, non-truncated CPU equivalence table at the
|
|
* beginning of @buf of size @buf_size. Set @early to use this function in the
|
|
* early path.
|
|
*/
|
|
static bool verify_equivalence_table(const u8 *buf, size_t buf_size, bool early)
|
|
{
|
|
const u32 *hdr = (const u32 *)buf;
|
|
u32 cont_type, equiv_tbl_len;
|
|
|
|
if (!verify_container(buf, buf_size, early))
|
|
return false;
|
|
|
|
cont_type = hdr[1];
|
|
if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) {
|
|
if (!early)
|
|
pr_debug("Wrong microcode container equivalence table type: %u.\n",
|
|
cont_type);
|
|
|
|
return false;
|
|
}
|
|
|
|
buf_size -= CONTAINER_HDR_SZ;
|
|
|
|
equiv_tbl_len = hdr[2];
|
|
if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) ||
|
|
buf_size < equiv_tbl_len) {
|
|
if (!early)
|
|
pr_debug("Truncated equivalence table.\n");
|
|
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Check whether there is a valid, non-truncated microcode patch section at the
|
|
* beginning of @buf of size @buf_size. Set @early to use this function in the
|
|
* early path.
|
|
*
|
|
* On success, @sh_psize returns the patch size according to the section header,
|
|
* to the caller.
|
|
*/
|
|
static bool
|
|
__verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize, bool early)
|
|
{
|
|
u32 p_type, p_size;
|
|
const u32 *hdr;
|
|
|
|
if (buf_size < SECTION_HDR_SIZE) {
|
|
if (!early)
|
|
pr_debug("Truncated patch section.\n");
|
|
|
|
return false;
|
|
}
|
|
|
|
hdr = (const u32 *)buf;
|
|
p_type = hdr[0];
|
|
p_size = hdr[1];
|
|
|
|
if (p_type != UCODE_UCODE_TYPE) {
|
|
if (!early)
|
|
pr_debug("Invalid type field (0x%x) in container file section header.\n",
|
|
p_type);
|
|
|
|
return false;
|
|
}
|
|
|
|
if (p_size < sizeof(struct microcode_header_amd)) {
|
|
if (!early)
|
|
pr_debug("Patch of size %u too short.\n", p_size);
|
|
|
|
return false;
|
|
}
|
|
|
|
*sh_psize = p_size;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Check whether the passed remaining file @buf_size is large enough to contain
|
|
* a patch of the indicated @sh_psize (and also whether this size does not
|
|
* exceed the per-family maximum). @sh_psize is the size read from the section
|
|
* header.
|
|
*/
|
|
static unsigned int __verify_patch_size(u8 family, u32 sh_psize, size_t buf_size)
|
|
{
|
|
u32 max_size;
|
|
|
|
if (family >= 0x15)
|
|
return min_t(u32, sh_psize, buf_size);
|
|
|
|
#define F1XH_MPB_MAX_SIZE 2048
|
|
#define F14H_MPB_MAX_SIZE 1824
|
|
|
|
switch (family) {
|
|
case 0x10 ... 0x12:
|
|
max_size = F1XH_MPB_MAX_SIZE;
|
|
break;
|
|
case 0x14:
|
|
max_size = F14H_MPB_MAX_SIZE;
|
|
break;
|
|
default:
|
|
WARN(1, "%s: WTF family: 0x%x\n", __func__, family);
|
|
return 0;
|
|
}
|
|
|
|
if (sh_psize > min_t(u32, buf_size, max_size))
|
|
return 0;
|
|
|
|
return sh_psize;
|
|
}
|
|
|
|
/*
|
|
* Verify the patch in @buf.
|
|
*
|
|
* Returns:
|
|
* negative: on error
|
|
* positive: patch is not for this family, skip it
|
|
* 0: success
|
|
*/
|
|
static int
|
|
verify_patch(u8 family, const u8 *buf, size_t buf_size, u32 *patch_size, bool early)
|
|
{
|
|
struct microcode_header_amd *mc_hdr;
|
|
unsigned int ret;
|
|
u32 sh_psize;
|
|
u16 proc_id;
|
|
u8 patch_fam;
|
|
|
|
if (!__verify_patch_section(buf, buf_size, &sh_psize, early))
|
|
return -1;
|
|
|
|
/*
|
|
* The section header length is not included in this indicated size
|
|
* but is present in the leftover file length so we need to subtract
|
|
* it before passing this value to the function below.
|
|
*/
|
|
buf_size -= SECTION_HDR_SIZE;
|
|
|
|
/*
|
|
* Check if the remaining buffer is big enough to contain a patch of
|
|
* size sh_psize, as the section claims.
|
|
*/
|
|
if (buf_size < sh_psize) {
|
|
if (!early)
|
|
pr_debug("Patch of size %u truncated.\n", sh_psize);
|
|
|
|
return -1;
|
|
}
|
|
|
|
ret = __verify_patch_size(family, sh_psize, buf_size);
|
|
if (!ret) {
|
|
if (!early)
|
|
pr_debug("Per-family patch size mismatch.\n");
|
|
return -1;
|
|
}
|
|
|
|
*patch_size = sh_psize;
|
|
|
|
mc_hdr = (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE);
|
|
if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
|
|
if (!early)
|
|
pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id);
|
|
return -1;
|
|
}
|
|
|
|
proc_id = mc_hdr->processor_rev_id;
|
|
patch_fam = 0xf + (proc_id >> 12);
|
|
if (patch_fam != family)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This scans the ucode blob for the proper container as we can have multiple
|
|
* containers glued together. Returns the equivalence ID from the equivalence
|
|
* table or 0 if none found.
|
|
* Returns the amount of bytes consumed while scanning. @desc contains all the
|
|
* data we're going to use in later stages of the application.
|
|
*/
|
|
static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc)
|
|
{
|
|
struct equiv_cpu_table table;
|
|
size_t orig_size = size;
|
|
u32 *hdr = (u32 *)ucode;
|
|
u16 eq_id;
|
|
u8 *buf;
|
|
|
|
if (!verify_equivalence_table(ucode, size, true))
|
|
return 0;
|
|
|
|
buf = ucode;
|
|
|
|
table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ);
|
|
table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry);
|
|
|
|
/*
|
|
* Find the equivalence ID of our CPU in this table. Even if this table
|
|
* doesn't contain a patch for the CPU, scan through the whole container
|
|
* so that it can be skipped in case there are other containers appended.
|
|
*/
|
|
eq_id = find_equiv_id(&table, desc->cpuid_1_eax);
|
|
|
|
buf += hdr[2] + CONTAINER_HDR_SZ;
|
|
size -= hdr[2] + CONTAINER_HDR_SZ;
|
|
|
|
/*
|
|
* Scan through the rest of the container to find where it ends. We do
|
|
* some basic sanity-checking too.
|
|
*/
|
|
while (size > 0) {
|
|
struct microcode_amd *mc;
|
|
u32 patch_size;
|
|
int ret;
|
|
|
|
ret = verify_patch(x86_family(desc->cpuid_1_eax), buf, size, &patch_size, true);
|
|
if (ret < 0) {
|
|
/*
|
|
* Patch verification failed, skip to the next container, if
|
|
* there is one. Before exit, check whether that container has
|
|
* found a patch already. If so, use it.
|
|
*/
|
|
goto out;
|
|
} else if (ret > 0) {
|
|
goto skip;
|
|
}
|
|
|
|
mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE);
|
|
if (eq_id == mc->hdr.processor_rev_id) {
|
|
desc->psize = patch_size;
|
|
desc->mc = mc;
|
|
}
|
|
|
|
skip:
|
|
/* Skip patch section header too: */
|
|
buf += patch_size + SECTION_HDR_SIZE;
|
|
size -= patch_size + SECTION_HDR_SIZE;
|
|
}
|
|
|
|
out:
|
|
/*
|
|
* If we have found a patch (desc->mc), it means we're looking at the
|
|
* container which has a patch for this CPU so return 0 to mean, @ucode
|
|
* already points to the proper container. Otherwise, we return the size
|
|
* we scanned so that we can advance to the next container in the
|
|
* buffer.
|
|
*/
|
|
if (desc->mc) {
|
|
desc->data = ucode;
|
|
desc->size = orig_size - size;
|
|
|
|
return 0;
|
|
}
|
|
|
|
return orig_size - size;
|
|
}
|
|
|
|
/*
|
|
* Scan the ucode blob for the proper container as we can have multiple
|
|
* containers glued together.
|
|
*/
|
|
static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc)
|
|
{
|
|
while (size) {
|
|
size_t s = parse_container(ucode, size, desc);
|
|
if (!s)
|
|
return;
|
|
|
|
/* catch wraparound */
|
|
if (size >= s) {
|
|
ucode += s;
|
|
size -= s;
|
|
} else {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int __apply_microcode_amd(struct microcode_amd *mc)
|
|
{
|
|
u32 rev, dummy;
|
|
|
|
native_wrmsrl(MSR_AMD64_PATCH_LOADER, (u64)(long)&mc->hdr.data_code);
|
|
|
|
/* verify patch application was successful */
|
|
native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
|
|
if (rev != mc->hdr.patch_id)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Early load occurs before we can vmalloc(). So we look for the microcode
|
|
* patch container file in initrd, traverse equivalent cpu table, look for a
|
|
* matching microcode patch, and update, all in initrd memory in place.
|
|
* When vmalloc() is available for use later -- on 64-bit during first AP load,
|
|
* and on 32-bit during save_microcode_in_initrd_amd() -- we can call
|
|
* load_microcode_amd() to save equivalent cpu table and microcode patches in
|
|
* kernel heap memory.
|
|
*
|
|
* Returns true if container found (sets @desc), false otherwise.
|
|
*/
|
|
static bool early_apply_microcode(u32 cpuid_1_eax, void *ucode, size_t size, bool save_patch)
|
|
{
|
|
struct cont_desc desc = { 0 };
|
|
u8 (*patch)[PATCH_MAX_SIZE];
|
|
struct microcode_amd *mc;
|
|
u32 rev, dummy, *new_rev;
|
|
bool ret = false;
|
|
|
|
#ifdef CONFIG_X86_32
|
|
new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
|
|
patch = (u8 (*)[PATCH_MAX_SIZE])__pa_nodebug(&amd_ucode_patch);
|
|
#else
|
|
new_rev = &ucode_new_rev;
|
|
patch = &amd_ucode_patch[0];
|
|
#endif
|
|
|
|
desc.cpuid_1_eax = cpuid_1_eax;
|
|
|
|
scan_containers(ucode, size, &desc);
|
|
|
|
mc = desc.mc;
|
|
if (!mc)
|
|
return ret;
|
|
|
|
native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
|
|
|
|
/*
|
|
* Allow application of the same revision to pick up SMT-specific
|
|
* changes even if the revision of the other SMT thread is already
|
|
* up-to-date.
|
|
*/
|
|
if (rev > mc->hdr.patch_id)
|
|
return ret;
|
|
|
|
if (!__apply_microcode_amd(mc)) {
|
|
*new_rev = mc->hdr.patch_id;
|
|
ret = true;
|
|
|
|
if (save_patch)
|
|
memcpy(patch, mc, min_t(u32, desc.psize, PATCH_MAX_SIZE));
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool get_builtin_microcode(struct cpio_data *cp, unsigned int family)
|
|
{
|
|
char fw_name[36] = "amd-ucode/microcode_amd.bin";
|
|
struct firmware fw;
|
|
|
|
if (IS_ENABLED(CONFIG_X86_32))
|
|
return false;
|
|
|
|
if (family >= 0x15)
|
|
snprintf(fw_name, sizeof(fw_name),
|
|
"amd-ucode/microcode_amd_fam%.2xh.bin", family);
|
|
|
|
if (firmware_request_builtin(&fw, fw_name)) {
|
|
cp->size = fw.size;
|
|
cp->data = (void *)fw.data;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void find_blobs_in_containers(unsigned int cpuid_1_eax, struct cpio_data *ret)
|
|
{
|
|
struct ucode_cpu_info *uci;
|
|
struct cpio_data cp;
|
|
const char *path;
|
|
bool use_pa;
|
|
|
|
if (IS_ENABLED(CONFIG_X86_32)) {
|
|
uci = (struct ucode_cpu_info *)__pa_nodebug(ucode_cpu_info);
|
|
path = (const char *)__pa_nodebug(ucode_path);
|
|
use_pa = true;
|
|
} else {
|
|
uci = ucode_cpu_info;
|
|
path = ucode_path;
|
|
use_pa = false;
|
|
}
|
|
|
|
if (!get_builtin_microcode(&cp, x86_family(cpuid_1_eax)))
|
|
cp = find_microcode_in_initrd(path, use_pa);
|
|
|
|
/* Needed in load_microcode_amd() */
|
|
uci->cpu_sig.sig = cpuid_1_eax;
|
|
|
|
*ret = cp;
|
|
}
|
|
|
|
void __init load_ucode_amd_bsp(unsigned int cpuid_1_eax)
|
|
{
|
|
struct cpio_data cp = { };
|
|
|
|
find_blobs_in_containers(cpuid_1_eax, &cp);
|
|
if (!(cp.data && cp.size))
|
|
return;
|
|
|
|
early_apply_microcode(cpuid_1_eax, cp.data, cp.size, true);
|
|
}
|
|
|
|
void load_ucode_amd_ap(unsigned int cpuid_1_eax)
|
|
{
|
|
struct microcode_amd *mc;
|
|
struct cpio_data cp;
|
|
u32 *new_rev, rev, dummy;
|
|
|
|
if (IS_ENABLED(CONFIG_X86_32)) {
|
|
mc = (struct microcode_amd *)__pa_nodebug(amd_ucode_patch);
|
|
new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
|
|
} else {
|
|
mc = (struct microcode_amd *)amd_ucode_patch;
|
|
new_rev = &ucode_new_rev;
|
|
}
|
|
|
|
native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
|
|
|
|
/*
|
|
* Check whether a new patch has been saved already. Also, allow application of
|
|
* the same revision in order to pick up SMT-thread-specific configuration even
|
|
* if the sibling SMT thread already has an up-to-date revision.
|
|
*/
|
|
if (*new_rev && rev <= mc->hdr.patch_id) {
|
|
if (!__apply_microcode_amd(mc)) {
|
|
*new_rev = mc->hdr.patch_id;
|
|
return;
|
|
}
|
|
}
|
|
|
|
find_blobs_in_containers(cpuid_1_eax, &cp);
|
|
if (!(cp.data && cp.size))
|
|
return;
|
|
|
|
early_apply_microcode(cpuid_1_eax, cp.data, cp.size, false);
|
|
}
|
|
|
|
static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size);
|
|
|
|
int __init save_microcode_in_initrd_amd(unsigned int cpuid_1_eax)
|
|
{
|
|
struct cont_desc desc = { 0 };
|
|
enum ucode_state ret;
|
|
struct cpio_data cp;
|
|
|
|
cp = find_microcode_in_initrd(ucode_path, false);
|
|
if (!(cp.data && cp.size))
|
|
return -EINVAL;
|
|
|
|
desc.cpuid_1_eax = cpuid_1_eax;
|
|
|
|
scan_containers(cp.data, cp.size, &desc);
|
|
if (!desc.mc)
|
|
return -EINVAL;
|
|
|
|
ret = load_microcode_amd(x86_family(cpuid_1_eax), desc.data, desc.size);
|
|
if (ret > UCODE_UPDATED)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void reload_ucode_amd(unsigned int cpu)
|
|
{
|
|
u32 rev, dummy __always_unused;
|
|
struct microcode_amd *mc;
|
|
|
|
mc = (struct microcode_amd *)amd_ucode_patch[cpu_to_node(cpu)];
|
|
|
|
rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
|
|
|
|
if (rev < mc->hdr.patch_id) {
|
|
if (!__apply_microcode_amd(mc)) {
|
|
ucode_new_rev = mc->hdr.patch_id;
|
|
pr_info("reload patch_level=0x%08x\n", ucode_new_rev);
|
|
}
|
|
}
|
|
}
|
|
static u16 __find_equiv_id(unsigned int cpu)
|
|
{
|
|
struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
|
|
return find_equiv_id(&equiv_table, uci->cpu_sig.sig);
|
|
}
|
|
|
|
/*
|
|
* a small, trivial cache of per-family ucode patches
|
|
*/
|
|
static struct ucode_patch *cache_find_patch(u16 equiv_cpu)
|
|
{
|
|
struct ucode_patch *p;
|
|
|
|
list_for_each_entry(p, µcode_cache, plist)
|
|
if (p->equiv_cpu == equiv_cpu)
|
|
return p;
|
|
return NULL;
|
|
}
|
|
|
|
static void update_cache(struct ucode_patch *new_patch)
|
|
{
|
|
struct ucode_patch *p;
|
|
|
|
list_for_each_entry(p, µcode_cache, plist) {
|
|
if (p->equiv_cpu == new_patch->equiv_cpu) {
|
|
if (p->patch_id >= new_patch->patch_id) {
|
|
/* we already have the latest patch */
|
|
kfree(new_patch->data);
|
|
kfree(new_patch);
|
|
return;
|
|
}
|
|
|
|
list_replace(&p->plist, &new_patch->plist);
|
|
kfree(p->data);
|
|
kfree(p);
|
|
return;
|
|
}
|
|
}
|
|
/* no patch found, add it */
|
|
list_add_tail(&new_patch->plist, µcode_cache);
|
|
}
|
|
|
|
static void free_cache(void)
|
|
{
|
|
struct ucode_patch *p, *tmp;
|
|
|
|
list_for_each_entry_safe(p, tmp, µcode_cache, plist) {
|
|
__list_del(p->plist.prev, p->plist.next);
|
|
kfree(p->data);
|
|
kfree(p);
|
|
}
|
|
}
|
|
|
|
static struct ucode_patch *find_patch(unsigned int cpu)
|
|
{
|
|
u16 equiv_id;
|
|
|
|
equiv_id = __find_equiv_id(cpu);
|
|
if (!equiv_id)
|
|
return NULL;
|
|
|
|
return cache_find_patch(equiv_id);
|
|
}
|
|
|
|
static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
|
|
{
|
|
struct cpuinfo_x86 *c = &cpu_data(cpu);
|
|
struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
|
|
struct ucode_patch *p;
|
|
|
|
csig->sig = cpuid_eax(0x00000001);
|
|
csig->rev = c->microcode;
|
|
|
|
/*
|
|
* a patch could have been loaded early, set uci->mc so that
|
|
* mc_bp_resume() can call apply_microcode()
|
|
*/
|
|
p = find_patch(cpu);
|
|
if (p && (p->patch_id == csig->rev))
|
|
uci->mc = p->data;
|
|
|
|
pr_info("CPU%d: patch_level=0x%08x\n", cpu, csig->rev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static enum ucode_state apply_microcode_amd(int cpu)
|
|
{
|
|
struct cpuinfo_x86 *c = &cpu_data(cpu);
|
|
struct microcode_amd *mc_amd;
|
|
struct ucode_cpu_info *uci;
|
|
struct ucode_patch *p;
|
|
enum ucode_state ret;
|
|
u32 rev, dummy __always_unused;
|
|
|
|
BUG_ON(raw_smp_processor_id() != cpu);
|
|
|
|
uci = ucode_cpu_info + cpu;
|
|
|
|
p = find_patch(cpu);
|
|
if (!p)
|
|
return UCODE_NFOUND;
|
|
|
|
mc_amd = p->data;
|
|
uci->mc = p->data;
|
|
|
|
rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
|
|
|
|
/* need to apply patch? */
|
|
if (rev >= mc_amd->hdr.patch_id) {
|
|
ret = UCODE_OK;
|
|
goto out;
|
|
}
|
|
|
|
if (__apply_microcode_amd(mc_amd)) {
|
|
pr_err("CPU%d: update failed for patch_level=0x%08x\n",
|
|
cpu, mc_amd->hdr.patch_id);
|
|
return UCODE_ERROR;
|
|
}
|
|
|
|
rev = mc_amd->hdr.patch_id;
|
|
ret = UCODE_UPDATED;
|
|
|
|
pr_info("CPU%d: new patch_level=0x%08x\n", cpu, rev);
|
|
|
|
out:
|
|
uci->cpu_sig.rev = rev;
|
|
c->microcode = rev;
|
|
|
|
/* Update boot_cpu_data's revision too, if we're on the BSP: */
|
|
if (c->cpu_index == boot_cpu_data.cpu_index)
|
|
boot_cpu_data.microcode = rev;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size)
|
|
{
|
|
u32 equiv_tbl_len;
|
|
const u32 *hdr;
|
|
|
|
if (!verify_equivalence_table(buf, buf_size, false))
|
|
return 0;
|
|
|
|
hdr = (const u32 *)buf;
|
|
equiv_tbl_len = hdr[2];
|
|
|
|
equiv_table.entry = vmalloc(equiv_tbl_len);
|
|
if (!equiv_table.entry) {
|
|
pr_err("failed to allocate equivalent CPU table\n");
|
|
return 0;
|
|
}
|
|
|
|
memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len);
|
|
equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry);
|
|
|
|
/* add header length */
|
|
return equiv_tbl_len + CONTAINER_HDR_SZ;
|
|
}
|
|
|
|
static void free_equiv_cpu_table(void)
|
|
{
|
|
vfree(equiv_table.entry);
|
|
memset(&equiv_table, 0, sizeof(equiv_table));
|
|
}
|
|
|
|
static void cleanup(void)
|
|
{
|
|
free_equiv_cpu_table();
|
|
free_cache();
|
|
}
|
|
|
|
/*
|
|
* Return a non-negative value even if some of the checks failed so that
|
|
* we can skip over the next patch. If we return a negative value, we
|
|
* signal a grave error like a memory allocation has failed and the
|
|
* driver cannot continue functioning normally. In such cases, we tear
|
|
* down everything we've used up so far and exit.
|
|
*/
|
|
static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover,
|
|
unsigned int *patch_size)
|
|
{
|
|
struct microcode_header_amd *mc_hdr;
|
|
struct ucode_patch *patch;
|
|
u16 proc_id;
|
|
int ret;
|
|
|
|
ret = verify_patch(family, fw, leftover, patch_size, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
patch = kzalloc(sizeof(*patch), GFP_KERNEL);
|
|
if (!patch) {
|
|
pr_err("Patch allocation failure.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL);
|
|
if (!patch->data) {
|
|
pr_err("Patch data allocation failure.\n");
|
|
kfree(patch);
|
|
return -EINVAL;
|
|
}
|
|
patch->size = *patch_size;
|
|
|
|
mc_hdr = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
|
|
proc_id = mc_hdr->processor_rev_id;
|
|
|
|
INIT_LIST_HEAD(&patch->plist);
|
|
patch->patch_id = mc_hdr->patch_id;
|
|
patch->equiv_cpu = proc_id;
|
|
|
|
pr_debug("%s: Added patch_id: 0x%08x, proc_id: 0x%04x\n",
|
|
__func__, patch->patch_id, proc_id);
|
|
|
|
/* ... and add to cache. */
|
|
update_cache(patch);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Scan the blob in @data and add microcode patches to the cache. */
|
|
static enum ucode_state __load_microcode_amd(u8 family, const u8 *data,
|
|
size_t size)
|
|
{
|
|
u8 *fw = (u8 *)data;
|
|
size_t offset;
|
|
|
|
offset = install_equiv_cpu_table(data, size);
|
|
if (!offset)
|
|
return UCODE_ERROR;
|
|
|
|
fw += offset;
|
|
size -= offset;
|
|
|
|
if (*(u32 *)fw != UCODE_UCODE_TYPE) {
|
|
pr_err("invalid type field in container file section header\n");
|
|
free_equiv_cpu_table();
|
|
return UCODE_ERROR;
|
|
}
|
|
|
|
while (size > 0) {
|
|
unsigned int crnt_size = 0;
|
|
int ret;
|
|
|
|
ret = verify_and_add_patch(family, fw, size, &crnt_size);
|
|
if (ret < 0)
|
|
return UCODE_ERROR;
|
|
|
|
fw += crnt_size + SECTION_HDR_SIZE;
|
|
size -= (crnt_size + SECTION_HDR_SIZE);
|
|
}
|
|
|
|
return UCODE_OK;
|
|
}
|
|
|
|
static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size)
|
|
{
|
|
struct cpuinfo_x86 *c;
|
|
unsigned int nid, cpu;
|
|
struct ucode_patch *p;
|
|
enum ucode_state ret;
|
|
|
|
/* free old equiv table */
|
|
free_equiv_cpu_table();
|
|
|
|
ret = __load_microcode_amd(family, data, size);
|
|
if (ret != UCODE_OK) {
|
|
cleanup();
|
|
return ret;
|
|
}
|
|
|
|
for_each_node(nid) {
|
|
cpu = cpumask_first(cpumask_of_node(nid));
|
|
c = &cpu_data(cpu);
|
|
|
|
p = find_patch(cpu);
|
|
if (!p)
|
|
continue;
|
|
|
|
if (c->microcode >= p->patch_id)
|
|
continue;
|
|
|
|
ret = UCODE_NEW;
|
|
|
|
memset(&amd_ucode_patch[nid], 0, PATCH_MAX_SIZE);
|
|
memcpy(&amd_ucode_patch[nid], p->data, min_t(u32, p->size, PATCH_MAX_SIZE));
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* AMD microcode firmware naming convention, up to family 15h they are in
|
|
* the legacy file:
|
|
*
|
|
* amd-ucode/microcode_amd.bin
|
|
*
|
|
* This legacy file is always smaller than 2K in size.
|
|
*
|
|
* Beginning with family 15h, they are in family-specific firmware files:
|
|
*
|
|
* amd-ucode/microcode_amd_fam15h.bin
|
|
* amd-ucode/microcode_amd_fam16h.bin
|
|
* ...
|
|
*
|
|
* These might be larger than 2K.
|
|
*/
|
|
static enum ucode_state request_microcode_amd(int cpu, struct device *device)
|
|
{
|
|
char fw_name[36] = "amd-ucode/microcode_amd.bin";
|
|
struct cpuinfo_x86 *c = &cpu_data(cpu);
|
|
enum ucode_state ret = UCODE_NFOUND;
|
|
const struct firmware *fw;
|
|
|
|
if (c->x86 >= 0x15)
|
|
snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
|
|
|
|
if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
|
|
pr_debug("failed to load file %s\n", fw_name);
|
|
goto out;
|
|
}
|
|
|
|
ret = UCODE_ERROR;
|
|
if (!verify_container(fw->data, fw->size, false))
|
|
goto fw_release;
|
|
|
|
ret = load_microcode_amd(c->x86, fw->data, fw->size);
|
|
|
|
fw_release:
|
|
release_firmware(fw);
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static void microcode_fini_cpu_amd(int cpu)
|
|
{
|
|
struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
|
|
|
|
uci->mc = NULL;
|
|
}
|
|
|
|
static struct microcode_ops microcode_amd_ops = {
|
|
.request_microcode_fw = request_microcode_amd,
|
|
.collect_cpu_info = collect_cpu_info_amd,
|
|
.apply_microcode = apply_microcode_amd,
|
|
.microcode_fini_cpu = microcode_fini_cpu_amd,
|
|
};
|
|
|
|
struct microcode_ops * __init init_amd_microcode(void)
|
|
{
|
|
struct cpuinfo_x86 *c = &boot_cpu_data;
|
|
|
|
if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
|
|
pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
|
|
return NULL;
|
|
}
|
|
|
|
if (ucode_new_rev)
|
|
pr_info_once("microcode updated early to new patch_level=0x%08x\n",
|
|
ucode_new_rev);
|
|
|
|
return µcode_amd_ops;
|
|
}
|
|
|
|
void __exit exit_amd_microcode(void)
|
|
{
|
|
cleanup();
|
|
}
|