799 lines
18 KiB
C
799 lines
18 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Intel CPU Microcode Update Driver for Linux
|
|
*
|
|
* Copyright (C) 2000-2006 Tigran Aivazian <aivazian.tigran@gmail.com>
|
|
* 2006 Shaohua Li <shaohua.li@intel.com>
|
|
*
|
|
* Intel CPU microcode early update for Linux
|
|
*
|
|
* Copyright (C) 2012 Fenghua Yu <fenghua.yu@intel.com>
|
|
* H Peter Anvin" <hpa@zytor.com>
|
|
*/
|
|
|
|
/*
|
|
* This needs to be before all headers so that pr_debug in printk.h doesn't turn
|
|
* printk calls into no_printk().
|
|
*
|
|
*#define DEBUG
|
|
*/
|
|
#define pr_fmt(fmt) "microcode: " fmt
|
|
|
|
#include <linux/earlycpio.h>
|
|
#include <linux/firmware.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/initrd.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/uio.h>
|
|
#include <linux/mm.h>
|
|
|
|
#include <asm/microcode_intel.h>
|
|
#include <asm/intel-family.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/msr.h>
|
|
|
|
static const char ucode_path[] = "kernel/x86/microcode/GenuineIntel.bin";
|
|
|
|
/* Current microcode patch used in early patching on the APs. */
|
|
static struct microcode_intel *intel_ucode_patch;
|
|
|
|
/* last level cache size per core */
|
|
static int llc_size_per_core;
|
|
|
|
/*
|
|
* Returns 1 if update has been found, 0 otherwise.
|
|
*/
|
|
static int has_newer_microcode(void *mc, unsigned int csig, int cpf, int new_rev)
|
|
{
|
|
struct microcode_header_intel *mc_hdr = mc;
|
|
|
|
if (mc_hdr->rev <= new_rev)
|
|
return 0;
|
|
|
|
return intel_find_matching_signature(mc, csig, cpf);
|
|
}
|
|
|
|
static struct ucode_patch *memdup_patch(void *data, unsigned int size)
|
|
{
|
|
struct ucode_patch *p;
|
|
|
|
p = kzalloc(sizeof(struct ucode_patch), GFP_KERNEL);
|
|
if (!p)
|
|
return NULL;
|
|
|
|
p->data = kmemdup(data, size, GFP_KERNEL);
|
|
if (!p->data) {
|
|
kfree(p);
|
|
return NULL;
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
static void save_microcode_patch(struct ucode_cpu_info *uci, void *data, unsigned int size)
|
|
{
|
|
struct microcode_header_intel *mc_hdr, *mc_saved_hdr;
|
|
struct ucode_patch *iter, *tmp, *p = NULL;
|
|
bool prev_found = false;
|
|
unsigned int sig, pf;
|
|
|
|
mc_hdr = (struct microcode_header_intel *)data;
|
|
|
|
list_for_each_entry_safe(iter, tmp, µcode_cache, plist) {
|
|
mc_saved_hdr = (struct microcode_header_intel *)iter->data;
|
|
sig = mc_saved_hdr->sig;
|
|
pf = mc_saved_hdr->pf;
|
|
|
|
if (intel_find_matching_signature(data, sig, pf)) {
|
|
prev_found = true;
|
|
|
|
if (mc_hdr->rev <= mc_saved_hdr->rev)
|
|
continue;
|
|
|
|
p = memdup_patch(data, size);
|
|
if (!p)
|
|
pr_err("Error allocating buffer %p\n", data);
|
|
else {
|
|
list_replace(&iter->plist, &p->plist);
|
|
kfree(iter->data);
|
|
kfree(iter);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* There weren't any previous patches found in the list cache; save the
|
|
* newly found.
|
|
*/
|
|
if (!prev_found) {
|
|
p = memdup_patch(data, size);
|
|
if (!p)
|
|
pr_err("Error allocating buffer for %p\n", data);
|
|
else
|
|
list_add_tail(&p->plist, µcode_cache);
|
|
}
|
|
|
|
if (!p)
|
|
return;
|
|
|
|
if (!intel_find_matching_signature(p->data, uci->cpu_sig.sig, uci->cpu_sig.pf))
|
|
return;
|
|
|
|
/*
|
|
* Save for early loading. On 32-bit, that needs to be a physical
|
|
* address as the APs are running from physical addresses, before
|
|
* paging has been enabled.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_X86_32))
|
|
intel_ucode_patch = (struct microcode_intel *)__pa_nodebug(p->data);
|
|
else
|
|
intel_ucode_patch = p->data;
|
|
}
|
|
|
|
/*
|
|
* Get microcode matching with BSP's model. Only CPUs with the same model as
|
|
* BSP can stay in the platform.
|
|
*/
|
|
static struct microcode_intel *
|
|
scan_microcode(void *data, size_t size, struct ucode_cpu_info *uci, bool save)
|
|
{
|
|
struct microcode_header_intel *mc_header;
|
|
struct microcode_intel *patch = NULL;
|
|
unsigned int mc_size;
|
|
|
|
while (size) {
|
|
if (size < sizeof(struct microcode_header_intel))
|
|
break;
|
|
|
|
mc_header = (struct microcode_header_intel *)data;
|
|
|
|
mc_size = get_totalsize(mc_header);
|
|
if (!mc_size ||
|
|
mc_size > size ||
|
|
intel_microcode_sanity_check(data, false, MC_HEADER_TYPE_MICROCODE) < 0)
|
|
break;
|
|
|
|
size -= mc_size;
|
|
|
|
if (!intel_find_matching_signature(data, uci->cpu_sig.sig,
|
|
uci->cpu_sig.pf)) {
|
|
data += mc_size;
|
|
continue;
|
|
}
|
|
|
|
if (save) {
|
|
save_microcode_patch(uci, data, mc_size);
|
|
goto next;
|
|
}
|
|
|
|
|
|
if (!patch) {
|
|
if (!has_newer_microcode(data,
|
|
uci->cpu_sig.sig,
|
|
uci->cpu_sig.pf,
|
|
uci->cpu_sig.rev))
|
|
goto next;
|
|
|
|
} else {
|
|
struct microcode_header_intel *phdr = &patch->hdr;
|
|
|
|
if (!has_newer_microcode(data,
|
|
phdr->sig,
|
|
phdr->pf,
|
|
phdr->rev))
|
|
goto next;
|
|
}
|
|
|
|
/* We have a newer patch, save it. */
|
|
patch = data;
|
|
|
|
next:
|
|
data += mc_size;
|
|
}
|
|
|
|
if (size)
|
|
return NULL;
|
|
|
|
return patch;
|
|
}
|
|
|
|
static void show_saved_mc(void)
|
|
{
|
|
#ifdef DEBUG
|
|
int i = 0, j;
|
|
unsigned int sig, pf, rev, total_size, data_size, date;
|
|
struct ucode_cpu_info uci;
|
|
struct ucode_patch *p;
|
|
|
|
if (list_empty(µcode_cache)) {
|
|
pr_debug("no microcode data saved.\n");
|
|
return;
|
|
}
|
|
|
|
intel_cpu_collect_info(&uci);
|
|
|
|
sig = uci.cpu_sig.sig;
|
|
pf = uci.cpu_sig.pf;
|
|
rev = uci.cpu_sig.rev;
|
|
pr_debug("CPU: sig=0x%x, pf=0x%x, rev=0x%x\n", sig, pf, rev);
|
|
|
|
list_for_each_entry(p, µcode_cache, plist) {
|
|
struct microcode_header_intel *mc_saved_header;
|
|
struct extended_sigtable *ext_header;
|
|
struct extended_signature *ext_sig;
|
|
int ext_sigcount;
|
|
|
|
mc_saved_header = (struct microcode_header_intel *)p->data;
|
|
|
|
sig = mc_saved_header->sig;
|
|
pf = mc_saved_header->pf;
|
|
rev = mc_saved_header->rev;
|
|
date = mc_saved_header->date;
|
|
|
|
total_size = get_totalsize(mc_saved_header);
|
|
data_size = get_datasize(mc_saved_header);
|
|
|
|
pr_debug("mc_saved[%d]: sig=0x%x, pf=0x%x, rev=0x%x, total size=0x%x, date = %04x-%02x-%02x\n",
|
|
i++, sig, pf, rev, total_size,
|
|
date & 0xffff,
|
|
date >> 24,
|
|
(date >> 16) & 0xff);
|
|
|
|
/* Look for ext. headers: */
|
|
if (total_size <= data_size + MC_HEADER_SIZE)
|
|
continue;
|
|
|
|
ext_header = (void *)mc_saved_header + data_size + MC_HEADER_SIZE;
|
|
ext_sigcount = ext_header->count;
|
|
ext_sig = (void *)ext_header + EXT_HEADER_SIZE;
|
|
|
|
for (j = 0; j < ext_sigcount; j++) {
|
|
sig = ext_sig->sig;
|
|
pf = ext_sig->pf;
|
|
|
|
pr_debug("\tExtended[%d]: sig=0x%x, pf=0x%x\n",
|
|
j, sig, pf);
|
|
|
|
ext_sig++;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Save this microcode patch. It will be loaded early when a CPU is
|
|
* hot-added or resumes.
|
|
*/
|
|
static void save_mc_for_early(struct ucode_cpu_info *uci, u8 *mc, unsigned int size)
|
|
{
|
|
/* Synchronization during CPU hotplug. */
|
|
static DEFINE_MUTEX(x86_cpu_microcode_mutex);
|
|
|
|
mutex_lock(&x86_cpu_microcode_mutex);
|
|
|
|
save_microcode_patch(uci, mc, size);
|
|
show_saved_mc();
|
|
|
|
mutex_unlock(&x86_cpu_microcode_mutex);
|
|
}
|
|
|
|
static bool load_builtin_intel_microcode(struct cpio_data *cp)
|
|
{
|
|
unsigned int eax = 1, ebx, ecx = 0, edx;
|
|
struct firmware fw;
|
|
char name[30];
|
|
|
|
if (IS_ENABLED(CONFIG_X86_32))
|
|
return false;
|
|
|
|
native_cpuid(&eax, &ebx, &ecx, &edx);
|
|
|
|
sprintf(name, "intel-ucode/%02x-%02x-%02x",
|
|
x86_family(eax), x86_model(eax), x86_stepping(eax));
|
|
|
|
if (firmware_request_builtin(&fw, name)) {
|
|
cp->size = fw.size;
|
|
cp->data = (void *)fw.data;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void print_ucode_info(int old_rev, int new_rev, unsigned int date)
|
|
{
|
|
pr_info_once("updated early: 0x%x -> 0x%x, date = %04x-%02x-%02x\n",
|
|
old_rev,
|
|
new_rev,
|
|
date & 0xffff,
|
|
date >> 24,
|
|
(date >> 16) & 0xff);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_32
|
|
|
|
static int delay_ucode_info;
|
|
static int current_mc_date;
|
|
static int early_old_rev;
|
|
|
|
/*
|
|
* Print early updated ucode info after printk works. This is delayed info dump.
|
|
*/
|
|
void show_ucode_info_early(void)
|
|
{
|
|
struct ucode_cpu_info uci;
|
|
|
|
if (delay_ucode_info) {
|
|
intel_cpu_collect_info(&uci);
|
|
print_ucode_info(early_old_rev, uci.cpu_sig.rev, current_mc_date);
|
|
delay_ucode_info = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* At this point, we can not call printk() yet. Delay printing microcode info in
|
|
* show_ucode_info_early() until printk() works.
|
|
*/
|
|
static void print_ucode(int old_rev, int new_rev, int date)
|
|
{
|
|
int *delay_ucode_info_p;
|
|
int *current_mc_date_p;
|
|
int *early_old_rev_p;
|
|
|
|
delay_ucode_info_p = (int *)__pa_nodebug(&delay_ucode_info);
|
|
current_mc_date_p = (int *)__pa_nodebug(¤t_mc_date);
|
|
early_old_rev_p = (int *)__pa_nodebug(&early_old_rev);
|
|
|
|
*delay_ucode_info_p = 1;
|
|
*current_mc_date_p = date;
|
|
*early_old_rev_p = old_rev;
|
|
}
|
|
#else
|
|
|
|
static inline void print_ucode(int old_rev, int new_rev, int date)
|
|
{
|
|
print_ucode_info(old_rev, new_rev, date);
|
|
}
|
|
#endif
|
|
|
|
static int apply_microcode_early(struct ucode_cpu_info *uci, bool early)
|
|
{
|
|
struct microcode_intel *mc;
|
|
u32 rev, old_rev;
|
|
|
|
mc = uci->mc;
|
|
if (!mc)
|
|
return 0;
|
|
|
|
/*
|
|
* Save us the MSR write below - which is a particular expensive
|
|
* operation - when the other hyperthread has updated the microcode
|
|
* already.
|
|
*/
|
|
rev = intel_get_microcode_revision();
|
|
if (rev >= mc->hdr.rev) {
|
|
uci->cpu_sig.rev = rev;
|
|
return UCODE_OK;
|
|
}
|
|
|
|
old_rev = rev;
|
|
|
|
/*
|
|
* Writeback and invalidate caches before updating microcode to avoid
|
|
* internal issues depending on what the microcode is updating.
|
|
*/
|
|
native_wbinvd();
|
|
|
|
/* write microcode via MSR 0x79 */
|
|
native_wrmsrl(MSR_IA32_UCODE_WRITE, (unsigned long)mc->bits);
|
|
|
|
rev = intel_get_microcode_revision();
|
|
if (rev != mc->hdr.rev)
|
|
return -1;
|
|
|
|
uci->cpu_sig.rev = rev;
|
|
|
|
if (early)
|
|
print_ucode(old_rev, uci->cpu_sig.rev, mc->hdr.date);
|
|
else
|
|
print_ucode_info(old_rev, uci->cpu_sig.rev, mc->hdr.date);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int __init save_microcode_in_initrd_intel(void)
|
|
{
|
|
struct ucode_cpu_info uci;
|
|
struct cpio_data cp;
|
|
|
|
/*
|
|
* initrd is going away, clear patch ptr. We will scan the microcode one
|
|
* last time before jettisoning and save a patch, if found. Then we will
|
|
* update that pointer too, with a stable patch address to use when
|
|
* resuming the cores.
|
|
*/
|
|
intel_ucode_patch = NULL;
|
|
|
|
if (!load_builtin_intel_microcode(&cp))
|
|
cp = find_microcode_in_initrd(ucode_path, false);
|
|
|
|
if (!(cp.data && cp.size))
|
|
return 0;
|
|
|
|
intel_cpu_collect_info(&uci);
|
|
|
|
scan_microcode(cp.data, cp.size, &uci, true);
|
|
|
|
show_saved_mc();
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* @res_patch, output: a pointer to the patch we found.
|
|
*/
|
|
static struct microcode_intel *__load_ucode_intel(struct ucode_cpu_info *uci)
|
|
{
|
|
static const char *path;
|
|
struct cpio_data cp;
|
|
bool use_pa;
|
|
|
|
if (IS_ENABLED(CONFIG_X86_32)) {
|
|
path = (const char *)__pa_nodebug(ucode_path);
|
|
use_pa = true;
|
|
} else {
|
|
path = ucode_path;
|
|
use_pa = false;
|
|
}
|
|
|
|
/* try built-in microcode first */
|
|
if (!load_builtin_intel_microcode(&cp))
|
|
cp = find_microcode_in_initrd(path, use_pa);
|
|
|
|
if (!(cp.data && cp.size))
|
|
return NULL;
|
|
|
|
intel_cpu_collect_info(uci);
|
|
|
|
return scan_microcode(cp.data, cp.size, uci, false);
|
|
}
|
|
|
|
void __init load_ucode_intel_bsp(void)
|
|
{
|
|
struct microcode_intel *patch;
|
|
struct ucode_cpu_info uci;
|
|
|
|
patch = __load_ucode_intel(&uci);
|
|
if (!patch)
|
|
return;
|
|
|
|
uci.mc = patch;
|
|
|
|
apply_microcode_early(&uci, true);
|
|
}
|
|
|
|
void load_ucode_intel_ap(void)
|
|
{
|
|
struct microcode_intel *patch, **iup;
|
|
struct ucode_cpu_info uci;
|
|
|
|
if (IS_ENABLED(CONFIG_X86_32))
|
|
iup = (struct microcode_intel **) __pa_nodebug(&intel_ucode_patch);
|
|
else
|
|
iup = &intel_ucode_patch;
|
|
|
|
if (!*iup) {
|
|
patch = __load_ucode_intel(&uci);
|
|
if (!patch)
|
|
return;
|
|
|
|
*iup = patch;
|
|
}
|
|
|
|
uci.mc = *iup;
|
|
|
|
apply_microcode_early(&uci, true);
|
|
}
|
|
|
|
static struct microcode_intel *find_patch(struct ucode_cpu_info *uci)
|
|
{
|
|
struct microcode_header_intel *phdr;
|
|
struct ucode_patch *iter, *tmp;
|
|
|
|
list_for_each_entry_safe(iter, tmp, µcode_cache, plist) {
|
|
|
|
phdr = (struct microcode_header_intel *)iter->data;
|
|
|
|
if (phdr->rev <= uci->cpu_sig.rev)
|
|
continue;
|
|
|
|
if (!intel_find_matching_signature(phdr,
|
|
uci->cpu_sig.sig,
|
|
uci->cpu_sig.pf))
|
|
continue;
|
|
|
|
return iter->data;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
void reload_ucode_intel(void)
|
|
{
|
|
struct microcode_intel *p;
|
|
struct ucode_cpu_info uci;
|
|
|
|
intel_cpu_collect_info(&uci);
|
|
|
|
p = find_patch(&uci);
|
|
if (!p)
|
|
return;
|
|
|
|
uci.mc = p;
|
|
|
|
apply_microcode_early(&uci, false);
|
|
}
|
|
|
|
static int collect_cpu_info(int cpu_num, struct cpu_signature *csig)
|
|
{
|
|
struct cpuinfo_x86 *c = &cpu_data(cpu_num);
|
|
unsigned int val[2];
|
|
|
|
memset(csig, 0, sizeof(*csig));
|
|
|
|
csig->sig = cpuid_eax(0x00000001);
|
|
|
|
if ((c->x86_model >= 5) || (c->x86 > 6)) {
|
|
/* get processor flags from MSR 0x17 */
|
|
rdmsr(MSR_IA32_PLATFORM_ID, val[0], val[1]);
|
|
csig->pf = 1 << ((val[1] >> 18) & 7);
|
|
}
|
|
|
|
csig->rev = c->microcode;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static enum ucode_state apply_microcode_intel(int cpu)
|
|
{
|
|
struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
|
|
struct cpuinfo_x86 *c = &cpu_data(cpu);
|
|
bool bsp = c->cpu_index == boot_cpu_data.cpu_index;
|
|
struct microcode_intel *mc;
|
|
enum ucode_state ret;
|
|
static int prev_rev;
|
|
u32 rev;
|
|
|
|
/* We should bind the task to the CPU */
|
|
if (WARN_ON(raw_smp_processor_id() != cpu))
|
|
return UCODE_ERROR;
|
|
|
|
/* Look for a newer patch in our cache: */
|
|
mc = find_patch(uci);
|
|
if (!mc) {
|
|
mc = uci->mc;
|
|
if (!mc)
|
|
return UCODE_NFOUND;
|
|
}
|
|
|
|
/*
|
|
* Save us the MSR write below - which is a particular expensive
|
|
* operation - when the other hyperthread has updated the microcode
|
|
* already.
|
|
*/
|
|
rev = intel_get_microcode_revision();
|
|
if (rev >= mc->hdr.rev) {
|
|
ret = UCODE_OK;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Writeback and invalidate caches before updating microcode to avoid
|
|
* internal issues depending on what the microcode is updating.
|
|
*/
|
|
native_wbinvd();
|
|
|
|
/* write microcode via MSR 0x79 */
|
|
wrmsrl(MSR_IA32_UCODE_WRITE, (unsigned long)mc->bits);
|
|
|
|
rev = intel_get_microcode_revision();
|
|
|
|
if (rev != mc->hdr.rev) {
|
|
pr_err("CPU%d update to revision 0x%x failed\n",
|
|
cpu, mc->hdr.rev);
|
|
return UCODE_ERROR;
|
|
}
|
|
|
|
if (bsp && rev != prev_rev) {
|
|
pr_info("updated to revision 0x%x, date = %04x-%02x-%02x\n",
|
|
rev,
|
|
mc->hdr.date & 0xffff,
|
|
mc->hdr.date >> 24,
|
|
(mc->hdr.date >> 16) & 0xff);
|
|
prev_rev = rev;
|
|
}
|
|
|
|
ret = UCODE_UPDATED;
|
|
|
|
out:
|
|
uci->cpu_sig.rev = rev;
|
|
c->microcode = rev;
|
|
|
|
/* Update boot_cpu_data's revision too, if we're on the BSP: */
|
|
if (bsp)
|
|
boot_cpu_data.microcode = rev;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static enum ucode_state generic_load_microcode(int cpu, struct iov_iter *iter)
|
|
{
|
|
struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
|
|
unsigned int curr_mc_size = 0, new_mc_size = 0;
|
|
enum ucode_state ret = UCODE_OK;
|
|
int new_rev = uci->cpu_sig.rev;
|
|
u8 *new_mc = NULL, *mc = NULL;
|
|
unsigned int csig, cpf;
|
|
|
|
while (iov_iter_count(iter)) {
|
|
struct microcode_header_intel mc_header;
|
|
unsigned int mc_size, data_size;
|
|
u8 *data;
|
|
|
|
if (!copy_from_iter_full(&mc_header, sizeof(mc_header), iter)) {
|
|
pr_err("error! Truncated or inaccessible header in microcode data file\n");
|
|
break;
|
|
}
|
|
|
|
mc_size = get_totalsize(&mc_header);
|
|
if (mc_size < sizeof(mc_header)) {
|
|
pr_err("error! Bad data in microcode data file (totalsize too small)\n");
|
|
break;
|
|
}
|
|
data_size = mc_size - sizeof(mc_header);
|
|
if (data_size > iov_iter_count(iter)) {
|
|
pr_err("error! Bad data in microcode data file (truncated file?)\n");
|
|
break;
|
|
}
|
|
|
|
/* For performance reasons, reuse mc area when possible */
|
|
if (!mc || mc_size > curr_mc_size) {
|
|
vfree(mc);
|
|
mc = vmalloc(mc_size);
|
|
if (!mc)
|
|
break;
|
|
curr_mc_size = mc_size;
|
|
}
|
|
|
|
memcpy(mc, &mc_header, sizeof(mc_header));
|
|
data = mc + sizeof(mc_header);
|
|
if (!copy_from_iter_full(data, data_size, iter) ||
|
|
intel_microcode_sanity_check(mc, true, MC_HEADER_TYPE_MICROCODE) < 0) {
|
|
break;
|
|
}
|
|
|
|
csig = uci->cpu_sig.sig;
|
|
cpf = uci->cpu_sig.pf;
|
|
if (has_newer_microcode(mc, csig, cpf, new_rev)) {
|
|
vfree(new_mc);
|
|
new_rev = mc_header.rev;
|
|
new_mc = mc;
|
|
new_mc_size = mc_size;
|
|
mc = NULL; /* trigger new vmalloc */
|
|
ret = UCODE_NEW;
|
|
}
|
|
}
|
|
|
|
vfree(mc);
|
|
|
|
if (iov_iter_count(iter)) {
|
|
vfree(new_mc);
|
|
return UCODE_ERROR;
|
|
}
|
|
|
|
if (!new_mc)
|
|
return UCODE_NFOUND;
|
|
|
|
vfree(uci->mc);
|
|
uci->mc = (struct microcode_intel *)new_mc;
|
|
|
|
/*
|
|
* If early loading microcode is supported, save this mc into
|
|
* permanent memory. So it will be loaded early when a CPU is hot added
|
|
* or resumes.
|
|
*/
|
|
save_mc_for_early(uci, new_mc, new_mc_size);
|
|
|
|
pr_debug("CPU%d found a matching microcode update with version 0x%x (current=0x%x)\n",
|
|
cpu, new_rev, uci->cpu_sig.rev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool is_blacklisted(unsigned int cpu)
|
|
{
|
|
struct cpuinfo_x86 *c = &cpu_data(cpu);
|
|
|
|
/*
|
|
* Late loading on model 79 with microcode revision less than 0x0b000021
|
|
* and LLC size per core bigger than 2.5MB may result in a system hang.
|
|
* This behavior is documented in item BDF90, #334165 (Intel Xeon
|
|
* Processor E7-8800/4800 v4 Product Family).
|
|
*/
|
|
if (c->x86 == 6 &&
|
|
c->x86_model == INTEL_FAM6_BROADWELL_X &&
|
|
c->x86_stepping == 0x01 &&
|
|
llc_size_per_core > 2621440 &&
|
|
c->microcode < 0x0b000021) {
|
|
pr_err_once("Erratum BDF90: late loading with revision < 0x0b000021 (0x%x) disabled.\n", c->microcode);
|
|
pr_err_once("Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static enum ucode_state request_microcode_fw(int cpu, struct device *device)
|
|
{
|
|
struct cpuinfo_x86 *c = &cpu_data(cpu);
|
|
const struct firmware *firmware;
|
|
struct iov_iter iter;
|
|
enum ucode_state ret;
|
|
struct kvec kvec;
|
|
char name[30];
|
|
|
|
if (is_blacklisted(cpu))
|
|
return UCODE_NFOUND;
|
|
|
|
sprintf(name, "intel-ucode/%02x-%02x-%02x",
|
|
c->x86, c->x86_model, c->x86_stepping);
|
|
|
|
if (request_firmware_direct(&firmware, name, device)) {
|
|
pr_debug("data file %s load failed\n", name);
|
|
return UCODE_NFOUND;
|
|
}
|
|
|
|
kvec.iov_base = (void *)firmware->data;
|
|
kvec.iov_len = firmware->size;
|
|
iov_iter_kvec(&iter, ITER_SOURCE, &kvec, 1, firmware->size);
|
|
ret = generic_load_microcode(cpu, &iter);
|
|
|
|
release_firmware(firmware);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct microcode_ops microcode_intel_ops = {
|
|
.request_microcode_fw = request_microcode_fw,
|
|
.collect_cpu_info = collect_cpu_info,
|
|
.apply_microcode = apply_microcode_intel,
|
|
};
|
|
|
|
static int __init calc_llc_size_per_core(struct cpuinfo_x86 *c)
|
|
{
|
|
u64 llc_size = c->x86_cache_size * 1024ULL;
|
|
|
|
do_div(llc_size, c->x86_max_cores);
|
|
|
|
return (int)llc_size;
|
|
}
|
|
|
|
struct microcode_ops * __init init_intel_microcode(void)
|
|
{
|
|
struct cpuinfo_x86 *c = &boot_cpu_data;
|
|
|
|
if (c->x86_vendor != X86_VENDOR_INTEL || c->x86 < 6 ||
|
|
cpu_has(c, X86_FEATURE_IA64)) {
|
|
pr_err("Intel CPU family 0x%x not supported\n", c->x86);
|
|
return NULL;
|
|
}
|
|
|
|
llc_size_per_core = calc_llc_size_per_core(c);
|
|
|
|
return µcode_intel_ops;
|
|
}
|