2271 lines
56 KiB
C
2271 lines
56 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* AMD Memory Encryption Support
|
|
*
|
|
* Copyright (C) 2019 SUSE
|
|
*
|
|
* Author: Joerg Roedel <jroedel@suse.de>
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "SEV: " fmt
|
|
|
|
#include <linux/sched/debug.h> /* For show_regs() */
|
|
#include <linux/percpu-defs.h>
|
|
#include <linux/cc_platform.h>
|
|
#include <linux/printk.h>
|
|
#include <linux/mm_types.h>
|
|
#include <linux/set_memory.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/efi.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/io.h>
|
|
|
|
#include <asm/cpu_entry_area.h>
|
|
#include <asm/stacktrace.h>
|
|
#include <asm/sev.h>
|
|
#include <asm/insn-eval.h>
|
|
#include <asm/fpu/xcr.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/realmode.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/traps.h>
|
|
#include <asm/svm.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/cpu.h>
|
|
#include <asm/apic.h>
|
|
#include <asm/cpuid.h>
|
|
#include <asm/cmdline.h>
|
|
|
|
#define DR7_RESET_VALUE 0x400
|
|
|
|
/* AP INIT values as documented in the APM2 section "Processor Initialization State" */
|
|
#define AP_INIT_CS_LIMIT 0xffff
|
|
#define AP_INIT_DS_LIMIT 0xffff
|
|
#define AP_INIT_LDTR_LIMIT 0xffff
|
|
#define AP_INIT_GDTR_LIMIT 0xffff
|
|
#define AP_INIT_IDTR_LIMIT 0xffff
|
|
#define AP_INIT_TR_LIMIT 0xffff
|
|
#define AP_INIT_RFLAGS_DEFAULT 0x2
|
|
#define AP_INIT_DR6_DEFAULT 0xffff0ff0
|
|
#define AP_INIT_GPAT_DEFAULT 0x0007040600070406ULL
|
|
#define AP_INIT_XCR0_DEFAULT 0x1
|
|
#define AP_INIT_X87_FTW_DEFAULT 0x5555
|
|
#define AP_INIT_X87_FCW_DEFAULT 0x0040
|
|
#define AP_INIT_CR0_DEFAULT 0x60000010
|
|
#define AP_INIT_MXCSR_DEFAULT 0x1f80
|
|
|
|
/* For early boot hypervisor communication in SEV-ES enabled guests */
|
|
static struct ghcb boot_ghcb_page __bss_decrypted __aligned(PAGE_SIZE);
|
|
|
|
/*
|
|
* Needs to be in the .data section because we need it NULL before bss is
|
|
* cleared
|
|
*/
|
|
static struct ghcb *boot_ghcb __section(".data");
|
|
|
|
/* Bitmap of SEV features supported by the hypervisor */
|
|
static u64 sev_hv_features __ro_after_init;
|
|
|
|
/* #VC handler runtime per-CPU data */
|
|
struct sev_es_runtime_data {
|
|
struct ghcb ghcb_page;
|
|
|
|
/*
|
|
* Reserve one page per CPU as backup storage for the unencrypted GHCB.
|
|
* It is needed when an NMI happens while the #VC handler uses the real
|
|
* GHCB, and the NMI handler itself is causing another #VC exception. In
|
|
* that case the GHCB content of the first handler needs to be backed up
|
|
* and restored.
|
|
*/
|
|
struct ghcb backup_ghcb;
|
|
|
|
/*
|
|
* Mark the per-cpu GHCBs as in-use to detect nested #VC exceptions.
|
|
* There is no need for it to be atomic, because nothing is written to
|
|
* the GHCB between the read and the write of ghcb_active. So it is safe
|
|
* to use it when a nested #VC exception happens before the write.
|
|
*
|
|
* This is necessary for example in the #VC->NMI->#VC case when the NMI
|
|
* happens while the first #VC handler uses the GHCB. When the NMI code
|
|
* raises a second #VC handler it might overwrite the contents of the
|
|
* GHCB written by the first handler. To avoid this the content of the
|
|
* GHCB is saved and restored when the GHCB is detected to be in use
|
|
* already.
|
|
*/
|
|
bool ghcb_active;
|
|
bool backup_ghcb_active;
|
|
|
|
/*
|
|
* Cached DR7 value - write it on DR7 writes and return it on reads.
|
|
* That value will never make it to the real hardware DR7 as debugging
|
|
* is currently unsupported in SEV-ES guests.
|
|
*/
|
|
unsigned long dr7;
|
|
};
|
|
|
|
struct ghcb_state {
|
|
struct ghcb *ghcb;
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct sev_es_runtime_data*, runtime_data);
|
|
DEFINE_STATIC_KEY_FALSE(sev_es_enable_key);
|
|
|
|
static DEFINE_PER_CPU(struct sev_es_save_area *, sev_vmsa);
|
|
|
|
struct sev_config {
|
|
__u64 debug : 1,
|
|
__reserved : 63;
|
|
};
|
|
|
|
static struct sev_config sev_cfg __read_mostly;
|
|
|
|
static __always_inline bool on_vc_stack(struct pt_regs *regs)
|
|
{
|
|
unsigned long sp = regs->sp;
|
|
|
|
/* User-mode RSP is not trusted */
|
|
if (user_mode(regs))
|
|
return false;
|
|
|
|
/* SYSCALL gap still has user-mode RSP */
|
|
if (ip_within_syscall_gap(regs))
|
|
return false;
|
|
|
|
return ((sp >= __this_cpu_ist_bottom_va(VC)) && (sp < __this_cpu_ist_top_va(VC)));
|
|
}
|
|
|
|
/*
|
|
* This function handles the case when an NMI is raised in the #VC
|
|
* exception handler entry code, before the #VC handler has switched off
|
|
* its IST stack. In this case, the IST entry for #VC must be adjusted,
|
|
* so that any nested #VC exception will not overwrite the stack
|
|
* contents of the interrupted #VC handler.
|
|
*
|
|
* The IST entry is adjusted unconditionally so that it can be also be
|
|
* unconditionally adjusted back in __sev_es_ist_exit(). Otherwise a
|
|
* nested sev_es_ist_exit() call may adjust back the IST entry too
|
|
* early.
|
|
*
|
|
* The __sev_es_ist_enter() and __sev_es_ist_exit() functions always run
|
|
* on the NMI IST stack, as they are only called from NMI handling code
|
|
* right now.
|
|
*/
|
|
void noinstr __sev_es_ist_enter(struct pt_regs *regs)
|
|
{
|
|
unsigned long old_ist, new_ist;
|
|
|
|
/* Read old IST entry */
|
|
new_ist = old_ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
|
|
|
|
/*
|
|
* If NMI happened while on the #VC IST stack, set the new IST
|
|
* value below regs->sp, so that the interrupted stack frame is
|
|
* not overwritten by subsequent #VC exceptions.
|
|
*/
|
|
if (on_vc_stack(regs))
|
|
new_ist = regs->sp;
|
|
|
|
/*
|
|
* Reserve additional 8 bytes and store old IST value so this
|
|
* adjustment can be unrolled in __sev_es_ist_exit().
|
|
*/
|
|
new_ist -= sizeof(old_ist);
|
|
*(unsigned long *)new_ist = old_ist;
|
|
|
|
/* Set new IST entry */
|
|
this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], new_ist);
|
|
}
|
|
|
|
void noinstr __sev_es_ist_exit(void)
|
|
{
|
|
unsigned long ist;
|
|
|
|
/* Read IST entry */
|
|
ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
|
|
|
|
if (WARN_ON(ist == __this_cpu_ist_top_va(VC)))
|
|
return;
|
|
|
|
/* Read back old IST entry and write it to the TSS */
|
|
this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], *(unsigned long *)ist);
|
|
}
|
|
|
|
/*
|
|
* Nothing shall interrupt this code path while holding the per-CPU
|
|
* GHCB. The backup GHCB is only for NMIs interrupting this path.
|
|
*
|
|
* Callers must disable local interrupts around it.
|
|
*/
|
|
static noinstr struct ghcb *__sev_get_ghcb(struct ghcb_state *state)
|
|
{
|
|
struct sev_es_runtime_data *data;
|
|
struct ghcb *ghcb;
|
|
|
|
WARN_ON(!irqs_disabled());
|
|
|
|
data = this_cpu_read(runtime_data);
|
|
ghcb = &data->ghcb_page;
|
|
|
|
if (unlikely(data->ghcb_active)) {
|
|
/* GHCB is already in use - save its contents */
|
|
|
|
if (unlikely(data->backup_ghcb_active)) {
|
|
/*
|
|
* Backup-GHCB is also already in use. There is no way
|
|
* to continue here so just kill the machine. To make
|
|
* panic() work, mark GHCBs inactive so that messages
|
|
* can be printed out.
|
|
*/
|
|
data->ghcb_active = false;
|
|
data->backup_ghcb_active = false;
|
|
|
|
instrumentation_begin();
|
|
panic("Unable to handle #VC exception! GHCB and Backup GHCB are already in use");
|
|
instrumentation_end();
|
|
}
|
|
|
|
/* Mark backup_ghcb active before writing to it */
|
|
data->backup_ghcb_active = true;
|
|
|
|
state->ghcb = &data->backup_ghcb;
|
|
|
|
/* Backup GHCB content */
|
|
*state->ghcb = *ghcb;
|
|
} else {
|
|
state->ghcb = NULL;
|
|
data->ghcb_active = true;
|
|
}
|
|
|
|
return ghcb;
|
|
}
|
|
|
|
static inline u64 sev_es_rd_ghcb_msr(void)
|
|
{
|
|
return __rdmsr(MSR_AMD64_SEV_ES_GHCB);
|
|
}
|
|
|
|
static __always_inline void sev_es_wr_ghcb_msr(u64 val)
|
|
{
|
|
u32 low, high;
|
|
|
|
low = (u32)(val);
|
|
high = (u32)(val >> 32);
|
|
|
|
native_wrmsr(MSR_AMD64_SEV_ES_GHCB, low, high);
|
|
}
|
|
|
|
static int vc_fetch_insn_kernel(struct es_em_ctxt *ctxt,
|
|
unsigned char *buffer)
|
|
{
|
|
return copy_from_kernel_nofault(buffer, (unsigned char *)ctxt->regs->ip, MAX_INSN_SIZE);
|
|
}
|
|
|
|
static enum es_result __vc_decode_user_insn(struct es_em_ctxt *ctxt)
|
|
{
|
|
char buffer[MAX_INSN_SIZE];
|
|
int insn_bytes;
|
|
|
|
insn_bytes = insn_fetch_from_user_inatomic(ctxt->regs, buffer);
|
|
if (insn_bytes == 0) {
|
|
/* Nothing could be copied */
|
|
ctxt->fi.vector = X86_TRAP_PF;
|
|
ctxt->fi.error_code = X86_PF_INSTR | X86_PF_USER;
|
|
ctxt->fi.cr2 = ctxt->regs->ip;
|
|
return ES_EXCEPTION;
|
|
} else if (insn_bytes == -EINVAL) {
|
|
/* Effective RIP could not be calculated */
|
|
ctxt->fi.vector = X86_TRAP_GP;
|
|
ctxt->fi.error_code = 0;
|
|
ctxt->fi.cr2 = 0;
|
|
return ES_EXCEPTION;
|
|
}
|
|
|
|
if (!insn_decode_from_regs(&ctxt->insn, ctxt->regs, buffer, insn_bytes))
|
|
return ES_DECODE_FAILED;
|
|
|
|
if (ctxt->insn.immediate.got)
|
|
return ES_OK;
|
|
else
|
|
return ES_DECODE_FAILED;
|
|
}
|
|
|
|
static enum es_result __vc_decode_kern_insn(struct es_em_ctxt *ctxt)
|
|
{
|
|
char buffer[MAX_INSN_SIZE];
|
|
int res, ret;
|
|
|
|
res = vc_fetch_insn_kernel(ctxt, buffer);
|
|
if (res) {
|
|
ctxt->fi.vector = X86_TRAP_PF;
|
|
ctxt->fi.error_code = X86_PF_INSTR;
|
|
ctxt->fi.cr2 = ctxt->regs->ip;
|
|
return ES_EXCEPTION;
|
|
}
|
|
|
|
ret = insn_decode(&ctxt->insn, buffer, MAX_INSN_SIZE, INSN_MODE_64);
|
|
if (ret < 0)
|
|
return ES_DECODE_FAILED;
|
|
else
|
|
return ES_OK;
|
|
}
|
|
|
|
static enum es_result vc_decode_insn(struct es_em_ctxt *ctxt)
|
|
{
|
|
if (user_mode(ctxt->regs))
|
|
return __vc_decode_user_insn(ctxt);
|
|
else
|
|
return __vc_decode_kern_insn(ctxt);
|
|
}
|
|
|
|
static enum es_result vc_write_mem(struct es_em_ctxt *ctxt,
|
|
char *dst, char *buf, size_t size)
|
|
{
|
|
unsigned long error_code = X86_PF_PROT | X86_PF_WRITE;
|
|
|
|
/*
|
|
* This function uses __put_user() independent of whether kernel or user
|
|
* memory is accessed. This works fine because __put_user() does no
|
|
* sanity checks of the pointer being accessed. All that it does is
|
|
* to report when the access failed.
|
|
*
|
|
* Also, this function runs in atomic context, so __put_user() is not
|
|
* allowed to sleep. The page-fault handler detects that it is running
|
|
* in atomic context and will not try to take mmap_sem and handle the
|
|
* fault, so additional pagefault_enable()/disable() calls are not
|
|
* needed.
|
|
*
|
|
* The access can't be done via copy_to_user() here because
|
|
* vc_write_mem() must not use string instructions to access unsafe
|
|
* memory. The reason is that MOVS is emulated by the #VC handler by
|
|
* splitting the move up into a read and a write and taking a nested #VC
|
|
* exception on whatever of them is the MMIO access. Using string
|
|
* instructions here would cause infinite nesting.
|
|
*/
|
|
switch (size) {
|
|
case 1: {
|
|
u8 d1;
|
|
u8 __user *target = (u8 __user *)dst;
|
|
|
|
memcpy(&d1, buf, 1);
|
|
if (__put_user(d1, target))
|
|
goto fault;
|
|
break;
|
|
}
|
|
case 2: {
|
|
u16 d2;
|
|
u16 __user *target = (u16 __user *)dst;
|
|
|
|
memcpy(&d2, buf, 2);
|
|
if (__put_user(d2, target))
|
|
goto fault;
|
|
break;
|
|
}
|
|
case 4: {
|
|
u32 d4;
|
|
u32 __user *target = (u32 __user *)dst;
|
|
|
|
memcpy(&d4, buf, 4);
|
|
if (__put_user(d4, target))
|
|
goto fault;
|
|
break;
|
|
}
|
|
case 8: {
|
|
u64 d8;
|
|
u64 __user *target = (u64 __user *)dst;
|
|
|
|
memcpy(&d8, buf, 8);
|
|
if (__put_user(d8, target))
|
|
goto fault;
|
|
break;
|
|
}
|
|
default:
|
|
WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
|
|
return ES_UNSUPPORTED;
|
|
}
|
|
|
|
return ES_OK;
|
|
|
|
fault:
|
|
if (user_mode(ctxt->regs))
|
|
error_code |= X86_PF_USER;
|
|
|
|
ctxt->fi.vector = X86_TRAP_PF;
|
|
ctxt->fi.error_code = error_code;
|
|
ctxt->fi.cr2 = (unsigned long)dst;
|
|
|
|
return ES_EXCEPTION;
|
|
}
|
|
|
|
static enum es_result vc_read_mem(struct es_em_ctxt *ctxt,
|
|
char *src, char *buf, size_t size)
|
|
{
|
|
unsigned long error_code = X86_PF_PROT;
|
|
|
|
/*
|
|
* This function uses __get_user() independent of whether kernel or user
|
|
* memory is accessed. This works fine because __get_user() does no
|
|
* sanity checks of the pointer being accessed. All that it does is
|
|
* to report when the access failed.
|
|
*
|
|
* Also, this function runs in atomic context, so __get_user() is not
|
|
* allowed to sleep. The page-fault handler detects that it is running
|
|
* in atomic context and will not try to take mmap_sem and handle the
|
|
* fault, so additional pagefault_enable()/disable() calls are not
|
|
* needed.
|
|
*
|
|
* The access can't be done via copy_from_user() here because
|
|
* vc_read_mem() must not use string instructions to access unsafe
|
|
* memory. The reason is that MOVS is emulated by the #VC handler by
|
|
* splitting the move up into a read and a write and taking a nested #VC
|
|
* exception on whatever of them is the MMIO access. Using string
|
|
* instructions here would cause infinite nesting.
|
|
*/
|
|
switch (size) {
|
|
case 1: {
|
|
u8 d1;
|
|
u8 __user *s = (u8 __user *)src;
|
|
|
|
if (__get_user(d1, s))
|
|
goto fault;
|
|
memcpy(buf, &d1, 1);
|
|
break;
|
|
}
|
|
case 2: {
|
|
u16 d2;
|
|
u16 __user *s = (u16 __user *)src;
|
|
|
|
if (__get_user(d2, s))
|
|
goto fault;
|
|
memcpy(buf, &d2, 2);
|
|
break;
|
|
}
|
|
case 4: {
|
|
u32 d4;
|
|
u32 __user *s = (u32 __user *)src;
|
|
|
|
if (__get_user(d4, s))
|
|
goto fault;
|
|
memcpy(buf, &d4, 4);
|
|
break;
|
|
}
|
|
case 8: {
|
|
u64 d8;
|
|
u64 __user *s = (u64 __user *)src;
|
|
if (__get_user(d8, s))
|
|
goto fault;
|
|
memcpy(buf, &d8, 8);
|
|
break;
|
|
}
|
|
default:
|
|
WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
|
|
return ES_UNSUPPORTED;
|
|
}
|
|
|
|
return ES_OK;
|
|
|
|
fault:
|
|
if (user_mode(ctxt->regs))
|
|
error_code |= X86_PF_USER;
|
|
|
|
ctxt->fi.vector = X86_TRAP_PF;
|
|
ctxt->fi.error_code = error_code;
|
|
ctxt->fi.cr2 = (unsigned long)src;
|
|
|
|
return ES_EXCEPTION;
|
|
}
|
|
|
|
static enum es_result vc_slow_virt_to_phys(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
|
|
unsigned long vaddr, phys_addr_t *paddr)
|
|
{
|
|
unsigned long va = (unsigned long)vaddr;
|
|
unsigned int level;
|
|
phys_addr_t pa;
|
|
pgd_t *pgd;
|
|
pte_t *pte;
|
|
|
|
pgd = __va(read_cr3_pa());
|
|
pgd = &pgd[pgd_index(va)];
|
|
pte = lookup_address_in_pgd(pgd, va, &level);
|
|
if (!pte) {
|
|
ctxt->fi.vector = X86_TRAP_PF;
|
|
ctxt->fi.cr2 = vaddr;
|
|
ctxt->fi.error_code = 0;
|
|
|
|
if (user_mode(ctxt->regs))
|
|
ctxt->fi.error_code |= X86_PF_USER;
|
|
|
|
return ES_EXCEPTION;
|
|
}
|
|
|
|
if (WARN_ON_ONCE(pte_val(*pte) & _PAGE_ENC))
|
|
/* Emulated MMIO to/from encrypted memory not supported */
|
|
return ES_UNSUPPORTED;
|
|
|
|
pa = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
|
|
pa |= va & ~page_level_mask(level);
|
|
|
|
*paddr = pa;
|
|
|
|
return ES_OK;
|
|
}
|
|
|
|
/* Include code shared with pre-decompression boot stage */
|
|
#include "sev-shared.c"
|
|
|
|
static noinstr void __sev_put_ghcb(struct ghcb_state *state)
|
|
{
|
|
struct sev_es_runtime_data *data;
|
|
struct ghcb *ghcb;
|
|
|
|
WARN_ON(!irqs_disabled());
|
|
|
|
data = this_cpu_read(runtime_data);
|
|
ghcb = &data->ghcb_page;
|
|
|
|
if (state->ghcb) {
|
|
/* Restore GHCB from Backup */
|
|
*ghcb = *state->ghcb;
|
|
data->backup_ghcb_active = false;
|
|
state->ghcb = NULL;
|
|
} else {
|
|
/*
|
|
* Invalidate the GHCB so a VMGEXIT instruction issued
|
|
* from userspace won't appear to be valid.
|
|
*/
|
|
vc_ghcb_invalidate(ghcb);
|
|
data->ghcb_active = false;
|
|
}
|
|
}
|
|
|
|
void noinstr __sev_es_nmi_complete(void)
|
|
{
|
|
struct ghcb_state state;
|
|
struct ghcb *ghcb;
|
|
|
|
ghcb = __sev_get_ghcb(&state);
|
|
|
|
vc_ghcb_invalidate(ghcb);
|
|
ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_NMI_COMPLETE);
|
|
ghcb_set_sw_exit_info_1(ghcb, 0);
|
|
ghcb_set_sw_exit_info_2(ghcb, 0);
|
|
|
|
sev_es_wr_ghcb_msr(__pa_nodebug(ghcb));
|
|
VMGEXIT();
|
|
|
|
__sev_put_ghcb(&state);
|
|
}
|
|
|
|
static u64 __init get_secrets_page(void)
|
|
{
|
|
u64 pa_data = boot_params.cc_blob_address;
|
|
struct cc_blob_sev_info info;
|
|
void *map;
|
|
|
|
/*
|
|
* The CC blob contains the address of the secrets page, check if the
|
|
* blob is present.
|
|
*/
|
|
if (!pa_data)
|
|
return 0;
|
|
|
|
map = early_memremap(pa_data, sizeof(info));
|
|
if (!map) {
|
|
pr_err("Unable to locate SNP secrets page: failed to map the Confidential Computing blob.\n");
|
|
return 0;
|
|
}
|
|
memcpy(&info, map, sizeof(info));
|
|
early_memunmap(map, sizeof(info));
|
|
|
|
/* smoke-test the secrets page passed */
|
|
if (!info.secrets_phys || info.secrets_len != PAGE_SIZE)
|
|
return 0;
|
|
|
|
return info.secrets_phys;
|
|
}
|
|
|
|
static u64 __init get_snp_jump_table_addr(void)
|
|
{
|
|
struct snp_secrets_page_layout *layout;
|
|
void __iomem *mem;
|
|
u64 pa, addr;
|
|
|
|
pa = get_secrets_page();
|
|
if (!pa)
|
|
return 0;
|
|
|
|
mem = ioremap_encrypted(pa, PAGE_SIZE);
|
|
if (!mem) {
|
|
pr_err("Unable to locate AP jump table address: failed to map the SNP secrets page.\n");
|
|
return 0;
|
|
}
|
|
|
|
layout = (__force struct snp_secrets_page_layout *)mem;
|
|
|
|
addr = layout->os_area.ap_jump_table_pa;
|
|
iounmap(mem);
|
|
|
|
return addr;
|
|
}
|
|
|
|
static u64 __init get_jump_table_addr(void)
|
|
{
|
|
struct ghcb_state state;
|
|
unsigned long flags;
|
|
struct ghcb *ghcb;
|
|
u64 ret = 0;
|
|
|
|
if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
|
|
return get_snp_jump_table_addr();
|
|
|
|
local_irq_save(flags);
|
|
|
|
ghcb = __sev_get_ghcb(&state);
|
|
|
|
vc_ghcb_invalidate(ghcb);
|
|
ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_JUMP_TABLE);
|
|
ghcb_set_sw_exit_info_1(ghcb, SVM_VMGEXIT_GET_AP_JUMP_TABLE);
|
|
ghcb_set_sw_exit_info_2(ghcb, 0);
|
|
|
|
sev_es_wr_ghcb_msr(__pa(ghcb));
|
|
VMGEXIT();
|
|
|
|
if (ghcb_sw_exit_info_1_is_valid(ghcb) &&
|
|
ghcb_sw_exit_info_2_is_valid(ghcb))
|
|
ret = ghcb->save.sw_exit_info_2;
|
|
|
|
__sev_put_ghcb(&state);
|
|
|
|
local_irq_restore(flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void pvalidate_pages(unsigned long vaddr, unsigned int npages, bool validate)
|
|
{
|
|
unsigned long vaddr_end;
|
|
int rc;
|
|
|
|
vaddr = vaddr & PAGE_MASK;
|
|
vaddr_end = vaddr + (npages << PAGE_SHIFT);
|
|
|
|
while (vaddr < vaddr_end) {
|
|
rc = pvalidate(vaddr, RMP_PG_SIZE_4K, validate);
|
|
if (WARN(rc, "Failed to validate address 0x%lx ret %d", vaddr, rc))
|
|
sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PVALIDATE);
|
|
|
|
vaddr = vaddr + PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
static void __init early_set_pages_state(unsigned long paddr, unsigned int npages, enum psc_op op)
|
|
{
|
|
unsigned long paddr_end;
|
|
u64 val;
|
|
|
|
paddr = paddr & PAGE_MASK;
|
|
paddr_end = paddr + (npages << PAGE_SHIFT);
|
|
|
|
while (paddr < paddr_end) {
|
|
/*
|
|
* Use the MSR protocol because this function can be called before
|
|
* the GHCB is established.
|
|
*/
|
|
sev_es_wr_ghcb_msr(GHCB_MSR_PSC_REQ_GFN(paddr >> PAGE_SHIFT, op));
|
|
VMGEXIT();
|
|
|
|
val = sev_es_rd_ghcb_msr();
|
|
|
|
if (WARN(GHCB_RESP_CODE(val) != GHCB_MSR_PSC_RESP,
|
|
"Wrong PSC response code: 0x%x\n",
|
|
(unsigned int)GHCB_RESP_CODE(val)))
|
|
goto e_term;
|
|
|
|
if (WARN(GHCB_MSR_PSC_RESP_VAL(val),
|
|
"Failed to change page state to '%s' paddr 0x%lx error 0x%llx\n",
|
|
op == SNP_PAGE_STATE_PRIVATE ? "private" : "shared",
|
|
paddr, GHCB_MSR_PSC_RESP_VAL(val)))
|
|
goto e_term;
|
|
|
|
paddr = paddr + PAGE_SIZE;
|
|
}
|
|
|
|
return;
|
|
|
|
e_term:
|
|
sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
|
|
}
|
|
|
|
void __init early_snp_set_memory_private(unsigned long vaddr, unsigned long paddr,
|
|
unsigned int npages)
|
|
{
|
|
/*
|
|
* This can be invoked in early boot while running identity mapped, so
|
|
* use an open coded check for SNP instead of using cc_platform_has().
|
|
* This eliminates worries about jump tables or checking boot_cpu_data
|
|
* in the cc_platform_has() function.
|
|
*/
|
|
if (!(sev_status & MSR_AMD64_SEV_SNP_ENABLED))
|
|
return;
|
|
|
|
/*
|
|
* Ask the hypervisor to mark the memory pages as private in the RMP
|
|
* table.
|
|
*/
|
|
early_set_pages_state(paddr, npages, SNP_PAGE_STATE_PRIVATE);
|
|
|
|
/* Validate the memory pages after they've been added in the RMP table. */
|
|
pvalidate_pages(vaddr, npages, true);
|
|
}
|
|
|
|
void __init early_snp_set_memory_shared(unsigned long vaddr, unsigned long paddr,
|
|
unsigned int npages)
|
|
{
|
|
/*
|
|
* This can be invoked in early boot while running identity mapped, so
|
|
* use an open coded check for SNP instead of using cc_platform_has().
|
|
* This eliminates worries about jump tables or checking boot_cpu_data
|
|
* in the cc_platform_has() function.
|
|
*/
|
|
if (!(sev_status & MSR_AMD64_SEV_SNP_ENABLED))
|
|
return;
|
|
|
|
/* Invalidate the memory pages before they are marked shared in the RMP table. */
|
|
pvalidate_pages(vaddr, npages, false);
|
|
|
|
/* Ask hypervisor to mark the memory pages shared in the RMP table. */
|
|
early_set_pages_state(paddr, npages, SNP_PAGE_STATE_SHARED);
|
|
}
|
|
|
|
void __init snp_prep_memory(unsigned long paddr, unsigned int sz, enum psc_op op)
|
|
{
|
|
unsigned long vaddr, npages;
|
|
|
|
vaddr = (unsigned long)__va(paddr);
|
|
npages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
|
|
|
|
if (op == SNP_PAGE_STATE_PRIVATE)
|
|
early_snp_set_memory_private(vaddr, paddr, npages);
|
|
else if (op == SNP_PAGE_STATE_SHARED)
|
|
early_snp_set_memory_shared(vaddr, paddr, npages);
|
|
else
|
|
WARN(1, "invalid memory op %d\n", op);
|
|
}
|
|
|
|
static int vmgexit_psc(struct snp_psc_desc *desc)
|
|
{
|
|
int cur_entry, end_entry, ret = 0;
|
|
struct snp_psc_desc *data;
|
|
struct ghcb_state state;
|
|
struct es_em_ctxt ctxt;
|
|
unsigned long flags;
|
|
struct ghcb *ghcb;
|
|
|
|
/*
|
|
* __sev_get_ghcb() needs to run with IRQs disabled because it is using
|
|
* a per-CPU GHCB.
|
|
*/
|
|
local_irq_save(flags);
|
|
|
|
ghcb = __sev_get_ghcb(&state);
|
|
if (!ghcb) {
|
|
ret = 1;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/* Copy the input desc into GHCB shared buffer */
|
|
data = (struct snp_psc_desc *)ghcb->shared_buffer;
|
|
memcpy(ghcb->shared_buffer, desc, min_t(int, GHCB_SHARED_BUF_SIZE, sizeof(*desc)));
|
|
|
|
/*
|
|
* As per the GHCB specification, the hypervisor can resume the guest
|
|
* before processing all the entries. Check whether all the entries
|
|
* are processed. If not, then keep retrying. Note, the hypervisor
|
|
* will update the data memory directly to indicate the status, so
|
|
* reference the data->hdr everywhere.
|
|
*
|
|
* The strategy here is to wait for the hypervisor to change the page
|
|
* state in the RMP table before guest accesses the memory pages. If the
|
|
* page state change was not successful, then later memory access will
|
|
* result in a crash.
|
|
*/
|
|
cur_entry = data->hdr.cur_entry;
|
|
end_entry = data->hdr.end_entry;
|
|
|
|
while (data->hdr.cur_entry <= data->hdr.end_entry) {
|
|
ghcb_set_sw_scratch(ghcb, (u64)__pa(data));
|
|
|
|
/* This will advance the shared buffer data points to. */
|
|
ret = sev_es_ghcb_hv_call(ghcb, &ctxt, SVM_VMGEXIT_PSC, 0, 0);
|
|
|
|
/*
|
|
* Page State Change VMGEXIT can pass error code through
|
|
* exit_info_2.
|
|
*/
|
|
if (WARN(ret || ghcb->save.sw_exit_info_2,
|
|
"SNP: PSC failed ret=%d exit_info_2=%llx\n",
|
|
ret, ghcb->save.sw_exit_info_2)) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
|
|
/* Verify that reserved bit is not set */
|
|
if (WARN(data->hdr.reserved, "Reserved bit is set in the PSC header\n")) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Sanity check that entry processing is not going backwards.
|
|
* This will happen only if hypervisor is tricking us.
|
|
*/
|
|
if (WARN(data->hdr.end_entry > end_entry || cur_entry > data->hdr.cur_entry,
|
|
"SNP: PSC processing going backward, end_entry %d (got %d) cur_entry %d (got %d)\n",
|
|
end_entry, data->hdr.end_entry, cur_entry, data->hdr.cur_entry)) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
out:
|
|
__sev_put_ghcb(&state);
|
|
|
|
out_unlock:
|
|
local_irq_restore(flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void __set_pages_state(struct snp_psc_desc *data, unsigned long vaddr,
|
|
unsigned long vaddr_end, int op)
|
|
{
|
|
struct psc_hdr *hdr;
|
|
struct psc_entry *e;
|
|
unsigned long pfn;
|
|
int i;
|
|
|
|
hdr = &data->hdr;
|
|
e = data->entries;
|
|
|
|
memset(data, 0, sizeof(*data));
|
|
i = 0;
|
|
|
|
while (vaddr < vaddr_end) {
|
|
if (is_vmalloc_addr((void *)vaddr))
|
|
pfn = vmalloc_to_pfn((void *)vaddr);
|
|
else
|
|
pfn = __pa(vaddr) >> PAGE_SHIFT;
|
|
|
|
e->gfn = pfn;
|
|
e->operation = op;
|
|
hdr->end_entry = i;
|
|
|
|
/*
|
|
* Current SNP implementation doesn't keep track of the RMP page
|
|
* size so use 4K for simplicity.
|
|
*/
|
|
e->pagesize = RMP_PG_SIZE_4K;
|
|
|
|
vaddr = vaddr + PAGE_SIZE;
|
|
e++;
|
|
i++;
|
|
}
|
|
|
|
if (vmgexit_psc(data))
|
|
sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
|
|
}
|
|
|
|
static void set_pages_state(unsigned long vaddr, unsigned int npages, int op)
|
|
{
|
|
unsigned long vaddr_end, next_vaddr;
|
|
struct snp_psc_desc *desc;
|
|
|
|
desc = kmalloc(sizeof(*desc), GFP_KERNEL_ACCOUNT);
|
|
if (!desc)
|
|
panic("SNP: failed to allocate memory for PSC descriptor\n");
|
|
|
|
vaddr = vaddr & PAGE_MASK;
|
|
vaddr_end = vaddr + (npages << PAGE_SHIFT);
|
|
|
|
while (vaddr < vaddr_end) {
|
|
/* Calculate the last vaddr that fits in one struct snp_psc_desc. */
|
|
next_vaddr = min_t(unsigned long, vaddr_end,
|
|
(VMGEXIT_PSC_MAX_ENTRY * PAGE_SIZE) + vaddr);
|
|
|
|
__set_pages_state(desc, vaddr, next_vaddr, op);
|
|
|
|
vaddr = next_vaddr;
|
|
}
|
|
|
|
kfree(desc);
|
|
}
|
|
|
|
void snp_set_memory_shared(unsigned long vaddr, unsigned int npages)
|
|
{
|
|
if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
|
|
return;
|
|
|
|
pvalidate_pages(vaddr, npages, false);
|
|
|
|
set_pages_state(vaddr, npages, SNP_PAGE_STATE_SHARED);
|
|
}
|
|
|
|
void snp_set_memory_private(unsigned long vaddr, unsigned int npages)
|
|
{
|
|
if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
|
|
return;
|
|
|
|
set_pages_state(vaddr, npages, SNP_PAGE_STATE_PRIVATE);
|
|
|
|
pvalidate_pages(vaddr, npages, true);
|
|
}
|
|
|
|
static int snp_set_vmsa(void *va, bool vmsa)
|
|
{
|
|
u64 attrs;
|
|
|
|
/*
|
|
* Running at VMPL0 allows the kernel to change the VMSA bit for a page
|
|
* using the RMPADJUST instruction. However, for the instruction to
|
|
* succeed it must target the permissions of a lesser privileged
|
|
* (higher numbered) VMPL level, so use VMPL1 (refer to the RMPADJUST
|
|
* instruction in the AMD64 APM Volume 3).
|
|
*/
|
|
attrs = 1;
|
|
if (vmsa)
|
|
attrs |= RMPADJUST_VMSA_PAGE_BIT;
|
|
|
|
return rmpadjust((unsigned long)va, RMP_PG_SIZE_4K, attrs);
|
|
}
|
|
|
|
#define __ATTR_BASE (SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK)
|
|
#define INIT_CS_ATTRIBS (__ATTR_BASE | SVM_SELECTOR_READ_MASK | SVM_SELECTOR_CODE_MASK)
|
|
#define INIT_DS_ATTRIBS (__ATTR_BASE | SVM_SELECTOR_WRITE_MASK)
|
|
|
|
#define INIT_LDTR_ATTRIBS (SVM_SELECTOR_P_MASK | 2)
|
|
#define INIT_TR_ATTRIBS (SVM_SELECTOR_P_MASK | 3)
|
|
|
|
static void *snp_alloc_vmsa_page(void)
|
|
{
|
|
struct page *p;
|
|
|
|
/*
|
|
* Allocate VMSA page to work around the SNP erratum where the CPU will
|
|
* incorrectly signal an RMP violation #PF if a large page (2MB or 1GB)
|
|
* collides with the RMP entry of VMSA page. The recommended workaround
|
|
* is to not use a large page.
|
|
*
|
|
* Allocate an 8k page which is also 8k-aligned.
|
|
*/
|
|
p = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO, 1);
|
|
if (!p)
|
|
return NULL;
|
|
|
|
split_page(p, 1);
|
|
|
|
/* Free the first 4k. This page may be 2M/1G aligned and cannot be used. */
|
|
__free_page(p);
|
|
|
|
return page_address(p + 1);
|
|
}
|
|
|
|
static void snp_cleanup_vmsa(struct sev_es_save_area *vmsa)
|
|
{
|
|
int err;
|
|
|
|
err = snp_set_vmsa(vmsa, false);
|
|
if (err)
|
|
pr_err("clear VMSA page failed (%u), leaking page\n", err);
|
|
else
|
|
free_page((unsigned long)vmsa);
|
|
}
|
|
|
|
static int wakeup_cpu_via_vmgexit(int apic_id, unsigned long start_ip)
|
|
{
|
|
struct sev_es_save_area *cur_vmsa, *vmsa;
|
|
struct ghcb_state state;
|
|
unsigned long flags;
|
|
struct ghcb *ghcb;
|
|
u8 sipi_vector;
|
|
int cpu, ret;
|
|
u64 cr4;
|
|
|
|
/*
|
|
* The hypervisor SNP feature support check has happened earlier, just check
|
|
* the AP_CREATION one here.
|
|
*/
|
|
if (!(sev_hv_features & GHCB_HV_FT_SNP_AP_CREATION))
|
|
return -EOPNOTSUPP;
|
|
|
|
/*
|
|
* Verify the desired start IP against the known trampoline start IP
|
|
* to catch any future new trampolines that may be introduced that
|
|
* would require a new protected guest entry point.
|
|
*/
|
|
if (WARN_ONCE(start_ip != real_mode_header->trampoline_start,
|
|
"Unsupported SNP start_ip: %lx\n", start_ip))
|
|
return -EINVAL;
|
|
|
|
/* Override start_ip with known protected guest start IP */
|
|
start_ip = real_mode_header->sev_es_trampoline_start;
|
|
|
|
/* Find the logical CPU for the APIC ID */
|
|
for_each_present_cpu(cpu) {
|
|
if (arch_match_cpu_phys_id(cpu, apic_id))
|
|
break;
|
|
}
|
|
if (cpu >= nr_cpu_ids)
|
|
return -EINVAL;
|
|
|
|
cur_vmsa = per_cpu(sev_vmsa, cpu);
|
|
|
|
/*
|
|
* A new VMSA is created each time because there is no guarantee that
|
|
* the current VMSA is the kernels or that the vCPU is not running. If
|
|
* an attempt was done to use the current VMSA with a running vCPU, a
|
|
* #VMEXIT of that vCPU would wipe out all of the settings being done
|
|
* here.
|
|
*/
|
|
vmsa = (struct sev_es_save_area *)snp_alloc_vmsa_page();
|
|
if (!vmsa)
|
|
return -ENOMEM;
|
|
|
|
/* CR4 should maintain the MCE value */
|
|
cr4 = native_read_cr4() & X86_CR4_MCE;
|
|
|
|
/* Set the CS value based on the start_ip converted to a SIPI vector */
|
|
sipi_vector = (start_ip >> 12);
|
|
vmsa->cs.base = sipi_vector << 12;
|
|
vmsa->cs.limit = AP_INIT_CS_LIMIT;
|
|
vmsa->cs.attrib = INIT_CS_ATTRIBS;
|
|
vmsa->cs.selector = sipi_vector << 8;
|
|
|
|
/* Set the RIP value based on start_ip */
|
|
vmsa->rip = start_ip & 0xfff;
|
|
|
|
/* Set AP INIT defaults as documented in the APM */
|
|
vmsa->ds.limit = AP_INIT_DS_LIMIT;
|
|
vmsa->ds.attrib = INIT_DS_ATTRIBS;
|
|
vmsa->es = vmsa->ds;
|
|
vmsa->fs = vmsa->ds;
|
|
vmsa->gs = vmsa->ds;
|
|
vmsa->ss = vmsa->ds;
|
|
|
|
vmsa->gdtr.limit = AP_INIT_GDTR_LIMIT;
|
|
vmsa->ldtr.limit = AP_INIT_LDTR_LIMIT;
|
|
vmsa->ldtr.attrib = INIT_LDTR_ATTRIBS;
|
|
vmsa->idtr.limit = AP_INIT_IDTR_LIMIT;
|
|
vmsa->tr.limit = AP_INIT_TR_LIMIT;
|
|
vmsa->tr.attrib = INIT_TR_ATTRIBS;
|
|
|
|
vmsa->cr4 = cr4;
|
|
vmsa->cr0 = AP_INIT_CR0_DEFAULT;
|
|
vmsa->dr7 = DR7_RESET_VALUE;
|
|
vmsa->dr6 = AP_INIT_DR6_DEFAULT;
|
|
vmsa->rflags = AP_INIT_RFLAGS_DEFAULT;
|
|
vmsa->g_pat = AP_INIT_GPAT_DEFAULT;
|
|
vmsa->xcr0 = AP_INIT_XCR0_DEFAULT;
|
|
vmsa->mxcsr = AP_INIT_MXCSR_DEFAULT;
|
|
vmsa->x87_ftw = AP_INIT_X87_FTW_DEFAULT;
|
|
vmsa->x87_fcw = AP_INIT_X87_FCW_DEFAULT;
|
|
|
|
/* SVME must be set. */
|
|
vmsa->efer = EFER_SVME;
|
|
|
|
/*
|
|
* Set the SNP-specific fields for this VMSA:
|
|
* VMPL level
|
|
* SEV_FEATURES (matches the SEV STATUS MSR right shifted 2 bits)
|
|
*/
|
|
vmsa->vmpl = 0;
|
|
vmsa->sev_features = sev_status >> 2;
|
|
|
|
/* Switch the page over to a VMSA page now that it is initialized */
|
|
ret = snp_set_vmsa(vmsa, true);
|
|
if (ret) {
|
|
pr_err("set VMSA page failed (%u)\n", ret);
|
|
free_page((unsigned long)vmsa);
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Issue VMGEXIT AP Creation NAE event */
|
|
local_irq_save(flags);
|
|
|
|
ghcb = __sev_get_ghcb(&state);
|
|
|
|
vc_ghcb_invalidate(ghcb);
|
|
ghcb_set_rax(ghcb, vmsa->sev_features);
|
|
ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_CREATION);
|
|
ghcb_set_sw_exit_info_1(ghcb, ((u64)apic_id << 32) | SVM_VMGEXIT_AP_CREATE);
|
|
ghcb_set_sw_exit_info_2(ghcb, __pa(vmsa));
|
|
|
|
sev_es_wr_ghcb_msr(__pa(ghcb));
|
|
VMGEXIT();
|
|
|
|
if (!ghcb_sw_exit_info_1_is_valid(ghcb) ||
|
|
lower_32_bits(ghcb->save.sw_exit_info_1)) {
|
|
pr_err("SNP AP Creation error\n");
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
__sev_put_ghcb(&state);
|
|
|
|
local_irq_restore(flags);
|
|
|
|
/* Perform cleanup if there was an error */
|
|
if (ret) {
|
|
snp_cleanup_vmsa(vmsa);
|
|
vmsa = NULL;
|
|
}
|
|
|
|
/* Free up any previous VMSA page */
|
|
if (cur_vmsa)
|
|
snp_cleanup_vmsa(cur_vmsa);
|
|
|
|
/* Record the current VMSA page */
|
|
per_cpu(sev_vmsa, cpu) = vmsa;
|
|
|
|
return ret;
|
|
}
|
|
|
|
void snp_set_wakeup_secondary_cpu(void)
|
|
{
|
|
if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
|
|
return;
|
|
|
|
/*
|
|
* Always set this override if SNP is enabled. This makes it the
|
|
* required method to start APs under SNP. If the hypervisor does
|
|
* not support AP creation, then no APs will be started.
|
|
*/
|
|
apic->wakeup_secondary_cpu = wakeup_cpu_via_vmgexit;
|
|
}
|
|
|
|
int __init sev_es_setup_ap_jump_table(struct real_mode_header *rmh)
|
|
{
|
|
u16 startup_cs, startup_ip;
|
|
phys_addr_t jump_table_pa;
|
|
u64 jump_table_addr;
|
|
u16 __iomem *jump_table;
|
|
|
|
jump_table_addr = get_jump_table_addr();
|
|
|
|
/* On UP guests there is no jump table so this is not a failure */
|
|
if (!jump_table_addr)
|
|
return 0;
|
|
|
|
/* Check if AP Jump Table is page-aligned */
|
|
if (jump_table_addr & ~PAGE_MASK)
|
|
return -EINVAL;
|
|
|
|
jump_table_pa = jump_table_addr & PAGE_MASK;
|
|
|
|
startup_cs = (u16)(rmh->trampoline_start >> 4);
|
|
startup_ip = (u16)(rmh->sev_es_trampoline_start -
|
|
rmh->trampoline_start);
|
|
|
|
jump_table = ioremap_encrypted(jump_table_pa, PAGE_SIZE);
|
|
if (!jump_table)
|
|
return -EIO;
|
|
|
|
writew(startup_ip, &jump_table[0]);
|
|
writew(startup_cs, &jump_table[1]);
|
|
|
|
iounmap(jump_table);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This is needed by the OVMF UEFI firmware which will use whatever it finds in
|
|
* the GHCB MSR as its GHCB to talk to the hypervisor. So make sure the per-cpu
|
|
* runtime GHCBs used by the kernel are also mapped in the EFI page-table.
|
|
*/
|
|
int __init sev_es_efi_map_ghcbs(pgd_t *pgd)
|
|
{
|
|
struct sev_es_runtime_data *data;
|
|
unsigned long address, pflags;
|
|
int cpu;
|
|
u64 pfn;
|
|
|
|
if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
|
|
return 0;
|
|
|
|
pflags = _PAGE_NX | _PAGE_RW;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
data = per_cpu(runtime_data, cpu);
|
|
|
|
address = __pa(&data->ghcb_page);
|
|
pfn = address >> PAGE_SHIFT;
|
|
|
|
if (kernel_map_pages_in_pgd(pgd, pfn, address, 1, pflags))
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static enum es_result vc_handle_msr(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
|
|
{
|
|
struct pt_regs *regs = ctxt->regs;
|
|
enum es_result ret;
|
|
u64 exit_info_1;
|
|
|
|
/* Is it a WRMSR? */
|
|
exit_info_1 = (ctxt->insn.opcode.bytes[1] == 0x30) ? 1 : 0;
|
|
|
|
ghcb_set_rcx(ghcb, regs->cx);
|
|
if (exit_info_1) {
|
|
ghcb_set_rax(ghcb, regs->ax);
|
|
ghcb_set_rdx(ghcb, regs->dx);
|
|
}
|
|
|
|
ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_MSR, exit_info_1, 0);
|
|
|
|
if ((ret == ES_OK) && (!exit_info_1)) {
|
|
regs->ax = ghcb->save.rax;
|
|
regs->dx = ghcb->save.rdx;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void snp_register_per_cpu_ghcb(void)
|
|
{
|
|
struct sev_es_runtime_data *data;
|
|
struct ghcb *ghcb;
|
|
|
|
data = this_cpu_read(runtime_data);
|
|
ghcb = &data->ghcb_page;
|
|
|
|
snp_register_ghcb_early(__pa(ghcb));
|
|
}
|
|
|
|
void setup_ghcb(void)
|
|
{
|
|
if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
|
|
return;
|
|
|
|
/* First make sure the hypervisor talks a supported protocol. */
|
|
if (!sev_es_negotiate_protocol())
|
|
sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
|
|
|
|
/*
|
|
* Check whether the runtime #VC exception handler is active. It uses
|
|
* the per-CPU GHCB page which is set up by sev_es_init_vc_handling().
|
|
*
|
|
* If SNP is active, register the per-CPU GHCB page so that the runtime
|
|
* exception handler can use it.
|
|
*/
|
|
if (initial_vc_handler == (unsigned long)kernel_exc_vmm_communication) {
|
|
if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
|
|
snp_register_per_cpu_ghcb();
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Clear the boot_ghcb. The first exception comes in before the bss
|
|
* section is cleared.
|
|
*/
|
|
memset(&boot_ghcb_page, 0, PAGE_SIZE);
|
|
|
|
/* Alright - Make the boot-ghcb public */
|
|
boot_ghcb = &boot_ghcb_page;
|
|
|
|
/* SNP guest requires that GHCB GPA must be registered. */
|
|
if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
|
|
snp_register_ghcb_early(__pa(&boot_ghcb_page));
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
static void sev_es_ap_hlt_loop(void)
|
|
{
|
|
struct ghcb_state state;
|
|
struct ghcb *ghcb;
|
|
|
|
ghcb = __sev_get_ghcb(&state);
|
|
|
|
while (true) {
|
|
vc_ghcb_invalidate(ghcb);
|
|
ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_HLT_LOOP);
|
|
ghcb_set_sw_exit_info_1(ghcb, 0);
|
|
ghcb_set_sw_exit_info_2(ghcb, 0);
|
|
|
|
sev_es_wr_ghcb_msr(__pa(ghcb));
|
|
VMGEXIT();
|
|
|
|
/* Wakeup signal? */
|
|
if (ghcb_sw_exit_info_2_is_valid(ghcb) &&
|
|
ghcb->save.sw_exit_info_2)
|
|
break;
|
|
}
|
|
|
|
__sev_put_ghcb(&state);
|
|
}
|
|
|
|
/*
|
|
* Play_dead handler when running under SEV-ES. This is needed because
|
|
* the hypervisor can't deliver an SIPI request to restart the AP.
|
|
* Instead the kernel has to issue a VMGEXIT to halt the VCPU until the
|
|
* hypervisor wakes it up again.
|
|
*/
|
|
static void sev_es_play_dead(void)
|
|
{
|
|
play_dead_common();
|
|
|
|
/* IRQs now disabled */
|
|
|
|
sev_es_ap_hlt_loop();
|
|
|
|
/*
|
|
* If we get here, the VCPU was woken up again. Jump to CPU
|
|
* startup code to get it back online.
|
|
*/
|
|
start_cpu0();
|
|
}
|
|
#else /* CONFIG_HOTPLUG_CPU */
|
|
#define sev_es_play_dead native_play_dead
|
|
#endif /* CONFIG_HOTPLUG_CPU */
|
|
|
|
#ifdef CONFIG_SMP
|
|
static void __init sev_es_setup_play_dead(void)
|
|
{
|
|
smp_ops.play_dead = sev_es_play_dead;
|
|
}
|
|
#else
|
|
static inline void sev_es_setup_play_dead(void) { }
|
|
#endif
|
|
|
|
static void __init alloc_runtime_data(int cpu)
|
|
{
|
|
struct sev_es_runtime_data *data;
|
|
|
|
data = memblock_alloc(sizeof(*data), PAGE_SIZE);
|
|
if (!data)
|
|
panic("Can't allocate SEV-ES runtime data");
|
|
|
|
per_cpu(runtime_data, cpu) = data;
|
|
}
|
|
|
|
static void __init init_ghcb(int cpu)
|
|
{
|
|
struct sev_es_runtime_data *data;
|
|
int err;
|
|
|
|
data = per_cpu(runtime_data, cpu);
|
|
|
|
err = early_set_memory_decrypted((unsigned long)&data->ghcb_page,
|
|
sizeof(data->ghcb_page));
|
|
if (err)
|
|
panic("Can't map GHCBs unencrypted");
|
|
|
|
memset(&data->ghcb_page, 0, sizeof(data->ghcb_page));
|
|
|
|
data->ghcb_active = false;
|
|
data->backup_ghcb_active = false;
|
|
}
|
|
|
|
void __init sev_es_init_vc_handling(void)
|
|
{
|
|
int cpu;
|
|
|
|
BUILD_BUG_ON(offsetof(struct sev_es_runtime_data, ghcb_page) % PAGE_SIZE);
|
|
|
|
if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
|
|
return;
|
|
|
|
if (!sev_es_check_cpu_features())
|
|
panic("SEV-ES CPU Features missing");
|
|
|
|
/*
|
|
* SNP is supported in v2 of the GHCB spec which mandates support for HV
|
|
* features.
|
|
*/
|
|
if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) {
|
|
sev_hv_features = get_hv_features();
|
|
|
|
if (!(sev_hv_features & GHCB_HV_FT_SNP))
|
|
sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
|
|
}
|
|
|
|
/* Enable SEV-ES special handling */
|
|
static_branch_enable(&sev_es_enable_key);
|
|
|
|
/* Initialize per-cpu GHCB pages */
|
|
for_each_possible_cpu(cpu) {
|
|
alloc_runtime_data(cpu);
|
|
init_ghcb(cpu);
|
|
}
|
|
|
|
sev_es_setup_play_dead();
|
|
|
|
/* Secondary CPUs use the runtime #VC handler */
|
|
initial_vc_handler = (unsigned long)kernel_exc_vmm_communication;
|
|
}
|
|
|
|
static void __init vc_early_forward_exception(struct es_em_ctxt *ctxt)
|
|
{
|
|
int trapnr = ctxt->fi.vector;
|
|
|
|
if (trapnr == X86_TRAP_PF)
|
|
native_write_cr2(ctxt->fi.cr2);
|
|
|
|
ctxt->regs->orig_ax = ctxt->fi.error_code;
|
|
do_early_exception(ctxt->regs, trapnr);
|
|
}
|
|
|
|
static long *vc_insn_get_rm(struct es_em_ctxt *ctxt)
|
|
{
|
|
long *reg_array;
|
|
int offset;
|
|
|
|
reg_array = (long *)ctxt->regs;
|
|
offset = insn_get_modrm_rm_off(&ctxt->insn, ctxt->regs);
|
|
|
|
if (offset < 0)
|
|
return NULL;
|
|
|
|
offset /= sizeof(long);
|
|
|
|
return reg_array + offset;
|
|
}
|
|
static enum es_result vc_do_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
|
|
unsigned int bytes, bool read)
|
|
{
|
|
u64 exit_code, exit_info_1, exit_info_2;
|
|
unsigned long ghcb_pa = __pa(ghcb);
|
|
enum es_result res;
|
|
phys_addr_t paddr;
|
|
void __user *ref;
|
|
|
|
ref = insn_get_addr_ref(&ctxt->insn, ctxt->regs);
|
|
if (ref == (void __user *)-1L)
|
|
return ES_UNSUPPORTED;
|
|
|
|
exit_code = read ? SVM_VMGEXIT_MMIO_READ : SVM_VMGEXIT_MMIO_WRITE;
|
|
|
|
res = vc_slow_virt_to_phys(ghcb, ctxt, (unsigned long)ref, &paddr);
|
|
if (res != ES_OK) {
|
|
if (res == ES_EXCEPTION && !read)
|
|
ctxt->fi.error_code |= X86_PF_WRITE;
|
|
|
|
return res;
|
|
}
|
|
|
|
exit_info_1 = paddr;
|
|
/* Can never be greater than 8 */
|
|
exit_info_2 = bytes;
|
|
|
|
ghcb_set_sw_scratch(ghcb, ghcb_pa + offsetof(struct ghcb, shared_buffer));
|
|
|
|
return sev_es_ghcb_hv_call(ghcb, ctxt, exit_code, exit_info_1, exit_info_2);
|
|
}
|
|
|
|
/*
|
|
* The MOVS instruction has two memory operands, which raises the
|
|
* problem that it is not known whether the access to the source or the
|
|
* destination caused the #VC exception (and hence whether an MMIO read
|
|
* or write operation needs to be emulated).
|
|
*
|
|
* Instead of playing games with walking page-tables and trying to guess
|
|
* whether the source or destination is an MMIO range, split the move
|
|
* into two operations, a read and a write with only one memory operand.
|
|
* This will cause a nested #VC exception on the MMIO address which can
|
|
* then be handled.
|
|
*
|
|
* This implementation has the benefit that it also supports MOVS where
|
|
* source _and_ destination are MMIO regions.
|
|
*
|
|
* It will slow MOVS on MMIO down a lot, but in SEV-ES guests it is a
|
|
* rare operation. If it turns out to be a performance problem the split
|
|
* operations can be moved to memcpy_fromio() and memcpy_toio().
|
|
*/
|
|
static enum es_result vc_handle_mmio_movs(struct es_em_ctxt *ctxt,
|
|
unsigned int bytes)
|
|
{
|
|
unsigned long ds_base, es_base;
|
|
unsigned char *src, *dst;
|
|
unsigned char buffer[8];
|
|
enum es_result ret;
|
|
bool rep;
|
|
int off;
|
|
|
|
ds_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_DS);
|
|
es_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_ES);
|
|
|
|
if (ds_base == -1L || es_base == -1L) {
|
|
ctxt->fi.vector = X86_TRAP_GP;
|
|
ctxt->fi.error_code = 0;
|
|
return ES_EXCEPTION;
|
|
}
|
|
|
|
src = ds_base + (unsigned char *)ctxt->regs->si;
|
|
dst = es_base + (unsigned char *)ctxt->regs->di;
|
|
|
|
ret = vc_read_mem(ctxt, src, buffer, bytes);
|
|
if (ret != ES_OK)
|
|
return ret;
|
|
|
|
ret = vc_write_mem(ctxt, dst, buffer, bytes);
|
|
if (ret != ES_OK)
|
|
return ret;
|
|
|
|
if (ctxt->regs->flags & X86_EFLAGS_DF)
|
|
off = -bytes;
|
|
else
|
|
off = bytes;
|
|
|
|
ctxt->regs->si += off;
|
|
ctxt->regs->di += off;
|
|
|
|
rep = insn_has_rep_prefix(&ctxt->insn);
|
|
if (rep)
|
|
ctxt->regs->cx -= 1;
|
|
|
|
if (!rep || ctxt->regs->cx == 0)
|
|
return ES_OK;
|
|
else
|
|
return ES_RETRY;
|
|
}
|
|
|
|
static enum es_result vc_handle_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
|
|
{
|
|
struct insn *insn = &ctxt->insn;
|
|
enum insn_mmio_type mmio;
|
|
unsigned int bytes = 0;
|
|
enum es_result ret;
|
|
u8 sign_byte;
|
|
long *reg_data;
|
|
|
|
mmio = insn_decode_mmio(insn, &bytes);
|
|
if (mmio == INSN_MMIO_DECODE_FAILED)
|
|
return ES_DECODE_FAILED;
|
|
|
|
if (mmio != INSN_MMIO_WRITE_IMM && mmio != INSN_MMIO_MOVS) {
|
|
reg_data = insn_get_modrm_reg_ptr(insn, ctxt->regs);
|
|
if (!reg_data)
|
|
return ES_DECODE_FAILED;
|
|
}
|
|
|
|
switch (mmio) {
|
|
case INSN_MMIO_WRITE:
|
|
memcpy(ghcb->shared_buffer, reg_data, bytes);
|
|
ret = vc_do_mmio(ghcb, ctxt, bytes, false);
|
|
break;
|
|
case INSN_MMIO_WRITE_IMM:
|
|
memcpy(ghcb->shared_buffer, insn->immediate1.bytes, bytes);
|
|
ret = vc_do_mmio(ghcb, ctxt, bytes, false);
|
|
break;
|
|
case INSN_MMIO_READ:
|
|
ret = vc_do_mmio(ghcb, ctxt, bytes, true);
|
|
if (ret)
|
|
break;
|
|
|
|
/* Zero-extend for 32-bit operation */
|
|
if (bytes == 4)
|
|
*reg_data = 0;
|
|
|
|
memcpy(reg_data, ghcb->shared_buffer, bytes);
|
|
break;
|
|
case INSN_MMIO_READ_ZERO_EXTEND:
|
|
ret = vc_do_mmio(ghcb, ctxt, bytes, true);
|
|
if (ret)
|
|
break;
|
|
|
|
/* Zero extend based on operand size */
|
|
memset(reg_data, 0, insn->opnd_bytes);
|
|
memcpy(reg_data, ghcb->shared_buffer, bytes);
|
|
break;
|
|
case INSN_MMIO_READ_SIGN_EXTEND:
|
|
ret = vc_do_mmio(ghcb, ctxt, bytes, true);
|
|
if (ret)
|
|
break;
|
|
|
|
if (bytes == 1) {
|
|
u8 *val = (u8 *)ghcb->shared_buffer;
|
|
|
|
sign_byte = (*val & 0x80) ? 0xff : 0x00;
|
|
} else {
|
|
u16 *val = (u16 *)ghcb->shared_buffer;
|
|
|
|
sign_byte = (*val & 0x8000) ? 0xff : 0x00;
|
|
}
|
|
|
|
/* Sign extend based on operand size */
|
|
memset(reg_data, sign_byte, insn->opnd_bytes);
|
|
memcpy(reg_data, ghcb->shared_buffer, bytes);
|
|
break;
|
|
case INSN_MMIO_MOVS:
|
|
ret = vc_handle_mmio_movs(ctxt, bytes);
|
|
break;
|
|
default:
|
|
ret = ES_UNSUPPORTED;
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static enum es_result vc_handle_dr7_write(struct ghcb *ghcb,
|
|
struct es_em_ctxt *ctxt)
|
|
{
|
|
struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
|
|
long val, *reg = vc_insn_get_rm(ctxt);
|
|
enum es_result ret;
|
|
|
|
if (!reg)
|
|
return ES_DECODE_FAILED;
|
|
|
|
val = *reg;
|
|
|
|
/* Upper 32 bits must be written as zeroes */
|
|
if (val >> 32) {
|
|
ctxt->fi.vector = X86_TRAP_GP;
|
|
ctxt->fi.error_code = 0;
|
|
return ES_EXCEPTION;
|
|
}
|
|
|
|
/* Clear out other reserved bits and set bit 10 */
|
|
val = (val & 0xffff23ffL) | BIT(10);
|
|
|
|
/* Early non-zero writes to DR7 are not supported */
|
|
if (!data && (val & ~DR7_RESET_VALUE))
|
|
return ES_UNSUPPORTED;
|
|
|
|
/* Using a value of 0 for ExitInfo1 means RAX holds the value */
|
|
ghcb_set_rax(ghcb, val);
|
|
ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WRITE_DR7, 0, 0);
|
|
if (ret != ES_OK)
|
|
return ret;
|
|
|
|
if (data)
|
|
data->dr7 = val;
|
|
|
|
return ES_OK;
|
|
}
|
|
|
|
static enum es_result vc_handle_dr7_read(struct ghcb *ghcb,
|
|
struct es_em_ctxt *ctxt)
|
|
{
|
|
struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
|
|
long *reg = vc_insn_get_rm(ctxt);
|
|
|
|
if (!reg)
|
|
return ES_DECODE_FAILED;
|
|
|
|
if (data)
|
|
*reg = data->dr7;
|
|
else
|
|
*reg = DR7_RESET_VALUE;
|
|
|
|
return ES_OK;
|
|
}
|
|
|
|
static enum es_result vc_handle_wbinvd(struct ghcb *ghcb,
|
|
struct es_em_ctxt *ctxt)
|
|
{
|
|
return sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WBINVD, 0, 0);
|
|
}
|
|
|
|
static enum es_result vc_handle_rdpmc(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
|
|
{
|
|
enum es_result ret;
|
|
|
|
ghcb_set_rcx(ghcb, ctxt->regs->cx);
|
|
|
|
ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_RDPMC, 0, 0);
|
|
if (ret != ES_OK)
|
|
return ret;
|
|
|
|
if (!(ghcb_rax_is_valid(ghcb) && ghcb_rdx_is_valid(ghcb)))
|
|
return ES_VMM_ERROR;
|
|
|
|
ctxt->regs->ax = ghcb->save.rax;
|
|
ctxt->regs->dx = ghcb->save.rdx;
|
|
|
|
return ES_OK;
|
|
}
|
|
|
|
static enum es_result vc_handle_monitor(struct ghcb *ghcb,
|
|
struct es_em_ctxt *ctxt)
|
|
{
|
|
/*
|
|
* Treat it as a NOP and do not leak a physical address to the
|
|
* hypervisor.
|
|
*/
|
|
return ES_OK;
|
|
}
|
|
|
|
static enum es_result vc_handle_mwait(struct ghcb *ghcb,
|
|
struct es_em_ctxt *ctxt)
|
|
{
|
|
/* Treat the same as MONITOR/MONITORX */
|
|
return ES_OK;
|
|
}
|
|
|
|
static enum es_result vc_handle_vmmcall(struct ghcb *ghcb,
|
|
struct es_em_ctxt *ctxt)
|
|
{
|
|
enum es_result ret;
|
|
|
|
ghcb_set_rax(ghcb, ctxt->regs->ax);
|
|
ghcb_set_cpl(ghcb, user_mode(ctxt->regs) ? 3 : 0);
|
|
|
|
if (x86_platform.hyper.sev_es_hcall_prepare)
|
|
x86_platform.hyper.sev_es_hcall_prepare(ghcb, ctxt->regs);
|
|
|
|
ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_VMMCALL, 0, 0);
|
|
if (ret != ES_OK)
|
|
return ret;
|
|
|
|
if (!ghcb_rax_is_valid(ghcb))
|
|
return ES_VMM_ERROR;
|
|
|
|
ctxt->regs->ax = ghcb->save.rax;
|
|
|
|
/*
|
|
* Call sev_es_hcall_finish() after regs->ax is already set.
|
|
* This allows the hypervisor handler to overwrite it again if
|
|
* necessary.
|
|
*/
|
|
if (x86_platform.hyper.sev_es_hcall_finish &&
|
|
!x86_platform.hyper.sev_es_hcall_finish(ghcb, ctxt->regs))
|
|
return ES_VMM_ERROR;
|
|
|
|
return ES_OK;
|
|
}
|
|
|
|
static enum es_result vc_handle_trap_ac(struct ghcb *ghcb,
|
|
struct es_em_ctxt *ctxt)
|
|
{
|
|
/*
|
|
* Calling ecx_alignment_check() directly does not work, because it
|
|
* enables IRQs and the GHCB is active. Forward the exception and call
|
|
* it later from vc_forward_exception().
|
|
*/
|
|
ctxt->fi.vector = X86_TRAP_AC;
|
|
ctxt->fi.error_code = 0;
|
|
return ES_EXCEPTION;
|
|
}
|
|
|
|
static enum es_result vc_handle_exitcode(struct es_em_ctxt *ctxt,
|
|
struct ghcb *ghcb,
|
|
unsigned long exit_code)
|
|
{
|
|
enum es_result result;
|
|
|
|
switch (exit_code) {
|
|
case SVM_EXIT_READ_DR7:
|
|
result = vc_handle_dr7_read(ghcb, ctxt);
|
|
break;
|
|
case SVM_EXIT_WRITE_DR7:
|
|
result = vc_handle_dr7_write(ghcb, ctxt);
|
|
break;
|
|
case SVM_EXIT_EXCP_BASE + X86_TRAP_AC:
|
|
result = vc_handle_trap_ac(ghcb, ctxt);
|
|
break;
|
|
case SVM_EXIT_RDTSC:
|
|
case SVM_EXIT_RDTSCP:
|
|
result = vc_handle_rdtsc(ghcb, ctxt, exit_code);
|
|
break;
|
|
case SVM_EXIT_RDPMC:
|
|
result = vc_handle_rdpmc(ghcb, ctxt);
|
|
break;
|
|
case SVM_EXIT_INVD:
|
|
pr_err_ratelimited("#VC exception for INVD??? Seriously???\n");
|
|
result = ES_UNSUPPORTED;
|
|
break;
|
|
case SVM_EXIT_CPUID:
|
|
result = vc_handle_cpuid(ghcb, ctxt);
|
|
break;
|
|
case SVM_EXIT_IOIO:
|
|
result = vc_handle_ioio(ghcb, ctxt);
|
|
break;
|
|
case SVM_EXIT_MSR:
|
|
result = vc_handle_msr(ghcb, ctxt);
|
|
break;
|
|
case SVM_EXIT_VMMCALL:
|
|
result = vc_handle_vmmcall(ghcb, ctxt);
|
|
break;
|
|
case SVM_EXIT_WBINVD:
|
|
result = vc_handle_wbinvd(ghcb, ctxt);
|
|
break;
|
|
case SVM_EXIT_MONITOR:
|
|
result = vc_handle_monitor(ghcb, ctxt);
|
|
break;
|
|
case SVM_EXIT_MWAIT:
|
|
result = vc_handle_mwait(ghcb, ctxt);
|
|
break;
|
|
case SVM_EXIT_NPF:
|
|
result = vc_handle_mmio(ghcb, ctxt);
|
|
break;
|
|
default:
|
|
/*
|
|
* Unexpected #VC exception
|
|
*/
|
|
result = ES_UNSUPPORTED;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static __always_inline void vc_forward_exception(struct es_em_ctxt *ctxt)
|
|
{
|
|
long error_code = ctxt->fi.error_code;
|
|
int trapnr = ctxt->fi.vector;
|
|
|
|
ctxt->regs->orig_ax = ctxt->fi.error_code;
|
|
|
|
switch (trapnr) {
|
|
case X86_TRAP_GP:
|
|
exc_general_protection(ctxt->regs, error_code);
|
|
break;
|
|
case X86_TRAP_UD:
|
|
exc_invalid_op(ctxt->regs);
|
|
break;
|
|
case X86_TRAP_PF:
|
|
write_cr2(ctxt->fi.cr2);
|
|
exc_page_fault(ctxt->regs, error_code);
|
|
break;
|
|
case X86_TRAP_AC:
|
|
exc_alignment_check(ctxt->regs, error_code);
|
|
break;
|
|
default:
|
|
pr_emerg("Unsupported exception in #VC instruction emulation - can't continue\n");
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
static __always_inline bool is_vc2_stack(unsigned long sp)
|
|
{
|
|
return (sp >= __this_cpu_ist_bottom_va(VC2) && sp < __this_cpu_ist_top_va(VC2));
|
|
}
|
|
|
|
static __always_inline bool vc_from_invalid_context(struct pt_regs *regs)
|
|
{
|
|
unsigned long sp, prev_sp;
|
|
|
|
sp = (unsigned long)regs;
|
|
prev_sp = regs->sp;
|
|
|
|
/*
|
|
* If the code was already executing on the VC2 stack when the #VC
|
|
* happened, let it proceed to the normal handling routine. This way the
|
|
* code executing on the VC2 stack can cause #VC exceptions to get handled.
|
|
*/
|
|
return is_vc2_stack(sp) && !is_vc2_stack(prev_sp);
|
|
}
|
|
|
|
static bool vc_raw_handle_exception(struct pt_regs *regs, unsigned long error_code)
|
|
{
|
|
struct ghcb_state state;
|
|
struct es_em_ctxt ctxt;
|
|
enum es_result result;
|
|
struct ghcb *ghcb;
|
|
bool ret = true;
|
|
|
|
ghcb = __sev_get_ghcb(&state);
|
|
|
|
vc_ghcb_invalidate(ghcb);
|
|
result = vc_init_em_ctxt(&ctxt, regs, error_code);
|
|
|
|
if (result == ES_OK)
|
|
result = vc_handle_exitcode(&ctxt, ghcb, error_code);
|
|
|
|
__sev_put_ghcb(&state);
|
|
|
|
/* Done - now check the result */
|
|
switch (result) {
|
|
case ES_OK:
|
|
vc_finish_insn(&ctxt);
|
|
break;
|
|
case ES_UNSUPPORTED:
|
|
pr_err_ratelimited("Unsupported exit-code 0x%02lx in #VC exception (IP: 0x%lx)\n",
|
|
error_code, regs->ip);
|
|
ret = false;
|
|
break;
|
|
case ES_VMM_ERROR:
|
|
pr_err_ratelimited("Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
|
|
error_code, regs->ip);
|
|
ret = false;
|
|
break;
|
|
case ES_DECODE_FAILED:
|
|
pr_err_ratelimited("Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
|
|
error_code, regs->ip);
|
|
ret = false;
|
|
break;
|
|
case ES_EXCEPTION:
|
|
vc_forward_exception(&ctxt);
|
|
break;
|
|
case ES_RETRY:
|
|
/* Nothing to do */
|
|
break;
|
|
default:
|
|
pr_emerg("Unknown result in %s():%d\n", __func__, result);
|
|
/*
|
|
* Emulating the instruction which caused the #VC exception
|
|
* failed - can't continue so print debug information
|
|
*/
|
|
BUG();
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static __always_inline bool vc_is_db(unsigned long error_code)
|
|
{
|
|
return error_code == SVM_EXIT_EXCP_BASE + X86_TRAP_DB;
|
|
}
|
|
|
|
/*
|
|
* Runtime #VC exception handler when raised from kernel mode. Runs in NMI mode
|
|
* and will panic when an error happens.
|
|
*/
|
|
DEFINE_IDTENTRY_VC_KERNEL(exc_vmm_communication)
|
|
{
|
|
irqentry_state_t irq_state;
|
|
|
|
/*
|
|
* With the current implementation it is always possible to switch to a
|
|
* safe stack because #VC exceptions only happen at known places, like
|
|
* intercepted instructions or accesses to MMIO areas/IO ports. They can
|
|
* also happen with code instrumentation when the hypervisor intercepts
|
|
* #DB, but the critical paths are forbidden to be instrumented, so #DB
|
|
* exceptions currently also only happen in safe places.
|
|
*
|
|
* But keep this here in case the noinstr annotations are violated due
|
|
* to bug elsewhere.
|
|
*/
|
|
if (unlikely(vc_from_invalid_context(regs))) {
|
|
instrumentation_begin();
|
|
panic("Can't handle #VC exception from unsupported context\n");
|
|
instrumentation_end();
|
|
}
|
|
|
|
/*
|
|
* Handle #DB before calling into !noinstr code to avoid recursive #DB.
|
|
*/
|
|
if (vc_is_db(error_code)) {
|
|
exc_debug(regs);
|
|
return;
|
|
}
|
|
|
|
irq_state = irqentry_nmi_enter(regs);
|
|
|
|
instrumentation_begin();
|
|
|
|
if (!vc_raw_handle_exception(regs, error_code)) {
|
|
/* Show some debug info */
|
|
show_regs(regs);
|
|
|
|
/* Ask hypervisor to sev_es_terminate */
|
|
sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
|
|
|
|
/* If that fails and we get here - just panic */
|
|
panic("Returned from Terminate-Request to Hypervisor\n");
|
|
}
|
|
|
|
instrumentation_end();
|
|
irqentry_nmi_exit(regs, irq_state);
|
|
}
|
|
|
|
/*
|
|
* Runtime #VC exception handler when raised from user mode. Runs in IRQ mode
|
|
* and will kill the current task with SIGBUS when an error happens.
|
|
*/
|
|
DEFINE_IDTENTRY_VC_USER(exc_vmm_communication)
|
|
{
|
|
/*
|
|
* Handle #DB before calling into !noinstr code to avoid recursive #DB.
|
|
*/
|
|
if (vc_is_db(error_code)) {
|
|
noist_exc_debug(regs);
|
|
return;
|
|
}
|
|
|
|
irqentry_enter_from_user_mode(regs);
|
|
instrumentation_begin();
|
|
|
|
if (!vc_raw_handle_exception(regs, error_code)) {
|
|
/*
|
|
* Do not kill the machine if user-space triggered the
|
|
* exception. Send SIGBUS instead and let user-space deal with
|
|
* it.
|
|
*/
|
|
force_sig_fault(SIGBUS, BUS_OBJERR, (void __user *)0);
|
|
}
|
|
|
|
instrumentation_end();
|
|
irqentry_exit_to_user_mode(regs);
|
|
}
|
|
|
|
bool __init handle_vc_boot_ghcb(struct pt_regs *regs)
|
|
{
|
|
unsigned long exit_code = regs->orig_ax;
|
|
struct es_em_ctxt ctxt;
|
|
enum es_result result;
|
|
|
|
vc_ghcb_invalidate(boot_ghcb);
|
|
|
|
result = vc_init_em_ctxt(&ctxt, regs, exit_code);
|
|
if (result == ES_OK)
|
|
result = vc_handle_exitcode(&ctxt, boot_ghcb, exit_code);
|
|
|
|
/* Done - now check the result */
|
|
switch (result) {
|
|
case ES_OK:
|
|
vc_finish_insn(&ctxt);
|
|
break;
|
|
case ES_UNSUPPORTED:
|
|
early_printk("PANIC: Unsupported exit-code 0x%02lx in early #VC exception (IP: 0x%lx)\n",
|
|
exit_code, regs->ip);
|
|
goto fail;
|
|
case ES_VMM_ERROR:
|
|
early_printk("PANIC: Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
|
|
exit_code, regs->ip);
|
|
goto fail;
|
|
case ES_DECODE_FAILED:
|
|
early_printk("PANIC: Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
|
|
exit_code, regs->ip);
|
|
goto fail;
|
|
case ES_EXCEPTION:
|
|
vc_early_forward_exception(&ctxt);
|
|
break;
|
|
case ES_RETRY:
|
|
/* Nothing to do */
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
return true;
|
|
|
|
fail:
|
|
show_regs(regs);
|
|
|
|
sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
|
|
}
|
|
|
|
/*
|
|
* Initial set up of SNP relies on information provided by the
|
|
* Confidential Computing blob, which can be passed to the kernel
|
|
* in the following ways, depending on how it is booted:
|
|
*
|
|
* - when booted via the boot/decompress kernel:
|
|
* - via boot_params
|
|
*
|
|
* - when booted directly by firmware/bootloader (e.g. CONFIG_PVH):
|
|
* - via a setup_data entry, as defined by the Linux Boot Protocol
|
|
*
|
|
* Scan for the blob in that order.
|
|
*/
|
|
static __init struct cc_blob_sev_info *find_cc_blob(struct boot_params *bp)
|
|
{
|
|
struct cc_blob_sev_info *cc_info;
|
|
|
|
/* Boot kernel would have passed the CC blob via boot_params. */
|
|
if (bp->cc_blob_address) {
|
|
cc_info = (struct cc_blob_sev_info *)(unsigned long)bp->cc_blob_address;
|
|
goto found_cc_info;
|
|
}
|
|
|
|
/*
|
|
* If kernel was booted directly, without the use of the
|
|
* boot/decompression kernel, the CC blob may have been passed via
|
|
* setup_data instead.
|
|
*/
|
|
cc_info = find_cc_blob_setup_data(bp);
|
|
if (!cc_info)
|
|
return NULL;
|
|
|
|
found_cc_info:
|
|
if (cc_info->magic != CC_BLOB_SEV_HDR_MAGIC)
|
|
snp_abort();
|
|
|
|
return cc_info;
|
|
}
|
|
|
|
bool __init snp_init(struct boot_params *bp)
|
|
{
|
|
struct cc_blob_sev_info *cc_info;
|
|
|
|
if (!bp)
|
|
return false;
|
|
|
|
cc_info = find_cc_blob(bp);
|
|
if (!cc_info)
|
|
return false;
|
|
|
|
setup_cpuid_table(cc_info);
|
|
|
|
/*
|
|
* The CC blob will be used later to access the secrets page. Cache
|
|
* it here like the boot kernel does.
|
|
*/
|
|
bp->cc_blob_address = (u32)(unsigned long)cc_info;
|
|
|
|
return true;
|
|
}
|
|
|
|
void __init __noreturn snp_abort(void)
|
|
{
|
|
sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
|
|
}
|
|
|
|
static void dump_cpuid_table(void)
|
|
{
|
|
const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
|
|
int i = 0;
|
|
|
|
pr_info("count=%d reserved=0x%x reserved2=0x%llx\n",
|
|
cpuid_table->count, cpuid_table->__reserved1, cpuid_table->__reserved2);
|
|
|
|
for (i = 0; i < SNP_CPUID_COUNT_MAX; i++) {
|
|
const struct snp_cpuid_fn *fn = &cpuid_table->fn[i];
|
|
|
|
pr_info("index=%3d fn=0x%08x subfn=0x%08x: eax=0x%08x ebx=0x%08x ecx=0x%08x edx=0x%08x xcr0_in=0x%016llx xss_in=0x%016llx reserved=0x%016llx\n",
|
|
i, fn->eax_in, fn->ecx_in, fn->eax, fn->ebx, fn->ecx,
|
|
fn->edx, fn->xcr0_in, fn->xss_in, fn->__reserved);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* It is useful from an auditing/testing perspective to provide an easy way
|
|
* for the guest owner to know that the CPUID table has been initialized as
|
|
* expected, but that initialization happens too early in boot to print any
|
|
* sort of indicator, and there's not really any other good place to do it,
|
|
* so do it here.
|
|
*/
|
|
static int __init report_cpuid_table(void)
|
|
{
|
|
const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
|
|
|
|
if (!cpuid_table->count)
|
|
return 0;
|
|
|
|
pr_info("Using SNP CPUID table, %d entries present.\n",
|
|
cpuid_table->count);
|
|
|
|
if (sev_cfg.debug)
|
|
dump_cpuid_table();
|
|
|
|
return 0;
|
|
}
|
|
arch_initcall(report_cpuid_table);
|
|
|
|
static int __init init_sev_config(char *str)
|
|
{
|
|
char *s;
|
|
|
|
while ((s = strsep(&str, ","))) {
|
|
if (!strcmp(s, "debug")) {
|
|
sev_cfg.debug = true;
|
|
continue;
|
|
}
|
|
|
|
pr_info("SEV command-line option '%s' was not recognized\n", s);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
__setup("sev=", init_sev_config);
|
|
|
|
int snp_issue_guest_request(u64 exit_code, struct snp_req_data *input, unsigned long *fw_err)
|
|
{
|
|
struct ghcb_state state;
|
|
struct es_em_ctxt ctxt;
|
|
unsigned long flags;
|
|
struct ghcb *ghcb;
|
|
int ret;
|
|
|
|
if (!fw_err)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* __sev_get_ghcb() needs to run with IRQs disabled because it is using
|
|
* a per-CPU GHCB.
|
|
*/
|
|
local_irq_save(flags);
|
|
|
|
ghcb = __sev_get_ghcb(&state);
|
|
if (!ghcb) {
|
|
ret = -EIO;
|
|
goto e_restore_irq;
|
|
}
|
|
|
|
vc_ghcb_invalidate(ghcb);
|
|
|
|
if (exit_code == SVM_VMGEXIT_EXT_GUEST_REQUEST) {
|
|
ghcb_set_rax(ghcb, input->data_gpa);
|
|
ghcb_set_rbx(ghcb, input->data_npages);
|
|
}
|
|
|
|
ret = sev_es_ghcb_hv_call(ghcb, &ctxt, exit_code, input->req_gpa, input->resp_gpa);
|
|
if (ret)
|
|
goto e_put;
|
|
|
|
*fw_err = ghcb->save.sw_exit_info_2;
|
|
switch (*fw_err) {
|
|
case 0:
|
|
break;
|
|
|
|
case SNP_GUEST_REQ_ERR_BUSY:
|
|
ret = -EAGAIN;
|
|
break;
|
|
|
|
case SNP_GUEST_REQ_INVALID_LEN:
|
|
/* Number of expected pages are returned in RBX */
|
|
if (exit_code == SVM_VMGEXIT_EXT_GUEST_REQUEST) {
|
|
input->data_npages = ghcb_get_rbx(ghcb);
|
|
ret = -ENOSPC;
|
|
break;
|
|
}
|
|
fallthrough;
|
|
default:
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
|
|
e_put:
|
|
__sev_put_ghcb(&state);
|
|
e_restore_irq:
|
|
local_irq_restore(flags);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(snp_issue_guest_request);
|
|
|
|
static struct platform_device sev_guest_device = {
|
|
.name = "sev-guest",
|
|
.id = -1,
|
|
};
|
|
|
|
static int __init snp_init_platform_device(void)
|
|
{
|
|
struct sev_guest_platform_data data;
|
|
u64 gpa;
|
|
|
|
if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
|
|
return -ENODEV;
|
|
|
|
gpa = get_secrets_page();
|
|
if (!gpa)
|
|
return -ENODEV;
|
|
|
|
data.secrets_gpa = gpa;
|
|
if (platform_device_add_data(&sev_guest_device, &data, sizeof(data)))
|
|
return -ENODEV;
|
|
|
|
if (platform_device_register(&sev_guest_device))
|
|
return -ENODEV;
|
|
|
|
pr_info("SNP guest platform device initialized.\n");
|
|
return 0;
|
|
}
|
|
device_initcall(snp_init_platform_device);
|