linux-zen-server/arch/xtensa/kernel/vectors.S

806 lines
22 KiB
ArmAsm

/*
* arch/xtensa/kernel/vectors.S
*
* This file contains all exception vectors (user, kernel, and double),
* as well as the window vectors (overflow and underflow), and the debug
* vector. These are the primary vectors executed by the processor if an
* exception occurs.
*
* This file is subject to the terms and conditions of the GNU General
* Public License. See the file "COPYING" in the main directory of
* this archive for more details.
*
* Copyright (C) 2005 - 2008 Tensilica, Inc.
*
* Chris Zankel <chris@zankel.net>
*
*/
/*
* We use a two-level table approach. The user and kernel exception vectors
* use a first-level dispatch table to dispatch the exception to a registered
* fast handler or the default handler, if no fast handler was registered.
* The default handler sets up a C-stack and dispatches the exception to a
* registerd C handler in the second-level dispatch table.
*
* Fast handler entry condition:
*
* a0: trashed, original value saved on stack (PT_AREG0)
* a1: a1
* a2: new stack pointer, original value in depc
* a3: dispatch table
* depc: a2, original value saved on stack (PT_DEPC)
* excsave_1: a3
*
* The value for PT_DEPC saved to stack also functions as a boolean to
* indicate that the exception is either a double or a regular exception:
*
* PT_DEPC >= VALID_DOUBLE_EXCEPTION_ADDRESS: double exception
* < VALID_DOUBLE_EXCEPTION_ADDRESS: regular exception
*
* Note: Neither the kernel nor the user exception handler generate literals.
*
*/
#include <linux/linkage.h>
#include <linux/pgtable.h>
#include <asm/asmmacro.h>
#include <asm/ptrace.h>
#include <asm/current.h>
#include <asm/asm-offsets.h>
#include <asm/processor.h>
#include <asm/page.h>
#include <asm/thread_info.h>
#include <asm/vectors.h>
#define WINDOW_VECTORS_SIZE 0x180
/*
* User exception vector. (Exceptions with PS.UM == 1, PS.EXCM == 0)
*
* We get here when an exception occurred while we were in userland.
* We switch to the kernel stack and jump to the first level handler
* associated to the exception cause.
*
* Note: the saved kernel stack pointer (EXC_TABLE_KSTK) is already
* decremented by PT_USER_SIZE.
*/
.section .UserExceptionVector.text, "ax"
ENTRY(_UserExceptionVector)
xsr a3, excsave1 # save a3 and get dispatch table
wsr a2, depc # save a2
l32i a2, a3, EXC_TABLE_KSTK # load kernel stack to a2
s32i a0, a2, PT_AREG0 # save a0 to ESF
rsr a0, exccause # retrieve exception cause
s32i a0, a2, PT_DEPC # mark it as a regular exception
addx4 a0, a0, a3 # find entry in table
l32i a0, a0, EXC_TABLE_FAST_USER # load handler
xsr a3, excsave1 # restore a3 and dispatch table
jx a0
ENDPROC(_UserExceptionVector)
/*
* Kernel exception vector. (Exceptions with PS.UM == 0, PS.EXCM == 0)
*
* We get this exception when we were already in kernel space.
* We decrement the current stack pointer (kernel) by PT_KERNEL_SIZE and
* jump to the first-level handler associated with the exception cause.
*
* Note: we need to preserve space for the spill region.
*/
.section .KernelExceptionVector.text, "ax"
ENTRY(_KernelExceptionVector)
xsr a3, excsave1 # save a3, and get dispatch table
wsr a2, depc # save a2
addi a2, a1, -16 - PT_KERNEL_SIZE # adjust stack pointer
s32i a0, a2, PT_AREG0 # save a0 to ESF
rsr a0, exccause # retrieve exception cause
s32i a0, a2, PT_DEPC # mark it as a regular exception
addx4 a0, a0, a3 # find entry in table
l32i a0, a0, EXC_TABLE_FAST_KERNEL # load handler address
xsr a3, excsave1 # restore a3 and dispatch table
jx a0
ENDPROC(_KernelExceptionVector)
/*
* Double exception vector (Exceptions with PS.EXCM == 1)
* We get this exception when another exception occurs while were are
* already in an exception, such as window overflow/underflow exception,
* or 'expected' exceptions, for example memory exception when we were trying
* to read data from an invalid address in user space.
*
* Note that this vector is never invoked for level-1 interrupts, because such
* interrupts are disabled (masked) when PS.EXCM is set.
*
* We decode the exception and take the appropriate action. However, the
* double exception vector is much more careful, because a lot more error
* cases go through the double exception vector than through the user and
* kernel exception vectors.
*
* Occasionally, the kernel expects a double exception to occur. This usually
* happens when accessing user-space memory with the user's permissions
* (l32e/s32e instructions). The kernel state, though, is not always suitable
* for immediate transfer of control to handle_double, where "normal" exception
* processing occurs. Also in kernel mode, TLB misses can occur if accessing
* vmalloc memory, possibly requiring repair in a double exception handler.
*
* The variable at TABLE_FIXUP offset from the pointer in EXCSAVE_1 doubles as
* a boolean variable and a pointer to a fixup routine. If the variable
* EXC_TABLE_FIXUP is non-zero, this handler jumps to that address. A value of
* zero indicates to use the default kernel/user exception handler.
* There is only one exception, when the value is identical to the exc_table
* label, the kernel is in trouble. This mechanism is used to protect critical
* sections, mainly when the handler writes to the stack to assert the stack
* pointer is valid. Once the fixup/default handler leaves that area, the
* EXC_TABLE_FIXUP variable is reset to the fixup handler or zero.
*
* Procedures wishing to use this mechanism should set EXC_TABLE_FIXUP to the
* nonzero address of a fixup routine before it could cause a double exception
* and reset it before it returns.
*
* Some other things to take care of when a fast exception handler doesn't
* specify a particular fixup handler but wants to use the default handlers:
*
* - The original stack pointer (in a1) must not be modified. The fast
* exception handler should only use a2 as the stack pointer.
*
* - If the fast handler manipulates the stack pointer (in a2), it has to
* register a valid fixup handler and cannot use the default handlers.
*
* - The handler can use any other generic register from a3 to a15, but it
* must save the content of these registers to stack (PT_AREG3...PT_AREGx)
*
* - These registers must be saved before a double exception can occur.
*
* - If we ever implement handling signals while in double exceptions, the
* number of registers a fast handler has saved (excluding a0 and a1) must
* be written to PT_AREG1. (1 if only a3 is used, 2 for a3 and a4, etc. )
*
* The fixup handlers are special handlers:
*
* - Fixup entry conditions differ from regular exceptions:
*
* a0: DEPC
* a1: a1
* a2: trashed, original value in EXC_TABLE_DOUBLE_SAVE
* a3: exctable
* depc: a0
* excsave_1: a3
*
* - When the kernel enters the fixup handler, it still assumes it is in a
* critical section, so EXC_TABLE_FIXUP variable is set to exc_table.
* The fixup handler, therefore, has to re-register itself as the fixup
* handler before it returns from the double exception.
*
* - Fixup handler can share the same exception frame with the fast handler.
* The kernel stack pointer is not changed when entering the fixup handler.
*
* - Fixup handlers can jump to the default kernel and user exception
* handlers. Before it jumps, though, it has to setup a exception frame
* on stack. Because the default handler resets the register fixup handler
* the fixup handler must make sure that the default handler returns to
* it instead of the exception address, so it can re-register itself as
* the fixup handler.
*
* In case of a critical condition where the kernel cannot recover, we jump
* to unrecoverable_exception with the following entry conditions.
* All registers a0...a15 are unchanged from the last exception, except:
*
* a0: last address before we jumped to the unrecoverable_exception.
* excsave_1: a0
*
*
* See the handle_alloca_user and spill_registers routines for example clients.
*
* FIXME: Note: we currently don't allow signal handling coming from a double
* exception, so the item markt with (*) is not required.
*/
.section .DoubleExceptionVector.text, "ax"
ENTRY(_DoubleExceptionVector)
xsr a3, excsave1
s32i a2, a3, EXC_TABLE_DOUBLE_SAVE
/* Check for kernel double exception (usually fatal). */
rsr a2, ps
_bbsi.l a2, PS_UM_BIT, 1f
j .Lksp
.align 4
.literal_position
1:
/* Check if we are currently handling a window exception. */
/* Note: We don't need to indicate that we enter a critical section. */
xsr a0, depc # get DEPC, save a0
#ifdef SUPPORT_WINDOWED
movi a2, WINDOW_VECTORS_VADDR
_bltu a0, a2, .Lfixup
addi a2, a2, WINDOW_VECTORS_SIZE
_bgeu a0, a2, .Lfixup
/* Window overflow/underflow exception. Get stack pointer. */
l32i a2, a3, EXC_TABLE_KSTK
/* Check for overflow/underflow exception, jump if overflow. */
bbci.l a0, 6, _DoubleExceptionVector_WindowOverflow
/*
* Restart window underflow exception.
* Currently:
* depc = orig a0,
* a0 = orig DEPC,
* a2 = new sp based on KSTK from exc_table
* a3 = excsave_1
* excsave_1 = orig a3
*
* We return to the instruction in user space that caused the window
* underflow exception. Therefore, we change window base to the value
* before we entered the window underflow exception and prepare the
* registers to return as if we were coming from a regular exception
* by changing depc (in a0).
* Note: We can trash the current window frame (a0...a3) and depc!
*/
_DoubleExceptionVector_WindowUnderflow:
xsr a3, excsave1
wsr a2, depc # save stack pointer temporarily
rsr a0, ps
extui a0, a0, PS_OWB_SHIFT, PS_OWB_WIDTH
wsr a0, windowbase
rsync
/* We are now in the previous window frame. Save registers again. */
xsr a2, depc # save a2 and get stack pointer
s32i a0, a2, PT_AREG0
xsr a3, excsave1
rsr a0, exccause
s32i a0, a2, PT_DEPC # mark it as a regular exception
addx4 a0, a0, a3
xsr a3, excsave1
l32i a0, a0, EXC_TABLE_FAST_USER
jx a0
#else
j .Lfixup
#endif
/*
* We only allow the ITLB miss exception if we are in kernel space.
* All other exceptions are unexpected and thus unrecoverable!
*/
#ifdef CONFIG_MMU
.extern fast_second_level_miss_double_kernel
.Lksp: /* a0: a0, a1: a1, a2: a2, a3: trashed, depc: depc, excsave: a3 */
rsr a3, exccause
beqi a3, EXCCAUSE_ITLB_MISS, 1f
addi a3, a3, -EXCCAUSE_DTLB_MISS
bnez a3, .Lunrecoverable
1: movi a3, fast_second_level_miss_double_kernel
jx a3
#else
.equ .Lksp, .Lunrecoverable
#endif
/* Critical! We can't handle this situation. PANIC! */
.extern unrecoverable_exception
.Lunrecoverable_fixup:
l32i a2, a3, EXC_TABLE_DOUBLE_SAVE
xsr a0, depc
.Lunrecoverable:
rsr a3, excsave1
wsr a0, excsave1
call0 unrecoverable_exception
.Lfixup:/* Check for a fixup handler or if we were in a critical section. */
/* a0: depc, a1: a1, a2: trash, a3: exctable, depc: a0, excsave1: a3 */
/* Enter critical section. */
l32i a2, a3, EXC_TABLE_FIXUP
s32i a3, a3, EXC_TABLE_FIXUP
beq a2, a3, .Lunrecoverable_fixup # critical section
beqz a2, .Ldflt # no handler was registered
/* a0: depc, a1: a1, a2: trash, a3: exctable, depc: a0, excsave: a3 */
jx a2
.Ldflt: /* Get stack pointer. */
l32i a2, a3, EXC_TABLE_DOUBLE_SAVE
addi a2, a2, -PT_USER_SIZE
/* a0: depc, a1: a1, a2: kstk, a3: exctable, depc: a0, excsave: a3 */
s32i a0, a2, PT_DEPC
l32i a0, a3, EXC_TABLE_DOUBLE_SAVE
xsr a0, depc
s32i a0, a2, PT_AREG0
/* a0: avail, a1: a1, a2: kstk, a3: exctable, depc: a2, excsave: a3 */
rsr a0, exccause
addx4 a0, a0, a3
xsr a3, excsave1
l32i a0, a0, EXC_TABLE_FAST_USER
jx a0
#ifdef SUPPORT_WINDOWED
/*
* Restart window OVERFLOW exception.
* Currently:
* depc = orig a0,
* a0 = orig DEPC,
* a2 = new sp based on KSTK from exc_table
* a3 = EXCSAVE_1
* excsave_1 = orig a3
*
* We return to the instruction in user space that caused the window
* overflow exception. Therefore, we change window base to the value
* before we entered the window overflow exception and prepare the
* registers to return as if we were coming from a regular exception
* by changing DEPC (in a0).
*
* NOTE: We CANNOT trash the current window frame (a0...a3), but we
* can clobber depc.
*
* The tricky part here is that overflow8 and overflow12 handlers
* save a0, then clobber a0. To restart the handler, we have to restore
* a0 if the double exception was past the point where a0 was clobbered.
*
* To keep things simple, we take advantage of the fact all overflow
* handlers save a0 in their very first instruction. If DEPC was past
* that instruction, we can safely restore a0 from where it was saved
* on the stack.
*
* a0: depc, a1: a1, a2: kstk, a3: exc_table, depc: a0, excsave1: a3
*/
_DoubleExceptionVector_WindowOverflow:
extui a2, a0, 0, 6 # get offset into 64-byte vector handler
beqz a2, 1f # if at start of vector, don't restore
addi a0, a0, -128
bbsi.l a0, 8, 1f # don't restore except for overflow 8 and 12
/*
* This fixup handler is for the extremely unlikely case where the
* overflow handler's reference thru a0 gets a hardware TLB refill
* that bumps out the (distinct, aliasing) TLB entry that mapped its
* prior references thru a9/a13, and where our reference now thru
* a9/a13 gets a 2nd-level miss exception (not hardware TLB refill).
*/
movi a2, window_overflow_restore_a0_fixup
s32i a2, a3, EXC_TABLE_FIXUP
l32i a2, a3, EXC_TABLE_DOUBLE_SAVE
xsr a3, excsave1
bbsi.l a0, 7, 2f
/*
* Restore a0 as saved by _WindowOverflow8().
*/
l32e a0, a9, -16
wsr a0, depc # replace the saved a0
j 3f
2:
/*
* Restore a0 as saved by _WindowOverflow12().
*/
l32e a0, a13, -16
wsr a0, depc # replace the saved a0
3:
xsr a3, excsave1
movi a0, 0
s32i a0, a3, EXC_TABLE_FIXUP
s32i a2, a3, EXC_TABLE_DOUBLE_SAVE
1:
/*
* Restore WindowBase while leaving all address registers restored.
* We have to use ROTW for this, because WSR.WINDOWBASE requires
* an address register (which would prevent restore).
*
* Window Base goes from 0 ... 7 (Module 8)
* Window Start is 8 bits; Ex: (0b1010 1010):0x55 from series of call4s
*/
rsr a0, ps
extui a0, a0, PS_OWB_SHIFT, PS_OWB_WIDTH
rsr a2, windowbase
sub a0, a2, a0
extui a0, a0, 0, 3
l32i a2, a3, EXC_TABLE_DOUBLE_SAVE
xsr a3, excsave1
beqi a0, 1, .L1pane
beqi a0, 3, .L3pane
rsr a0, depc
rotw -2
/*
* We are now in the user code's original window frame.
* Process the exception as a user exception as if it was
* taken by the user code.
*
* This is similar to the user exception vector,
* except that PT_DEPC isn't set to EXCCAUSE.
*/
1:
xsr a3, excsave1
wsr a2, depc
l32i a2, a3, EXC_TABLE_KSTK
s32i a0, a2, PT_AREG0
rsr a0, exccause
s32i a0, a2, PT_DEPC
_DoubleExceptionVector_handle_exception:
addi a0, a0, -EXCCAUSE_UNALIGNED
beqz a0, 2f
addx4 a0, a0, a3
l32i a0, a0, EXC_TABLE_FAST_USER + 4 * EXCCAUSE_UNALIGNED
xsr a3, excsave1
jx a0
2:
movi a0, user_exception
xsr a3, excsave1
jx a0
.L1pane:
rsr a0, depc
rotw -1
j 1b
.L3pane:
rsr a0, depc
rotw -3
j 1b
#endif
ENDPROC(_DoubleExceptionVector)
#ifdef SUPPORT_WINDOWED
/*
* Fixup handler for TLB miss in double exception handler for window owerflow.
* We get here with windowbase set to the window that was being spilled and
* a0 trashed. a0 bit 7 determines if this is a call8 (bit clear) or call12
* (bit set) window.
*
* We do the following here:
* - go to the original window retaining a0 value;
* - set up exception stack to return back to appropriate a0 restore code
* (we'll need to rotate window back and there's no place to save this
* information, use different return address for that);
* - handle the exception;
* - go to the window that was being spilled;
* - set up window_overflow_restore_a0_fixup as a fixup routine;
* - reload a0;
* - restore the original window;
* - reset the default fixup routine;
* - return to user. By the time we get to this fixup handler all information
* about the conditions of the original double exception that happened in
* the window overflow handler is lost, so we just return to userspace to
* retry overflow from start.
*
* a0: value of depc, original value in depc
* a2: trashed, original value in EXC_TABLE_DOUBLE_SAVE
* a3: exctable, original value in excsave1
*/
__XTENSA_HANDLER
.literal_position
ENTRY(window_overflow_restore_a0_fixup)
rsr a0, ps
extui a0, a0, PS_OWB_SHIFT, PS_OWB_WIDTH
rsr a2, windowbase
sub a0, a2, a0
extui a0, a0, 0, 3
l32i a2, a3, EXC_TABLE_DOUBLE_SAVE
xsr a3, excsave1
_beqi a0, 1, .Lhandle_1
_beqi a0, 3, .Lhandle_3
.macro overflow_fixup_handle_exception_pane n
rsr a0, depc
rotw -\n
xsr a3, excsave1
wsr a2, depc
l32i a2, a3, EXC_TABLE_KSTK
s32i a0, a2, PT_AREG0
movi a0, .Lrestore_\n
s32i a0, a2, PT_DEPC
rsr a0, exccause
j _DoubleExceptionVector_handle_exception
.endm
overflow_fixup_handle_exception_pane 2
.Lhandle_1:
overflow_fixup_handle_exception_pane 1
.Lhandle_3:
overflow_fixup_handle_exception_pane 3
.macro overflow_fixup_restore_a0_pane n
rotw \n
/* Need to preserve a0 value here to be able to handle exception
* that may occur on a0 reload from stack. It may occur because
* TLB miss handler may not be atomic and pointer to page table
* may be lost before we get here. There are no free registers,
* so we need to use EXC_TABLE_DOUBLE_SAVE area.
*/
xsr a3, excsave1
s32i a2, a3, EXC_TABLE_DOUBLE_SAVE
movi a2, window_overflow_restore_a0_fixup
s32i a2, a3, EXC_TABLE_FIXUP
l32i a2, a3, EXC_TABLE_DOUBLE_SAVE
xsr a3, excsave1
bbsi.l a0, 7, 1f
l32e a0, a9, -16
j 2f
1:
l32e a0, a13, -16
2:
rotw -\n
.endm
.Lrestore_2:
overflow_fixup_restore_a0_pane 2
.Lset_default_fixup:
xsr a3, excsave1
s32i a2, a3, EXC_TABLE_DOUBLE_SAVE
movi a2, 0
s32i a2, a3, EXC_TABLE_FIXUP
l32i a2, a3, EXC_TABLE_DOUBLE_SAVE
xsr a3, excsave1
rfe
.Lrestore_1:
overflow_fixup_restore_a0_pane 1
j .Lset_default_fixup
.Lrestore_3:
overflow_fixup_restore_a0_pane 3
j .Lset_default_fixup
ENDPROC(window_overflow_restore_a0_fixup)
#endif
/*
* Debug interrupt vector
*
* There is not much space here, so simply jump to another handler.
* EXCSAVE[DEBUGLEVEL] has been set to that handler.
*/
.section .DebugInterruptVector.text, "ax"
ENTRY(_DebugInterruptVector)
xsr a3, SREG_EXCSAVE + XCHAL_DEBUGLEVEL
s32i a0, a3, DT_DEBUG_SAVE
l32i a0, a3, DT_DEBUG_EXCEPTION
jx a0
ENDPROC(_DebugInterruptVector)
/*
* Medium priority level interrupt vectors
*
* Each takes less than 16 (0x10) bytes, no literals, by placing
* the extra 8 bytes that would otherwise be required in the window
* vectors area where there is space. With relocatable vectors,
* all vectors are within ~ 4 kB range of each other, so we can
* simply jump (J) to another vector without having to use JX.
*
* common_exception code gets current IRQ level in PS.INTLEVEL
* and preserves it for the IRQ handling time.
*/
.macro irq_entry_level level
.if XCHAL_EXCM_LEVEL >= \level
.section .Level\level\()InterruptVector.text, "ax"
ENTRY(_Level\level\()InterruptVector)
wsr a0, excsave2
rsr a0, epc\level
wsr a0, epc1
.if \level <= LOCKLEVEL
movi a0, EXCCAUSE_LEVEL1_INTERRUPT
.else
movi a0, EXCCAUSE_MAPPED_NMI
.endif
wsr a0, exccause
rsr a0, eps\level
# branch to user or kernel vector
j _SimulateUserKernelVectorException
.endif
.endm
irq_entry_level 2
irq_entry_level 3
irq_entry_level 4
irq_entry_level 5
irq_entry_level 6
#if XCHAL_EXCM_LEVEL >= 2
/*
* Continuation of medium priority interrupt dispatch code.
* On entry here, a0 contains PS, and EPC2 contains saved a0:
*/
__XTENSA_HANDLER
.align 4
_SimulateUserKernelVectorException:
addi a0, a0, (1 << PS_EXCM_BIT)
#if !XTENSA_FAKE_NMI
wsr a0, ps
#endif
bbsi.l a0, PS_UM_BIT, 1f # branch if user mode
xsr a0, excsave2 # restore a0
j _KernelExceptionVector # simulate kernel vector exception
1: xsr a0, excsave2 # restore a0
j _UserExceptionVector # simulate user vector exception
#endif
/* Window overflow and underflow handlers.
* The handlers must be 64 bytes apart, first starting with the underflow
* handlers underflow-4 to underflow-12, then the overflow handlers
* overflow-4 to overflow-12.
*
* Note: We rerun the underflow handlers if we hit an exception, so
* we try to access any page that would cause a page fault early.
*/
#define ENTRY_ALIGN64(name) \
.globl name; \
.align 64; \
name:
.section .WindowVectors.text, "ax"
#ifdef SUPPORT_WINDOWED
/* 4-Register Window Overflow Vector (Handler) */
ENTRY_ALIGN64(_WindowOverflow4)
s32e a0, a5, -16
s32e a1, a5, -12
s32e a2, a5, -8
s32e a3, a5, -4
rfwo
ENDPROC(_WindowOverflow4)
/* 4-Register Window Underflow Vector (Handler) */
ENTRY_ALIGN64(_WindowUnderflow4)
l32e a0, a5, -16
l32e a1, a5, -12
l32e a2, a5, -8
l32e a3, a5, -4
rfwu
ENDPROC(_WindowUnderflow4)
/* 8-Register Window Overflow Vector (Handler) */
ENTRY_ALIGN64(_WindowOverflow8)
s32e a0, a9, -16
l32e a0, a1, -12
s32e a2, a9, -8
s32e a1, a9, -12
s32e a3, a9, -4
s32e a4, a0, -32
s32e a5, a0, -28
s32e a6, a0, -24
s32e a7, a0, -20
rfwo
ENDPROC(_WindowOverflow8)
/* 8-Register Window Underflow Vector (Handler) */
ENTRY_ALIGN64(_WindowUnderflow8)
l32e a1, a9, -12
l32e a0, a9, -16
l32e a7, a1, -12
l32e a2, a9, -8
l32e a4, a7, -32
l32e a3, a9, -4
l32e a5, a7, -28
l32e a6, a7, -24
l32e a7, a7, -20
rfwu
ENDPROC(_WindowUnderflow8)
/* 12-Register Window Overflow Vector (Handler) */
ENTRY_ALIGN64(_WindowOverflow12)
s32e a0, a13, -16
l32e a0, a1, -12
s32e a1, a13, -12
s32e a2, a13, -8
s32e a3, a13, -4
s32e a4, a0, -48
s32e a5, a0, -44
s32e a6, a0, -40
s32e a7, a0, -36
s32e a8, a0, -32
s32e a9, a0, -28
s32e a10, a0, -24
s32e a11, a0, -20
rfwo
ENDPROC(_WindowOverflow12)
/* 12-Register Window Underflow Vector (Handler) */
ENTRY_ALIGN64(_WindowUnderflow12)
l32e a1, a13, -12
l32e a0, a13, -16
l32e a11, a1, -12
l32e a2, a13, -8
l32e a4, a11, -48
l32e a8, a11, -32
l32e a3, a13, -4
l32e a5, a11, -44
l32e a6, a11, -40
l32e a7, a11, -36
l32e a9, a11, -28
l32e a10, a11, -24
l32e a11, a11, -20
rfwu
ENDPROC(_WindowUnderflow12)
#endif
.text