linux-zen-server/drivers/ata/pata_ftide010.c

573 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Faraday Technology FTIDE010 driver
* Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org>
*
* Includes portions of the SL2312/SL3516/Gemini PATA driver
* Copyright (C) 2003 StorLine, Inc <jason@storlink.com.tw>
* Copyright (C) 2009 Janos Laube <janos.dev@gmail.com>
* Copyright (C) 2010 Frederic Pecourt <opengemini@free.fr>
* Copyright (C) 2011 Tobias Waldvogel <tobias.waldvogel@gmail.com>
*/
#include <linux/platform_device.h>
#include <linux/module.h>
#include <linux/libata.h>
#include <linux/bitops.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/clk.h>
#include "sata_gemini.h"
#define DRV_NAME "pata_ftide010"
/**
* struct ftide010 - state container for the Faraday FTIDE010
* @dev: pointer back to the device representing this controller
* @base: remapped I/O space address
* @pclk: peripheral clock for the IDE block
* @host: pointer to the ATA host for this device
* @master_cbl: master cable type
* @slave_cbl: slave cable type
* @sg: Gemini SATA bridge pointer, if running on the Gemini
* @master_to_sata0: Gemini SATA bridge: the ATA master is connected
* to the SATA0 bridge
* @slave_to_sata0: Gemini SATA bridge: the ATA slave is connected
* to the SATA0 bridge
* @master_to_sata1: Gemini SATA bridge: the ATA master is connected
* to the SATA1 bridge
* @slave_to_sata1: Gemini SATA bridge: the ATA slave is connected
* to the SATA1 bridge
*/
struct ftide010 {
struct device *dev;
void __iomem *base;
struct clk *pclk;
struct ata_host *host;
unsigned int master_cbl;
unsigned int slave_cbl;
/* Gemini-specific properties */
struct sata_gemini *sg;
bool master_to_sata0;
bool slave_to_sata0;
bool master_to_sata1;
bool slave_to_sata1;
};
#define FTIDE010_DMA_REG 0x00
#define FTIDE010_DMA_STATUS 0x02
#define FTIDE010_IDE_BMDTPR 0x04
#define FTIDE010_IDE_DEVICE_ID 0x08
#define FTIDE010_PIO_TIMING 0x10
#define FTIDE010_MWDMA_TIMING 0x11
#define FTIDE010_UDMA_TIMING0 0x12 /* Master */
#define FTIDE010_UDMA_TIMING1 0x13 /* Slave */
#define FTIDE010_CLK_MOD 0x14
/* These registers are mapped directly to the IDE registers */
#define FTIDE010_CMD_DATA 0x20
#define FTIDE010_ERROR_FEATURES 0x21
#define FTIDE010_NSECT 0x22
#define FTIDE010_LBAL 0x23
#define FTIDE010_LBAM 0x24
#define FTIDE010_LBAH 0x25
#define FTIDE010_DEVICE 0x26
#define FTIDE010_STATUS_COMMAND 0x27
#define FTIDE010_ALTSTAT_CTRL 0x36
/* Set this bit for UDMA mode 5 and 6 */
#define FTIDE010_UDMA_TIMING_MODE_56 BIT(7)
/* 0 = 50 MHz, 1 = 66 MHz */
#define FTIDE010_CLK_MOD_DEV0_CLK_SEL BIT(0)
#define FTIDE010_CLK_MOD_DEV1_CLK_SEL BIT(1)
/* Enable UDMA on a device */
#define FTIDE010_CLK_MOD_DEV0_UDMA_EN BIT(4)
#define FTIDE010_CLK_MOD_DEV1_UDMA_EN BIT(5)
static struct scsi_host_template pata_ftide010_sht = {
ATA_BMDMA_SHT(DRV_NAME),
};
/*
* Bus timings
*
* The unit of the below required timings is two clock periods of the ATA
* reference clock which is 30 nanoseconds per unit at 66MHz and 20
* nanoseconds per unit at 50 MHz. The PIO timings assume 33MHz speed for
* PIO.
*
* pio_active_time: array of 5 elements for T2 timing for Mode 0,
* 1, 2, 3 and 4. Range 0..15.
* pio_recovery_time: array of 5 elements for T2l timing for Mode 0,
* 1, 2, 3 and 4. Range 0..15.
* mdma_50_active_time: array of 4 elements for Td timing for multi
* word DMA, Mode 0, 1, and 2 at 50 MHz. Range 0..15.
* mdma_50_recovery_time: array of 4 elements for Tk timing for
* multi word DMA, Mode 0, 1 and 2 at 50 MHz. Range 0..15.
* mdma_66_active_time: array of 4 elements for Td timing for multi
* word DMA, Mode 0, 1 and 2 at 66 MHz. Range 0..15.
* mdma_66_recovery_time: array of 4 elements for Tk timing for
* multi word DMA, Mode 0, 1 and 2 at 66 MHz. Range 0..15.
* udma_50_setup_time: array of 4 elements for Tvds timing for ultra
* DMA, Mode 0, 1, 2, 3, 4 and 5 at 50 MHz. Range 0..7.
* udma_50_hold_time: array of 4 elements for Tdvh timing for
* multi word DMA, Mode 0, 1, 2, 3, 4 and 5 at 50 MHz, Range 0..7.
* udma_66_setup_time: array of 4 elements for Tvds timing for multi
* word DMA, Mode 0, 1, 2, 3, 4, 5 and 6 at 66 MHz. Range 0..7.
* udma_66_hold_time: array of 4 elements for Tdvh timing for
* multi word DMA, Mode 0, 1, 2, 3, 4, 5 and 6 at 66 MHz. Range 0..7.
*/
static const u8 pio_active_time[5] = {10, 10, 10, 3, 3};
static const u8 pio_recovery_time[5] = {10, 3, 1, 3, 1};
static const u8 mwdma_50_active_time[3] = {6, 2, 2};
static const u8 mwdma_50_recovery_time[3] = {6, 2, 1};
static const u8 mwdma_66_active_time[3] = {8, 3, 3};
static const u8 mwdma_66_recovery_time[3] = {8, 2, 1};
static const u8 udma_50_setup_time[6] = {3, 3, 2, 2, 1, 1};
static const u8 udma_50_hold_time[6] = {3, 1, 1, 1, 1, 1};
static const u8 udma_66_setup_time[7] = {4, 4, 3, 2, };
static const u8 udma_66_hold_time[7] = {};
/*
* We set 66 MHz for all MWDMA modes
*/
static const bool set_mdma_66_mhz[] = { true, true, true, true };
/*
* We set 66 MHz for UDMA modes 3, 4 and 6 and no others
*/
static const bool set_udma_66_mhz[] = { false, false, false, true, true, false, true };
static void ftide010_set_dmamode(struct ata_port *ap, struct ata_device *adev)
{
struct ftide010 *ftide = ap->host->private_data;
u8 speed = adev->dma_mode;
u8 devno = adev->devno & 1;
u8 udma_en_mask;
u8 f66m_en_mask;
u8 clkreg;
u8 timreg;
u8 i;
/* Target device 0 (master) or 1 (slave) */
if (!devno) {
udma_en_mask = FTIDE010_CLK_MOD_DEV0_UDMA_EN;
f66m_en_mask = FTIDE010_CLK_MOD_DEV0_CLK_SEL;
} else {
udma_en_mask = FTIDE010_CLK_MOD_DEV1_UDMA_EN;
f66m_en_mask = FTIDE010_CLK_MOD_DEV1_CLK_SEL;
}
clkreg = readb(ftide->base + FTIDE010_CLK_MOD);
clkreg &= ~udma_en_mask;
clkreg &= ~f66m_en_mask;
if (speed & XFER_UDMA_0) {
i = speed & ~XFER_UDMA_0;
dev_dbg(ftide->dev, "set UDMA mode %02x, index %d\n",
speed, i);
clkreg |= udma_en_mask;
if (set_udma_66_mhz[i]) {
clkreg |= f66m_en_mask;
timreg = udma_66_setup_time[i] << 4 |
udma_66_hold_time[i];
} else {
timreg = udma_50_setup_time[i] << 4 |
udma_50_hold_time[i];
}
/* A special bit needs to be set for modes 5 and 6 */
if (i >= 5)
timreg |= FTIDE010_UDMA_TIMING_MODE_56;
dev_dbg(ftide->dev, "UDMA write clkreg = %02x, timreg = %02x\n",
clkreg, timreg);
writeb(clkreg, ftide->base + FTIDE010_CLK_MOD);
writeb(timreg, ftide->base + FTIDE010_UDMA_TIMING0 + devno);
} else {
i = speed & ~XFER_MW_DMA_0;
dev_dbg(ftide->dev, "set MWDMA mode %02x, index %d\n",
speed, i);
if (set_mdma_66_mhz[i]) {
clkreg |= f66m_en_mask;
timreg = mwdma_66_active_time[i] << 4 |
mwdma_66_recovery_time[i];
} else {
timreg = mwdma_50_active_time[i] << 4 |
mwdma_50_recovery_time[i];
}
dev_dbg(ftide->dev,
"MWDMA write clkreg = %02x, timreg = %02x\n",
clkreg, timreg);
/* This will affect all devices */
writeb(clkreg, ftide->base + FTIDE010_CLK_MOD);
writeb(timreg, ftide->base + FTIDE010_MWDMA_TIMING);
}
/*
* Store the current device (master or slave) in ap->private_data
* so that .qc_issue() can detect if this changes and reprogram
* the DMA settings.
*/
ap->private_data = adev;
return;
}
static void ftide010_set_piomode(struct ata_port *ap, struct ata_device *adev)
{
struct ftide010 *ftide = ap->host->private_data;
u8 pio = adev->pio_mode - XFER_PIO_0;
dev_dbg(ftide->dev, "set PIO mode %02x, index %d\n",
adev->pio_mode, pio);
writeb(pio_active_time[pio] << 4 | pio_recovery_time[pio],
ftide->base + FTIDE010_PIO_TIMING);
}
/*
* We implement our own qc_issue() callback since we may need to set up
* the timings differently for master and slave transfers: the CLK_MOD_REG
* and MWDMA_TIMING_REG is shared between master and slave, so reprogramming
* this may be necessary.
*/
static unsigned int ftide010_qc_issue(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct ata_device *adev = qc->dev;
/*
* If the device changed, i.e. slave->master, master->slave,
* then set up the DMA mode again so we are sure the timings
* are correct.
*/
if (adev != ap->private_data && ata_dma_enabled(adev))
ftide010_set_dmamode(ap, adev);
return ata_bmdma_qc_issue(qc);
}
static struct ata_port_operations pata_ftide010_port_ops = {
.inherits = &ata_bmdma_port_ops,
.set_dmamode = ftide010_set_dmamode,
.set_piomode = ftide010_set_piomode,
.qc_issue = ftide010_qc_issue,
};
static struct ata_port_info ftide010_port_info = {
.flags = ATA_FLAG_SLAVE_POSS,
.mwdma_mask = ATA_MWDMA2,
.udma_mask = ATA_UDMA6,
.pio_mask = ATA_PIO4,
.port_ops = &pata_ftide010_port_ops,
};
#if IS_ENABLED(CONFIG_SATA_GEMINI)
static int pata_ftide010_gemini_port_start(struct ata_port *ap)
{
struct ftide010 *ftide = ap->host->private_data;
struct device *dev = ftide->dev;
struct sata_gemini *sg = ftide->sg;
int bridges = 0;
int ret;
ret = ata_bmdma_port_start(ap);
if (ret)
return ret;
if (ftide->master_to_sata0) {
dev_info(dev, "SATA0 (master) start\n");
ret = gemini_sata_start_bridge(sg, 0);
if (!ret)
bridges++;
}
if (ftide->master_to_sata1) {
dev_info(dev, "SATA1 (master) start\n");
ret = gemini_sata_start_bridge(sg, 1);
if (!ret)
bridges++;
}
/* Avoid double-starting */
if (ftide->slave_to_sata0 && !ftide->master_to_sata0) {
dev_info(dev, "SATA0 (slave) start\n");
ret = gemini_sata_start_bridge(sg, 0);
if (!ret)
bridges++;
}
/* Avoid double-starting */
if (ftide->slave_to_sata1 && !ftide->master_to_sata1) {
dev_info(dev, "SATA1 (slave) start\n");
ret = gemini_sata_start_bridge(sg, 1);
if (!ret)
bridges++;
}
dev_info(dev, "brought %d bridges online\n", bridges);
return (bridges > 0) ? 0 : -EINVAL; // -ENODEV;
}
static void pata_ftide010_gemini_port_stop(struct ata_port *ap)
{
struct ftide010 *ftide = ap->host->private_data;
struct device *dev = ftide->dev;
struct sata_gemini *sg = ftide->sg;
if (ftide->master_to_sata0) {
dev_info(dev, "SATA0 (master) stop\n");
gemini_sata_stop_bridge(sg, 0);
}
if (ftide->master_to_sata1) {
dev_info(dev, "SATA1 (master) stop\n");
gemini_sata_stop_bridge(sg, 1);
}
/* Avoid double-stopping */
if (ftide->slave_to_sata0 && !ftide->master_to_sata0) {
dev_info(dev, "SATA0 (slave) stop\n");
gemini_sata_stop_bridge(sg, 0);
}
/* Avoid double-stopping */
if (ftide->slave_to_sata1 && !ftide->master_to_sata1) {
dev_info(dev, "SATA1 (slave) stop\n");
gemini_sata_stop_bridge(sg, 1);
}
}
static int pata_ftide010_gemini_cable_detect(struct ata_port *ap)
{
struct ftide010 *ftide = ap->host->private_data;
/*
* Return the master cable, I have no clue how to return a different
* cable for the slave than for the master.
*/
return ftide->master_cbl;
}
static int pata_ftide010_gemini_init(struct ftide010 *ftide,
struct ata_port_info *pi,
bool is_ata1)
{
struct device *dev = ftide->dev;
struct sata_gemini *sg;
enum gemini_muxmode muxmode;
/* Look up SATA bridge */
sg = gemini_sata_bridge_get();
if (IS_ERR(sg))
return PTR_ERR(sg);
ftide->sg = sg;
muxmode = gemini_sata_get_muxmode(sg);
/* Special ops */
pata_ftide010_port_ops.port_start =
pata_ftide010_gemini_port_start;
pata_ftide010_port_ops.port_stop =
pata_ftide010_gemini_port_stop;
pata_ftide010_port_ops.cable_detect =
pata_ftide010_gemini_cable_detect;
/* Flag port as SATA-capable */
if (gemini_sata_bridge_enabled(sg, is_ata1))
pi->flags |= ATA_FLAG_SATA;
/* This device has broken DMA, only PIO works */
if (of_machine_is_compatible("itian,sq201")) {
pi->mwdma_mask = 0;
pi->udma_mask = 0;
}
/*
* We assume that a simple 40-wire cable is used in the PATA mode.
* if you're adding a system using the PATA interface, make sure
* the right cable is set up here, it might be necessary to use
* special hardware detection or encode the cable type in the device
* tree with special properties.
*/
if (!is_ata1) {
switch (muxmode) {
case GEMINI_MUXMODE_0:
ftide->master_cbl = ATA_CBL_SATA;
ftide->slave_cbl = ATA_CBL_PATA40;
ftide->master_to_sata0 = true;
break;
case GEMINI_MUXMODE_1:
ftide->master_cbl = ATA_CBL_SATA;
ftide->slave_cbl = ATA_CBL_NONE;
ftide->master_to_sata0 = true;
break;
case GEMINI_MUXMODE_2:
ftide->master_cbl = ATA_CBL_PATA40;
ftide->slave_cbl = ATA_CBL_PATA40;
break;
case GEMINI_MUXMODE_3:
ftide->master_cbl = ATA_CBL_SATA;
ftide->slave_cbl = ATA_CBL_SATA;
ftide->master_to_sata0 = true;
ftide->slave_to_sata1 = true;
break;
}
} else {
switch (muxmode) {
case GEMINI_MUXMODE_0:
ftide->master_cbl = ATA_CBL_SATA;
ftide->slave_cbl = ATA_CBL_NONE;
ftide->master_to_sata1 = true;
break;
case GEMINI_MUXMODE_1:
ftide->master_cbl = ATA_CBL_SATA;
ftide->slave_cbl = ATA_CBL_PATA40;
ftide->master_to_sata1 = true;
break;
case GEMINI_MUXMODE_2:
ftide->master_cbl = ATA_CBL_SATA;
ftide->slave_cbl = ATA_CBL_SATA;
ftide->slave_to_sata0 = true;
ftide->master_to_sata1 = true;
break;
case GEMINI_MUXMODE_3:
ftide->master_cbl = ATA_CBL_PATA40;
ftide->slave_cbl = ATA_CBL_PATA40;
break;
}
}
dev_info(dev, "set up Gemini PATA%d\n", is_ata1);
return 0;
}
#else
static int pata_ftide010_gemini_init(struct ftide010 *ftide,
struct ata_port_info *pi,
bool is_ata1)
{
return -ENOTSUPP;
}
#endif
static int pata_ftide010_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct ata_port_info pi = ftide010_port_info;
const struct ata_port_info *ppi[] = { &pi, NULL };
struct ftide010 *ftide;
struct resource *res;
int irq;
int ret;
int i;
ftide = devm_kzalloc(dev, sizeof(*ftide), GFP_KERNEL);
if (!ftide)
return -ENOMEM;
ftide->dev = dev;
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res)
return -ENODEV;
ftide->base = devm_ioremap_resource(dev, res);
if (IS_ERR(ftide->base))
return PTR_ERR(ftide->base);
ftide->pclk = devm_clk_get(dev, "PCLK");
if (!IS_ERR(ftide->pclk)) {
ret = clk_prepare_enable(ftide->pclk);
if (ret) {
dev_err(dev, "failed to enable PCLK\n");
return ret;
}
}
/* Some special Cortina Gemini init, if needed */
if (of_device_is_compatible(np, "cortina,gemini-pata")) {
/*
* We need to know which instance is probing (the
* Gemini has two instances of FTIDE010) and we do
* this simply by looking at the physical base
* address, which is 0x63400000 for ATA1, else we
* are ATA0. This will also set up the cable types.
*/
ret = pata_ftide010_gemini_init(ftide,
&pi,
(res->start == 0x63400000));
if (ret)
goto err_dis_clk;
} else {
/* Else assume we are connected using PATA40 */
ftide->master_cbl = ATA_CBL_PATA40;
ftide->slave_cbl = ATA_CBL_PATA40;
}
ftide->host = ata_host_alloc_pinfo(dev, ppi, 1);
if (!ftide->host) {
ret = -ENOMEM;
goto err_dis_clk;
}
ftide->host->private_data = ftide;
for (i = 0; i < ftide->host->n_ports; i++) {
struct ata_port *ap = ftide->host->ports[i];
struct ata_ioports *ioaddr = &ap->ioaddr;
ioaddr->bmdma_addr = ftide->base + FTIDE010_DMA_REG;
ioaddr->cmd_addr = ftide->base + FTIDE010_CMD_DATA;
ioaddr->ctl_addr = ftide->base + FTIDE010_ALTSTAT_CTRL;
ioaddr->altstatus_addr = ftide->base + FTIDE010_ALTSTAT_CTRL;
ata_sff_std_ports(ioaddr);
}
dev_info(dev, "device ID %08x, irq %d, reg %pR\n",
readl(ftide->base + FTIDE010_IDE_DEVICE_ID), irq, res);
ret = ata_host_activate(ftide->host, irq, ata_bmdma_interrupt,
0, &pata_ftide010_sht);
if (ret)
goto err_dis_clk;
return 0;
err_dis_clk:
clk_disable_unprepare(ftide->pclk);
return ret;
}
static int pata_ftide010_remove(struct platform_device *pdev)
{
struct ata_host *host = platform_get_drvdata(pdev);
struct ftide010 *ftide = host->private_data;
ata_host_detach(ftide->host);
clk_disable_unprepare(ftide->pclk);
return 0;
}
static const struct of_device_id pata_ftide010_of_match[] = {
{ .compatible = "faraday,ftide010", },
{ /* sentinel */ }
};
static struct platform_driver pata_ftide010_driver = {
.driver = {
.name = DRV_NAME,
.of_match_table = pata_ftide010_of_match,
},
.probe = pata_ftide010_probe,
.remove = pata_ftide010_remove,
};
module_platform_driver(pata_ftide010_driver);
MODULE_AUTHOR("Linus Walleij <linus.walleij@linaro.org>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:" DRV_NAME);