linux-zen-server/drivers/bluetooth/hci_bcm4377.c

2515 lines
71 KiB
C

// SPDX-License-Identifier: GPL-2.0-only OR MIT
/*
* Bluetooth HCI driver for Broadcom 4377/4378/4387 devices attached via PCIe
*
* Copyright (C) The Asahi Linux Contributors
*/
#include <linux/async.h>
#include <linux/bitfield.h>
#include <linux/completion.h>
#include <linux/dma-mapping.h>
#include <linux/dmi.h>
#include <linux/firmware.h>
#include <linux/module.h>
#include <linux/msi.h>
#include <linux/of.h>
#include <linux/pci.h>
#include <linux/printk.h>
#include <asm/unaligned.h>
#include <net/bluetooth/bluetooth.h>
#include <net/bluetooth/hci_core.h>
enum bcm4377_chip {
BCM4377 = 0,
BCM4378,
BCM4387,
};
#define BCM4377_DEVICE_ID 0x5fa0
#define BCM4378_DEVICE_ID 0x5f69
#define BCM4387_DEVICE_ID 0x5f71
#define BCM4377_TIMEOUT 1000
/*
* These devices only support DMA transactions inside a 32bit window
* (possibly to avoid 64 bit arithmetic). The window size cannot exceed
* 0xffffffff but is always aligned down to the previous 0x200 byte boundary
* which effectively limits the window to [start, start+0xfffffe00].
* We just limit the DMA window to [0, 0xfffffe00] to make sure we don't
* run into this limitation.
*/
#define BCM4377_DMA_MASK 0xfffffe00
#define BCM4377_PCIECFG_BAR0_WINDOW1 0x80
#define BCM4377_PCIECFG_BAR0_WINDOW2 0x70
#define BCM4377_PCIECFG_BAR0_CORE2_WINDOW1 0x74
#define BCM4377_PCIECFG_BAR0_CORE2_WINDOW2 0x78
#define BCM4377_PCIECFG_BAR2_WINDOW 0x84
#define BCM4377_PCIECFG_BAR0_CORE2_WINDOW1_DEFAULT 0x18011000
#define BCM4377_PCIECFG_BAR2_WINDOW_DEFAULT 0x19000000
#define BCM4377_PCIECFG_SUBSYSTEM_CTRL 0x88
#define BCM4377_BAR0_FW_DOORBELL 0x140
#define BCM4377_BAR0_RTI_CONTROL 0x144
#define BCM4377_BAR0_SLEEP_CONTROL 0x150
#define BCM4377_BAR0_SLEEP_CONTROL_UNQUIESCE 0
#define BCM4377_BAR0_SLEEP_CONTROL_AWAKE 2
#define BCM4377_BAR0_SLEEP_CONTROL_QUIESCE 3
#define BCM4377_BAR0_DOORBELL 0x174
#define BCM4377_BAR0_DOORBELL_VALUE GENMASK(31, 16)
#define BCM4377_BAR0_DOORBELL_IDX GENMASK(15, 8)
#define BCM4377_BAR0_DOORBELL_RING BIT(5)
#define BCM4377_BAR0_HOST_WINDOW_LO 0x590
#define BCM4377_BAR0_HOST_WINDOW_HI 0x594
#define BCM4377_BAR0_HOST_WINDOW_SIZE 0x598
#define BCM4377_BAR2_BOOTSTAGE 0x200454
#define BCM4377_BAR2_FW_LO 0x200478
#define BCM4377_BAR2_FW_HI 0x20047c
#define BCM4377_BAR2_FW_SIZE 0x200480
#define BCM4377_BAR2_CONTEXT_ADDR_LO 0x20048c
#define BCM4377_BAR2_CONTEXT_ADDR_HI 0x200450
#define BCM4377_BAR2_RTI_STATUS 0x20045c
#define BCM4377_BAR2_RTI_WINDOW_LO 0x200494
#define BCM4377_BAR2_RTI_WINDOW_HI 0x200498
#define BCM4377_BAR2_RTI_WINDOW_SIZE 0x20049c
#define BCM4377_OTP_SIZE 0xe0
#define BCM4377_OTP_SYS_VENDOR 0x15
#define BCM4377_OTP_CIS 0x80
#define BCM4377_OTP_VENDOR_HDR 0x00000008
#define BCM4377_OTP_MAX_PARAM_LEN 16
#define BCM4377_N_TRANSFER_RINGS 9
#define BCM4377_N_COMPLETION_RINGS 6
#define BCM4377_MAX_RING_SIZE 256
#define BCM4377_MSGID_GENERATION GENMASK(15, 8)
#define BCM4377_MSGID_ID GENMASK(7, 0)
#define BCM4377_RING_N_ENTRIES 128
#define BCM4377_CONTROL_MSG_SIZE 0x34
#define BCM4377_XFER_RING_MAX_INPLACE_PAYLOAD_SIZE (4 * 0xff)
#define MAX_ACL_PAYLOAD_SIZE (HCI_MAX_FRAME_SIZE + HCI_ACL_HDR_SIZE)
#define MAX_SCO_PAYLOAD_SIZE (HCI_MAX_SCO_SIZE + HCI_SCO_HDR_SIZE)
#define MAX_EVENT_PAYLOAD_SIZE (HCI_MAX_EVENT_SIZE + HCI_EVENT_HDR_SIZE)
enum bcm4377_otp_params_type {
BCM4377_OTP_BOARD_PARAMS,
BCM4377_OTP_CHIP_PARAMS
};
enum bcm4377_transfer_ring_id {
BCM4377_XFER_RING_CONTROL = 0,
BCM4377_XFER_RING_HCI_H2D = 1,
BCM4377_XFER_RING_HCI_D2H = 2,
BCM4377_XFER_RING_SCO_H2D = 3,
BCM4377_XFER_RING_SCO_D2H = 4,
BCM4377_XFER_RING_ACL_H2D = 5,
BCM4377_XFER_RING_ACL_D2H = 6,
};
enum bcm4377_completion_ring_id {
BCM4377_ACK_RING_CONTROL = 0,
BCM4377_ACK_RING_HCI_ACL = 1,
BCM4377_EVENT_RING_HCI_ACL = 2,
BCM4377_ACK_RING_SCO = 3,
BCM4377_EVENT_RING_SCO = 4,
};
enum bcm4377_doorbell {
BCM4377_DOORBELL_CONTROL = 0,
BCM4377_DOORBELL_HCI_H2D = 1,
BCM4377_DOORBELL_HCI_D2H = 2,
BCM4377_DOORBELL_ACL_H2D = 3,
BCM4377_DOORBELL_ACL_D2H = 4,
BCM4377_DOORBELL_SCO = 6,
};
/*
* Transfer ring entry
*
* flags: Flags to indicate if the payload is appended or mapped
* len: Payload length
* payload: Optional payload DMA address
* id: Message id to recognize the answer in the completion ring entry
*/
struct bcm4377_xfer_ring_entry {
#define BCM4377_XFER_RING_FLAG_PAYLOAD_MAPPED BIT(0)
#define BCM4377_XFER_RING_FLAG_PAYLOAD_IN_FOOTER BIT(1)
u8 flags;
__le16 len;
u8 _unk0;
__le64 payload;
__le16 id;
u8 _unk1[2];
} __packed;
static_assert(sizeof(struct bcm4377_xfer_ring_entry) == 0x10);
/*
* Completion ring entry
*
* flags: Flags to indicate if the payload is appended or mapped. If the payload
* is mapped it can be found in the buffer of the corresponding transfer
* ring message.
* ring_id: Transfer ring ID which required this message
* msg_id: Message ID specified in transfer ring entry
* len: Payload length
*/
struct bcm4377_completion_ring_entry {
u8 flags;
u8 _unk0;
__le16 ring_id;
__le16 msg_id;
__le32 len;
u8 _unk1[6];
} __packed;
static_assert(sizeof(struct bcm4377_completion_ring_entry) == 0x10);
enum bcm4377_control_message_type {
BCM4377_CONTROL_MSG_CREATE_XFER_RING = 1,
BCM4377_CONTROL_MSG_CREATE_COMPLETION_RING = 2,
BCM4377_CONTROL_MSG_DESTROY_XFER_RING = 3,
BCM4377_CONTROL_MSG_DESTROY_COMPLETION_RING = 4,
};
/*
* Control message used to create a completion ring
*
* msg_type: Must be BCM4377_CONTROL_MSG_CREATE_COMPLETION_RING
* header_size: Unknown, but probably reserved space in front of the entry
* footer_size: Number of 32 bit words reserved for payloads after the entry
* id/id_again: Completion ring index
* ring_iova: DMA address of the ring buffer
* n_elements: Number of elements inside the ring buffer
* msi: MSI index, doesn't work for all rings though and should be zero
* intmod_delay: Unknown delay
* intmod_bytes: Unknown
*/
struct bcm4377_create_completion_ring_msg {
u8 msg_type;
u8 header_size;
u8 footer_size;
u8 _unk0;
__le16 id;
__le16 id_again;
__le64 ring_iova;
__le16 n_elements;
__le32 unk;
u8 _unk1[6];
__le16 msi;
__le16 intmod_delay;
__le32 intmod_bytes;
__le16 _unk2;
__le32 _unk3;
u8 _unk4[10];
} __packed;
static_assert(sizeof(struct bcm4377_create_completion_ring_msg) ==
BCM4377_CONTROL_MSG_SIZE);
/*
* Control ring message used to destroy a completion ring
*
* msg_type: Must be BCM4377_CONTROL_MSG_DESTROY_COMPLETION_RING
* ring_id: Completion ring to be destroyed
*/
struct bcm4377_destroy_completion_ring_msg {
u8 msg_type;
u8 _pad0;
__le16 ring_id;
u8 _pad1[48];
} __packed;
static_assert(sizeof(struct bcm4377_destroy_completion_ring_msg) ==
BCM4377_CONTROL_MSG_SIZE);
/*
* Control message used to create a transfer ring
*
* msg_type: Must be BCM4377_CONTROL_MSG_CREATE_XFER_RING
* header_size: Number of 32 bit words reserved for unknown content before the
* entry
* footer_size: Number of 32 bit words reserved for payloads after the entry
* ring_id/ring_id_again: Transfer ring index
* ring_iova: DMA address of the ring buffer
* n_elements: Number of elements inside the ring buffer
* completion_ring_id: Completion ring index for acknowledgements and events
* doorbell: Doorbell index used to notify device of new entries
* flags: Transfer ring flags
* - virtual: set if there is no associated shared memory and only the
* corresponding completion ring is used
* - sync: only set for the SCO rings
*/
struct bcm4377_create_transfer_ring_msg {
u8 msg_type;
u8 header_size;
u8 footer_size;
u8 _unk0;
__le16 ring_id;
__le16 ring_id_again;
__le64 ring_iova;
u8 _unk1[8];
__le16 n_elements;
__le16 completion_ring_id;
__le16 doorbell;
#define BCM4377_XFER_RING_FLAG_VIRTUAL BIT(7)
#define BCM4377_XFER_RING_FLAG_SYNC BIT(8)
__le16 flags;
u8 _unk2[20];
} __packed;
static_assert(sizeof(struct bcm4377_create_transfer_ring_msg) ==
BCM4377_CONTROL_MSG_SIZE);
/*
* Control ring message used to destroy a transfer ring
*
* msg_type: Must be BCM4377_CONTROL_MSG_DESTROY_XFER_RING
* ring_id: Transfer ring to be destroyed
*/
struct bcm4377_destroy_transfer_ring_msg {
u8 msg_type;
u8 _pad0;
__le16 ring_id;
u8 _pad1[48];
} __packed;
static_assert(sizeof(struct bcm4377_destroy_transfer_ring_msg) ==
BCM4377_CONTROL_MSG_SIZE);
/*
* "Converged IPC" context struct used to make the device aware of all other
* shared memory structures. A pointer to this structure is configured inside a
* MMIO register.
*
* version: Protocol version, must be 2.
* size: Size of this structure, must be 0x68.
* enabled_caps: Enabled capabilities. Unknown bitfield but should be 2.
* peripheral_info_addr: DMA address for a 0x20 buffer to which the device will
* write unknown contents
* {completion,xfer}_ring_{tails,heads}_addr: DMA pointers to ring heads/tails
* n_completion_rings: Number of completion rings, the firmware only works if
* this is set to BCM4377_N_COMPLETION_RINGS.
* n_xfer_rings: Number of transfer rings, the firmware only works if
* this is set to BCM4377_N_TRANSFER_RINGS.
* control_completion_ring_addr: Control completion ring buffer DMA address
* control_xfer_ring_addr: Control transfer ring buffer DMA address
* control_xfer_ring_n_entries: Number of control transfer ring entries
* control_completion_ring_n_entries: Number of control completion ring entries
* control_xfer_ring_doorbell: Control transfer ring doorbell
* control_completion_ring_doorbell: Control completion ring doorbell,
* must be set to 0xffff
* control_xfer_ring_msi: Control completion ring MSI index, must be 0
* control_completion_ring_msi: Control completion ring MSI index, must be 0.
* control_xfer_ring_header_size: Number of 32 bit words reserved in front of
* every control transfer ring entry
* control_xfer_ring_footer_size: Number of 32 bit words reserved after every
* control transfer ring entry
* control_completion_ring_header_size: Number of 32 bit words reserved in front
* of every control completion ring entry
* control_completion_ring_footer_size: Number of 32 bit words reserved after
* every control completion ring entry
* scratch_pad: Optional scratch pad DMA address
* scratch_pad_size: Scratch pad size
*/
struct bcm4377_context {
__le16 version;
__le16 size;
__le32 enabled_caps;
__le64 peripheral_info_addr;
/* ring heads and tails */
__le64 completion_ring_heads_addr;
__le64 xfer_ring_tails_addr;
__le64 completion_ring_tails_addr;
__le64 xfer_ring_heads_addr;
__le16 n_completion_rings;
__le16 n_xfer_rings;
/* control ring configuration */
__le64 control_completion_ring_addr;
__le64 control_xfer_ring_addr;
__le16 control_xfer_ring_n_entries;
__le16 control_completion_ring_n_entries;
__le16 control_xfer_ring_doorbell;
__le16 control_completion_ring_doorbell;
__le16 control_xfer_ring_msi;
__le16 control_completion_ring_msi;
u8 control_xfer_ring_header_size;
u8 control_xfer_ring_footer_size;
u8 control_completion_ring_header_size;
u8 control_completion_ring_footer_size;
__le16 _unk0;
__le16 _unk1;
__le64 scratch_pad;
__le32 scratch_pad_size;
__le32 _unk3;
} __packed;
static_assert(sizeof(struct bcm4377_context) == 0x68);
#define BCM4378_CALIBRATION_CHUNK_SIZE 0xe6
struct bcm4378_hci_send_calibration_cmd {
u8 unk;
__le16 blocks_left;
u8 data[BCM4378_CALIBRATION_CHUNK_SIZE];
} __packed;
#define BCM4378_PTB_CHUNK_SIZE 0xcf
struct bcm4378_hci_send_ptb_cmd {
__le16 blocks_left;
u8 data[BCM4378_PTB_CHUNK_SIZE];
} __packed;
/*
* Shared memory structure used to store the ring head and tail pointers.
*/
struct bcm4377_ring_state {
__le16 completion_ring_head[BCM4377_N_COMPLETION_RINGS];
__le16 completion_ring_tail[BCM4377_N_COMPLETION_RINGS];
__le16 xfer_ring_head[BCM4377_N_TRANSFER_RINGS];
__le16 xfer_ring_tail[BCM4377_N_TRANSFER_RINGS];
};
/*
* A transfer ring can be used in two configurations:
* 1) Send control or HCI messages to the device which are then acknowledged
* in the corresponding completion ring
* 2) Receiving HCI frames from the devices. In this case the transfer ring
* itself contains empty messages that are acknowledged once data is
* available from the device. If the payloads fit inside the footers
* of the completion ring the transfer ring can be configured to be
* virtual such that it has no ring buffer.
*
* ring_id: ring index hardcoded in the firmware
* doorbell: doorbell index to notify device of new entries
* payload_size: optional in-place payload size
* mapped_payload_size: optional out-of-place payload size
* completion_ring: index of corresponding completion ring
* n_entries: number of entries inside this ring
* generation: ring generation; incremented on hci_open to detect stale messages
* sync: set to true for SCO rings
* virtual: set to true if this ring has no entries and is just required to
* setup a corresponding completion ring for device->host messages
* d2h_buffers_only: set to true if this ring is only used to provide large
* buffers used by device->host messages in the completion
* ring
* allow_wait: allow to wait for messages to be acknowledged
* enabled: true once the ring has been created and can be used
* ring: ring buffer for entries (struct bcm4377_xfer_ring_entry)
* ring_dma: DMA address for ring entry buffer
* payloads: payload buffer for mapped_payload_size payloads
* payloads_dma:DMA address for payload buffer
* events: pointer to array of completions if waiting is allowed
* msgids: bitmap to keep track of used message ids
* lock: Spinlock to protect access to ring structurs used in the irq handler
*/
struct bcm4377_transfer_ring {
enum bcm4377_transfer_ring_id ring_id;
enum bcm4377_doorbell doorbell;
size_t payload_size;
size_t mapped_payload_size;
u8 completion_ring;
u16 n_entries;
u8 generation;
bool sync;
bool virtual;
bool d2h_buffers_only;
bool allow_wait;
bool enabled;
void *ring;
dma_addr_t ring_dma;
void *payloads;
dma_addr_t payloads_dma;
struct completion **events;
DECLARE_BITMAP(msgids, BCM4377_MAX_RING_SIZE);
spinlock_t lock;
};
/*
* A completion ring can be either used to either acknowledge messages sent in
* the corresponding transfer ring or to receive messages associated with the
* transfer ring. When used to receive messages the transfer ring either
* has no ring buffer and is only advanced ("virtual transfer ring") or it
* only contains empty DMA buffers to be used for the payloads.
*
* ring_id: completion ring id, hardcoded in firmware
* payload_size: optional payload size after each entry
* delay: unknown delay
* n_entries: number of entries in this ring
* enabled: true once the ring has been created and can be used
* ring: ring buffer for entries (struct bcm4377_completion_ring_entry)
* ring_dma: DMA address of ring buffer
* transfer_rings: bitmap of corresponding transfer ring ids
*/
struct bcm4377_completion_ring {
enum bcm4377_completion_ring_id ring_id;
u16 payload_size;
u16 delay;
u16 n_entries;
bool enabled;
void *ring;
dma_addr_t ring_dma;
unsigned long transfer_rings;
};
struct bcm4377_data;
/*
* Chip-specific configuration struct
*
* id: Chip id (e.g. 0x4377 for BCM4377)
* otp_offset: Offset to the start of the OTP inside BAR0
* bar0_window1: Backplane address mapped to the first window in BAR0
* bar0_window2: Backplane address mapped to the second window in BAR0
* bar0_core2_window2: Optional backplane address mapped to the second core's
* second window in BAR0
* has_bar0_core2_window2: Set to true if this chip requires the second core's
* second window to be configured
* clear_pciecfg_subsystem_ctrl_bit19: Set to true if bit 19 in the
* vendor-specific subsystem control
* register has to be cleared
* disable_aspm: Set to true if ASPM must be disabled due to hardware errata
* broken_ext_scan: Set to true if the chip erroneously claims to support
* extended scanning
* broken_mws_transport_config: Set to true if the chip erroneously claims to
* support MWS Transport Configuration
* send_calibration: Optional callback to send calibration data
* send_ptb: Callback to send "PTB" regulatory/calibration data
*/
struct bcm4377_hw {
unsigned int id;
u32 otp_offset;
u32 bar0_window1;
u32 bar0_window2;
u32 bar0_core2_window2;
unsigned long has_bar0_core2_window2 : 1;
unsigned long clear_pciecfg_subsystem_ctrl_bit19 : 1;
unsigned long disable_aspm : 1;
unsigned long broken_ext_scan : 1;
unsigned long broken_mws_transport_config : 1;
int (*send_calibration)(struct bcm4377_data *bcm4377);
int (*send_ptb)(struct bcm4377_data *bcm4377,
const struct firmware *fw);
};
static const struct bcm4377_hw bcm4377_hw_variants[];
static const struct dmi_system_id bcm4377_dmi_board_table[];
/*
* Private struct associated with each device containing global state
*
* pdev: Pointer to associated struct pci_dev
* hdev: Pointer to associated strucy hci_dev
* bar0: iomem pointing to BAR0
* bar1: iomem pointing to BAR2
* bootstage: Current value of the bootstage
* rti_status: Current "RTI" status value
* hw: Pointer to chip-specific struct bcm4377_hw
* taurus_cal_blob: "Taurus" calibration blob used for some chips
* taurus_cal_size: "Taurus" calibration blob size
* taurus_beamforming_cal_blob: "Taurus" beamforming calibration blob used for
* some chips
* taurus_beamforming_cal_size: "Taurus" beamforming calibration blob size
* stepping: Chip stepping read from OTP; used for firmware selection
* vendor: Antenna vendor read from OTP; used for firmware selection
* board_type: Board type from FDT or DMI match; used for firmware selection
* event: Event for changed bootstage or rti_status; used for booting firmware
* ctx: "Converged IPC" context
* ctx_dma: "Converged IPC" context DMA address
* ring_state: Shared memory buffer containing ring head and tail indexes
* ring_state_dma: DMA address for ring_state
* {control,hci_acl,sco}_ack_ring: Completion rings used to acknowledge messages
* {hci_acl,sco}_event_ring: Completion rings used for device->host messages
* control_h2d_ring: Transfer ring used for control messages
* {hci,sco,acl}_h2d_ring: Transfer ring used to transfer HCI frames
* {hci,sco,acl}_d2h_ring: Transfer ring used to receive HCI frames in the
* corresponding completion ring
*/
struct bcm4377_data {
struct pci_dev *pdev;
struct hci_dev *hdev;
void __iomem *bar0;
void __iomem *bar2;
u32 bootstage;
u32 rti_status;
const struct bcm4377_hw *hw;
const void *taurus_cal_blob;
int taurus_cal_size;
const void *taurus_beamforming_cal_blob;
int taurus_beamforming_cal_size;
char stepping[BCM4377_OTP_MAX_PARAM_LEN];
char vendor[BCM4377_OTP_MAX_PARAM_LEN];
const char *board_type;
struct completion event;
struct bcm4377_context *ctx;
dma_addr_t ctx_dma;
struct bcm4377_ring_state *ring_state;
dma_addr_t ring_state_dma;
/*
* The HCI and ACL rings have to be merged because this structure is
* hardcoded in the firmware.
*/
struct bcm4377_completion_ring control_ack_ring;
struct bcm4377_completion_ring hci_acl_ack_ring;
struct bcm4377_completion_ring hci_acl_event_ring;
struct bcm4377_completion_ring sco_ack_ring;
struct bcm4377_completion_ring sco_event_ring;
struct bcm4377_transfer_ring control_h2d_ring;
struct bcm4377_transfer_ring hci_h2d_ring;
struct bcm4377_transfer_ring hci_d2h_ring;
struct bcm4377_transfer_ring sco_h2d_ring;
struct bcm4377_transfer_ring sco_d2h_ring;
struct bcm4377_transfer_ring acl_h2d_ring;
struct bcm4377_transfer_ring acl_d2h_ring;
};
static void bcm4377_ring_doorbell(struct bcm4377_data *bcm4377, u8 doorbell,
u16 val)
{
u32 db = 0;
db |= FIELD_PREP(BCM4377_BAR0_DOORBELL_VALUE, val);
db |= FIELD_PREP(BCM4377_BAR0_DOORBELL_IDX, doorbell);
db |= BCM4377_BAR0_DOORBELL_RING;
dev_dbg(&bcm4377->pdev->dev, "write %d to doorbell #%d (0x%x)\n", val,
doorbell, db);
iowrite32(db, bcm4377->bar0 + BCM4377_BAR0_DOORBELL);
}
static int bcm4377_extract_msgid(struct bcm4377_data *bcm4377,
struct bcm4377_transfer_ring *ring,
u16 raw_msgid, u8 *msgid)
{
u8 generation = FIELD_GET(BCM4377_MSGID_GENERATION, raw_msgid);
*msgid = FIELD_GET(BCM4377_MSGID_ID, raw_msgid);
if (generation != ring->generation) {
dev_warn(
&bcm4377->pdev->dev,
"invalid message generation %d should be %d in entry for ring %d\n",
generation, ring->generation, ring->ring_id);
return -EINVAL;
}
if (*msgid >= ring->n_entries) {
dev_warn(&bcm4377->pdev->dev,
"invalid message id in entry for ring %d: %d > %d\n",
ring->ring_id, *msgid, ring->n_entries);
return -EINVAL;
}
return 0;
}
static void bcm4377_handle_event(struct bcm4377_data *bcm4377,
struct bcm4377_transfer_ring *ring,
u16 raw_msgid, u8 entry_flags, u8 type,
void *payload, size_t len)
{
struct sk_buff *skb;
u16 head;
u8 msgid;
unsigned long flags;
spin_lock_irqsave(&ring->lock, flags);
if (!ring->enabled) {
dev_warn(&bcm4377->pdev->dev,
"event for disabled transfer ring %d\n",
ring->ring_id);
goto out;
}
if (ring->d2h_buffers_only &&
entry_flags & BCM4377_XFER_RING_FLAG_PAYLOAD_MAPPED) {
if (bcm4377_extract_msgid(bcm4377, ring, raw_msgid, &msgid))
goto out;
if (len > ring->mapped_payload_size) {
dev_warn(
&bcm4377->pdev->dev,
"invalid payload len in event for ring %d: %zu > %zu\n",
ring->ring_id, len, ring->mapped_payload_size);
goto out;
}
payload = ring->payloads + msgid * ring->mapped_payload_size;
}
skb = bt_skb_alloc(len, GFP_ATOMIC);
if (!skb)
goto out;
memcpy(skb_put(skb, len), payload, len);
hci_skb_pkt_type(skb) = type;
hci_recv_frame(bcm4377->hdev, skb);
out:
head = le16_to_cpu(bcm4377->ring_state->xfer_ring_head[ring->ring_id]);
head = (head + 1) % ring->n_entries;
bcm4377->ring_state->xfer_ring_head[ring->ring_id] = cpu_to_le16(head);
bcm4377_ring_doorbell(bcm4377, ring->doorbell, head);
spin_unlock_irqrestore(&ring->lock, flags);
}
static void bcm4377_handle_ack(struct bcm4377_data *bcm4377,
struct bcm4377_transfer_ring *ring,
u16 raw_msgid)
{
unsigned long flags;
u8 msgid;
spin_lock_irqsave(&ring->lock, flags);
if (bcm4377_extract_msgid(bcm4377, ring, raw_msgid, &msgid))
goto unlock;
if (!test_bit(msgid, ring->msgids)) {
dev_warn(
&bcm4377->pdev->dev,
"invalid message id in ack for ring %d: %d is not used\n",
ring->ring_id, msgid);
goto unlock;
}
if (ring->allow_wait && ring->events[msgid]) {
complete(ring->events[msgid]);
ring->events[msgid] = NULL;
}
bitmap_release_region(ring->msgids, msgid, ring->n_entries);
unlock:
spin_unlock_irqrestore(&ring->lock, flags);
}
static void bcm4377_handle_completion(struct bcm4377_data *bcm4377,
struct bcm4377_completion_ring *ring,
u16 pos)
{
struct bcm4377_completion_ring_entry *entry;
u16 msg_id, transfer_ring;
size_t entry_size, data_len;
void *data;
if (pos >= ring->n_entries) {
dev_warn(&bcm4377->pdev->dev,
"invalid offset %d for completion ring %d\n", pos,
ring->ring_id);
return;
}
entry_size = sizeof(*entry) + ring->payload_size;
entry = ring->ring + pos * entry_size;
data = ring->ring + pos * entry_size + sizeof(*entry);
data_len = le32_to_cpu(entry->len);
msg_id = le16_to_cpu(entry->msg_id);
transfer_ring = le16_to_cpu(entry->ring_id);
if ((ring->transfer_rings & BIT(transfer_ring)) == 0) {
dev_warn(
&bcm4377->pdev->dev,
"invalid entry at offset %d for transfer ring %d in completion ring %d\n",
pos, transfer_ring, ring->ring_id);
return;
}
dev_dbg(&bcm4377->pdev->dev,
"entry in completion ring %d for transfer ring %d with msg_id %d\n",
ring->ring_id, transfer_ring, msg_id);
switch (transfer_ring) {
case BCM4377_XFER_RING_CONTROL:
bcm4377_handle_ack(bcm4377, &bcm4377->control_h2d_ring, msg_id);
break;
case BCM4377_XFER_RING_HCI_H2D:
bcm4377_handle_ack(bcm4377, &bcm4377->hci_h2d_ring, msg_id);
break;
case BCM4377_XFER_RING_SCO_H2D:
bcm4377_handle_ack(bcm4377, &bcm4377->sco_h2d_ring, msg_id);
break;
case BCM4377_XFER_RING_ACL_H2D:
bcm4377_handle_ack(bcm4377, &bcm4377->acl_h2d_ring, msg_id);
break;
case BCM4377_XFER_RING_HCI_D2H:
bcm4377_handle_event(bcm4377, &bcm4377->hci_d2h_ring, msg_id,
entry->flags, HCI_EVENT_PKT, data,
data_len);
break;
case BCM4377_XFER_RING_SCO_D2H:
bcm4377_handle_event(bcm4377, &bcm4377->sco_d2h_ring, msg_id,
entry->flags, HCI_SCODATA_PKT, data,
data_len);
break;
case BCM4377_XFER_RING_ACL_D2H:
bcm4377_handle_event(bcm4377, &bcm4377->acl_d2h_ring, msg_id,
entry->flags, HCI_ACLDATA_PKT, data,
data_len);
break;
default:
dev_warn(
&bcm4377->pdev->dev,
"entry in completion ring %d for unknown transfer ring %d with msg_id %d\n",
ring->ring_id, transfer_ring, msg_id);
}
}
static void bcm4377_poll_completion_ring(struct bcm4377_data *bcm4377,
struct bcm4377_completion_ring *ring)
{
u16 tail;
__le16 *heads = bcm4377->ring_state->completion_ring_head;
__le16 *tails = bcm4377->ring_state->completion_ring_tail;
if (!ring->enabled)
return;
tail = le16_to_cpu(tails[ring->ring_id]);
dev_dbg(&bcm4377->pdev->dev,
"completion ring #%d: head: %d, tail: %d\n", ring->ring_id,
le16_to_cpu(heads[ring->ring_id]), tail);
while (tail != le16_to_cpu(READ_ONCE(heads[ring->ring_id]))) {
/*
* ensure the CPU doesn't speculate through the comparison.
* otherwise it might already read the (empty) queue entry
* before the updated head has been loaded and checked.
*/
dma_rmb();
bcm4377_handle_completion(bcm4377, ring, tail);
tail = (tail + 1) % ring->n_entries;
tails[ring->ring_id] = cpu_to_le16(tail);
}
}
static irqreturn_t bcm4377_irq(int irq, void *data)
{
struct bcm4377_data *bcm4377 = data;
u32 bootstage, rti_status;
bootstage = ioread32(bcm4377->bar2 + BCM4377_BAR2_BOOTSTAGE);
rti_status = ioread32(bcm4377->bar2 + BCM4377_BAR2_RTI_STATUS);
if (bootstage != bcm4377->bootstage ||
rti_status != bcm4377->rti_status) {
dev_dbg(&bcm4377->pdev->dev,
"bootstage = %d -> %d, rti state = %d -> %d\n",
bcm4377->bootstage, bootstage, bcm4377->rti_status,
rti_status);
complete(&bcm4377->event);
bcm4377->bootstage = bootstage;
bcm4377->rti_status = rti_status;
}
if (rti_status > 2)
dev_err(&bcm4377->pdev->dev, "RTI status is %d\n", rti_status);
bcm4377_poll_completion_ring(bcm4377, &bcm4377->control_ack_ring);
bcm4377_poll_completion_ring(bcm4377, &bcm4377->hci_acl_event_ring);
bcm4377_poll_completion_ring(bcm4377, &bcm4377->hci_acl_ack_ring);
bcm4377_poll_completion_ring(bcm4377, &bcm4377->sco_ack_ring);
bcm4377_poll_completion_ring(bcm4377, &bcm4377->sco_event_ring);
return IRQ_HANDLED;
}
static int bcm4377_enqueue(struct bcm4377_data *bcm4377,
struct bcm4377_transfer_ring *ring, void *data,
size_t len, bool wait)
{
unsigned long flags;
struct bcm4377_xfer_ring_entry *entry;
void *payload;
size_t offset;
u16 head, tail, new_head;
u16 raw_msgid;
int ret, msgid;
DECLARE_COMPLETION_ONSTACK(event);
if (len > ring->payload_size && len > ring->mapped_payload_size) {
dev_warn(
&bcm4377->pdev->dev,
"payload len %zu is too large for ring %d (max is %zu or %zu)\n",
len, ring->ring_id, ring->payload_size,
ring->mapped_payload_size);
return -EINVAL;
}
if (wait && !ring->allow_wait)
return -EINVAL;
if (ring->virtual)
return -EINVAL;
spin_lock_irqsave(&ring->lock, flags);
head = le16_to_cpu(bcm4377->ring_state->xfer_ring_head[ring->ring_id]);
tail = le16_to_cpu(bcm4377->ring_state->xfer_ring_tail[ring->ring_id]);
new_head = (head + 1) % ring->n_entries;
if (new_head == tail) {
dev_warn(&bcm4377->pdev->dev,
"can't send message because ring %d is full\n",
ring->ring_id);
ret = -EINVAL;
goto out;
}
msgid = bitmap_find_free_region(ring->msgids, ring->n_entries, 0);
if (msgid < 0) {
dev_warn(&bcm4377->pdev->dev,
"can't find message id for ring %d\n", ring->ring_id);
ret = -EINVAL;
goto out;
}
raw_msgid = FIELD_PREP(BCM4377_MSGID_GENERATION, ring->generation);
raw_msgid |= FIELD_PREP(BCM4377_MSGID_ID, msgid);
offset = head * (sizeof(*entry) + ring->payload_size);
entry = ring->ring + offset;
memset(entry, 0, sizeof(*entry));
entry->id = cpu_to_le16(raw_msgid);
entry->len = cpu_to_le16(len);
if (len <= ring->payload_size) {
entry->flags = BCM4377_XFER_RING_FLAG_PAYLOAD_IN_FOOTER;
payload = ring->ring + offset + sizeof(*entry);
} else {
entry->flags = BCM4377_XFER_RING_FLAG_PAYLOAD_MAPPED;
entry->payload = cpu_to_le64(ring->payloads_dma +
msgid * ring->mapped_payload_size);
payload = ring->payloads + msgid * ring->mapped_payload_size;
}
memcpy(payload, data, len);
if (wait)
ring->events[msgid] = &event;
/*
* The 4377 chips stop responding to any commands as soon as they
* have been idle for a while. Poking the sleep control register here
* makes them come alive again.
*/
iowrite32(BCM4377_BAR0_SLEEP_CONTROL_AWAKE,
bcm4377->bar0 + BCM4377_BAR0_SLEEP_CONTROL);
dev_dbg(&bcm4377->pdev->dev,
"updating head for transfer queue #%d to %d\n", ring->ring_id,
new_head);
bcm4377->ring_state->xfer_ring_head[ring->ring_id] =
cpu_to_le16(new_head);
if (!ring->sync)
bcm4377_ring_doorbell(bcm4377, ring->doorbell, new_head);
ret = 0;
out:
spin_unlock_irqrestore(&ring->lock, flags);
if (ret == 0 && wait) {
ret = wait_for_completion_interruptible_timeout(
&event, BCM4377_TIMEOUT);
if (ret == 0)
ret = -ETIMEDOUT;
else if (ret > 0)
ret = 0;
spin_lock_irqsave(&ring->lock, flags);
ring->events[msgid] = NULL;
spin_unlock_irqrestore(&ring->lock, flags);
}
return ret;
}
static int bcm4377_create_completion_ring(struct bcm4377_data *bcm4377,
struct bcm4377_completion_ring *ring)
{
struct bcm4377_create_completion_ring_msg msg;
int ret;
if (ring->enabled) {
dev_warn(&bcm4377->pdev->dev,
"completion ring %d already enabled\n", ring->ring_id);
return 0;
}
memset(ring->ring, 0,
ring->n_entries * (sizeof(struct bcm4377_completion_ring_entry) +
ring->payload_size));
memset(&msg, 0, sizeof(msg));
msg.msg_type = BCM4377_CONTROL_MSG_CREATE_COMPLETION_RING;
msg.id = cpu_to_le16(ring->ring_id);
msg.id_again = cpu_to_le16(ring->ring_id);
msg.ring_iova = cpu_to_le64(ring->ring_dma);
msg.n_elements = cpu_to_le16(ring->n_entries);
msg.intmod_bytes = cpu_to_le32(0xffffffff);
msg.unk = cpu_to_le32(0xffffffff);
msg.intmod_delay = cpu_to_le16(ring->delay);
msg.footer_size = ring->payload_size / 4;
ret = bcm4377_enqueue(bcm4377, &bcm4377->control_h2d_ring, &msg,
sizeof(msg), true);
if (!ret)
ring->enabled = true;
return ret;
}
static int bcm4377_destroy_completion_ring(struct bcm4377_data *bcm4377,
struct bcm4377_completion_ring *ring)
{
struct bcm4377_destroy_completion_ring_msg msg;
int ret;
memset(&msg, 0, sizeof(msg));
msg.msg_type = BCM4377_CONTROL_MSG_DESTROY_COMPLETION_RING;
msg.ring_id = cpu_to_le16(ring->ring_id);
ret = bcm4377_enqueue(bcm4377, &bcm4377->control_h2d_ring, &msg,
sizeof(msg), true);
if (ret)
dev_warn(&bcm4377->pdev->dev,
"failed to destroy completion ring %d\n",
ring->ring_id);
ring->enabled = false;
return ret;
}
static int bcm4377_create_transfer_ring(struct bcm4377_data *bcm4377,
struct bcm4377_transfer_ring *ring)
{
struct bcm4377_create_transfer_ring_msg msg;
u16 flags = 0;
int ret, i;
unsigned long spinlock_flags;
if (ring->virtual)
flags |= BCM4377_XFER_RING_FLAG_VIRTUAL;
if (ring->sync)
flags |= BCM4377_XFER_RING_FLAG_SYNC;
spin_lock_irqsave(&ring->lock, spinlock_flags);
memset(&msg, 0, sizeof(msg));
msg.msg_type = BCM4377_CONTROL_MSG_CREATE_XFER_RING;
msg.ring_id = cpu_to_le16(ring->ring_id);
msg.ring_id_again = cpu_to_le16(ring->ring_id);
msg.ring_iova = cpu_to_le64(ring->ring_dma);
msg.n_elements = cpu_to_le16(ring->n_entries);
msg.completion_ring_id = cpu_to_le16(ring->completion_ring);
msg.doorbell = cpu_to_le16(ring->doorbell);
msg.flags = cpu_to_le16(flags);
msg.footer_size = ring->payload_size / 4;
bcm4377->ring_state->xfer_ring_head[ring->ring_id] = 0;
bcm4377->ring_state->xfer_ring_tail[ring->ring_id] = 0;
ring->generation++;
spin_unlock_irqrestore(&ring->lock, spinlock_flags);
ret = bcm4377_enqueue(bcm4377, &bcm4377->control_h2d_ring, &msg,
sizeof(msg), true);
spin_lock_irqsave(&ring->lock, spinlock_flags);
if (ring->d2h_buffers_only) {
for (i = 0; i < ring->n_entries; ++i) {
struct bcm4377_xfer_ring_entry *entry =
ring->ring + i * sizeof(*entry);
u16 raw_msgid = FIELD_PREP(BCM4377_MSGID_GENERATION,
ring->generation);
raw_msgid |= FIELD_PREP(BCM4377_MSGID_ID, i);
memset(entry, 0, sizeof(*entry));
entry->id = cpu_to_le16(raw_msgid);
entry->len = cpu_to_le16(ring->mapped_payload_size);
entry->flags = BCM4377_XFER_RING_FLAG_PAYLOAD_MAPPED;
entry->payload =
cpu_to_le64(ring->payloads_dma +
i * ring->mapped_payload_size);
}
}
/*
* send some messages if this is a device->host ring to allow the device
* to reply by acknowledging them in the completion ring
*/
if (ring->virtual || ring->d2h_buffers_only) {
bcm4377->ring_state->xfer_ring_head[ring->ring_id] =
cpu_to_le16(0xf);
bcm4377_ring_doorbell(bcm4377, ring->doorbell, 0xf);
}
ring->enabled = true;
spin_unlock_irqrestore(&ring->lock, spinlock_flags);
return ret;
}
static int bcm4377_destroy_transfer_ring(struct bcm4377_data *bcm4377,
struct bcm4377_transfer_ring *ring)
{
struct bcm4377_destroy_transfer_ring_msg msg;
int ret;
memset(&msg, 0, sizeof(msg));
msg.msg_type = BCM4377_CONTROL_MSG_DESTROY_XFER_RING;
msg.ring_id = cpu_to_le16(ring->ring_id);
ret = bcm4377_enqueue(bcm4377, &bcm4377->control_h2d_ring, &msg,
sizeof(msg), true);
if (ret)
dev_warn(&bcm4377->pdev->dev,
"failed to destroy transfer ring %d\n", ring->ring_id);
ring->enabled = false;
return ret;
}
static int __bcm4378_send_calibration_chunk(struct bcm4377_data *bcm4377,
const void *data, size_t data_len,
u16 blocks_left)
{
struct bcm4378_hci_send_calibration_cmd cmd;
struct sk_buff *skb;
if (data_len > sizeof(cmd.data))
return -EINVAL;
memset(&cmd, 0, sizeof(cmd));
cmd.unk = 0x03;
cmd.blocks_left = cpu_to_le16(blocks_left);
memcpy(cmd.data, data, data_len);
skb = __hci_cmd_sync(bcm4377->hdev, 0xfd97, sizeof(cmd), &cmd,
HCI_INIT_TIMEOUT);
if (IS_ERR(skb))
return PTR_ERR(skb);
kfree_skb(skb);
return 0;
}
static int __bcm4378_send_calibration(struct bcm4377_data *bcm4377,
const void *data, size_t data_size)
{
int ret;
size_t i, left, transfer_len;
size_t blocks =
DIV_ROUND_UP(data_size, (size_t)BCM4378_CALIBRATION_CHUNK_SIZE);
if (!data) {
dev_err(&bcm4377->pdev->dev,
"no calibration data available.\n");
return -ENOENT;
}
for (i = 0, left = data_size; i < blocks; ++i, left -= transfer_len) {
transfer_len =
min_t(size_t, left, BCM4378_CALIBRATION_CHUNK_SIZE);
ret = __bcm4378_send_calibration_chunk(
bcm4377, data + i * BCM4378_CALIBRATION_CHUNK_SIZE,
transfer_len, blocks - i - 1);
if (ret) {
dev_err(&bcm4377->pdev->dev,
"send calibration chunk failed with %d\n", ret);
return ret;
}
}
return 0;
}
static int bcm4378_send_calibration(struct bcm4377_data *bcm4377)
{
if ((strcmp(bcm4377->stepping, "b1") == 0) ||
strcmp(bcm4377->stepping, "b3") == 0)
return __bcm4378_send_calibration(
bcm4377, bcm4377->taurus_beamforming_cal_blob,
bcm4377->taurus_beamforming_cal_size);
else
return __bcm4378_send_calibration(bcm4377,
bcm4377->taurus_cal_blob,
bcm4377->taurus_cal_size);
}
static int bcm4387_send_calibration(struct bcm4377_data *bcm4377)
{
if (strcmp(bcm4377->stepping, "c2") == 0)
return __bcm4378_send_calibration(
bcm4377, bcm4377->taurus_beamforming_cal_blob,
bcm4377->taurus_beamforming_cal_size);
else
return __bcm4378_send_calibration(bcm4377,
bcm4377->taurus_cal_blob,
bcm4377->taurus_cal_size);
}
static const struct firmware *bcm4377_request_blob(struct bcm4377_data *bcm4377,
const char *suffix)
{
const struct firmware *fw;
char name0[64], name1[64];
int ret;
snprintf(name0, sizeof(name0), "brcm/brcmbt%04x%s-%s-%s.%s",
bcm4377->hw->id, bcm4377->stepping, bcm4377->board_type,
bcm4377->vendor, suffix);
snprintf(name1, sizeof(name1), "brcm/brcmbt%04x%s-%s.%s",
bcm4377->hw->id, bcm4377->stepping, bcm4377->board_type,
suffix);
dev_dbg(&bcm4377->pdev->dev, "Trying to load firmware: '%s' or '%s'\n",
name0, name1);
ret = firmware_request_nowarn(&fw, name0, &bcm4377->pdev->dev);
if (!ret)
return fw;
ret = firmware_request_nowarn(&fw, name1, &bcm4377->pdev->dev);
if (!ret)
return fw;
dev_err(&bcm4377->pdev->dev,
"Unable to load firmware; tried '%s' and '%s'\n", name0, name1);
return NULL;
}
static int bcm4377_send_ptb(struct bcm4377_data *bcm4377,
const struct firmware *fw)
{
struct sk_buff *skb;
skb = __hci_cmd_sync(bcm4377->hdev, 0xfd98, fw->size, fw->data,
HCI_INIT_TIMEOUT);
/*
* This command seems to always fail on more recent firmware versions
* (even in traces taken from the macOS driver). It's unclear why this
* happens but because the PTB file contains calibration and/or
* regulatory data and may be required on older firmware we still try to
* send it here just in case and just ignore if it fails.
*/
if (!IS_ERR(skb))
kfree_skb(skb);
return 0;
}
static int bcm4378_send_ptb_chunk(struct bcm4377_data *bcm4377,
const void *data, size_t data_len,
u16 blocks_left)
{
struct bcm4378_hci_send_ptb_cmd cmd;
struct sk_buff *skb;
if (data_len > BCM4378_PTB_CHUNK_SIZE)
return -EINVAL;
memset(&cmd, 0, sizeof(cmd));
cmd.blocks_left = cpu_to_le16(blocks_left);
memcpy(cmd.data, data, data_len);
skb = __hci_cmd_sync(bcm4377->hdev, 0xfe0d, sizeof(cmd), &cmd,
HCI_INIT_TIMEOUT);
if (IS_ERR(skb))
return PTR_ERR(skb);
kfree_skb(skb);
return 0;
}
static int bcm4378_send_ptb(struct bcm4377_data *bcm4377,
const struct firmware *fw)
{
size_t chunks = DIV_ROUND_UP(fw->size, (size_t)BCM4378_PTB_CHUNK_SIZE);
size_t i, left, transfer_len;
int ret;
for (i = 0, left = fw->size; i < chunks; ++i, left -= transfer_len) {
transfer_len = min_t(size_t, left, BCM4378_PTB_CHUNK_SIZE);
dev_dbg(&bcm4377->pdev->dev, "sending ptb chunk %zu/%zu\n",
i + 1, chunks);
ret = bcm4378_send_ptb_chunk(
bcm4377, fw->data + i * BCM4378_PTB_CHUNK_SIZE,
transfer_len, chunks - i - 1);
if (ret) {
dev_err(&bcm4377->pdev->dev,
"sending ptb chunk %zu failed (%d)", i, ret);
return ret;
}
}
return 0;
}
static int bcm4377_hci_open(struct hci_dev *hdev)
{
struct bcm4377_data *bcm4377 = hci_get_drvdata(hdev);
int ret;
dev_dbg(&bcm4377->pdev->dev, "creating rings\n");
ret = bcm4377_create_completion_ring(bcm4377,
&bcm4377->hci_acl_ack_ring);
if (ret)
return ret;
ret = bcm4377_create_completion_ring(bcm4377,
&bcm4377->hci_acl_event_ring);
if (ret)
goto destroy_hci_acl_ack;
ret = bcm4377_create_completion_ring(bcm4377, &bcm4377->sco_ack_ring);
if (ret)
goto destroy_hci_acl_event;
ret = bcm4377_create_completion_ring(bcm4377, &bcm4377->sco_event_ring);
if (ret)
goto destroy_sco_ack;
dev_dbg(&bcm4377->pdev->dev,
"all completion rings successfully created!\n");
ret = bcm4377_create_transfer_ring(bcm4377, &bcm4377->hci_h2d_ring);
if (ret)
goto destroy_sco_event;
ret = bcm4377_create_transfer_ring(bcm4377, &bcm4377->hci_d2h_ring);
if (ret)
goto destroy_hci_h2d;
ret = bcm4377_create_transfer_ring(bcm4377, &bcm4377->sco_h2d_ring);
if (ret)
goto destroy_hci_d2h;
ret = bcm4377_create_transfer_ring(bcm4377, &bcm4377->sco_d2h_ring);
if (ret)
goto destroy_sco_h2d;
ret = bcm4377_create_transfer_ring(bcm4377, &bcm4377->acl_h2d_ring);
if (ret)
goto destroy_sco_d2h;
ret = bcm4377_create_transfer_ring(bcm4377, &bcm4377->acl_d2h_ring);
if (ret)
goto destroy_acl_h2d;
dev_dbg(&bcm4377->pdev->dev,
"all transfer rings successfully created!\n");
return 0;
destroy_acl_h2d:
bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->acl_h2d_ring);
destroy_sco_d2h:
bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->sco_d2h_ring);
destroy_sco_h2d:
bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->sco_h2d_ring);
destroy_hci_d2h:
bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->hci_h2d_ring);
destroy_hci_h2d:
bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->hci_d2h_ring);
destroy_sco_event:
bcm4377_destroy_completion_ring(bcm4377, &bcm4377->sco_event_ring);
destroy_sco_ack:
bcm4377_destroy_completion_ring(bcm4377, &bcm4377->sco_ack_ring);
destroy_hci_acl_event:
bcm4377_destroy_completion_ring(bcm4377, &bcm4377->hci_acl_event_ring);
destroy_hci_acl_ack:
bcm4377_destroy_completion_ring(bcm4377, &bcm4377->hci_acl_ack_ring);
dev_err(&bcm4377->pdev->dev, "Creating rings failed with %d\n", ret);
return ret;
}
static int bcm4377_hci_close(struct hci_dev *hdev)
{
struct bcm4377_data *bcm4377 = hci_get_drvdata(hdev);
dev_dbg(&bcm4377->pdev->dev, "destroying rings in hci_close\n");
bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->acl_d2h_ring);
bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->acl_h2d_ring);
bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->sco_d2h_ring);
bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->sco_h2d_ring);
bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->hci_d2h_ring);
bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->hci_h2d_ring);
bcm4377_destroy_completion_ring(bcm4377, &bcm4377->sco_event_ring);
bcm4377_destroy_completion_ring(bcm4377, &bcm4377->sco_ack_ring);
bcm4377_destroy_completion_ring(bcm4377, &bcm4377->hci_acl_event_ring);
bcm4377_destroy_completion_ring(bcm4377, &bcm4377->hci_acl_ack_ring);
return 0;
}
static bool bcm4377_is_valid_bdaddr(struct bcm4377_data *bcm4377,
bdaddr_t *addr)
{
if (addr->b[0] != 0x93)
return true;
if (addr->b[1] != 0x76)
return true;
if (addr->b[2] != 0x00)
return true;
if (addr->b[4] != (bcm4377->hw->id & 0xff))
return true;
if (addr->b[5] != (bcm4377->hw->id >> 8))
return true;
return false;
}
static int bcm4377_check_bdaddr(struct bcm4377_data *bcm4377)
{
struct hci_rp_read_bd_addr *bda;
struct sk_buff *skb;
skb = __hci_cmd_sync(bcm4377->hdev, HCI_OP_READ_BD_ADDR, 0, NULL,
HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
int err = PTR_ERR(skb);
dev_err(&bcm4377->pdev->dev, "HCI_OP_READ_BD_ADDR failed (%d)",
err);
return err;
}
if (skb->len != sizeof(*bda)) {
dev_err(&bcm4377->pdev->dev,
"HCI_OP_READ_BD_ADDR reply length invalid");
kfree_skb(skb);
return -EIO;
}
bda = (struct hci_rp_read_bd_addr *)skb->data;
if (!bcm4377_is_valid_bdaddr(bcm4377, &bda->bdaddr))
set_bit(HCI_QUIRK_INVALID_BDADDR, &bcm4377->hdev->quirks);
kfree_skb(skb);
return 0;
}
static int bcm4377_hci_setup(struct hci_dev *hdev)
{
struct bcm4377_data *bcm4377 = hci_get_drvdata(hdev);
const struct firmware *fw;
int ret;
if (bcm4377->hw->send_calibration) {
ret = bcm4377->hw->send_calibration(bcm4377);
if (ret)
return ret;
}
fw = bcm4377_request_blob(bcm4377, "ptb");
if (!fw) {
dev_err(&bcm4377->pdev->dev, "failed to load PTB data");
return -ENOENT;
}
ret = bcm4377->hw->send_ptb(bcm4377, fw);
release_firmware(fw);
if (ret)
return ret;
return bcm4377_check_bdaddr(bcm4377);
}
static int bcm4377_hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
{
struct bcm4377_data *bcm4377 = hci_get_drvdata(hdev);
struct bcm4377_transfer_ring *ring;
int ret;
switch (hci_skb_pkt_type(skb)) {
case HCI_COMMAND_PKT:
hdev->stat.cmd_tx++;
ring = &bcm4377->hci_h2d_ring;
break;
case HCI_ACLDATA_PKT:
hdev->stat.acl_tx++;
ring = &bcm4377->acl_h2d_ring;
break;
case HCI_SCODATA_PKT:
hdev->stat.sco_tx++;
ring = &bcm4377->sco_h2d_ring;
break;
default:
return -EILSEQ;
}
ret = bcm4377_enqueue(bcm4377, ring, skb->data, skb->len, false);
if (ret < 0) {
hdev->stat.err_tx++;
return ret;
}
hdev->stat.byte_tx += skb->len;
kfree_skb(skb);
return ret;
}
static int bcm4377_hci_set_bdaddr(struct hci_dev *hdev, const bdaddr_t *bdaddr)
{
struct bcm4377_data *bcm4377 = hci_get_drvdata(hdev);
struct sk_buff *skb;
int err;
skb = __hci_cmd_sync(hdev, 0xfc01, 6, bdaddr, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
err = PTR_ERR(skb);
dev_err(&bcm4377->pdev->dev,
"Change address command failed (%d)", err);
return err;
}
kfree_skb(skb);
return 0;
}
static int bcm4377_alloc_transfer_ring(struct bcm4377_data *bcm4377,
struct bcm4377_transfer_ring *ring)
{
size_t entry_size;
spin_lock_init(&ring->lock);
ring->payload_size = ALIGN(ring->payload_size, 4);
ring->mapped_payload_size = ALIGN(ring->mapped_payload_size, 4);
if (ring->payload_size > BCM4377_XFER_RING_MAX_INPLACE_PAYLOAD_SIZE)
return -EINVAL;
if (ring->n_entries > BCM4377_MAX_RING_SIZE)
return -EINVAL;
if (ring->virtual && ring->allow_wait)
return -EINVAL;
if (ring->d2h_buffers_only) {
if (ring->virtual)
return -EINVAL;
if (ring->payload_size)
return -EINVAL;
if (!ring->mapped_payload_size)
return -EINVAL;
}
if (ring->virtual)
return 0;
entry_size =
ring->payload_size + sizeof(struct bcm4377_xfer_ring_entry);
ring->ring = dmam_alloc_coherent(&bcm4377->pdev->dev,
ring->n_entries * entry_size,
&ring->ring_dma, GFP_KERNEL);
if (!ring->ring)
return -ENOMEM;
if (ring->allow_wait) {
ring->events = devm_kcalloc(&bcm4377->pdev->dev,
ring->n_entries,
sizeof(*ring->events), GFP_KERNEL);
if (!ring->events)
return -ENOMEM;
}
if (ring->mapped_payload_size) {
ring->payloads = dmam_alloc_coherent(
&bcm4377->pdev->dev,
ring->n_entries * ring->mapped_payload_size,
&ring->payloads_dma, GFP_KERNEL);
if (!ring->payloads)
return -ENOMEM;
}
return 0;
}
static int bcm4377_alloc_completion_ring(struct bcm4377_data *bcm4377,
struct bcm4377_completion_ring *ring)
{
size_t entry_size;
ring->payload_size = ALIGN(ring->payload_size, 4);
if (ring->payload_size > BCM4377_XFER_RING_MAX_INPLACE_PAYLOAD_SIZE)
return -EINVAL;
if (ring->n_entries > BCM4377_MAX_RING_SIZE)
return -EINVAL;
entry_size = ring->payload_size +
sizeof(struct bcm4377_completion_ring_entry);
ring->ring = dmam_alloc_coherent(&bcm4377->pdev->dev,
ring->n_entries * entry_size,
&ring->ring_dma, GFP_KERNEL);
if (!ring->ring)
return -ENOMEM;
return 0;
}
static int bcm4377_init_context(struct bcm4377_data *bcm4377)
{
struct device *dev = &bcm4377->pdev->dev;
dma_addr_t peripheral_info_dma;
bcm4377->ctx = dmam_alloc_coherent(dev, sizeof(*bcm4377->ctx),
&bcm4377->ctx_dma, GFP_KERNEL);
if (!bcm4377->ctx)
return -ENOMEM;
memset(bcm4377->ctx, 0, sizeof(*bcm4377->ctx));
bcm4377->ring_state =
dmam_alloc_coherent(dev, sizeof(*bcm4377->ring_state),
&bcm4377->ring_state_dma, GFP_KERNEL);
if (!bcm4377->ring_state)
return -ENOMEM;
memset(bcm4377->ring_state, 0, sizeof(*bcm4377->ring_state));
bcm4377->ctx->version = cpu_to_le16(1);
bcm4377->ctx->size = cpu_to_le16(sizeof(*bcm4377->ctx));
bcm4377->ctx->enabled_caps = cpu_to_le32(2);
/*
* The BT device will write 0x20 bytes of data to this buffer but
* the exact contents are unknown. It only needs to exist for BT
* to work such that we can just allocate and then ignore it.
*/
if (!dmam_alloc_coherent(&bcm4377->pdev->dev, 0x20,
&peripheral_info_dma, GFP_KERNEL))
return -ENOMEM;
bcm4377->ctx->peripheral_info_addr = cpu_to_le64(peripheral_info_dma);
bcm4377->ctx->xfer_ring_heads_addr = cpu_to_le64(
bcm4377->ring_state_dma +
offsetof(struct bcm4377_ring_state, xfer_ring_head));
bcm4377->ctx->xfer_ring_tails_addr = cpu_to_le64(
bcm4377->ring_state_dma +
offsetof(struct bcm4377_ring_state, xfer_ring_tail));
bcm4377->ctx->completion_ring_heads_addr = cpu_to_le64(
bcm4377->ring_state_dma +
offsetof(struct bcm4377_ring_state, completion_ring_head));
bcm4377->ctx->completion_ring_tails_addr = cpu_to_le64(
bcm4377->ring_state_dma +
offsetof(struct bcm4377_ring_state, completion_ring_tail));
bcm4377->ctx->n_completion_rings =
cpu_to_le16(BCM4377_N_COMPLETION_RINGS);
bcm4377->ctx->n_xfer_rings = cpu_to_le16(BCM4377_N_TRANSFER_RINGS);
bcm4377->ctx->control_completion_ring_addr =
cpu_to_le64(bcm4377->control_ack_ring.ring_dma);
bcm4377->ctx->control_completion_ring_n_entries =
cpu_to_le16(bcm4377->control_ack_ring.n_entries);
bcm4377->ctx->control_completion_ring_doorbell = cpu_to_le16(0xffff);
bcm4377->ctx->control_completion_ring_msi = 0;
bcm4377->ctx->control_completion_ring_header_size = 0;
bcm4377->ctx->control_completion_ring_footer_size = 0;
bcm4377->ctx->control_xfer_ring_addr =
cpu_to_le64(bcm4377->control_h2d_ring.ring_dma);
bcm4377->ctx->control_xfer_ring_n_entries =
cpu_to_le16(bcm4377->control_h2d_ring.n_entries);
bcm4377->ctx->control_xfer_ring_doorbell =
cpu_to_le16(bcm4377->control_h2d_ring.doorbell);
bcm4377->ctx->control_xfer_ring_msi = 0;
bcm4377->ctx->control_xfer_ring_header_size = 0;
bcm4377->ctx->control_xfer_ring_footer_size =
bcm4377->control_h2d_ring.payload_size / 4;
dev_dbg(&bcm4377->pdev->dev, "context initialized at IOVA %pad",
&bcm4377->ctx_dma);
return 0;
}
static int bcm4377_prepare_rings(struct bcm4377_data *bcm4377)
{
int ret;
/*
* Even though many of these settings appear to be configurable
* when sending the "create ring" messages most of these are
* actually hardcoded in some (and quite possibly all) firmware versions
* and changing them on the host has no effect.
* Specifically, this applies to at least the doorbells, the transfer
* and completion ring ids and their mapping (e.g. both HCI and ACL
* entries will always be queued in completion rings 1 and 2 no matter
* what we configure here).
*/
bcm4377->control_ack_ring.ring_id = BCM4377_ACK_RING_CONTROL;
bcm4377->control_ack_ring.n_entries = 32;
bcm4377->control_ack_ring.transfer_rings =
BIT(BCM4377_XFER_RING_CONTROL);
bcm4377->hci_acl_ack_ring.ring_id = BCM4377_ACK_RING_HCI_ACL;
bcm4377->hci_acl_ack_ring.n_entries = 2 * BCM4377_RING_N_ENTRIES;
bcm4377->hci_acl_ack_ring.transfer_rings =
BIT(BCM4377_XFER_RING_HCI_H2D) | BIT(BCM4377_XFER_RING_ACL_H2D);
bcm4377->hci_acl_ack_ring.delay = 1000;
/*
* A payload size of MAX_EVENT_PAYLOAD_SIZE is enough here since large
* ACL packets will be transmitted inside buffers mapped via
* acl_d2h_ring anyway.
*/
bcm4377->hci_acl_event_ring.ring_id = BCM4377_EVENT_RING_HCI_ACL;
bcm4377->hci_acl_event_ring.payload_size = MAX_EVENT_PAYLOAD_SIZE;
bcm4377->hci_acl_event_ring.n_entries = 2 * BCM4377_RING_N_ENTRIES;
bcm4377->hci_acl_event_ring.transfer_rings =
BIT(BCM4377_XFER_RING_HCI_D2H) | BIT(BCM4377_XFER_RING_ACL_D2H);
bcm4377->hci_acl_event_ring.delay = 1000;
bcm4377->sco_ack_ring.ring_id = BCM4377_ACK_RING_SCO;
bcm4377->sco_ack_ring.n_entries = BCM4377_RING_N_ENTRIES;
bcm4377->sco_ack_ring.transfer_rings = BIT(BCM4377_XFER_RING_SCO_H2D);
bcm4377->sco_event_ring.ring_id = BCM4377_EVENT_RING_SCO;
bcm4377->sco_event_ring.payload_size = MAX_SCO_PAYLOAD_SIZE;
bcm4377->sco_event_ring.n_entries = BCM4377_RING_N_ENTRIES;
bcm4377->sco_event_ring.transfer_rings = BIT(BCM4377_XFER_RING_SCO_D2H);
bcm4377->control_h2d_ring.ring_id = BCM4377_XFER_RING_CONTROL;
bcm4377->control_h2d_ring.doorbell = BCM4377_DOORBELL_CONTROL;
bcm4377->control_h2d_ring.payload_size = BCM4377_CONTROL_MSG_SIZE;
bcm4377->control_h2d_ring.completion_ring = BCM4377_ACK_RING_CONTROL;
bcm4377->control_h2d_ring.allow_wait = true;
bcm4377->control_h2d_ring.n_entries = BCM4377_RING_N_ENTRIES;
bcm4377->hci_h2d_ring.ring_id = BCM4377_XFER_RING_HCI_H2D;
bcm4377->hci_h2d_ring.doorbell = BCM4377_DOORBELL_HCI_H2D;
bcm4377->hci_h2d_ring.payload_size = MAX_EVENT_PAYLOAD_SIZE;
bcm4377->hci_h2d_ring.completion_ring = BCM4377_ACK_RING_HCI_ACL;
bcm4377->hci_h2d_ring.n_entries = BCM4377_RING_N_ENTRIES;
bcm4377->hci_d2h_ring.ring_id = BCM4377_XFER_RING_HCI_D2H;
bcm4377->hci_d2h_ring.doorbell = BCM4377_DOORBELL_HCI_D2H;
bcm4377->hci_d2h_ring.completion_ring = BCM4377_EVENT_RING_HCI_ACL;
bcm4377->hci_d2h_ring.virtual = true;
bcm4377->hci_d2h_ring.n_entries = BCM4377_RING_N_ENTRIES;
bcm4377->sco_h2d_ring.ring_id = BCM4377_XFER_RING_SCO_H2D;
bcm4377->sco_h2d_ring.doorbell = BCM4377_DOORBELL_SCO;
bcm4377->sco_h2d_ring.payload_size = MAX_SCO_PAYLOAD_SIZE;
bcm4377->sco_h2d_ring.completion_ring = BCM4377_ACK_RING_SCO;
bcm4377->sco_h2d_ring.sync = true;
bcm4377->sco_h2d_ring.n_entries = BCM4377_RING_N_ENTRIES;
bcm4377->sco_d2h_ring.ring_id = BCM4377_XFER_RING_SCO_D2H;
bcm4377->sco_d2h_ring.doorbell = BCM4377_DOORBELL_SCO;
bcm4377->sco_d2h_ring.completion_ring = BCM4377_EVENT_RING_SCO;
bcm4377->sco_d2h_ring.virtual = true;
bcm4377->sco_d2h_ring.sync = true;
bcm4377->sco_d2h_ring.n_entries = BCM4377_RING_N_ENTRIES;
/*
* This ring has to use mapped_payload_size because the largest ACL
* packet doesn't fit inside the largest possible footer
*/
bcm4377->acl_h2d_ring.ring_id = BCM4377_XFER_RING_ACL_H2D;
bcm4377->acl_h2d_ring.doorbell = BCM4377_DOORBELL_ACL_H2D;
bcm4377->acl_h2d_ring.mapped_payload_size = MAX_ACL_PAYLOAD_SIZE;
bcm4377->acl_h2d_ring.completion_ring = BCM4377_ACK_RING_HCI_ACL;
bcm4377->acl_h2d_ring.n_entries = BCM4377_RING_N_ENTRIES;
/*
* This ring only contains empty buffers to be used by incoming
* ACL packets that do not fit inside the footer of hci_acl_event_ring
*/
bcm4377->acl_d2h_ring.ring_id = BCM4377_XFER_RING_ACL_D2H;
bcm4377->acl_d2h_ring.doorbell = BCM4377_DOORBELL_ACL_D2H;
bcm4377->acl_d2h_ring.completion_ring = BCM4377_EVENT_RING_HCI_ACL;
bcm4377->acl_d2h_ring.d2h_buffers_only = true;
bcm4377->acl_d2h_ring.mapped_payload_size = MAX_ACL_PAYLOAD_SIZE;
bcm4377->acl_d2h_ring.n_entries = BCM4377_RING_N_ENTRIES;
/*
* no need for any cleanup since this is only called from _probe
* and only devres-managed allocations are used
*/
ret = bcm4377_alloc_transfer_ring(bcm4377, &bcm4377->control_h2d_ring);
if (ret)
return ret;
ret = bcm4377_alloc_transfer_ring(bcm4377, &bcm4377->hci_h2d_ring);
if (ret)
return ret;
ret = bcm4377_alloc_transfer_ring(bcm4377, &bcm4377->hci_d2h_ring);
if (ret)
return ret;
ret = bcm4377_alloc_transfer_ring(bcm4377, &bcm4377->sco_h2d_ring);
if (ret)
return ret;
ret = bcm4377_alloc_transfer_ring(bcm4377, &bcm4377->sco_d2h_ring);
if (ret)
return ret;
ret = bcm4377_alloc_transfer_ring(bcm4377, &bcm4377->acl_h2d_ring);
if (ret)
return ret;
ret = bcm4377_alloc_transfer_ring(bcm4377, &bcm4377->acl_d2h_ring);
if (ret)
return ret;
ret = bcm4377_alloc_completion_ring(bcm4377,
&bcm4377->control_ack_ring);
if (ret)
return ret;
ret = bcm4377_alloc_completion_ring(bcm4377,
&bcm4377->hci_acl_ack_ring);
if (ret)
return ret;
ret = bcm4377_alloc_completion_ring(bcm4377,
&bcm4377->hci_acl_event_ring);
if (ret)
return ret;
ret = bcm4377_alloc_completion_ring(bcm4377, &bcm4377->sco_ack_ring);
if (ret)
return ret;
ret = bcm4377_alloc_completion_ring(bcm4377, &bcm4377->sco_event_ring);
if (ret)
return ret;
dev_dbg(&bcm4377->pdev->dev, "all rings allocated and prepared\n");
return 0;
}
static int bcm4377_boot(struct bcm4377_data *bcm4377)
{
const struct firmware *fw;
void *bfr;
dma_addr_t fw_dma;
int ret = 0;
u32 bootstage, rti_status;
bootstage = ioread32(bcm4377->bar2 + BCM4377_BAR2_BOOTSTAGE);
rti_status = ioread32(bcm4377->bar2 + BCM4377_BAR2_RTI_STATUS);
if (bootstage != 0) {
dev_err(&bcm4377->pdev->dev, "bootstage is %d and not 0\n",
bootstage);
return -EINVAL;
}
if (rti_status != 0) {
dev_err(&bcm4377->pdev->dev, "RTI status is %d and not 0\n",
rti_status);
return -EINVAL;
}
fw = bcm4377_request_blob(bcm4377, "bin");
if (!fw) {
dev_err(&bcm4377->pdev->dev, "Failed to load firmware\n");
return -ENOENT;
}
bfr = dma_alloc_coherent(&bcm4377->pdev->dev, fw->size, &fw_dma,
GFP_KERNEL);
if (!bfr) {
ret = -ENOMEM;
goto out_release_fw;
}
memcpy(bfr, fw->data, fw->size);
iowrite32(0, bcm4377->bar0 + BCM4377_BAR0_HOST_WINDOW_LO);
iowrite32(0, bcm4377->bar0 + BCM4377_BAR0_HOST_WINDOW_HI);
iowrite32(BCM4377_DMA_MASK,
bcm4377->bar0 + BCM4377_BAR0_HOST_WINDOW_SIZE);
iowrite32(lower_32_bits(fw_dma), bcm4377->bar2 + BCM4377_BAR2_FW_LO);
iowrite32(upper_32_bits(fw_dma), bcm4377->bar2 + BCM4377_BAR2_FW_HI);
iowrite32(fw->size, bcm4377->bar2 + BCM4377_BAR2_FW_SIZE);
iowrite32(0, bcm4377->bar0 + BCM4377_BAR0_FW_DOORBELL);
dev_dbg(&bcm4377->pdev->dev, "waiting for firmware to boot\n");
ret = wait_for_completion_interruptible_timeout(&bcm4377->event,
BCM4377_TIMEOUT);
if (ret == 0) {
ret = -ETIMEDOUT;
goto out_dma_free;
} else if (ret < 0) {
goto out_dma_free;
}
if (bcm4377->bootstage != 2) {
dev_err(&bcm4377->pdev->dev, "boostage %d != 2\n",
bcm4377->bootstage);
ret = -ENXIO;
goto out_dma_free;
}
dev_dbg(&bcm4377->pdev->dev, "firmware has booted (stage = %x)\n",
bcm4377->bootstage);
ret = 0;
out_dma_free:
dma_free_coherent(&bcm4377->pdev->dev, fw->size, bfr, fw_dma);
out_release_fw:
release_firmware(fw);
return ret;
}
static int bcm4377_setup_rti(struct bcm4377_data *bcm4377)
{
int ret;
dev_dbg(&bcm4377->pdev->dev, "starting RTI\n");
iowrite32(1, bcm4377->bar0 + BCM4377_BAR0_RTI_CONTROL);
ret = wait_for_completion_interruptible_timeout(&bcm4377->event,
BCM4377_TIMEOUT);
if (ret == 0) {
dev_err(&bcm4377->pdev->dev,
"timed out while waiting for RTI to transition to state 1");
return -ETIMEDOUT;
} else if (ret < 0) {
return ret;
}
if (bcm4377->rti_status != 1) {
dev_err(&bcm4377->pdev->dev, "RTI did not ack state 1 (%d)\n",
bcm4377->rti_status);
return -ENODEV;
}
dev_dbg(&bcm4377->pdev->dev, "RTI is in state 1\n");
/* allow access to the entire IOVA space again */
iowrite32(0, bcm4377->bar2 + BCM4377_BAR2_RTI_WINDOW_LO);
iowrite32(0, bcm4377->bar2 + BCM4377_BAR2_RTI_WINDOW_HI);
iowrite32(BCM4377_DMA_MASK,
bcm4377->bar2 + BCM4377_BAR2_RTI_WINDOW_SIZE);
/* setup "Converged IPC" context */
iowrite32(lower_32_bits(bcm4377->ctx_dma),
bcm4377->bar2 + BCM4377_BAR2_CONTEXT_ADDR_LO);
iowrite32(upper_32_bits(bcm4377->ctx_dma),
bcm4377->bar2 + BCM4377_BAR2_CONTEXT_ADDR_HI);
iowrite32(2, bcm4377->bar0 + BCM4377_BAR0_RTI_CONTROL);
ret = wait_for_completion_interruptible_timeout(&bcm4377->event,
BCM4377_TIMEOUT);
if (ret == 0) {
dev_err(&bcm4377->pdev->dev,
"timed out while waiting for RTI to transition to state 2");
return -ETIMEDOUT;
} else if (ret < 0) {
return ret;
}
if (bcm4377->rti_status != 2) {
dev_err(&bcm4377->pdev->dev, "RTI did not ack state 2 (%d)\n",
bcm4377->rti_status);
return -ENODEV;
}
dev_dbg(&bcm4377->pdev->dev,
"RTI is in state 2; control ring is ready\n");
bcm4377->control_ack_ring.enabled = true;
return 0;
}
static int bcm4377_parse_otp_board_params(struct bcm4377_data *bcm4377,
char tag, const char *val, size_t len)
{
if (tag != 'V')
return 0;
if (len >= sizeof(bcm4377->vendor))
return -EINVAL;
strscpy(bcm4377->vendor, val, len + 1);
return 0;
}
static int bcm4377_parse_otp_chip_params(struct bcm4377_data *bcm4377, char tag,
const char *val, size_t len)
{
size_t idx = 0;
if (tag != 's')
return 0;
if (len >= sizeof(bcm4377->stepping))
return -EINVAL;
while (len != 0) {
bcm4377->stepping[idx] = tolower(val[idx]);
if (val[idx] == '\0')
return 0;
idx++;
len--;
}
bcm4377->stepping[idx] = '\0';
return 0;
}
static int bcm4377_parse_otp_str(struct bcm4377_data *bcm4377, const u8 *str,
enum bcm4377_otp_params_type type)
{
const char *p;
int ret;
p = skip_spaces(str);
while (*p) {
char tag = *p++;
const char *end;
size_t len;
if (*p++ != '=') /* implicit NUL check */
return -EINVAL;
/* *p might be NUL here, if so end == p and len == 0 */
end = strchrnul(p, ' ');
len = end - p;
/* leave 1 byte for NUL in destination string */
if (len > (BCM4377_OTP_MAX_PARAM_LEN - 1))
return -EINVAL;
switch (type) {
case BCM4377_OTP_BOARD_PARAMS:
ret = bcm4377_parse_otp_board_params(bcm4377, tag, p,
len);
break;
case BCM4377_OTP_CHIP_PARAMS:
ret = bcm4377_parse_otp_chip_params(bcm4377, tag, p,
len);
break;
default:
ret = -EINVAL;
break;
}
if (ret)
return ret;
/* Skip to next arg, if any */
p = skip_spaces(end);
}
return 0;
}
static int bcm4377_parse_otp_sys_vendor(struct bcm4377_data *bcm4377, u8 *otp,
size_t size)
{
int idx = 4;
const char *chip_params;
const char *board_params;
int ret;
/* 4-byte header and two empty strings */
if (size < 6)
return -EINVAL;
if (get_unaligned_le32(otp) != BCM4377_OTP_VENDOR_HDR)
return -EINVAL;
chip_params = &otp[idx];
/* Skip first string, including terminator */
idx += strnlen(chip_params, size - idx) + 1;
if (idx >= size)
return -EINVAL;
board_params = &otp[idx];
/* Skip to terminator of second string */
idx += strnlen(board_params, size - idx);
if (idx >= size)
return -EINVAL;
/* At this point both strings are guaranteed NUL-terminated */
dev_dbg(&bcm4377->pdev->dev,
"OTP: chip_params='%s' board_params='%s'\n", chip_params,
board_params);
ret = bcm4377_parse_otp_str(bcm4377, chip_params,
BCM4377_OTP_CHIP_PARAMS);
if (ret)
return ret;
ret = bcm4377_parse_otp_str(bcm4377, board_params,
BCM4377_OTP_BOARD_PARAMS);
if (ret)
return ret;
if (!bcm4377->stepping[0] || !bcm4377->vendor[0])
return -EINVAL;
dev_dbg(&bcm4377->pdev->dev, "OTP: stepping=%s, vendor=%s\n",
bcm4377->stepping, bcm4377->vendor);
return 0;
}
static int bcm4377_parse_otp(struct bcm4377_data *bcm4377)
{
u8 *otp;
int i;
int ret = -ENOENT;
otp = kzalloc(BCM4377_OTP_SIZE, GFP_KERNEL);
if (!otp)
return -ENOMEM;
for (i = 0; i < BCM4377_OTP_SIZE; ++i)
otp[i] = ioread8(bcm4377->bar0 + bcm4377->hw->otp_offset + i);
i = 0;
while (i < (BCM4377_OTP_SIZE - 1)) {
u8 type = otp[i];
u8 length = otp[i + 1];
if (type == 0)
break;
if ((i + 2 + length) > BCM4377_OTP_SIZE)
break;
switch (type) {
case BCM4377_OTP_SYS_VENDOR:
dev_dbg(&bcm4377->pdev->dev,
"OTP @ 0x%x (%d): SYS_VENDOR", i, length);
ret = bcm4377_parse_otp_sys_vendor(bcm4377, &otp[i + 2],
length);
break;
case BCM4377_OTP_CIS:
dev_dbg(&bcm4377->pdev->dev, "OTP @ 0x%x (%d): CIS", i,
length);
break;
default:
dev_dbg(&bcm4377->pdev->dev, "OTP @ 0x%x (%d): unknown",
i, length);
break;
}
i += 2 + length;
}
kfree(otp);
return ret;
}
static int bcm4377_init_cfg(struct bcm4377_data *bcm4377)
{
int ret;
u32 ctrl;
ret = pci_write_config_dword(bcm4377->pdev,
BCM4377_PCIECFG_BAR0_WINDOW1,
bcm4377->hw->bar0_window1);
if (ret)
return ret;
ret = pci_write_config_dword(bcm4377->pdev,
BCM4377_PCIECFG_BAR0_WINDOW2,
bcm4377->hw->bar0_window2);
if (ret)
return ret;
ret = pci_write_config_dword(
bcm4377->pdev, BCM4377_PCIECFG_BAR0_CORE2_WINDOW1,
BCM4377_PCIECFG_BAR0_CORE2_WINDOW1_DEFAULT);
if (ret)
return ret;
if (bcm4377->hw->has_bar0_core2_window2) {
ret = pci_write_config_dword(bcm4377->pdev,
BCM4377_PCIECFG_BAR0_CORE2_WINDOW2,
bcm4377->hw->bar0_core2_window2);
if (ret)
return ret;
}
ret = pci_write_config_dword(bcm4377->pdev, BCM4377_PCIECFG_BAR2_WINDOW,
BCM4377_PCIECFG_BAR2_WINDOW_DEFAULT);
if (ret)
return ret;
ret = pci_read_config_dword(bcm4377->pdev,
BCM4377_PCIECFG_SUBSYSTEM_CTRL, &ctrl);
if (ret)
return ret;
if (bcm4377->hw->clear_pciecfg_subsystem_ctrl_bit19)
ctrl &= ~BIT(19);
ctrl |= BIT(16);
return pci_write_config_dword(bcm4377->pdev,
BCM4377_PCIECFG_SUBSYSTEM_CTRL, ctrl);
}
static int bcm4377_probe_dmi(struct bcm4377_data *bcm4377)
{
const struct dmi_system_id *board_type_dmi_id;
board_type_dmi_id = dmi_first_match(bcm4377_dmi_board_table);
if (board_type_dmi_id && board_type_dmi_id->driver_data) {
bcm4377->board_type = board_type_dmi_id->driver_data;
dev_dbg(&bcm4377->pdev->dev,
"found board type via DMI match: %s\n",
bcm4377->board_type);
}
return 0;
}
static int bcm4377_probe_of(struct bcm4377_data *bcm4377)
{
struct device_node *np = bcm4377->pdev->dev.of_node;
int ret;
if (!np)
return 0;
ret = of_property_read_string(np, "brcm,board-type",
&bcm4377->board_type);
if (ret) {
dev_err(&bcm4377->pdev->dev, "no brcm,board-type property\n");
return ret;
}
bcm4377->taurus_beamforming_cal_blob =
of_get_property(np, "brcm,taurus-bf-cal-blob",
&bcm4377->taurus_beamforming_cal_size);
if (!bcm4377->taurus_beamforming_cal_blob) {
dev_err(&bcm4377->pdev->dev,
"no brcm,taurus-bf-cal-blob property\n");
return -ENOENT;
}
bcm4377->taurus_cal_blob = of_get_property(np, "brcm,taurus-cal-blob",
&bcm4377->taurus_cal_size);
if (!bcm4377->taurus_cal_blob) {
dev_err(&bcm4377->pdev->dev,
"no brcm,taurus-cal-blob property\n");
return -ENOENT;
}
return 0;
}
static void bcm4377_disable_aspm(struct bcm4377_data *bcm4377)
{
pci_disable_link_state(bcm4377->pdev,
PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1);
/*
* pci_disable_link_state can fail if either CONFIG_PCIEASPM is disabled
* or if the BIOS hasn't handed over control to us. We must *always*
* disable ASPM for this device due to hardware errata though.
*/
pcie_capability_clear_word(bcm4377->pdev, PCI_EXP_LNKCTL,
PCI_EXP_LNKCTL_ASPMC);
}
static void bcm4377_pci_free_irq_vectors(void *data)
{
pci_free_irq_vectors(data);
}
static void bcm4377_hci_free_dev(void *data)
{
hci_free_dev(data);
}
static void bcm4377_hci_unregister_dev(void *data)
{
hci_unregister_dev(data);
}
static int bcm4377_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
struct bcm4377_data *bcm4377;
struct hci_dev *hdev;
int ret, irq;
ret = dma_set_mask_and_coherent(&pdev->dev, BCM4377_DMA_MASK);
if (ret)
return ret;
bcm4377 = devm_kzalloc(&pdev->dev, sizeof(*bcm4377), GFP_KERNEL);
if (!bcm4377)
return -ENOMEM;
bcm4377->pdev = pdev;
bcm4377->hw = &bcm4377_hw_variants[id->driver_data];
init_completion(&bcm4377->event);
ret = bcm4377_prepare_rings(bcm4377);
if (ret)
return ret;
ret = bcm4377_init_context(bcm4377);
if (ret)
return ret;
ret = bcm4377_probe_dmi(bcm4377);
if (ret)
return ret;
ret = bcm4377_probe_of(bcm4377);
if (ret)
return ret;
if (!bcm4377->board_type) {
dev_err(&pdev->dev, "unable to determine board type\n");
return -ENODEV;
}
if (bcm4377->hw->disable_aspm)
bcm4377_disable_aspm(bcm4377);
ret = pci_reset_function_locked(pdev);
if (ret)
dev_warn(
&pdev->dev,
"function level reset failed with %d; trying to continue anyway\n",
ret);
/*
* If this number is too low and we try to access any BAR too
* early the device will crash. Experiments have shown that
* approximately 50 msec is the minimum amount we have to wait.
* Let's double that to be safe.
*/
msleep(100);
ret = pcim_enable_device(pdev);
if (ret)
return ret;
pci_set_master(pdev);
ret = bcm4377_init_cfg(bcm4377);
if (ret)
return ret;
bcm4377->bar0 = pcim_iomap(pdev, 0, 0);
if (!bcm4377->bar0)
return -EBUSY;
bcm4377->bar2 = pcim_iomap(pdev, 2, 0);
if (!bcm4377->bar2)
return -EBUSY;
ret = bcm4377_parse_otp(bcm4377);
if (ret) {
dev_err(&pdev->dev, "Reading OTP failed with %d\n", ret);
return ret;
}
/*
* Legacy interrupts result in an IRQ storm because we don't know where
* the interrupt mask and status registers for these chips are.
* MSIs are acked automatically instead.
*/
ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
if (ret < 0)
return -ENODEV;
ret = devm_add_action_or_reset(&pdev->dev, bcm4377_pci_free_irq_vectors,
pdev);
if (ret)
return ret;
irq = pci_irq_vector(pdev, 0);
if (irq <= 0)
return -ENODEV;
ret = devm_request_irq(&pdev->dev, irq, bcm4377_irq, 0, "bcm4377",
bcm4377);
if (ret)
return ret;
hdev = hci_alloc_dev();
if (!hdev)
return -ENOMEM;
ret = devm_add_action_or_reset(&pdev->dev, bcm4377_hci_free_dev, hdev);
if (ret)
return ret;
bcm4377->hdev = hdev;
hdev->bus = HCI_PCI;
hdev->dev_type = HCI_PRIMARY;
hdev->open = bcm4377_hci_open;
hdev->close = bcm4377_hci_close;
hdev->send = bcm4377_hci_send_frame;
hdev->set_bdaddr = bcm4377_hci_set_bdaddr;
hdev->setup = bcm4377_hci_setup;
set_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks);
if (bcm4377->hw->broken_mws_transport_config)
set_bit(HCI_QUIRK_BROKEN_MWS_TRANSPORT_CONFIG, &hdev->quirks);
if (bcm4377->hw->broken_ext_scan)
set_bit(HCI_QUIRK_BROKEN_EXT_SCAN, &hdev->quirks);
pci_set_drvdata(pdev, bcm4377);
hci_set_drvdata(hdev, bcm4377);
SET_HCIDEV_DEV(hdev, &pdev->dev);
ret = bcm4377_boot(bcm4377);
if (ret)
return ret;
ret = bcm4377_setup_rti(bcm4377);
if (ret)
return ret;
ret = hci_register_dev(hdev);
if (ret)
return ret;
return devm_add_action_or_reset(&pdev->dev, bcm4377_hci_unregister_dev,
hdev);
}
static int bcm4377_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct bcm4377_data *bcm4377 = pci_get_drvdata(pdev);
int ret;
ret = hci_suspend_dev(bcm4377->hdev);
if (ret)
return ret;
iowrite32(BCM4377_BAR0_SLEEP_CONTROL_QUIESCE,
bcm4377->bar0 + BCM4377_BAR0_SLEEP_CONTROL);
return 0;
}
static int bcm4377_resume(struct pci_dev *pdev)
{
struct bcm4377_data *bcm4377 = pci_get_drvdata(pdev);
iowrite32(BCM4377_BAR0_SLEEP_CONTROL_UNQUIESCE,
bcm4377->bar0 + BCM4377_BAR0_SLEEP_CONTROL);
return hci_resume_dev(bcm4377->hdev);
}
static const struct dmi_system_id bcm4377_dmi_board_table[] = {
{
.matches = {
DMI_MATCH(DMI_BOARD_VENDOR, "Apple Inc."),
DMI_MATCH(DMI_PRODUCT_NAME, "MacBookAir9,1"),
},
.driver_data = "apple,formosa",
},
{
.matches = {
DMI_MATCH(DMI_BOARD_VENDOR, "Apple Inc."),
DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro15,4"),
},
.driver_data = "apple,formosa",
},
{
.matches = {
DMI_MATCH(DMI_BOARD_VENDOR, "Apple Inc."),
DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro16,3"),
},
.driver_data = "apple,formosa",
},
{}
};
static const struct bcm4377_hw bcm4377_hw_variants[] = {
[BCM4377] = {
.id = 0x4377,
.otp_offset = 0x4120,
.bar0_window1 = 0x1800b000,
.bar0_window2 = 0x1810c000,
.disable_aspm = true,
.broken_ext_scan = true,
.send_ptb = bcm4377_send_ptb,
},
[BCM4378] = {
.id = 0x4378,
.otp_offset = 0x4120,
.bar0_window1 = 0x18002000,
.bar0_window2 = 0x1810a000,
.bar0_core2_window2 = 0x18107000,
.has_bar0_core2_window2 = true,
.broken_mws_transport_config = true,
.send_calibration = bcm4378_send_calibration,
.send_ptb = bcm4378_send_ptb,
},
[BCM4387] = {
.id = 0x4387,
.otp_offset = 0x413c,
.bar0_window1 = 0x18002000,
.bar0_window2 = 0x18109000,
.bar0_core2_window2 = 0x18106000,
.has_bar0_core2_window2 = true,
.clear_pciecfg_subsystem_ctrl_bit19 = true,
.broken_mws_transport_config = true,
.send_calibration = bcm4387_send_calibration,
.send_ptb = bcm4378_send_ptb,
},
};
#define BCM4377_DEVID_ENTRY(id) \
{ \
PCI_VENDOR_ID_BROADCOM, BCM##id##_DEVICE_ID, PCI_ANY_ID, \
PCI_ANY_ID, PCI_CLASS_NETWORK_OTHER << 8, 0xffff00, \
BCM##id \
}
static const struct pci_device_id bcm4377_devid_table[] = {
BCM4377_DEVID_ENTRY(4377),
BCM4377_DEVID_ENTRY(4378),
BCM4377_DEVID_ENTRY(4387),
{},
};
MODULE_DEVICE_TABLE(pci, bcm4377_devid_table);
static struct pci_driver bcm4377_pci_driver = {
.name = "hci_bcm4377",
.id_table = bcm4377_devid_table,
.probe = bcm4377_probe,
.suspend = bcm4377_suspend,
.resume = bcm4377_resume,
};
module_pci_driver(bcm4377_pci_driver);
MODULE_AUTHOR("Sven Peter <sven@svenpeter.dev>");
MODULE_DESCRIPTION("Bluetooth support for Broadcom 4377/4378/4387 devices");
MODULE_LICENSE("Dual MIT/GPL");
MODULE_FIRMWARE("brcm/brcmbt4377*.bin");
MODULE_FIRMWARE("brcm/brcmbt4377*.ptb");
MODULE_FIRMWARE("brcm/brcmbt4378*.bin");
MODULE_FIRMWARE("brcm/brcmbt4378*.ptb");
MODULE_FIRMWARE("brcm/brcmbt4387*.bin");
MODULE_FIRMWARE("brcm/brcmbt4387*.ptb");