linux-zen-server/drivers/crypto/amcc/crypto4xx_core.c

1550 lines
41 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* AMCC SoC PPC4xx Crypto Driver
*
* Copyright (c) 2008 Applied Micro Circuits Corporation.
* All rights reserved. James Hsiao <jhsiao@amcc.com>
*
* This file implements AMCC crypto offload Linux device driver for use with
* Linux CryptoAPI.
*/
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/spinlock_types.h>
#include <linux/random.h>
#include <linux/scatterlist.h>
#include <linux/crypto.h>
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <linux/slab.h>
#include <asm/dcr.h>
#include <asm/dcr-regs.h>
#include <asm/cacheflush.h>
#include <crypto/aead.h>
#include <crypto/aes.h>
#include <crypto/ctr.h>
#include <crypto/gcm.h>
#include <crypto/sha1.h>
#include <crypto/rng.h>
#include <crypto/scatterwalk.h>
#include <crypto/skcipher.h>
#include <crypto/internal/aead.h>
#include <crypto/internal/rng.h>
#include <crypto/internal/skcipher.h>
#include "crypto4xx_reg_def.h"
#include "crypto4xx_core.h"
#include "crypto4xx_sa.h"
#include "crypto4xx_trng.h"
#define PPC4XX_SEC_VERSION_STR "0.5"
/*
* PPC4xx Crypto Engine Initialization Routine
*/
static void crypto4xx_hw_init(struct crypto4xx_device *dev)
{
union ce_ring_size ring_size;
union ce_ring_control ring_ctrl;
union ce_part_ring_size part_ring_size;
union ce_io_threshold io_threshold;
u32 rand_num;
union ce_pe_dma_cfg pe_dma_cfg;
u32 device_ctrl;
writel(PPC4XX_BYTE_ORDER, dev->ce_base + CRYPTO4XX_BYTE_ORDER_CFG);
/* setup pe dma, include reset sg, pdr and pe, then release reset */
pe_dma_cfg.w = 0;
pe_dma_cfg.bf.bo_sgpd_en = 1;
pe_dma_cfg.bf.bo_data_en = 0;
pe_dma_cfg.bf.bo_sa_en = 1;
pe_dma_cfg.bf.bo_pd_en = 1;
pe_dma_cfg.bf.dynamic_sa_en = 1;
pe_dma_cfg.bf.reset_sg = 1;
pe_dma_cfg.bf.reset_pdr = 1;
pe_dma_cfg.bf.reset_pe = 1;
writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
/* un reset pe,sg and pdr */
pe_dma_cfg.bf.pe_mode = 0;
pe_dma_cfg.bf.reset_sg = 0;
pe_dma_cfg.bf.reset_pdr = 0;
pe_dma_cfg.bf.reset_pe = 0;
pe_dma_cfg.bf.bo_td_en = 0;
writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_PDR_BASE);
writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_RDR_BASE);
writel(PPC4XX_PRNG_CTRL_AUTO_EN, dev->ce_base + CRYPTO4XX_PRNG_CTRL);
get_random_bytes(&rand_num, sizeof(rand_num));
writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_L);
get_random_bytes(&rand_num, sizeof(rand_num));
writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_H);
ring_size.w = 0;
ring_size.bf.ring_offset = PPC4XX_PD_SIZE;
ring_size.bf.ring_size = PPC4XX_NUM_PD;
writel(ring_size.w, dev->ce_base + CRYPTO4XX_RING_SIZE);
ring_ctrl.w = 0;
writel(ring_ctrl.w, dev->ce_base + CRYPTO4XX_RING_CTRL);
device_ctrl = readl(dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
device_ctrl |= PPC4XX_DC_3DES_EN;
writel(device_ctrl, dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
writel(dev->gdr_pa, dev->ce_base + CRYPTO4XX_GATH_RING_BASE);
writel(dev->sdr_pa, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE);
part_ring_size.w = 0;
part_ring_size.bf.sdr_size = PPC4XX_SDR_SIZE;
part_ring_size.bf.gdr_size = PPC4XX_GDR_SIZE;
writel(part_ring_size.w, dev->ce_base + CRYPTO4XX_PART_RING_SIZE);
writel(PPC4XX_SD_BUFFER_SIZE, dev->ce_base + CRYPTO4XX_PART_RING_CFG);
io_threshold.w = 0;
io_threshold.bf.output_threshold = PPC4XX_OUTPUT_THRESHOLD;
io_threshold.bf.input_threshold = PPC4XX_INPUT_THRESHOLD;
writel(io_threshold.w, dev->ce_base + CRYPTO4XX_IO_THRESHOLD);
writel(0, dev->ce_base + CRYPTO4XX_PDR_BASE_UADDR);
writel(0, dev->ce_base + CRYPTO4XX_RDR_BASE_UADDR);
writel(0, dev->ce_base + CRYPTO4XX_PKT_SRC_UADDR);
writel(0, dev->ce_base + CRYPTO4XX_PKT_DEST_UADDR);
writel(0, dev->ce_base + CRYPTO4XX_SA_UADDR);
writel(0, dev->ce_base + CRYPTO4XX_GATH_RING_BASE_UADDR);
writel(0, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE_UADDR);
/* un reset pe,sg and pdr */
pe_dma_cfg.bf.pe_mode = 1;
pe_dma_cfg.bf.reset_sg = 0;
pe_dma_cfg.bf.reset_pdr = 0;
pe_dma_cfg.bf.reset_pe = 0;
pe_dma_cfg.bf.bo_td_en = 0;
writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
/*clear all pending interrupt*/
writel(PPC4XX_INTERRUPT_CLR, dev->ce_base + CRYPTO4XX_INT_CLR);
writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
writel(PPC4XX_INT_CFG, dev->ce_base + CRYPTO4XX_INT_CFG);
if (dev->is_revb) {
writel(PPC4XX_INT_TIMEOUT_CNT_REVB << 10,
dev->ce_base + CRYPTO4XX_INT_TIMEOUT_CNT);
writel(PPC4XX_PD_DONE_INT | PPC4XX_TMO_ERR_INT,
dev->ce_base + CRYPTO4XX_INT_EN);
} else {
writel(PPC4XX_PD_DONE_INT, dev->ce_base + CRYPTO4XX_INT_EN);
}
}
int crypto4xx_alloc_sa(struct crypto4xx_ctx *ctx, u32 size)
{
ctx->sa_in = kcalloc(size, 4, GFP_ATOMIC);
if (ctx->sa_in == NULL)
return -ENOMEM;
ctx->sa_out = kcalloc(size, 4, GFP_ATOMIC);
if (ctx->sa_out == NULL) {
kfree(ctx->sa_in);
ctx->sa_in = NULL;
return -ENOMEM;
}
ctx->sa_len = size;
return 0;
}
void crypto4xx_free_sa(struct crypto4xx_ctx *ctx)
{
kfree(ctx->sa_in);
ctx->sa_in = NULL;
kfree(ctx->sa_out);
ctx->sa_out = NULL;
ctx->sa_len = 0;
}
/*
* alloc memory for the gather ring
* no need to alloc buf for the ring
* gdr_tail, gdr_head and gdr_count are initialized by this function
*/
static u32 crypto4xx_build_pdr(struct crypto4xx_device *dev)
{
int i;
dev->pdr = dma_alloc_coherent(dev->core_dev->device,
sizeof(struct ce_pd) * PPC4XX_NUM_PD,
&dev->pdr_pa, GFP_KERNEL);
if (!dev->pdr)
return -ENOMEM;
dev->pdr_uinfo = kcalloc(PPC4XX_NUM_PD, sizeof(struct pd_uinfo),
GFP_KERNEL);
if (!dev->pdr_uinfo) {
dma_free_coherent(dev->core_dev->device,
sizeof(struct ce_pd) * PPC4XX_NUM_PD,
dev->pdr,
dev->pdr_pa);
return -ENOMEM;
}
dev->shadow_sa_pool = dma_alloc_coherent(dev->core_dev->device,
sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
&dev->shadow_sa_pool_pa,
GFP_KERNEL);
if (!dev->shadow_sa_pool)
return -ENOMEM;
dev->shadow_sr_pool = dma_alloc_coherent(dev->core_dev->device,
sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
&dev->shadow_sr_pool_pa, GFP_KERNEL);
if (!dev->shadow_sr_pool)
return -ENOMEM;
for (i = 0; i < PPC4XX_NUM_PD; i++) {
struct ce_pd *pd = &dev->pdr[i];
struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[i];
pd->sa = dev->shadow_sa_pool_pa +
sizeof(union shadow_sa_buf) * i;
/* alloc 256 bytes which is enough for any kind of dynamic sa */
pd_uinfo->sa_va = &dev->shadow_sa_pool[i].sa;
/* alloc state record */
pd_uinfo->sr_va = &dev->shadow_sr_pool[i];
pd_uinfo->sr_pa = dev->shadow_sr_pool_pa +
sizeof(struct sa_state_record) * i;
}
return 0;
}
static void crypto4xx_destroy_pdr(struct crypto4xx_device *dev)
{
if (dev->pdr)
dma_free_coherent(dev->core_dev->device,
sizeof(struct ce_pd) * PPC4XX_NUM_PD,
dev->pdr, dev->pdr_pa);
if (dev->shadow_sa_pool)
dma_free_coherent(dev->core_dev->device,
sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
dev->shadow_sa_pool, dev->shadow_sa_pool_pa);
if (dev->shadow_sr_pool)
dma_free_coherent(dev->core_dev->device,
sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
dev->shadow_sr_pool, dev->shadow_sr_pool_pa);
kfree(dev->pdr_uinfo);
}
static u32 crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device *dev)
{
u32 retval;
u32 tmp;
retval = dev->pdr_head;
tmp = (dev->pdr_head + 1) % PPC4XX_NUM_PD;
if (tmp == dev->pdr_tail)
return ERING_WAS_FULL;
dev->pdr_head = tmp;
return retval;
}
static u32 crypto4xx_put_pd_to_pdr(struct crypto4xx_device *dev, u32 idx)
{
struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
u32 tail;
unsigned long flags;
spin_lock_irqsave(&dev->core_dev->lock, flags);
pd_uinfo->state = PD_ENTRY_FREE;
if (dev->pdr_tail != PPC4XX_LAST_PD)
dev->pdr_tail++;
else
dev->pdr_tail = 0;
tail = dev->pdr_tail;
spin_unlock_irqrestore(&dev->core_dev->lock, flags);
return tail;
}
/*
* alloc memory for the gather ring
* no need to alloc buf for the ring
* gdr_tail, gdr_head and gdr_count are initialized by this function
*/
static u32 crypto4xx_build_gdr(struct crypto4xx_device *dev)
{
dev->gdr = dma_alloc_coherent(dev->core_dev->device,
sizeof(struct ce_gd) * PPC4XX_NUM_GD,
&dev->gdr_pa, GFP_KERNEL);
if (!dev->gdr)
return -ENOMEM;
return 0;
}
static inline void crypto4xx_destroy_gdr(struct crypto4xx_device *dev)
{
if (dev->gdr)
dma_free_coherent(dev->core_dev->device,
sizeof(struct ce_gd) * PPC4XX_NUM_GD,
dev->gdr, dev->gdr_pa);
}
/*
* when this function is called.
* preemption or interrupt must be disabled
*/
static u32 crypto4xx_get_n_gd(struct crypto4xx_device *dev, int n)
{
u32 retval;
u32 tmp;
if (n >= PPC4XX_NUM_GD)
return ERING_WAS_FULL;
retval = dev->gdr_head;
tmp = (dev->gdr_head + n) % PPC4XX_NUM_GD;
if (dev->gdr_head > dev->gdr_tail) {
if (tmp < dev->gdr_head && tmp >= dev->gdr_tail)
return ERING_WAS_FULL;
} else if (dev->gdr_head < dev->gdr_tail) {
if (tmp < dev->gdr_head || tmp >= dev->gdr_tail)
return ERING_WAS_FULL;
}
dev->gdr_head = tmp;
return retval;
}
static u32 crypto4xx_put_gd_to_gdr(struct crypto4xx_device *dev)
{
unsigned long flags;
spin_lock_irqsave(&dev->core_dev->lock, flags);
if (dev->gdr_tail == dev->gdr_head) {
spin_unlock_irqrestore(&dev->core_dev->lock, flags);
return 0;
}
if (dev->gdr_tail != PPC4XX_LAST_GD)
dev->gdr_tail++;
else
dev->gdr_tail = 0;
spin_unlock_irqrestore(&dev->core_dev->lock, flags);
return 0;
}
static inline struct ce_gd *crypto4xx_get_gdp(struct crypto4xx_device *dev,
dma_addr_t *gd_dma, u32 idx)
{
*gd_dma = dev->gdr_pa + sizeof(struct ce_gd) * idx;
return &dev->gdr[idx];
}
/*
* alloc memory for the scatter ring
* need to alloc buf for the ring
* sdr_tail, sdr_head and sdr_count are initialized by this function
*/
static u32 crypto4xx_build_sdr(struct crypto4xx_device *dev)
{
int i;
dev->scatter_buffer_va =
dma_alloc_coherent(dev->core_dev->device,
PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
&dev->scatter_buffer_pa, GFP_KERNEL);
if (!dev->scatter_buffer_va)
return -ENOMEM;
/* alloc memory for scatter descriptor ring */
dev->sdr = dma_alloc_coherent(dev->core_dev->device,
sizeof(struct ce_sd) * PPC4XX_NUM_SD,
&dev->sdr_pa, GFP_KERNEL);
if (!dev->sdr)
return -ENOMEM;
for (i = 0; i < PPC4XX_NUM_SD; i++) {
dev->sdr[i].ptr = dev->scatter_buffer_pa +
PPC4XX_SD_BUFFER_SIZE * i;
}
return 0;
}
static void crypto4xx_destroy_sdr(struct crypto4xx_device *dev)
{
if (dev->sdr)
dma_free_coherent(dev->core_dev->device,
sizeof(struct ce_sd) * PPC4XX_NUM_SD,
dev->sdr, dev->sdr_pa);
if (dev->scatter_buffer_va)
dma_free_coherent(dev->core_dev->device,
PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
dev->scatter_buffer_va,
dev->scatter_buffer_pa);
}
/*
* when this function is called.
* preemption or interrupt must be disabled
*/
static u32 crypto4xx_get_n_sd(struct crypto4xx_device *dev, int n)
{
u32 retval;
u32 tmp;
if (n >= PPC4XX_NUM_SD)
return ERING_WAS_FULL;
retval = dev->sdr_head;
tmp = (dev->sdr_head + n) % PPC4XX_NUM_SD;
if (dev->sdr_head > dev->gdr_tail) {
if (tmp < dev->sdr_head && tmp >= dev->sdr_tail)
return ERING_WAS_FULL;
} else if (dev->sdr_head < dev->sdr_tail) {
if (tmp < dev->sdr_head || tmp >= dev->sdr_tail)
return ERING_WAS_FULL;
} /* the head = tail, or empty case is already take cared */
dev->sdr_head = tmp;
return retval;
}
static u32 crypto4xx_put_sd_to_sdr(struct crypto4xx_device *dev)
{
unsigned long flags;
spin_lock_irqsave(&dev->core_dev->lock, flags);
if (dev->sdr_tail == dev->sdr_head) {
spin_unlock_irqrestore(&dev->core_dev->lock, flags);
return 0;
}
if (dev->sdr_tail != PPC4XX_LAST_SD)
dev->sdr_tail++;
else
dev->sdr_tail = 0;
spin_unlock_irqrestore(&dev->core_dev->lock, flags);
return 0;
}
static inline struct ce_sd *crypto4xx_get_sdp(struct crypto4xx_device *dev,
dma_addr_t *sd_dma, u32 idx)
{
*sd_dma = dev->sdr_pa + sizeof(struct ce_sd) * idx;
return &dev->sdr[idx];
}
static void crypto4xx_copy_pkt_to_dst(struct crypto4xx_device *dev,
struct ce_pd *pd,
struct pd_uinfo *pd_uinfo,
u32 nbytes,
struct scatterlist *dst)
{
unsigned int first_sd = pd_uinfo->first_sd;
unsigned int last_sd;
unsigned int overflow = 0;
unsigned int to_copy;
unsigned int dst_start = 0;
/*
* Because the scatter buffers are all neatly organized in one
* big continuous ringbuffer; scatterwalk_map_and_copy() can
* be instructed to copy a range of buffers in one go.
*/
last_sd = (first_sd + pd_uinfo->num_sd);
if (last_sd > PPC4XX_LAST_SD) {
last_sd = PPC4XX_LAST_SD;
overflow = last_sd % PPC4XX_NUM_SD;
}
while (nbytes) {
void *buf = dev->scatter_buffer_va +
first_sd * PPC4XX_SD_BUFFER_SIZE;
to_copy = min(nbytes, PPC4XX_SD_BUFFER_SIZE *
(1 + last_sd - first_sd));
scatterwalk_map_and_copy(buf, dst, dst_start, to_copy, 1);
nbytes -= to_copy;
if (overflow) {
first_sd = 0;
last_sd = overflow;
dst_start += to_copy;
overflow = 0;
}
}
}
static void crypto4xx_copy_digest_to_dst(void *dst,
struct pd_uinfo *pd_uinfo,
struct crypto4xx_ctx *ctx)
{
struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *) ctx->sa_in;
if (sa->sa_command_0.bf.hash_alg == SA_HASH_ALG_SHA1) {
memcpy(dst, pd_uinfo->sr_va->save_digest,
SA_HASH_ALG_SHA1_DIGEST_SIZE);
}
}
static void crypto4xx_ret_sg_desc(struct crypto4xx_device *dev,
struct pd_uinfo *pd_uinfo)
{
int i;
if (pd_uinfo->num_gd) {
for (i = 0; i < pd_uinfo->num_gd; i++)
crypto4xx_put_gd_to_gdr(dev);
pd_uinfo->first_gd = 0xffffffff;
pd_uinfo->num_gd = 0;
}
if (pd_uinfo->num_sd) {
for (i = 0; i < pd_uinfo->num_sd; i++)
crypto4xx_put_sd_to_sdr(dev);
pd_uinfo->first_sd = 0xffffffff;
pd_uinfo->num_sd = 0;
}
}
static void crypto4xx_cipher_done(struct crypto4xx_device *dev,
struct pd_uinfo *pd_uinfo,
struct ce_pd *pd)
{
struct skcipher_request *req;
struct scatterlist *dst;
req = skcipher_request_cast(pd_uinfo->async_req);
if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
req->cryptlen, req->dst);
} else {
dst = pd_uinfo->dest_va;
dma_unmap_page(dev->core_dev->device, pd->dest, dst->length,
DMA_FROM_DEVICE);
}
if (pd_uinfo->sa_va->sa_command_0.bf.save_iv == SA_SAVE_IV) {
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
crypto4xx_memcpy_from_le32((u32 *)req->iv,
pd_uinfo->sr_va->save_iv,
crypto_skcipher_ivsize(skcipher));
}
crypto4xx_ret_sg_desc(dev, pd_uinfo);
if (pd_uinfo->state & PD_ENTRY_BUSY)
skcipher_request_complete(req, -EINPROGRESS);
skcipher_request_complete(req, 0);
}
static void crypto4xx_ahash_done(struct crypto4xx_device *dev,
struct pd_uinfo *pd_uinfo)
{
struct crypto4xx_ctx *ctx;
struct ahash_request *ahash_req;
ahash_req = ahash_request_cast(pd_uinfo->async_req);
ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(ahash_req));
crypto4xx_copy_digest_to_dst(ahash_req->result, pd_uinfo, ctx);
crypto4xx_ret_sg_desc(dev, pd_uinfo);
if (pd_uinfo->state & PD_ENTRY_BUSY)
ahash_request_complete(ahash_req, -EINPROGRESS);
ahash_request_complete(ahash_req, 0);
}
static void crypto4xx_aead_done(struct crypto4xx_device *dev,
struct pd_uinfo *pd_uinfo,
struct ce_pd *pd)
{
struct aead_request *aead_req = container_of(pd_uinfo->async_req,
struct aead_request, base);
struct scatterlist *dst = pd_uinfo->dest_va;
size_t cp_len = crypto_aead_authsize(
crypto_aead_reqtfm(aead_req));
u32 icv[AES_BLOCK_SIZE];
int err = 0;
if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
pd->pd_ctl_len.bf.pkt_len,
dst);
} else {
dma_unmap_page(dev->core_dev->device, pd->dest, dst->length,
DMA_FROM_DEVICE);
}
if (pd_uinfo->sa_va->sa_command_0.bf.dir == DIR_OUTBOUND) {
/* append icv at the end */
crypto4xx_memcpy_from_le32(icv, pd_uinfo->sr_va->save_digest,
sizeof(icv));
scatterwalk_map_and_copy(icv, dst, aead_req->cryptlen,
cp_len, 1);
} else {
/* check icv at the end */
scatterwalk_map_and_copy(icv, aead_req->src,
aead_req->assoclen + aead_req->cryptlen -
cp_len, cp_len, 0);
crypto4xx_memcpy_from_le32(icv, icv, sizeof(icv));
if (crypto_memneq(icv, pd_uinfo->sr_va->save_digest, cp_len))
err = -EBADMSG;
}
crypto4xx_ret_sg_desc(dev, pd_uinfo);
if (pd->pd_ctl.bf.status & 0xff) {
if (!__ratelimit(&dev->aead_ratelimit)) {
if (pd->pd_ctl.bf.status & 2)
pr_err("pad fail error\n");
if (pd->pd_ctl.bf.status & 4)
pr_err("seqnum fail\n");
if (pd->pd_ctl.bf.status & 8)
pr_err("error _notify\n");
pr_err("aead return err status = 0x%02x\n",
pd->pd_ctl.bf.status & 0xff);
pr_err("pd pad_ctl = 0x%08x\n",
pd->pd_ctl.bf.pd_pad_ctl);
}
err = -EINVAL;
}
if (pd_uinfo->state & PD_ENTRY_BUSY)
aead_request_complete(aead_req, -EINPROGRESS);
aead_request_complete(aead_req, err);
}
static void crypto4xx_pd_done(struct crypto4xx_device *dev, u32 idx)
{
struct ce_pd *pd = &dev->pdr[idx];
struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
switch (crypto_tfm_alg_type(pd_uinfo->async_req->tfm)) {
case CRYPTO_ALG_TYPE_SKCIPHER:
crypto4xx_cipher_done(dev, pd_uinfo, pd);
break;
case CRYPTO_ALG_TYPE_AEAD:
crypto4xx_aead_done(dev, pd_uinfo, pd);
break;
case CRYPTO_ALG_TYPE_AHASH:
crypto4xx_ahash_done(dev, pd_uinfo);
break;
}
}
static void crypto4xx_stop_all(struct crypto4xx_core_device *core_dev)
{
crypto4xx_destroy_pdr(core_dev->dev);
crypto4xx_destroy_gdr(core_dev->dev);
crypto4xx_destroy_sdr(core_dev->dev);
iounmap(core_dev->dev->ce_base);
kfree(core_dev->dev);
kfree(core_dev);
}
static u32 get_next_gd(u32 current)
{
if (current != PPC4XX_LAST_GD)
return current + 1;
else
return 0;
}
static u32 get_next_sd(u32 current)
{
if (current != PPC4XX_LAST_SD)
return current + 1;
else
return 0;
}
int crypto4xx_build_pd(struct crypto_async_request *req,
struct crypto4xx_ctx *ctx,
struct scatterlist *src,
struct scatterlist *dst,
const unsigned int datalen,
const __le32 *iv, const u32 iv_len,
const struct dynamic_sa_ctl *req_sa,
const unsigned int sa_len,
const unsigned int assoclen,
struct scatterlist *_dst)
{
struct crypto4xx_device *dev = ctx->dev;
struct dynamic_sa_ctl *sa;
struct ce_gd *gd;
struct ce_pd *pd;
u32 num_gd, num_sd;
u32 fst_gd = 0xffffffff;
u32 fst_sd = 0xffffffff;
u32 pd_entry;
unsigned long flags;
struct pd_uinfo *pd_uinfo;
unsigned int nbytes = datalen;
size_t offset_to_sr_ptr;
u32 gd_idx = 0;
int tmp;
bool is_busy, force_sd;
/*
* There's a very subtile/disguised "bug" in the hardware that
* gets indirectly mentioned in 18.1.3.5 Encryption/Decryption
* of the hardware spec:
* *drum roll* the AES/(T)DES OFB and CFB modes are listed as
* operation modes for >>> "Block ciphers" <<<.
*
* To workaround this issue and stop the hardware from causing
* "overran dst buffer" on crypttexts that are not a multiple
* of 16 (AES_BLOCK_SIZE), we force the driver to use the
* scatter buffers.
*/
force_sd = (req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_CFB
|| req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_OFB)
&& (datalen % AES_BLOCK_SIZE);
/* figure how many gd are needed */
tmp = sg_nents_for_len(src, assoclen + datalen);
if (tmp < 0) {
dev_err(dev->core_dev->device, "Invalid number of src SG.\n");
return tmp;
}
if (tmp == 1)
tmp = 0;
num_gd = tmp;
if (assoclen) {
nbytes += assoclen;
dst = scatterwalk_ffwd(_dst, dst, assoclen);
}
/* figure how many sd are needed */
if (sg_is_last(dst) && force_sd == false) {
num_sd = 0;
} else {
if (datalen > PPC4XX_SD_BUFFER_SIZE) {
num_sd = datalen / PPC4XX_SD_BUFFER_SIZE;
if (datalen % PPC4XX_SD_BUFFER_SIZE)
num_sd++;
} else {
num_sd = 1;
}
}
/*
* The follow section of code needs to be protected
* The gather ring and scatter ring needs to be consecutive
* In case of run out of any kind of descriptor, the descriptor
* already got must be return the original place.
*/
spin_lock_irqsave(&dev->core_dev->lock, flags);
/*
* Let the caller know to slow down, once more than 13/16ths = 81%
* of the available data contexts are being used simultaneously.
*
* With PPC4XX_NUM_PD = 256, this will leave a "backlog queue" for
* 31 more contexts. Before new requests have to be rejected.
*/
if (req->flags & CRYPTO_TFM_REQ_MAY_BACKLOG) {
is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
((PPC4XX_NUM_PD * 13) / 16);
} else {
/*
* To fix contention issues between ipsec (no blacklog) and
* dm-crypto (backlog) reserve 32 entries for "no backlog"
* data contexts.
*/
is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
((PPC4XX_NUM_PD * 15) / 16);
if (is_busy) {
spin_unlock_irqrestore(&dev->core_dev->lock, flags);
return -EBUSY;
}
}
if (num_gd) {
fst_gd = crypto4xx_get_n_gd(dev, num_gd);
if (fst_gd == ERING_WAS_FULL) {
spin_unlock_irqrestore(&dev->core_dev->lock, flags);
return -EAGAIN;
}
}
if (num_sd) {
fst_sd = crypto4xx_get_n_sd(dev, num_sd);
if (fst_sd == ERING_WAS_FULL) {
if (num_gd)
dev->gdr_head = fst_gd;
spin_unlock_irqrestore(&dev->core_dev->lock, flags);
return -EAGAIN;
}
}
pd_entry = crypto4xx_get_pd_from_pdr_nolock(dev);
if (pd_entry == ERING_WAS_FULL) {
if (num_gd)
dev->gdr_head = fst_gd;
if (num_sd)
dev->sdr_head = fst_sd;
spin_unlock_irqrestore(&dev->core_dev->lock, flags);
return -EAGAIN;
}
spin_unlock_irqrestore(&dev->core_dev->lock, flags);
pd = &dev->pdr[pd_entry];
pd->sa_len = sa_len;
pd_uinfo = &dev->pdr_uinfo[pd_entry];
pd_uinfo->num_gd = num_gd;
pd_uinfo->num_sd = num_sd;
pd_uinfo->dest_va = dst;
pd_uinfo->async_req = req;
if (iv_len)
memcpy(pd_uinfo->sr_va->save_iv, iv, iv_len);
sa = pd_uinfo->sa_va;
memcpy(sa, req_sa, sa_len * 4);
sa->sa_command_1.bf.hash_crypto_offset = (assoclen >> 2);
offset_to_sr_ptr = get_dynamic_sa_offset_state_ptr_field(sa);
*(u32 *)((unsigned long)sa + offset_to_sr_ptr) = pd_uinfo->sr_pa;
if (num_gd) {
dma_addr_t gd_dma;
struct scatterlist *sg;
/* get first gd we are going to use */
gd_idx = fst_gd;
pd_uinfo->first_gd = fst_gd;
gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
pd->src = gd_dma;
/* enable gather */
sa->sa_command_0.bf.gather = 1;
/* walk the sg, and setup gather array */
sg = src;
while (nbytes) {
size_t len;
len = min(sg->length, nbytes);
gd->ptr = dma_map_page(dev->core_dev->device,
sg_page(sg), sg->offset, len, DMA_TO_DEVICE);
gd->ctl_len.len = len;
gd->ctl_len.done = 0;
gd->ctl_len.ready = 1;
if (len >= nbytes)
break;
nbytes -= sg->length;
gd_idx = get_next_gd(gd_idx);
gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
sg = sg_next(sg);
}
} else {
pd->src = (u32)dma_map_page(dev->core_dev->device, sg_page(src),
src->offset, min(nbytes, src->length),
DMA_TO_DEVICE);
/*
* Disable gather in sa command
*/
sa->sa_command_0.bf.gather = 0;
/*
* Indicate gather array is not used
*/
pd_uinfo->first_gd = 0xffffffff;
}
if (!num_sd) {
/*
* we know application give us dst a whole piece of memory
* no need to use scatter ring.
*/
pd_uinfo->first_sd = 0xffffffff;
sa->sa_command_0.bf.scatter = 0;
pd->dest = (u32)dma_map_page(dev->core_dev->device,
sg_page(dst), dst->offset,
min(datalen, dst->length),
DMA_TO_DEVICE);
} else {
dma_addr_t sd_dma;
struct ce_sd *sd = NULL;
u32 sd_idx = fst_sd;
nbytes = datalen;
sa->sa_command_0.bf.scatter = 1;
pd_uinfo->first_sd = fst_sd;
sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
pd->dest = sd_dma;
/* setup scatter descriptor */
sd->ctl.done = 0;
sd->ctl.rdy = 1;
/* sd->ptr should be setup by sd_init routine*/
if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
nbytes -= PPC4XX_SD_BUFFER_SIZE;
else
nbytes = 0;
while (nbytes) {
sd_idx = get_next_sd(sd_idx);
sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
/* setup scatter descriptor */
sd->ctl.done = 0;
sd->ctl.rdy = 1;
if (nbytes >= PPC4XX_SD_BUFFER_SIZE) {
nbytes -= PPC4XX_SD_BUFFER_SIZE;
} else {
/*
* SD entry can hold PPC4XX_SD_BUFFER_SIZE,
* which is more than nbytes, so done.
*/
nbytes = 0;
}
}
}
pd->pd_ctl.w = PD_CTL_HOST_READY |
((crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AHASH) ||
(crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AEAD) ?
PD_CTL_HASH_FINAL : 0);
pd->pd_ctl_len.w = 0x00400000 | (assoclen + datalen);
pd_uinfo->state = PD_ENTRY_INUSE | (is_busy ? PD_ENTRY_BUSY : 0);
wmb();
/* write any value to push engine to read a pd */
writel(0, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
writel(1, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
return is_busy ? -EBUSY : -EINPROGRESS;
}
/*
* Algorithm Registration Functions
*/
static void crypto4xx_ctx_init(struct crypto4xx_alg *amcc_alg,
struct crypto4xx_ctx *ctx)
{
ctx->dev = amcc_alg->dev;
ctx->sa_in = NULL;
ctx->sa_out = NULL;
ctx->sa_len = 0;
}
static int crypto4xx_sk_init(struct crypto_skcipher *sk)
{
struct skcipher_alg *alg = crypto_skcipher_alg(sk);
struct crypto4xx_alg *amcc_alg;
struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(sk);
if (alg->base.cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
ctx->sw_cipher.cipher =
crypto_alloc_sync_skcipher(alg->base.cra_name, 0,
CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(ctx->sw_cipher.cipher))
return PTR_ERR(ctx->sw_cipher.cipher);
}
amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.cipher);
crypto4xx_ctx_init(amcc_alg, ctx);
return 0;
}
static void crypto4xx_common_exit(struct crypto4xx_ctx *ctx)
{
crypto4xx_free_sa(ctx);
}
static void crypto4xx_sk_exit(struct crypto_skcipher *sk)
{
struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(sk);
crypto4xx_common_exit(ctx);
if (ctx->sw_cipher.cipher)
crypto_free_sync_skcipher(ctx->sw_cipher.cipher);
}
static int crypto4xx_aead_init(struct crypto_aead *tfm)
{
struct aead_alg *alg = crypto_aead_alg(tfm);
struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
struct crypto4xx_alg *amcc_alg;
ctx->sw_cipher.aead = crypto_alloc_aead(alg->base.cra_name, 0,
CRYPTO_ALG_NEED_FALLBACK |
CRYPTO_ALG_ASYNC);
if (IS_ERR(ctx->sw_cipher.aead))
return PTR_ERR(ctx->sw_cipher.aead);
amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.aead);
crypto4xx_ctx_init(amcc_alg, ctx);
crypto_aead_set_reqsize(tfm, max(sizeof(struct aead_request) + 32 +
crypto_aead_reqsize(ctx->sw_cipher.aead),
sizeof(struct crypto4xx_aead_reqctx)));
return 0;
}
static void crypto4xx_aead_exit(struct crypto_aead *tfm)
{
struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
crypto4xx_common_exit(ctx);
crypto_free_aead(ctx->sw_cipher.aead);
}
static int crypto4xx_register_alg(struct crypto4xx_device *sec_dev,
struct crypto4xx_alg_common *crypto_alg,
int array_size)
{
struct crypto4xx_alg *alg;
int i;
int rc = 0;
for (i = 0; i < array_size; i++) {
alg = kzalloc(sizeof(struct crypto4xx_alg), GFP_KERNEL);
if (!alg)
return -ENOMEM;
alg->alg = crypto_alg[i];
alg->dev = sec_dev;
switch (alg->alg.type) {
case CRYPTO_ALG_TYPE_AEAD:
rc = crypto_register_aead(&alg->alg.u.aead);
break;
case CRYPTO_ALG_TYPE_AHASH:
rc = crypto_register_ahash(&alg->alg.u.hash);
break;
case CRYPTO_ALG_TYPE_RNG:
rc = crypto_register_rng(&alg->alg.u.rng);
break;
default:
rc = crypto_register_skcipher(&alg->alg.u.cipher);
break;
}
if (rc)
kfree(alg);
else
list_add_tail(&alg->entry, &sec_dev->alg_list);
}
return 0;
}
static void crypto4xx_unregister_alg(struct crypto4xx_device *sec_dev)
{
struct crypto4xx_alg *alg, *tmp;
list_for_each_entry_safe(alg, tmp, &sec_dev->alg_list, entry) {
list_del(&alg->entry);
switch (alg->alg.type) {
case CRYPTO_ALG_TYPE_AHASH:
crypto_unregister_ahash(&alg->alg.u.hash);
break;
case CRYPTO_ALG_TYPE_AEAD:
crypto_unregister_aead(&alg->alg.u.aead);
break;
case CRYPTO_ALG_TYPE_RNG:
crypto_unregister_rng(&alg->alg.u.rng);
break;
default:
crypto_unregister_skcipher(&alg->alg.u.cipher);
}
kfree(alg);
}
}
static void crypto4xx_bh_tasklet_cb(unsigned long data)
{
struct device *dev = (struct device *)data;
struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
struct pd_uinfo *pd_uinfo;
struct ce_pd *pd;
u32 tail = core_dev->dev->pdr_tail;
u32 head = core_dev->dev->pdr_head;
do {
pd_uinfo = &core_dev->dev->pdr_uinfo[tail];
pd = &core_dev->dev->pdr[tail];
if ((pd_uinfo->state & PD_ENTRY_INUSE) &&
((READ_ONCE(pd->pd_ctl.w) &
(PD_CTL_PE_DONE | PD_CTL_HOST_READY)) ==
PD_CTL_PE_DONE)) {
crypto4xx_pd_done(core_dev->dev, tail);
tail = crypto4xx_put_pd_to_pdr(core_dev->dev, tail);
} else {
/* if tail not done, break */
break;
}
} while (head != tail);
}
/*
* Top Half of isr.
*/
static inline irqreturn_t crypto4xx_interrupt_handler(int irq, void *data,
u32 clr_val)
{
struct device *dev = (struct device *)data;
struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
writel(clr_val, core_dev->dev->ce_base + CRYPTO4XX_INT_CLR);
tasklet_schedule(&core_dev->tasklet);
return IRQ_HANDLED;
}
static irqreturn_t crypto4xx_ce_interrupt_handler(int irq, void *data)
{
return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR);
}
static irqreturn_t crypto4xx_ce_interrupt_handler_revb(int irq, void *data)
{
return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR |
PPC4XX_TMO_ERR_INT);
}
static int ppc4xx_prng_data_read(struct crypto4xx_device *dev,
u8 *data, unsigned int max)
{
unsigned int i, curr = 0;
u32 val[2];
do {
/* trigger PRN generation */
writel(PPC4XX_PRNG_CTRL_AUTO_EN,
dev->ce_base + CRYPTO4XX_PRNG_CTRL);
for (i = 0; i < 1024; i++) {
/* usually 19 iterations are enough */
if ((readl(dev->ce_base + CRYPTO4XX_PRNG_STAT) &
CRYPTO4XX_PRNG_STAT_BUSY))
continue;
val[0] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_0);
val[1] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_1);
break;
}
if (i == 1024)
return -ETIMEDOUT;
if ((max - curr) >= 8) {
memcpy(data, &val, 8);
data += 8;
curr += 8;
} else {
/* copy only remaining bytes */
memcpy(data, &val, max - curr);
break;
}
} while (curr < max);
return curr;
}
static int crypto4xx_prng_generate(struct crypto_rng *tfm,
const u8 *src, unsigned int slen,
u8 *dstn, unsigned int dlen)
{
struct rng_alg *alg = crypto_rng_alg(tfm);
struct crypto4xx_alg *amcc_alg;
struct crypto4xx_device *dev;
int ret;
amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.rng);
dev = amcc_alg->dev;
mutex_lock(&dev->core_dev->rng_lock);
ret = ppc4xx_prng_data_read(dev, dstn, dlen);
mutex_unlock(&dev->core_dev->rng_lock);
return ret;
}
static int crypto4xx_prng_seed(struct crypto_rng *tfm, const u8 *seed,
unsigned int slen)
{
return 0;
}
/*
* Supported Crypto Algorithms
*/
static struct crypto4xx_alg_common crypto4xx_alg[] = {
/* Crypto AES modes */
{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
.base = {
.cra_name = "cbc(aes)",
.cra_driver_name = "cbc-aes-ppc4xx",
.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypto4xx_ctx),
.cra_module = THIS_MODULE,
},
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_IV_SIZE,
.setkey = crypto4xx_setkey_aes_cbc,
.encrypt = crypto4xx_encrypt_iv_block,
.decrypt = crypto4xx_decrypt_iv_block,
.init = crypto4xx_sk_init,
.exit = crypto4xx_sk_exit,
} },
{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
.base = {
.cra_name = "cfb(aes)",
.cra_driver_name = "cfb-aes-ppc4xx",
.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct crypto4xx_ctx),
.cra_module = THIS_MODULE,
},
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_IV_SIZE,
.setkey = crypto4xx_setkey_aes_cfb,
.encrypt = crypto4xx_encrypt_iv_stream,
.decrypt = crypto4xx_decrypt_iv_stream,
.init = crypto4xx_sk_init,
.exit = crypto4xx_sk_exit,
} },
{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
.base = {
.cra_name = "ctr(aes)",
.cra_driver_name = "ctr-aes-ppc4xx",
.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct crypto4xx_ctx),
.cra_module = THIS_MODULE,
},
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_IV_SIZE,
.setkey = crypto4xx_setkey_aes_ctr,
.encrypt = crypto4xx_encrypt_ctr,
.decrypt = crypto4xx_decrypt_ctr,
.init = crypto4xx_sk_init,
.exit = crypto4xx_sk_exit,
} },
{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
.base = {
.cra_name = "rfc3686(ctr(aes))",
.cra_driver_name = "rfc3686-ctr-aes-ppc4xx",
.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct crypto4xx_ctx),
.cra_module = THIS_MODULE,
},
.min_keysize = AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
.max_keysize = AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
.ivsize = CTR_RFC3686_IV_SIZE,
.setkey = crypto4xx_setkey_rfc3686,
.encrypt = crypto4xx_rfc3686_encrypt,
.decrypt = crypto4xx_rfc3686_decrypt,
.init = crypto4xx_sk_init,
.exit = crypto4xx_sk_exit,
} },
{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
.base = {
.cra_name = "ecb(aes)",
.cra_driver_name = "ecb-aes-ppc4xx",
.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypto4xx_ctx),
.cra_module = THIS_MODULE,
},
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = crypto4xx_setkey_aes_ecb,
.encrypt = crypto4xx_encrypt_noiv_block,
.decrypt = crypto4xx_decrypt_noiv_block,
.init = crypto4xx_sk_init,
.exit = crypto4xx_sk_exit,
} },
{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
.base = {
.cra_name = "ofb(aes)",
.cra_driver_name = "ofb-aes-ppc4xx",
.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct crypto4xx_ctx),
.cra_module = THIS_MODULE,
},
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_IV_SIZE,
.setkey = crypto4xx_setkey_aes_ofb,
.encrypt = crypto4xx_encrypt_iv_stream,
.decrypt = crypto4xx_decrypt_iv_stream,
.init = crypto4xx_sk_init,
.exit = crypto4xx_sk_exit,
} },
/* AEAD */
{ .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
.setkey = crypto4xx_setkey_aes_ccm,
.setauthsize = crypto4xx_setauthsize_aead,
.encrypt = crypto4xx_encrypt_aes_ccm,
.decrypt = crypto4xx_decrypt_aes_ccm,
.init = crypto4xx_aead_init,
.exit = crypto4xx_aead_exit,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = 16,
.base = {
.cra_name = "ccm(aes)",
.cra_driver_name = "ccm-aes-ppc4xx",
.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct crypto4xx_ctx),
.cra_module = THIS_MODULE,
},
} },
{ .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
.setkey = crypto4xx_setkey_aes_gcm,
.setauthsize = crypto4xx_setauthsize_aead,
.encrypt = crypto4xx_encrypt_aes_gcm,
.decrypt = crypto4xx_decrypt_aes_gcm,
.init = crypto4xx_aead_init,
.exit = crypto4xx_aead_exit,
.ivsize = GCM_AES_IV_SIZE,
.maxauthsize = 16,
.base = {
.cra_name = "gcm(aes)",
.cra_driver_name = "gcm-aes-ppc4xx",
.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct crypto4xx_ctx),
.cra_module = THIS_MODULE,
},
} },
{ .type = CRYPTO_ALG_TYPE_RNG, .u.rng = {
.base = {
.cra_name = "stdrng",
.cra_driver_name = "crypto4xx_rng",
.cra_priority = 300,
.cra_ctxsize = 0,
.cra_module = THIS_MODULE,
},
.generate = crypto4xx_prng_generate,
.seed = crypto4xx_prng_seed,
.seedsize = 0,
} },
};
/*
* Module Initialization Routine
*/
static int crypto4xx_probe(struct platform_device *ofdev)
{
int rc;
struct resource res;
struct device *dev = &ofdev->dev;
struct crypto4xx_core_device *core_dev;
struct device_node *np;
u32 pvr;
bool is_revb = true;
rc = of_address_to_resource(ofdev->dev.of_node, 0, &res);
if (rc)
return -ENODEV;
np = of_find_compatible_node(NULL, NULL, "amcc,ppc460ex-crypto");
if (np) {
mtdcri(SDR0, PPC460EX_SDR0_SRST,
mfdcri(SDR0, PPC460EX_SDR0_SRST) | PPC460EX_CE_RESET);
mtdcri(SDR0, PPC460EX_SDR0_SRST,
mfdcri(SDR0, PPC460EX_SDR0_SRST) & ~PPC460EX_CE_RESET);
} else {
np = of_find_compatible_node(NULL, NULL, "amcc,ppc405ex-crypto");
if (np) {
mtdcri(SDR0, PPC405EX_SDR0_SRST,
mfdcri(SDR0, PPC405EX_SDR0_SRST) | PPC405EX_CE_RESET);
mtdcri(SDR0, PPC405EX_SDR0_SRST,
mfdcri(SDR0, PPC405EX_SDR0_SRST) & ~PPC405EX_CE_RESET);
is_revb = false;
} else {
np = of_find_compatible_node(NULL, NULL, "amcc,ppc460sx-crypto");
if (np) {
mtdcri(SDR0, PPC460SX_SDR0_SRST,
mfdcri(SDR0, PPC460SX_SDR0_SRST) | PPC460SX_CE_RESET);
mtdcri(SDR0, PPC460SX_SDR0_SRST,
mfdcri(SDR0, PPC460SX_SDR0_SRST) & ~PPC460SX_CE_RESET);
} else {
printk(KERN_ERR "Crypto Function Not supported!\n");
return -EINVAL;
}
}
}
of_node_put(np);
core_dev = kzalloc(sizeof(struct crypto4xx_core_device), GFP_KERNEL);
if (!core_dev)
return -ENOMEM;
dev_set_drvdata(dev, core_dev);
core_dev->ofdev = ofdev;
core_dev->dev = kzalloc(sizeof(struct crypto4xx_device), GFP_KERNEL);
rc = -ENOMEM;
if (!core_dev->dev)
goto err_alloc_dev;
/*
* Older version of 460EX/GT have a hardware bug.
* Hence they do not support H/W based security intr coalescing
*/
pvr = mfspr(SPRN_PVR);
if (is_revb && ((pvr >> 4) == 0x130218A)) {
u32 min = PVR_MIN(pvr);
if (min < 4) {
dev_info(dev, "RevA detected - disable interrupt coalescing\n");
is_revb = false;
}
}
core_dev->dev->core_dev = core_dev;
core_dev->dev->is_revb = is_revb;
core_dev->device = dev;
mutex_init(&core_dev->rng_lock);
spin_lock_init(&core_dev->lock);
INIT_LIST_HEAD(&core_dev->dev->alg_list);
ratelimit_default_init(&core_dev->dev->aead_ratelimit);
rc = crypto4xx_build_sdr(core_dev->dev);
if (rc)
goto err_build_sdr;
rc = crypto4xx_build_pdr(core_dev->dev);
if (rc)
goto err_build_sdr;
rc = crypto4xx_build_gdr(core_dev->dev);
if (rc)
goto err_build_sdr;
/* Init tasklet for bottom half processing */
tasklet_init(&core_dev->tasklet, crypto4xx_bh_tasklet_cb,
(unsigned long) dev);
core_dev->dev->ce_base = of_iomap(ofdev->dev.of_node, 0);
if (!core_dev->dev->ce_base) {
dev_err(dev, "failed to of_iomap\n");
rc = -ENOMEM;
goto err_iomap;
}
/* Register for Crypto isr, Crypto Engine IRQ */
core_dev->irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
rc = request_irq(core_dev->irq, is_revb ?
crypto4xx_ce_interrupt_handler_revb :
crypto4xx_ce_interrupt_handler, 0,
KBUILD_MODNAME, dev);
if (rc)
goto err_request_irq;
/* need to setup pdr, rdr, gdr and sdr before this */
crypto4xx_hw_init(core_dev->dev);
/* Register security algorithms with Linux CryptoAPI */
rc = crypto4xx_register_alg(core_dev->dev, crypto4xx_alg,
ARRAY_SIZE(crypto4xx_alg));
if (rc)
goto err_start_dev;
ppc4xx_trng_probe(core_dev);
return 0;
err_start_dev:
free_irq(core_dev->irq, dev);
err_request_irq:
irq_dispose_mapping(core_dev->irq);
iounmap(core_dev->dev->ce_base);
err_iomap:
tasklet_kill(&core_dev->tasklet);
err_build_sdr:
crypto4xx_destroy_sdr(core_dev->dev);
crypto4xx_destroy_gdr(core_dev->dev);
crypto4xx_destroy_pdr(core_dev->dev);
kfree(core_dev->dev);
err_alloc_dev:
kfree(core_dev);
return rc;
}
static int crypto4xx_remove(struct platform_device *ofdev)
{
struct device *dev = &ofdev->dev;
struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
ppc4xx_trng_remove(core_dev);
free_irq(core_dev->irq, dev);
irq_dispose_mapping(core_dev->irq);
tasklet_kill(&core_dev->tasklet);
/* Un-register with Linux CryptoAPI */
crypto4xx_unregister_alg(core_dev->dev);
mutex_destroy(&core_dev->rng_lock);
/* Free all allocated memory */
crypto4xx_stop_all(core_dev);
return 0;
}
static const struct of_device_id crypto4xx_match[] = {
{ .compatible = "amcc,ppc4xx-crypto",},
{ },
};
MODULE_DEVICE_TABLE(of, crypto4xx_match);
static struct platform_driver crypto4xx_driver = {
.driver = {
.name = KBUILD_MODNAME,
.of_match_table = crypto4xx_match,
},
.probe = crypto4xx_probe,
.remove = crypto4xx_remove,
};
module_platform_driver(crypto4xx_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("James Hsiao <jhsiao@amcc.com>");
MODULE_DESCRIPTION("Driver for AMCC PPC4xx crypto accelerator");