linux-zen-server/drivers/crypto/qce/skcipher.c

530 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2010-2014, The Linux Foundation. All rights reserved.
*/
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/moduleparam.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <crypto/aes.h>
#include <crypto/internal/des.h>
#include <crypto/internal/skcipher.h>
#include "cipher.h"
static unsigned int aes_sw_max_len = CONFIG_CRYPTO_DEV_QCE_SW_MAX_LEN;
module_param(aes_sw_max_len, uint, 0644);
MODULE_PARM_DESC(aes_sw_max_len,
"Only use hardware for AES requests larger than this "
"[0=always use hardware; anything <16 breaks AES-GCM; default="
__stringify(CONFIG_CRYPTO_DEV_QCE_SW_MAX_LEN)"]");
static LIST_HEAD(skcipher_algs);
static void qce_skcipher_done(void *data)
{
struct crypto_async_request *async_req = data;
struct skcipher_request *req = skcipher_request_cast(async_req);
struct qce_cipher_reqctx *rctx = skcipher_request_ctx(req);
struct qce_alg_template *tmpl = to_cipher_tmpl(crypto_skcipher_reqtfm(req));
struct qce_device *qce = tmpl->qce;
struct qce_result_dump *result_buf = qce->dma.result_buf;
enum dma_data_direction dir_src, dir_dst;
u32 status;
int error;
bool diff_dst;
diff_dst = (req->src != req->dst) ? true : false;
dir_src = diff_dst ? DMA_TO_DEVICE : DMA_BIDIRECTIONAL;
dir_dst = diff_dst ? DMA_FROM_DEVICE : DMA_BIDIRECTIONAL;
error = qce_dma_terminate_all(&qce->dma);
if (error)
dev_dbg(qce->dev, "skcipher dma termination error (%d)\n",
error);
if (diff_dst)
dma_unmap_sg(qce->dev, rctx->src_sg, rctx->src_nents, dir_src);
dma_unmap_sg(qce->dev, rctx->dst_sg, rctx->dst_nents, dir_dst);
sg_free_table(&rctx->dst_tbl);
error = qce_check_status(qce, &status);
if (error < 0)
dev_dbg(qce->dev, "skcipher operation error (%x)\n", status);
memcpy(rctx->iv, result_buf->encr_cntr_iv, rctx->ivsize);
qce->async_req_done(tmpl->qce, error);
}
static int
qce_skcipher_async_req_handle(struct crypto_async_request *async_req)
{
struct skcipher_request *req = skcipher_request_cast(async_req);
struct qce_cipher_reqctx *rctx = skcipher_request_ctx(req);
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
struct qce_alg_template *tmpl = to_cipher_tmpl(crypto_skcipher_reqtfm(req));
struct qce_device *qce = tmpl->qce;
enum dma_data_direction dir_src, dir_dst;
struct scatterlist *sg;
bool diff_dst;
gfp_t gfp;
int dst_nents, src_nents, ret;
rctx->iv = req->iv;
rctx->ivsize = crypto_skcipher_ivsize(skcipher);
rctx->cryptlen = req->cryptlen;
diff_dst = (req->src != req->dst) ? true : false;
dir_src = diff_dst ? DMA_TO_DEVICE : DMA_BIDIRECTIONAL;
dir_dst = diff_dst ? DMA_FROM_DEVICE : DMA_BIDIRECTIONAL;
rctx->src_nents = sg_nents_for_len(req->src, req->cryptlen);
if (diff_dst)
rctx->dst_nents = sg_nents_for_len(req->dst, req->cryptlen);
else
rctx->dst_nents = rctx->src_nents;
if (rctx->src_nents < 0) {
dev_err(qce->dev, "Invalid numbers of src SG.\n");
return rctx->src_nents;
}
if (rctx->dst_nents < 0) {
dev_err(qce->dev, "Invalid numbers of dst SG.\n");
return -rctx->dst_nents;
}
rctx->dst_nents += 1;
gfp = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
GFP_KERNEL : GFP_ATOMIC;
ret = sg_alloc_table(&rctx->dst_tbl, rctx->dst_nents, gfp);
if (ret)
return ret;
sg_init_one(&rctx->result_sg, qce->dma.result_buf, QCE_RESULT_BUF_SZ);
sg = qce_sgtable_add(&rctx->dst_tbl, req->dst, req->cryptlen);
if (IS_ERR(sg)) {
ret = PTR_ERR(sg);
goto error_free;
}
sg = qce_sgtable_add(&rctx->dst_tbl, &rctx->result_sg,
QCE_RESULT_BUF_SZ);
if (IS_ERR(sg)) {
ret = PTR_ERR(sg);
goto error_free;
}
sg_mark_end(sg);
rctx->dst_sg = rctx->dst_tbl.sgl;
dst_nents = dma_map_sg(qce->dev, rctx->dst_sg, rctx->dst_nents, dir_dst);
if (!dst_nents) {
ret = -EIO;
goto error_free;
}
if (diff_dst) {
src_nents = dma_map_sg(qce->dev, req->src, rctx->src_nents, dir_src);
if (!src_nents) {
ret = -EIO;
goto error_unmap_dst;
}
rctx->src_sg = req->src;
} else {
rctx->src_sg = rctx->dst_sg;
src_nents = dst_nents - 1;
}
ret = qce_dma_prep_sgs(&qce->dma, rctx->src_sg, src_nents,
rctx->dst_sg, dst_nents,
qce_skcipher_done, async_req);
if (ret)
goto error_unmap_src;
qce_dma_issue_pending(&qce->dma);
ret = qce_start(async_req, tmpl->crypto_alg_type);
if (ret)
goto error_terminate;
return 0;
error_terminate:
qce_dma_terminate_all(&qce->dma);
error_unmap_src:
if (diff_dst)
dma_unmap_sg(qce->dev, req->src, rctx->src_nents, dir_src);
error_unmap_dst:
dma_unmap_sg(qce->dev, rctx->dst_sg, rctx->dst_nents, dir_dst);
error_free:
sg_free_table(&rctx->dst_tbl);
return ret;
}
static int qce_skcipher_setkey(struct crypto_skcipher *ablk, const u8 *key,
unsigned int keylen)
{
struct crypto_tfm *tfm = crypto_skcipher_tfm(ablk);
struct qce_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
unsigned long flags = to_cipher_tmpl(ablk)->alg_flags;
unsigned int __keylen;
int ret;
if (!key || !keylen)
return -EINVAL;
/*
* AES XTS key1 = key2 not supported by crypto engine.
* Revisit to request a fallback cipher in this case.
*/
if (IS_XTS(flags)) {
__keylen = keylen >> 1;
if (!memcmp(key, key + __keylen, __keylen))
return -ENOKEY;
} else {
__keylen = keylen;
}
switch (__keylen) {
case AES_KEYSIZE_128:
case AES_KEYSIZE_256:
memcpy(ctx->enc_key, key, keylen);
break;
case AES_KEYSIZE_192:
break;
default:
return -EINVAL;
}
ret = crypto_skcipher_setkey(ctx->fallback, key, keylen);
if (!ret)
ctx->enc_keylen = keylen;
return ret;
}
static int qce_des_setkey(struct crypto_skcipher *ablk, const u8 *key,
unsigned int keylen)
{
struct qce_cipher_ctx *ctx = crypto_skcipher_ctx(ablk);
int err;
err = verify_skcipher_des_key(ablk, key);
if (err)
return err;
ctx->enc_keylen = keylen;
memcpy(ctx->enc_key, key, keylen);
return 0;
}
static int qce_des3_setkey(struct crypto_skcipher *ablk, const u8 *key,
unsigned int keylen)
{
struct qce_cipher_ctx *ctx = crypto_skcipher_ctx(ablk);
u32 _key[6];
int err;
err = verify_skcipher_des3_key(ablk, key);
if (err)
return err;
/*
* The crypto engine does not support any two keys
* being the same for triple des algorithms. The
* verify_skcipher_des3_key does not check for all the
* below conditions. Return -ENOKEY in case any two keys
* are the same. Revisit to see if a fallback cipher
* is needed to handle this condition.
*/
memcpy(_key, key, DES3_EDE_KEY_SIZE);
if (!((_key[0] ^ _key[2]) | (_key[1] ^ _key[3])) ||
!((_key[2] ^ _key[4]) | (_key[3] ^ _key[5])) ||
!((_key[0] ^ _key[4]) | (_key[1] ^ _key[5])))
return -ENOKEY;
ctx->enc_keylen = keylen;
memcpy(ctx->enc_key, key, keylen);
return 0;
}
static int qce_skcipher_crypt(struct skcipher_request *req, int encrypt)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct qce_cipher_ctx *ctx = crypto_skcipher_ctx(tfm);
struct qce_cipher_reqctx *rctx = skcipher_request_ctx(req);
struct qce_alg_template *tmpl = to_cipher_tmpl(tfm);
unsigned int blocksize = crypto_skcipher_blocksize(tfm);
int keylen;
int ret;
rctx->flags = tmpl->alg_flags;
rctx->flags |= encrypt ? QCE_ENCRYPT : QCE_DECRYPT;
keylen = IS_XTS(rctx->flags) ? ctx->enc_keylen >> 1 : ctx->enc_keylen;
/* CE does not handle 0 length messages */
if (!req->cryptlen)
return 0;
/*
* ECB and CBC algorithms require message lengths to be
* multiples of block size.
*/
if (IS_ECB(rctx->flags) || IS_CBC(rctx->flags))
if (!IS_ALIGNED(req->cryptlen, blocksize))
return -EINVAL;
/*
* Conditions for requesting a fallback cipher
* AES-192 (not supported by crypto engine (CE))
* AES-XTS request with len <= 512 byte (not recommended to use CE)
* AES-XTS request with len > QCE_SECTOR_SIZE and
* is not a multiple of it.(Revisit this condition to check if it is
* needed in all versions of CE)
*/
if (IS_AES(rctx->flags) &&
((keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_256) ||
(IS_XTS(rctx->flags) && ((req->cryptlen <= aes_sw_max_len) ||
(req->cryptlen > QCE_SECTOR_SIZE &&
req->cryptlen % QCE_SECTOR_SIZE))))) {
skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback);
skcipher_request_set_callback(&rctx->fallback_req,
req->base.flags,
req->base.complete,
req->base.data);
skcipher_request_set_crypt(&rctx->fallback_req, req->src,
req->dst, req->cryptlen, req->iv);
ret = encrypt ? crypto_skcipher_encrypt(&rctx->fallback_req) :
crypto_skcipher_decrypt(&rctx->fallback_req);
return ret;
}
return tmpl->qce->async_req_enqueue(tmpl->qce, &req->base);
}
static int qce_skcipher_encrypt(struct skcipher_request *req)
{
return qce_skcipher_crypt(req, 1);
}
static int qce_skcipher_decrypt(struct skcipher_request *req)
{
return qce_skcipher_crypt(req, 0);
}
static int qce_skcipher_init(struct crypto_skcipher *tfm)
{
/* take the size without the fallback skcipher_request at the end */
crypto_skcipher_set_reqsize(tfm, offsetof(struct qce_cipher_reqctx,
fallback_req));
return 0;
}
static int qce_skcipher_init_fallback(struct crypto_skcipher *tfm)
{
struct qce_cipher_ctx *ctx = crypto_skcipher_ctx(tfm);
ctx->fallback = crypto_alloc_skcipher(crypto_tfm_alg_name(&tfm->base),
0, CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(ctx->fallback))
return PTR_ERR(ctx->fallback);
crypto_skcipher_set_reqsize(tfm, sizeof(struct qce_cipher_reqctx) +
crypto_skcipher_reqsize(ctx->fallback));
return 0;
}
static void qce_skcipher_exit(struct crypto_skcipher *tfm)
{
struct qce_cipher_ctx *ctx = crypto_skcipher_ctx(tfm);
crypto_free_skcipher(ctx->fallback);
}
struct qce_skcipher_def {
unsigned long flags;
const char *name;
const char *drv_name;
unsigned int blocksize;
unsigned int chunksize;
unsigned int ivsize;
unsigned int min_keysize;
unsigned int max_keysize;
};
static const struct qce_skcipher_def skcipher_def[] = {
{
.flags = QCE_ALG_AES | QCE_MODE_ECB,
.name = "ecb(aes)",
.drv_name = "ecb-aes-qce",
.blocksize = AES_BLOCK_SIZE,
.ivsize = 0,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
},
{
.flags = QCE_ALG_AES | QCE_MODE_CBC,
.name = "cbc(aes)",
.drv_name = "cbc-aes-qce",
.blocksize = AES_BLOCK_SIZE,
.ivsize = AES_BLOCK_SIZE,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
},
{
.flags = QCE_ALG_AES | QCE_MODE_CTR,
.name = "ctr(aes)",
.drv_name = "ctr-aes-qce",
.blocksize = 1,
.chunksize = AES_BLOCK_SIZE,
.ivsize = AES_BLOCK_SIZE,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
},
{
.flags = QCE_ALG_AES | QCE_MODE_XTS,
.name = "xts(aes)",
.drv_name = "xts-aes-qce",
.blocksize = AES_BLOCK_SIZE,
.ivsize = AES_BLOCK_SIZE,
.min_keysize = AES_MIN_KEY_SIZE * 2,
.max_keysize = AES_MAX_KEY_SIZE * 2,
},
{
.flags = QCE_ALG_DES | QCE_MODE_ECB,
.name = "ecb(des)",
.drv_name = "ecb-des-qce",
.blocksize = DES_BLOCK_SIZE,
.ivsize = 0,
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
},
{
.flags = QCE_ALG_DES | QCE_MODE_CBC,
.name = "cbc(des)",
.drv_name = "cbc-des-qce",
.blocksize = DES_BLOCK_SIZE,
.ivsize = DES_BLOCK_SIZE,
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
},
{
.flags = QCE_ALG_3DES | QCE_MODE_ECB,
.name = "ecb(des3_ede)",
.drv_name = "ecb-3des-qce",
.blocksize = DES3_EDE_BLOCK_SIZE,
.ivsize = 0,
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
},
{
.flags = QCE_ALG_3DES | QCE_MODE_CBC,
.name = "cbc(des3_ede)",
.drv_name = "cbc-3des-qce",
.blocksize = DES3_EDE_BLOCK_SIZE,
.ivsize = DES3_EDE_BLOCK_SIZE,
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
},
};
static int qce_skcipher_register_one(const struct qce_skcipher_def *def,
struct qce_device *qce)
{
struct qce_alg_template *tmpl;
struct skcipher_alg *alg;
int ret;
tmpl = kzalloc(sizeof(*tmpl), GFP_KERNEL);
if (!tmpl)
return -ENOMEM;
alg = &tmpl->alg.skcipher;
snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
def->drv_name);
alg->base.cra_blocksize = def->blocksize;
alg->chunksize = def->chunksize;
alg->ivsize = def->ivsize;
alg->min_keysize = def->min_keysize;
alg->max_keysize = def->max_keysize;
alg->setkey = IS_3DES(def->flags) ? qce_des3_setkey :
IS_DES(def->flags) ? qce_des_setkey :
qce_skcipher_setkey;
alg->encrypt = qce_skcipher_encrypt;
alg->decrypt = qce_skcipher_decrypt;
alg->base.cra_priority = 300;
alg->base.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY |
CRYPTO_ALG_KERN_DRIVER_ONLY;
alg->base.cra_ctxsize = sizeof(struct qce_cipher_ctx);
alg->base.cra_alignmask = 0;
alg->base.cra_module = THIS_MODULE;
if (IS_AES(def->flags)) {
alg->base.cra_flags |= CRYPTO_ALG_NEED_FALLBACK;
alg->init = qce_skcipher_init_fallback;
alg->exit = qce_skcipher_exit;
} else {
alg->init = qce_skcipher_init;
}
INIT_LIST_HEAD(&tmpl->entry);
tmpl->crypto_alg_type = CRYPTO_ALG_TYPE_SKCIPHER;
tmpl->alg_flags = def->flags;
tmpl->qce = qce;
ret = crypto_register_skcipher(alg);
if (ret) {
dev_err(qce->dev, "%s registration failed\n", alg->base.cra_name);
kfree(tmpl);
return ret;
}
list_add_tail(&tmpl->entry, &skcipher_algs);
dev_dbg(qce->dev, "%s is registered\n", alg->base.cra_name);
return 0;
}
static void qce_skcipher_unregister(struct qce_device *qce)
{
struct qce_alg_template *tmpl, *n;
list_for_each_entry_safe(tmpl, n, &skcipher_algs, entry) {
crypto_unregister_skcipher(&tmpl->alg.skcipher);
list_del(&tmpl->entry);
kfree(tmpl);
}
}
static int qce_skcipher_register(struct qce_device *qce)
{
int ret, i;
for (i = 0; i < ARRAY_SIZE(skcipher_def); i++) {
ret = qce_skcipher_register_one(&skcipher_def[i], qce);
if (ret)
goto err;
}
return 0;
err:
qce_skcipher_unregister(qce);
return ret;
}
const struct qce_algo_ops skcipher_ops = {
.type = CRYPTO_ALG_TYPE_SKCIPHER,
.register_algs = qce_skcipher_register,
.unregister_algs = qce_skcipher_unregister,
.async_req_handle = qce_skcipher_async_req_handle,
};