linux-zen-server/drivers/firmware/arm_scmi/shmem.c

125 lines
3.7 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* For transport using shared mem structure.
*
* Copyright (C) 2019 ARM Ltd.
*/
#include <linux/ktime.h>
#include <linux/io.h>
#include <linux/processor.h>
#include <linux/types.h>
#include <asm-generic/bug.h>
#include "common.h"
/*
* SCMI specification requires all parameters, message headers, return
* arguments or any protocol data to be expressed in little endian
* format only.
*/
struct scmi_shared_mem {
__le32 reserved;
__le32 channel_status;
#define SCMI_SHMEM_CHAN_STAT_CHANNEL_ERROR BIT(1)
#define SCMI_SHMEM_CHAN_STAT_CHANNEL_FREE BIT(0)
__le32 reserved1[2];
__le32 flags;
#define SCMI_SHMEM_FLAG_INTR_ENABLED BIT(0)
__le32 length;
__le32 msg_header;
u8 msg_payload[];
};
void shmem_tx_prepare(struct scmi_shared_mem __iomem *shmem,
struct scmi_xfer *xfer, struct scmi_chan_info *cinfo)
{
ktime_t stop;
/*
* Ideally channel must be free by now unless OS timeout last
* request and platform continued to process the same, wait
* until it releases the shared memory, otherwise we may endup
* overwriting its response with new message payload or vice-versa.
* Giving up anyway after twice the expected channel timeout so as
* not to bail-out on intermittent issues where the platform is
* occasionally a bit slower to answer.
*
* Note that after a timeout is detected we bail-out and carry on but
* the transport functionality is probably permanently compromised:
* this is just to ease debugging and avoid complete hangs on boot
* due to a misbehaving SCMI firmware.
*/
stop = ktime_add_ms(ktime_get(), 2 * cinfo->rx_timeout_ms);
spin_until_cond((ioread32(&shmem->channel_status) &
SCMI_SHMEM_CHAN_STAT_CHANNEL_FREE) ||
ktime_after(ktime_get(), stop));
if (!(ioread32(&shmem->channel_status) &
SCMI_SHMEM_CHAN_STAT_CHANNEL_FREE)) {
WARN_ON_ONCE(1);
dev_err(cinfo->dev,
"Timeout waiting for a free TX channel !\n");
return;
}
/* Mark channel busy + clear error */
iowrite32(0x0, &shmem->channel_status);
iowrite32(xfer->hdr.poll_completion ? 0 : SCMI_SHMEM_FLAG_INTR_ENABLED,
&shmem->flags);
iowrite32(sizeof(shmem->msg_header) + xfer->tx.len, &shmem->length);
iowrite32(pack_scmi_header(&xfer->hdr), &shmem->msg_header);
if (xfer->tx.buf)
memcpy_toio(shmem->msg_payload, xfer->tx.buf, xfer->tx.len);
}
u32 shmem_read_header(struct scmi_shared_mem __iomem *shmem)
{
return ioread32(&shmem->msg_header);
}
void shmem_fetch_response(struct scmi_shared_mem __iomem *shmem,
struct scmi_xfer *xfer)
{
size_t len = ioread32(&shmem->length);
xfer->hdr.status = ioread32(shmem->msg_payload);
/* Skip the length of header and status in shmem area i.e 8 bytes */
xfer->rx.len = min_t(size_t, xfer->rx.len, len > 8 ? len - 8 : 0);
/* Take a copy to the rx buffer.. */
memcpy_fromio(xfer->rx.buf, shmem->msg_payload + 4, xfer->rx.len);
}
void shmem_fetch_notification(struct scmi_shared_mem __iomem *shmem,
size_t max_len, struct scmi_xfer *xfer)
{
size_t len = ioread32(&shmem->length);
/* Skip only the length of header in shmem area i.e 4 bytes */
xfer->rx.len = min_t(size_t, max_len, len > 4 ? len - 4 : 0);
/* Take a copy to the rx buffer.. */
memcpy_fromio(xfer->rx.buf, shmem->msg_payload, xfer->rx.len);
}
void shmem_clear_channel(struct scmi_shared_mem __iomem *shmem)
{
iowrite32(SCMI_SHMEM_CHAN_STAT_CHANNEL_FREE, &shmem->channel_status);
}
bool shmem_poll_done(struct scmi_shared_mem __iomem *shmem,
struct scmi_xfer *xfer)
{
u16 xfer_id;
xfer_id = MSG_XTRACT_TOKEN(ioread32(&shmem->msg_header));
if (xfer->hdr.seq != xfer_id)
return false;
return ioread32(&shmem->channel_status) &
(SCMI_SHMEM_CHAN_STAT_CHANNEL_ERROR |
SCMI_SHMEM_CHAN_STAT_CHANNEL_FREE);
}