2137 lines
55 KiB
C
2137 lines
55 KiB
C
// SPDX-License-Identifier: GPL-2.0 OR MIT
|
|
/*
|
|
* Copyright 2014-2022 Advanced Micro Devices, Inc.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <linux/mutex.h>
|
|
#include <linux/log2.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/sched/task.h>
|
|
#include <linux/mmu_context.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/amd-iommu.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/file.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include "amdgpu_amdkfd.h"
|
|
#include "amdgpu.h"
|
|
|
|
struct mm_struct;
|
|
|
|
#include "kfd_priv.h"
|
|
#include "kfd_device_queue_manager.h"
|
|
#include "kfd_iommu.h"
|
|
#include "kfd_svm.h"
|
|
#include "kfd_smi_events.h"
|
|
|
|
/*
|
|
* List of struct kfd_process (field kfd_process).
|
|
* Unique/indexed by mm_struct*
|
|
*/
|
|
DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
|
|
static DEFINE_MUTEX(kfd_processes_mutex);
|
|
|
|
DEFINE_SRCU(kfd_processes_srcu);
|
|
|
|
/* For process termination handling */
|
|
static struct workqueue_struct *kfd_process_wq;
|
|
|
|
/* Ordered, single-threaded workqueue for restoring evicted
|
|
* processes. Restoring multiple processes concurrently under memory
|
|
* pressure can lead to processes blocking each other from validating
|
|
* their BOs and result in a live-lock situation where processes
|
|
* remain evicted indefinitely.
|
|
*/
|
|
static struct workqueue_struct *kfd_restore_wq;
|
|
|
|
static struct kfd_process *find_process(const struct task_struct *thread,
|
|
bool ref);
|
|
static void kfd_process_ref_release(struct kref *ref);
|
|
static struct kfd_process *create_process(const struct task_struct *thread);
|
|
static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep);
|
|
|
|
static void evict_process_worker(struct work_struct *work);
|
|
static void restore_process_worker(struct work_struct *work);
|
|
|
|
static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
|
|
|
|
struct kfd_procfs_tree {
|
|
struct kobject *kobj;
|
|
};
|
|
|
|
static struct kfd_procfs_tree procfs;
|
|
|
|
/*
|
|
* Structure for SDMA activity tracking
|
|
*/
|
|
struct kfd_sdma_activity_handler_workarea {
|
|
struct work_struct sdma_activity_work;
|
|
struct kfd_process_device *pdd;
|
|
uint64_t sdma_activity_counter;
|
|
};
|
|
|
|
struct temp_sdma_queue_list {
|
|
uint64_t __user *rptr;
|
|
uint64_t sdma_val;
|
|
unsigned int queue_id;
|
|
struct list_head list;
|
|
};
|
|
|
|
static void kfd_sdma_activity_worker(struct work_struct *work)
|
|
{
|
|
struct kfd_sdma_activity_handler_workarea *workarea;
|
|
struct kfd_process_device *pdd;
|
|
uint64_t val;
|
|
struct mm_struct *mm;
|
|
struct queue *q;
|
|
struct qcm_process_device *qpd;
|
|
struct device_queue_manager *dqm;
|
|
int ret = 0;
|
|
struct temp_sdma_queue_list sdma_q_list;
|
|
struct temp_sdma_queue_list *sdma_q, *next;
|
|
|
|
workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
|
|
sdma_activity_work);
|
|
|
|
pdd = workarea->pdd;
|
|
if (!pdd)
|
|
return;
|
|
dqm = pdd->dev->dqm;
|
|
qpd = &pdd->qpd;
|
|
if (!dqm || !qpd)
|
|
return;
|
|
/*
|
|
* Total SDMA activity is current SDMA activity + past SDMA activity
|
|
* Past SDMA count is stored in pdd.
|
|
* To get the current activity counters for all active SDMA queues,
|
|
* we loop over all SDMA queues and get their counts from user-space.
|
|
*
|
|
* We cannot call get_user() with dqm_lock held as it can cause
|
|
* a circular lock dependency situation. To read the SDMA stats,
|
|
* we need to do the following:
|
|
*
|
|
* 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
|
|
* with dqm_lock/dqm_unlock().
|
|
* 2. Call get_user() for each node in temporary list without dqm_lock.
|
|
* Save the SDMA count for each node and also add the count to the total
|
|
* SDMA count counter.
|
|
* Its possible, during this step, a few SDMA queue nodes got deleted
|
|
* from the qpd->queues_list.
|
|
* 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
|
|
* If any node got deleted, its SDMA count would be captured in the sdma
|
|
* past activity counter. So subtract the SDMA counter stored in step 2
|
|
* for this node from the total SDMA count.
|
|
*/
|
|
INIT_LIST_HEAD(&sdma_q_list.list);
|
|
|
|
/*
|
|
* Create the temp list of all SDMA queues
|
|
*/
|
|
dqm_lock(dqm);
|
|
|
|
list_for_each_entry(q, &qpd->queues_list, list) {
|
|
if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
|
|
(q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
|
|
continue;
|
|
|
|
sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
|
|
if (!sdma_q) {
|
|
dqm_unlock(dqm);
|
|
goto cleanup;
|
|
}
|
|
|
|
INIT_LIST_HEAD(&sdma_q->list);
|
|
sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
|
|
sdma_q->queue_id = q->properties.queue_id;
|
|
list_add_tail(&sdma_q->list, &sdma_q_list.list);
|
|
}
|
|
|
|
/*
|
|
* If the temp list is empty, then no SDMA queues nodes were found in
|
|
* qpd->queues_list. Return the past activity count as the total sdma
|
|
* count
|
|
*/
|
|
if (list_empty(&sdma_q_list.list)) {
|
|
workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
|
|
dqm_unlock(dqm);
|
|
return;
|
|
}
|
|
|
|
dqm_unlock(dqm);
|
|
|
|
/*
|
|
* Get the usage count for each SDMA queue in temp_list.
|
|
*/
|
|
mm = get_task_mm(pdd->process->lead_thread);
|
|
if (!mm)
|
|
goto cleanup;
|
|
|
|
kthread_use_mm(mm);
|
|
|
|
list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
|
|
val = 0;
|
|
ret = read_sdma_queue_counter(sdma_q->rptr, &val);
|
|
if (ret) {
|
|
pr_debug("Failed to read SDMA queue active counter for queue id: %d",
|
|
sdma_q->queue_id);
|
|
} else {
|
|
sdma_q->sdma_val = val;
|
|
workarea->sdma_activity_counter += val;
|
|
}
|
|
}
|
|
|
|
kthread_unuse_mm(mm);
|
|
mmput(mm);
|
|
|
|
/*
|
|
* Do a second iteration over qpd_queues_list to check if any SDMA
|
|
* nodes got deleted while fetching SDMA counter.
|
|
*/
|
|
dqm_lock(dqm);
|
|
|
|
workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
|
|
|
|
list_for_each_entry(q, &qpd->queues_list, list) {
|
|
if (list_empty(&sdma_q_list.list))
|
|
break;
|
|
|
|
if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
|
|
(q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
|
|
continue;
|
|
|
|
list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
|
|
if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
|
|
(sdma_q->queue_id == q->properties.queue_id)) {
|
|
list_del(&sdma_q->list);
|
|
kfree(sdma_q);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
dqm_unlock(dqm);
|
|
|
|
/*
|
|
* If temp list is not empty, it implies some queues got deleted
|
|
* from qpd->queues_list during SDMA usage read. Subtract the SDMA
|
|
* count for each node from the total SDMA count.
|
|
*/
|
|
list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
|
|
workarea->sdma_activity_counter -= sdma_q->sdma_val;
|
|
list_del(&sdma_q->list);
|
|
kfree(sdma_q);
|
|
}
|
|
|
|
return;
|
|
|
|
cleanup:
|
|
list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
|
|
list_del(&sdma_q->list);
|
|
kfree(sdma_q);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* kfd_get_cu_occupancy - Collect number of waves in-flight on this device
|
|
* by current process. Translates acquired wave count into number of compute units
|
|
* that are occupied.
|
|
*
|
|
* @attr: Handle of attribute that allows reporting of wave count. The attribute
|
|
* handle encapsulates GPU device it is associated with, thereby allowing collection
|
|
* of waves in flight, etc
|
|
* @buffer: Handle of user provided buffer updated with wave count
|
|
*
|
|
* Return: Number of bytes written to user buffer or an error value
|
|
*/
|
|
static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
|
|
{
|
|
int cu_cnt;
|
|
int wave_cnt;
|
|
int max_waves_per_cu;
|
|
struct kfd_dev *dev = NULL;
|
|
struct kfd_process *proc = NULL;
|
|
struct kfd_process_device *pdd = NULL;
|
|
|
|
pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
|
|
dev = pdd->dev;
|
|
if (dev->kfd2kgd->get_cu_occupancy == NULL)
|
|
return -EINVAL;
|
|
|
|
cu_cnt = 0;
|
|
proc = pdd->process;
|
|
if (pdd->qpd.queue_count == 0) {
|
|
pr_debug("Gpu-Id: %d has no active queues for process %d\n",
|
|
dev->id, proc->pasid);
|
|
return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
|
|
}
|
|
|
|
/* Collect wave count from device if it supports */
|
|
wave_cnt = 0;
|
|
max_waves_per_cu = 0;
|
|
dev->kfd2kgd->get_cu_occupancy(dev->adev, proc->pasid, &wave_cnt,
|
|
&max_waves_per_cu);
|
|
|
|
/* Translate wave count to number of compute units */
|
|
cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
|
|
return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
|
|
}
|
|
|
|
static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
|
|
char *buffer)
|
|
{
|
|
if (strcmp(attr->name, "pasid") == 0) {
|
|
struct kfd_process *p = container_of(attr, struct kfd_process,
|
|
attr_pasid);
|
|
|
|
return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
|
|
} else if (strncmp(attr->name, "vram_", 5) == 0) {
|
|
struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
|
|
attr_vram);
|
|
return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
|
|
} else if (strncmp(attr->name, "sdma_", 5) == 0) {
|
|
struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
|
|
attr_sdma);
|
|
struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
|
|
|
|
INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
|
|
kfd_sdma_activity_worker);
|
|
|
|
sdma_activity_work_handler.pdd = pdd;
|
|
sdma_activity_work_handler.sdma_activity_counter = 0;
|
|
|
|
schedule_work(&sdma_activity_work_handler.sdma_activity_work);
|
|
|
|
flush_work(&sdma_activity_work_handler.sdma_activity_work);
|
|
|
|
return snprintf(buffer, PAGE_SIZE, "%llu\n",
|
|
(sdma_activity_work_handler.sdma_activity_counter)/
|
|
SDMA_ACTIVITY_DIVISOR);
|
|
} else {
|
|
pr_err("Invalid attribute");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void kfd_procfs_kobj_release(struct kobject *kobj)
|
|
{
|
|
kfree(kobj);
|
|
}
|
|
|
|
static const struct sysfs_ops kfd_procfs_ops = {
|
|
.show = kfd_procfs_show,
|
|
};
|
|
|
|
static struct kobj_type procfs_type = {
|
|
.release = kfd_procfs_kobj_release,
|
|
.sysfs_ops = &kfd_procfs_ops,
|
|
};
|
|
|
|
void kfd_procfs_init(void)
|
|
{
|
|
int ret = 0;
|
|
|
|
procfs.kobj = kfd_alloc_struct(procfs.kobj);
|
|
if (!procfs.kobj)
|
|
return;
|
|
|
|
ret = kobject_init_and_add(procfs.kobj, &procfs_type,
|
|
&kfd_device->kobj, "proc");
|
|
if (ret) {
|
|
pr_warn("Could not create procfs proc folder");
|
|
/* If we fail to create the procfs, clean up */
|
|
kfd_procfs_shutdown();
|
|
}
|
|
}
|
|
|
|
void kfd_procfs_shutdown(void)
|
|
{
|
|
if (procfs.kobj) {
|
|
kobject_del(procfs.kobj);
|
|
kobject_put(procfs.kobj);
|
|
procfs.kobj = NULL;
|
|
}
|
|
}
|
|
|
|
static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
|
|
struct attribute *attr, char *buffer)
|
|
{
|
|
struct queue *q = container_of(kobj, struct queue, kobj);
|
|
|
|
if (!strcmp(attr->name, "size"))
|
|
return snprintf(buffer, PAGE_SIZE, "%llu",
|
|
q->properties.queue_size);
|
|
else if (!strcmp(attr->name, "type"))
|
|
return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
|
|
else if (!strcmp(attr->name, "gpuid"))
|
|
return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
|
|
else
|
|
pr_err("Invalid attribute");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
|
|
struct attribute *attr, char *buffer)
|
|
{
|
|
if (strcmp(attr->name, "evicted_ms") == 0) {
|
|
struct kfd_process_device *pdd = container_of(attr,
|
|
struct kfd_process_device,
|
|
attr_evict);
|
|
uint64_t evict_jiffies;
|
|
|
|
evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
|
|
|
|
return snprintf(buffer,
|
|
PAGE_SIZE,
|
|
"%llu\n",
|
|
jiffies64_to_msecs(evict_jiffies));
|
|
|
|
/* Sysfs handle that gets CU occupancy is per device */
|
|
} else if (strcmp(attr->name, "cu_occupancy") == 0) {
|
|
return kfd_get_cu_occupancy(attr, buffer);
|
|
} else {
|
|
pr_err("Invalid attribute");
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
|
|
struct attribute *attr, char *buf)
|
|
{
|
|
struct kfd_process_device *pdd;
|
|
|
|
if (!strcmp(attr->name, "faults")) {
|
|
pdd = container_of(attr, struct kfd_process_device,
|
|
attr_faults);
|
|
return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
|
|
}
|
|
if (!strcmp(attr->name, "page_in")) {
|
|
pdd = container_of(attr, struct kfd_process_device,
|
|
attr_page_in);
|
|
return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
|
|
}
|
|
if (!strcmp(attr->name, "page_out")) {
|
|
pdd = container_of(attr, struct kfd_process_device,
|
|
attr_page_out);
|
|
return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct attribute attr_queue_size = {
|
|
.name = "size",
|
|
.mode = KFD_SYSFS_FILE_MODE
|
|
};
|
|
|
|
static struct attribute attr_queue_type = {
|
|
.name = "type",
|
|
.mode = KFD_SYSFS_FILE_MODE
|
|
};
|
|
|
|
static struct attribute attr_queue_gpuid = {
|
|
.name = "gpuid",
|
|
.mode = KFD_SYSFS_FILE_MODE
|
|
};
|
|
|
|
static struct attribute *procfs_queue_attrs[] = {
|
|
&attr_queue_size,
|
|
&attr_queue_type,
|
|
&attr_queue_gpuid,
|
|
NULL
|
|
};
|
|
ATTRIBUTE_GROUPS(procfs_queue);
|
|
|
|
static const struct sysfs_ops procfs_queue_ops = {
|
|
.show = kfd_procfs_queue_show,
|
|
};
|
|
|
|
static struct kobj_type procfs_queue_type = {
|
|
.sysfs_ops = &procfs_queue_ops,
|
|
.default_groups = procfs_queue_groups,
|
|
};
|
|
|
|
static const struct sysfs_ops procfs_stats_ops = {
|
|
.show = kfd_procfs_stats_show,
|
|
};
|
|
|
|
static struct kobj_type procfs_stats_type = {
|
|
.sysfs_ops = &procfs_stats_ops,
|
|
.release = kfd_procfs_kobj_release,
|
|
};
|
|
|
|
static const struct sysfs_ops sysfs_counters_ops = {
|
|
.show = kfd_sysfs_counters_show,
|
|
};
|
|
|
|
static struct kobj_type sysfs_counters_type = {
|
|
.sysfs_ops = &sysfs_counters_ops,
|
|
.release = kfd_procfs_kobj_release,
|
|
};
|
|
|
|
int kfd_procfs_add_queue(struct queue *q)
|
|
{
|
|
struct kfd_process *proc;
|
|
int ret;
|
|
|
|
if (!q || !q->process)
|
|
return -EINVAL;
|
|
proc = q->process;
|
|
|
|
/* Create proc/<pid>/queues/<queue id> folder */
|
|
if (!proc->kobj_queues)
|
|
return -EFAULT;
|
|
ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
|
|
proc->kobj_queues, "%u", q->properties.queue_id);
|
|
if (ret < 0) {
|
|
pr_warn("Creating proc/<pid>/queues/%u failed",
|
|
q->properties.queue_id);
|
|
kobject_put(&q->kobj);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
|
|
char *name)
|
|
{
|
|
int ret;
|
|
|
|
if (!kobj || !attr || !name)
|
|
return;
|
|
|
|
attr->name = name;
|
|
attr->mode = KFD_SYSFS_FILE_MODE;
|
|
sysfs_attr_init(attr);
|
|
|
|
ret = sysfs_create_file(kobj, attr);
|
|
if (ret)
|
|
pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
|
|
}
|
|
|
|
static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
|
|
{
|
|
int ret;
|
|
int i;
|
|
char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
|
|
|
|
if (!p || !p->kobj)
|
|
return;
|
|
|
|
/*
|
|
* Create sysfs files for each GPU:
|
|
* - proc/<pid>/stats_<gpuid>/
|
|
* - proc/<pid>/stats_<gpuid>/evicted_ms
|
|
* - proc/<pid>/stats_<gpuid>/cu_occupancy
|
|
*/
|
|
for (i = 0; i < p->n_pdds; i++) {
|
|
struct kfd_process_device *pdd = p->pdds[i];
|
|
|
|
snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
|
|
"stats_%u", pdd->dev->id);
|
|
pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
|
|
if (!pdd->kobj_stats)
|
|
return;
|
|
|
|
ret = kobject_init_and_add(pdd->kobj_stats,
|
|
&procfs_stats_type,
|
|
p->kobj,
|
|
stats_dir_filename);
|
|
|
|
if (ret) {
|
|
pr_warn("Creating KFD proc/stats_%s folder failed",
|
|
stats_dir_filename);
|
|
kobject_put(pdd->kobj_stats);
|
|
pdd->kobj_stats = NULL;
|
|
return;
|
|
}
|
|
|
|
kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
|
|
"evicted_ms");
|
|
/* Add sysfs file to report compute unit occupancy */
|
|
if (pdd->dev->kfd2kgd->get_cu_occupancy)
|
|
kfd_sysfs_create_file(pdd->kobj_stats,
|
|
&pdd->attr_cu_occupancy,
|
|
"cu_occupancy");
|
|
}
|
|
}
|
|
|
|
static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
|
|
{
|
|
int ret = 0;
|
|
int i;
|
|
char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
|
|
|
|
if (!p || !p->kobj)
|
|
return;
|
|
|
|
/*
|
|
* Create sysfs files for each GPU which supports SVM
|
|
* - proc/<pid>/counters_<gpuid>/
|
|
* - proc/<pid>/counters_<gpuid>/faults
|
|
* - proc/<pid>/counters_<gpuid>/page_in
|
|
* - proc/<pid>/counters_<gpuid>/page_out
|
|
*/
|
|
for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
|
|
struct kfd_process_device *pdd = p->pdds[i];
|
|
struct kobject *kobj_counters;
|
|
|
|
snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
|
|
"counters_%u", pdd->dev->id);
|
|
kobj_counters = kfd_alloc_struct(kobj_counters);
|
|
if (!kobj_counters)
|
|
return;
|
|
|
|
ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
|
|
p->kobj, counters_dir_filename);
|
|
if (ret) {
|
|
pr_warn("Creating KFD proc/%s folder failed",
|
|
counters_dir_filename);
|
|
kobject_put(kobj_counters);
|
|
return;
|
|
}
|
|
|
|
pdd->kobj_counters = kobj_counters;
|
|
kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
|
|
"faults");
|
|
kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
|
|
"page_in");
|
|
kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
|
|
"page_out");
|
|
}
|
|
}
|
|
|
|
static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
|
|
{
|
|
int i;
|
|
|
|
if (!p || !p->kobj)
|
|
return;
|
|
|
|
/*
|
|
* Create sysfs files for each GPU:
|
|
* - proc/<pid>/vram_<gpuid>
|
|
* - proc/<pid>/sdma_<gpuid>
|
|
*/
|
|
for (i = 0; i < p->n_pdds; i++) {
|
|
struct kfd_process_device *pdd = p->pdds[i];
|
|
|
|
snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
|
|
pdd->dev->id);
|
|
kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
|
|
pdd->vram_filename);
|
|
|
|
snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
|
|
pdd->dev->id);
|
|
kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
|
|
pdd->sdma_filename);
|
|
}
|
|
}
|
|
|
|
void kfd_procfs_del_queue(struct queue *q)
|
|
{
|
|
if (!q)
|
|
return;
|
|
|
|
kobject_del(&q->kobj);
|
|
kobject_put(&q->kobj);
|
|
}
|
|
|
|
int kfd_process_create_wq(void)
|
|
{
|
|
if (!kfd_process_wq)
|
|
kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
|
|
if (!kfd_restore_wq)
|
|
kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0);
|
|
|
|
if (!kfd_process_wq || !kfd_restore_wq) {
|
|
kfd_process_destroy_wq();
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void kfd_process_destroy_wq(void)
|
|
{
|
|
if (kfd_process_wq) {
|
|
destroy_workqueue(kfd_process_wq);
|
|
kfd_process_wq = NULL;
|
|
}
|
|
if (kfd_restore_wq) {
|
|
destroy_workqueue(kfd_restore_wq);
|
|
kfd_restore_wq = NULL;
|
|
}
|
|
}
|
|
|
|
static void kfd_process_free_gpuvm(struct kgd_mem *mem,
|
|
struct kfd_process_device *pdd, void **kptr)
|
|
{
|
|
struct kfd_dev *dev = pdd->dev;
|
|
|
|
if (kptr && *kptr) {
|
|
amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
|
|
*kptr = NULL;
|
|
}
|
|
|
|
amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv);
|
|
amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv,
|
|
NULL);
|
|
}
|
|
|
|
/* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
|
|
* This function should be only called right after the process
|
|
* is created and when kfd_processes_mutex is still being held
|
|
* to avoid concurrency. Because of that exclusiveness, we do
|
|
* not need to take p->mutex.
|
|
*/
|
|
static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
|
|
uint64_t gpu_va, uint32_t size,
|
|
uint32_t flags, struct kgd_mem **mem, void **kptr)
|
|
{
|
|
struct kfd_dev *kdev = pdd->dev;
|
|
int err;
|
|
|
|
err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size,
|
|
pdd->drm_priv, mem, NULL,
|
|
flags, false);
|
|
if (err)
|
|
goto err_alloc_mem;
|
|
|
|
err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem,
|
|
pdd->drm_priv);
|
|
if (err)
|
|
goto err_map_mem;
|
|
|
|
err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true);
|
|
if (err) {
|
|
pr_debug("Sync memory failed, wait interrupted by user signal\n");
|
|
goto sync_memory_failed;
|
|
}
|
|
|
|
if (kptr) {
|
|
err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(
|
|
(struct kgd_mem *)*mem, kptr, NULL);
|
|
if (err) {
|
|
pr_debug("Map GTT BO to kernel failed\n");
|
|
goto sync_memory_failed;
|
|
}
|
|
}
|
|
|
|
return err;
|
|
|
|
sync_memory_failed:
|
|
amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv);
|
|
|
|
err_map_mem:
|
|
amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv,
|
|
NULL);
|
|
err_alloc_mem:
|
|
*mem = NULL;
|
|
*kptr = NULL;
|
|
return err;
|
|
}
|
|
|
|
/* kfd_process_device_reserve_ib_mem - Reserve memory inside the
|
|
* process for IB usage The memory reserved is for KFD to submit
|
|
* IB to AMDGPU from kernel. If the memory is reserved
|
|
* successfully, ib_kaddr will have the CPU/kernel
|
|
* address. Check ib_kaddr before accessing the memory.
|
|
*/
|
|
static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
|
|
{
|
|
struct qcm_process_device *qpd = &pdd->qpd;
|
|
uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
|
|
KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
|
|
KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
|
|
KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
|
|
struct kgd_mem *mem;
|
|
void *kaddr;
|
|
int ret;
|
|
|
|
if (qpd->ib_kaddr || !qpd->ib_base)
|
|
return 0;
|
|
|
|
/* ib_base is only set for dGPU */
|
|
ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
|
|
&mem, &kaddr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
qpd->ib_mem = mem;
|
|
qpd->ib_kaddr = kaddr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
|
|
{
|
|
struct qcm_process_device *qpd = &pdd->qpd;
|
|
|
|
if (!qpd->ib_kaddr || !qpd->ib_base)
|
|
return;
|
|
|
|
kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr);
|
|
}
|
|
|
|
struct kfd_process *kfd_create_process(struct file *filep)
|
|
{
|
|
struct kfd_process *process;
|
|
struct task_struct *thread = current;
|
|
int ret;
|
|
|
|
if (!thread->mm)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
/* Only the pthreads threading model is supported. */
|
|
if (thread->group_leader->mm != thread->mm)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
/*
|
|
* take kfd processes mutex before starting of process creation
|
|
* so there won't be a case where two threads of the same process
|
|
* create two kfd_process structures
|
|
*/
|
|
mutex_lock(&kfd_processes_mutex);
|
|
|
|
/* A prior open of /dev/kfd could have already created the process. */
|
|
process = find_process(thread, false);
|
|
if (process) {
|
|
pr_debug("Process already found\n");
|
|
} else {
|
|
process = create_process(thread);
|
|
if (IS_ERR(process))
|
|
goto out;
|
|
|
|
ret = kfd_process_init_cwsr_apu(process, filep);
|
|
if (ret)
|
|
goto out_destroy;
|
|
|
|
if (!procfs.kobj)
|
|
goto out;
|
|
|
|
process->kobj = kfd_alloc_struct(process->kobj);
|
|
if (!process->kobj) {
|
|
pr_warn("Creating procfs kobject failed");
|
|
goto out;
|
|
}
|
|
ret = kobject_init_and_add(process->kobj, &procfs_type,
|
|
procfs.kobj, "%d",
|
|
(int)process->lead_thread->pid);
|
|
if (ret) {
|
|
pr_warn("Creating procfs pid directory failed");
|
|
kobject_put(process->kobj);
|
|
goto out;
|
|
}
|
|
|
|
kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
|
|
"pasid");
|
|
|
|
process->kobj_queues = kobject_create_and_add("queues",
|
|
process->kobj);
|
|
if (!process->kobj_queues)
|
|
pr_warn("Creating KFD proc/queues folder failed");
|
|
|
|
kfd_procfs_add_sysfs_stats(process);
|
|
kfd_procfs_add_sysfs_files(process);
|
|
kfd_procfs_add_sysfs_counters(process);
|
|
}
|
|
out:
|
|
if (!IS_ERR(process))
|
|
kref_get(&process->ref);
|
|
mutex_unlock(&kfd_processes_mutex);
|
|
|
|
return process;
|
|
|
|
out_destroy:
|
|
hash_del_rcu(&process->kfd_processes);
|
|
mutex_unlock(&kfd_processes_mutex);
|
|
synchronize_srcu(&kfd_processes_srcu);
|
|
/* kfd_process_free_notifier will trigger the cleanup */
|
|
mmu_notifier_put(&process->mmu_notifier);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
struct kfd_process *kfd_get_process(const struct task_struct *thread)
|
|
{
|
|
struct kfd_process *process;
|
|
|
|
if (!thread->mm)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
/* Only the pthreads threading model is supported. */
|
|
if (thread->group_leader->mm != thread->mm)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
process = find_process(thread, false);
|
|
if (!process)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
return process;
|
|
}
|
|
|
|
static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
|
|
{
|
|
struct kfd_process *process;
|
|
|
|
hash_for_each_possible_rcu(kfd_processes_table, process,
|
|
kfd_processes, (uintptr_t)mm)
|
|
if (process->mm == mm)
|
|
return process;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static struct kfd_process *find_process(const struct task_struct *thread,
|
|
bool ref)
|
|
{
|
|
struct kfd_process *p;
|
|
int idx;
|
|
|
|
idx = srcu_read_lock(&kfd_processes_srcu);
|
|
p = find_process_by_mm(thread->mm);
|
|
if (p && ref)
|
|
kref_get(&p->ref);
|
|
srcu_read_unlock(&kfd_processes_srcu, idx);
|
|
|
|
return p;
|
|
}
|
|
|
|
void kfd_unref_process(struct kfd_process *p)
|
|
{
|
|
kref_put(&p->ref, kfd_process_ref_release);
|
|
}
|
|
|
|
/* This increments the process->ref counter. */
|
|
struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid)
|
|
{
|
|
struct task_struct *task = NULL;
|
|
struct kfd_process *p = NULL;
|
|
|
|
if (!pid) {
|
|
task = current;
|
|
get_task_struct(task);
|
|
} else {
|
|
task = get_pid_task(pid, PIDTYPE_PID);
|
|
}
|
|
|
|
if (task) {
|
|
p = find_process(task, true);
|
|
put_task_struct(task);
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
|
|
{
|
|
struct kfd_process *p = pdd->process;
|
|
void *mem;
|
|
int id;
|
|
int i;
|
|
|
|
/*
|
|
* Remove all handles from idr and release appropriate
|
|
* local memory object
|
|
*/
|
|
idr_for_each_entry(&pdd->alloc_idr, mem, id) {
|
|
|
|
for (i = 0; i < p->n_pdds; i++) {
|
|
struct kfd_process_device *peer_pdd = p->pdds[i];
|
|
|
|
if (!peer_pdd->drm_priv)
|
|
continue;
|
|
amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
|
|
peer_pdd->dev->adev, mem, peer_pdd->drm_priv);
|
|
}
|
|
|
|
amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem,
|
|
pdd->drm_priv, NULL);
|
|
kfd_process_device_remove_obj_handle(pdd, id);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Just kunmap and unpin signal BO here. It will be freed in
|
|
* kfd_process_free_outstanding_kfd_bos()
|
|
*/
|
|
static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
|
|
{
|
|
struct kfd_process_device *pdd;
|
|
struct kfd_dev *kdev;
|
|
void *mem;
|
|
|
|
kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
|
|
if (!kdev)
|
|
return;
|
|
|
|
mutex_lock(&p->mutex);
|
|
|
|
pdd = kfd_get_process_device_data(kdev, p);
|
|
if (!pdd)
|
|
goto out;
|
|
|
|
mem = kfd_process_device_translate_handle(
|
|
pdd, GET_IDR_HANDLE(p->signal_handle));
|
|
if (!mem)
|
|
goto out;
|
|
|
|
amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
|
|
|
|
out:
|
|
mutex_unlock(&p->mutex);
|
|
}
|
|
|
|
static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < p->n_pdds; i++)
|
|
kfd_process_device_free_bos(p->pdds[i]);
|
|
}
|
|
|
|
static void kfd_process_destroy_pdds(struct kfd_process *p)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < p->n_pdds; i++) {
|
|
struct kfd_process_device *pdd = p->pdds[i];
|
|
|
|
pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
|
|
pdd->dev->id, p->pasid);
|
|
|
|
kfd_process_device_destroy_cwsr_dgpu(pdd);
|
|
kfd_process_device_destroy_ib_mem(pdd);
|
|
|
|
if (pdd->drm_file) {
|
|
amdgpu_amdkfd_gpuvm_release_process_vm(
|
|
pdd->dev->adev, pdd->drm_priv);
|
|
fput(pdd->drm_file);
|
|
}
|
|
|
|
if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
|
|
free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
|
|
get_order(KFD_CWSR_TBA_TMA_SIZE));
|
|
|
|
bitmap_free(pdd->qpd.doorbell_bitmap);
|
|
idr_destroy(&pdd->alloc_idr);
|
|
|
|
kfd_free_process_doorbells(pdd->dev, pdd->doorbell_index);
|
|
|
|
if (pdd->dev->shared_resources.enable_mes)
|
|
amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev,
|
|
pdd->proc_ctx_bo);
|
|
/*
|
|
* before destroying pdd, make sure to report availability
|
|
* for auto suspend
|
|
*/
|
|
if (pdd->runtime_inuse) {
|
|
pm_runtime_mark_last_busy(adev_to_drm(pdd->dev->adev)->dev);
|
|
pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev);
|
|
pdd->runtime_inuse = false;
|
|
}
|
|
|
|
kfree(pdd);
|
|
p->pdds[i] = NULL;
|
|
}
|
|
p->n_pdds = 0;
|
|
}
|
|
|
|
static void kfd_process_remove_sysfs(struct kfd_process *p)
|
|
{
|
|
struct kfd_process_device *pdd;
|
|
int i;
|
|
|
|
if (!p->kobj)
|
|
return;
|
|
|
|
sysfs_remove_file(p->kobj, &p->attr_pasid);
|
|
kobject_del(p->kobj_queues);
|
|
kobject_put(p->kobj_queues);
|
|
p->kobj_queues = NULL;
|
|
|
|
for (i = 0; i < p->n_pdds; i++) {
|
|
pdd = p->pdds[i];
|
|
|
|
sysfs_remove_file(p->kobj, &pdd->attr_vram);
|
|
sysfs_remove_file(p->kobj, &pdd->attr_sdma);
|
|
|
|
sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
|
|
if (pdd->dev->kfd2kgd->get_cu_occupancy)
|
|
sysfs_remove_file(pdd->kobj_stats,
|
|
&pdd->attr_cu_occupancy);
|
|
kobject_del(pdd->kobj_stats);
|
|
kobject_put(pdd->kobj_stats);
|
|
pdd->kobj_stats = NULL;
|
|
}
|
|
|
|
for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
|
|
pdd = p->pdds[i];
|
|
|
|
sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
|
|
sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
|
|
sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
|
|
kobject_del(pdd->kobj_counters);
|
|
kobject_put(pdd->kobj_counters);
|
|
pdd->kobj_counters = NULL;
|
|
}
|
|
|
|
kobject_del(p->kobj);
|
|
kobject_put(p->kobj);
|
|
p->kobj = NULL;
|
|
}
|
|
|
|
/* No process locking is needed in this function, because the process
|
|
* is not findable any more. We must assume that no other thread is
|
|
* using it any more, otherwise we couldn't safely free the process
|
|
* structure in the end.
|
|
*/
|
|
static void kfd_process_wq_release(struct work_struct *work)
|
|
{
|
|
struct kfd_process *p = container_of(work, struct kfd_process,
|
|
release_work);
|
|
|
|
kfd_process_dequeue_from_all_devices(p);
|
|
pqm_uninit(&p->pqm);
|
|
|
|
/* Signal the eviction fence after user mode queues are
|
|
* destroyed. This allows any BOs to be freed without
|
|
* triggering pointless evictions or waiting for fences.
|
|
*/
|
|
dma_fence_signal(p->ef);
|
|
|
|
kfd_process_remove_sysfs(p);
|
|
kfd_iommu_unbind_process(p);
|
|
|
|
kfd_process_kunmap_signal_bo(p);
|
|
kfd_process_free_outstanding_kfd_bos(p);
|
|
svm_range_list_fini(p);
|
|
|
|
kfd_process_destroy_pdds(p);
|
|
dma_fence_put(p->ef);
|
|
|
|
kfd_event_free_process(p);
|
|
|
|
kfd_pasid_free(p->pasid);
|
|
mutex_destroy(&p->mutex);
|
|
|
|
put_task_struct(p->lead_thread);
|
|
|
|
kfree(p);
|
|
}
|
|
|
|
static void kfd_process_ref_release(struct kref *ref)
|
|
{
|
|
struct kfd_process *p = container_of(ref, struct kfd_process, ref);
|
|
|
|
INIT_WORK(&p->release_work, kfd_process_wq_release);
|
|
queue_work(kfd_process_wq, &p->release_work);
|
|
}
|
|
|
|
static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
|
|
{
|
|
int idx = srcu_read_lock(&kfd_processes_srcu);
|
|
struct kfd_process *p = find_process_by_mm(mm);
|
|
|
|
srcu_read_unlock(&kfd_processes_srcu, idx);
|
|
|
|
return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
|
|
}
|
|
|
|
static void kfd_process_free_notifier(struct mmu_notifier *mn)
|
|
{
|
|
kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
|
|
}
|
|
|
|
static void kfd_process_notifier_release_internal(struct kfd_process *p)
|
|
{
|
|
cancel_delayed_work_sync(&p->eviction_work);
|
|
cancel_delayed_work_sync(&p->restore_work);
|
|
|
|
/* Indicate to other users that MM is no longer valid */
|
|
p->mm = NULL;
|
|
|
|
mmu_notifier_put(&p->mmu_notifier);
|
|
}
|
|
|
|
static void kfd_process_notifier_release(struct mmu_notifier *mn,
|
|
struct mm_struct *mm)
|
|
{
|
|
struct kfd_process *p;
|
|
|
|
/*
|
|
* The kfd_process structure can not be free because the
|
|
* mmu_notifier srcu is read locked
|
|
*/
|
|
p = container_of(mn, struct kfd_process, mmu_notifier);
|
|
if (WARN_ON(p->mm != mm))
|
|
return;
|
|
|
|
mutex_lock(&kfd_processes_mutex);
|
|
/*
|
|
* Do early return if table is empty.
|
|
*
|
|
* This could potentially happen if this function is called concurrently
|
|
* by mmu_notifier and by kfd_cleanup_pocesses.
|
|
*
|
|
*/
|
|
if (hash_empty(kfd_processes_table)) {
|
|
mutex_unlock(&kfd_processes_mutex);
|
|
return;
|
|
}
|
|
hash_del_rcu(&p->kfd_processes);
|
|
mutex_unlock(&kfd_processes_mutex);
|
|
synchronize_srcu(&kfd_processes_srcu);
|
|
|
|
kfd_process_notifier_release_internal(p);
|
|
}
|
|
|
|
static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
|
|
.release = kfd_process_notifier_release,
|
|
.alloc_notifier = kfd_process_alloc_notifier,
|
|
.free_notifier = kfd_process_free_notifier,
|
|
};
|
|
|
|
/*
|
|
* This code handles the case when driver is being unloaded before all
|
|
* mm_struct are released. We need to safely free the kfd_process and
|
|
* avoid race conditions with mmu_notifier that might try to free them.
|
|
*
|
|
*/
|
|
void kfd_cleanup_processes(void)
|
|
{
|
|
struct kfd_process *p;
|
|
struct hlist_node *p_temp;
|
|
unsigned int temp;
|
|
HLIST_HEAD(cleanup_list);
|
|
|
|
/*
|
|
* Move all remaining kfd_process from the process table to a
|
|
* temp list for processing. Once done, callback from mmu_notifier
|
|
* release will not see the kfd_process in the table and do early return,
|
|
* avoiding double free issues.
|
|
*/
|
|
mutex_lock(&kfd_processes_mutex);
|
|
hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) {
|
|
hash_del_rcu(&p->kfd_processes);
|
|
synchronize_srcu(&kfd_processes_srcu);
|
|
hlist_add_head(&p->kfd_processes, &cleanup_list);
|
|
}
|
|
mutex_unlock(&kfd_processes_mutex);
|
|
|
|
hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes)
|
|
kfd_process_notifier_release_internal(p);
|
|
|
|
/*
|
|
* Ensures that all outstanding free_notifier get called, triggering
|
|
* the release of the kfd_process struct.
|
|
*/
|
|
mmu_notifier_synchronize();
|
|
}
|
|
|
|
static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
|
|
{
|
|
unsigned long offset;
|
|
int i;
|
|
|
|
for (i = 0; i < p->n_pdds; i++) {
|
|
struct kfd_dev *dev = p->pdds[i]->dev;
|
|
struct qcm_process_device *qpd = &p->pdds[i]->qpd;
|
|
|
|
if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
|
|
continue;
|
|
|
|
offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
|
|
qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
|
|
KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
|
|
MAP_SHARED, offset);
|
|
|
|
if (IS_ERR_VALUE(qpd->tba_addr)) {
|
|
int err = qpd->tba_addr;
|
|
|
|
pr_err("Failure to set tba address. error %d.\n", err);
|
|
qpd->tba_addr = 0;
|
|
qpd->cwsr_kaddr = NULL;
|
|
return err;
|
|
}
|
|
|
|
memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
|
|
|
|
qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
|
|
pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
|
|
qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
|
|
{
|
|
struct kfd_dev *dev = pdd->dev;
|
|
struct qcm_process_device *qpd = &pdd->qpd;
|
|
uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
|
|
| KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
|
|
| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
|
|
struct kgd_mem *mem;
|
|
void *kaddr;
|
|
int ret;
|
|
|
|
if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
|
|
return 0;
|
|
|
|
/* cwsr_base is only set for dGPU */
|
|
ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
|
|
KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
qpd->cwsr_mem = mem;
|
|
qpd->cwsr_kaddr = kaddr;
|
|
qpd->tba_addr = qpd->cwsr_base;
|
|
|
|
memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
|
|
|
|
qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
|
|
pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
|
|
qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
|
|
{
|
|
struct kfd_dev *dev = pdd->dev;
|
|
struct qcm_process_device *qpd = &pdd->qpd;
|
|
|
|
if (!dev->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
|
|
return;
|
|
|
|
kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr);
|
|
}
|
|
|
|
void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
|
|
uint64_t tba_addr,
|
|
uint64_t tma_addr)
|
|
{
|
|
if (qpd->cwsr_kaddr) {
|
|
/* KFD trap handler is bound, record as second-level TBA/TMA
|
|
* in first-level TMA. First-level trap will jump to second.
|
|
*/
|
|
uint64_t *tma =
|
|
(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
|
|
tma[0] = tba_addr;
|
|
tma[1] = tma_addr;
|
|
} else {
|
|
/* No trap handler bound, bind as first-level TBA/TMA. */
|
|
qpd->tba_addr = tba_addr;
|
|
qpd->tma_addr = tma_addr;
|
|
}
|
|
}
|
|
|
|
bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
|
|
{
|
|
int i;
|
|
|
|
/* On most GFXv9 GPUs, the retry mode in the SQ must match the
|
|
* boot time retry setting. Mixing processes with different
|
|
* XNACK/retry settings can hang the GPU.
|
|
*
|
|
* Different GPUs can have different noretry settings depending
|
|
* on HW bugs or limitations. We need to find at least one
|
|
* XNACK mode for this process that's compatible with all GPUs.
|
|
* Fortunately GPUs with retry enabled (noretry=0) can run code
|
|
* built for XNACK-off. On GFXv9 it may perform slower.
|
|
*
|
|
* Therefore applications built for XNACK-off can always be
|
|
* supported and will be our fallback if any GPU does not
|
|
* support retry.
|
|
*/
|
|
for (i = 0; i < p->n_pdds; i++) {
|
|
struct kfd_dev *dev = p->pdds[i]->dev;
|
|
|
|
/* Only consider GFXv9 and higher GPUs. Older GPUs don't
|
|
* support the SVM APIs and don't need to be considered
|
|
* for the XNACK mode selection.
|
|
*/
|
|
if (!KFD_IS_SOC15(dev))
|
|
continue;
|
|
/* Aldebaran can always support XNACK because it can support
|
|
* per-process XNACK mode selection. But let the dev->noretry
|
|
* setting still influence the default XNACK mode.
|
|
*/
|
|
if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev))
|
|
continue;
|
|
|
|
/* GFXv10 and later GPUs do not support shader preemption
|
|
* during page faults. This can lead to poor QoS for queue
|
|
* management and memory-manager-related preemptions or
|
|
* even deadlocks.
|
|
*/
|
|
if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
|
|
return false;
|
|
|
|
if (dev->noretry)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* On return the kfd_process is fully operational and will be freed when the
|
|
* mm is released
|
|
*/
|
|
static struct kfd_process *create_process(const struct task_struct *thread)
|
|
{
|
|
struct kfd_process *process;
|
|
struct mmu_notifier *mn;
|
|
int err = -ENOMEM;
|
|
|
|
process = kzalloc(sizeof(*process), GFP_KERNEL);
|
|
if (!process)
|
|
goto err_alloc_process;
|
|
|
|
kref_init(&process->ref);
|
|
mutex_init(&process->mutex);
|
|
process->mm = thread->mm;
|
|
process->lead_thread = thread->group_leader;
|
|
process->n_pdds = 0;
|
|
process->queues_paused = false;
|
|
INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
|
|
INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
|
|
process->last_restore_timestamp = get_jiffies_64();
|
|
err = kfd_event_init_process(process);
|
|
if (err)
|
|
goto err_event_init;
|
|
process->is_32bit_user_mode = in_compat_syscall();
|
|
|
|
process->pasid = kfd_pasid_alloc();
|
|
if (process->pasid == 0) {
|
|
err = -ENOSPC;
|
|
goto err_alloc_pasid;
|
|
}
|
|
|
|
err = pqm_init(&process->pqm, process);
|
|
if (err != 0)
|
|
goto err_process_pqm_init;
|
|
|
|
/* init process apertures*/
|
|
err = kfd_init_apertures(process);
|
|
if (err != 0)
|
|
goto err_init_apertures;
|
|
|
|
/* Check XNACK support after PDDs are created in kfd_init_apertures */
|
|
process->xnack_enabled = kfd_process_xnack_mode(process, false);
|
|
|
|
err = svm_range_list_init(process);
|
|
if (err)
|
|
goto err_init_svm_range_list;
|
|
|
|
/* alloc_notifier needs to find the process in the hash table */
|
|
hash_add_rcu(kfd_processes_table, &process->kfd_processes,
|
|
(uintptr_t)process->mm);
|
|
|
|
/* Avoid free_notifier to start kfd_process_wq_release if
|
|
* mmu_notifier_get failed because of pending signal.
|
|
*/
|
|
kref_get(&process->ref);
|
|
|
|
/* MMU notifier registration must be the last call that can fail
|
|
* because after this point we cannot unwind the process creation.
|
|
* After this point, mmu_notifier_put will trigger the cleanup by
|
|
* dropping the last process reference in the free_notifier.
|
|
*/
|
|
mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
|
|
if (IS_ERR(mn)) {
|
|
err = PTR_ERR(mn);
|
|
goto err_register_notifier;
|
|
}
|
|
BUG_ON(mn != &process->mmu_notifier);
|
|
|
|
kfd_unref_process(process);
|
|
get_task_struct(process->lead_thread);
|
|
|
|
return process;
|
|
|
|
err_register_notifier:
|
|
hash_del_rcu(&process->kfd_processes);
|
|
svm_range_list_fini(process);
|
|
err_init_svm_range_list:
|
|
kfd_process_free_outstanding_kfd_bos(process);
|
|
kfd_process_destroy_pdds(process);
|
|
err_init_apertures:
|
|
pqm_uninit(&process->pqm);
|
|
err_process_pqm_init:
|
|
kfd_pasid_free(process->pasid);
|
|
err_alloc_pasid:
|
|
kfd_event_free_process(process);
|
|
err_event_init:
|
|
mutex_destroy(&process->mutex);
|
|
kfree(process);
|
|
err_alloc_process:
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
static int init_doorbell_bitmap(struct qcm_process_device *qpd,
|
|
struct kfd_dev *dev)
|
|
{
|
|
unsigned int i;
|
|
int range_start = dev->shared_resources.non_cp_doorbells_start;
|
|
int range_end = dev->shared_resources.non_cp_doorbells_end;
|
|
|
|
if (!KFD_IS_SOC15(dev))
|
|
return 0;
|
|
|
|
qpd->doorbell_bitmap = bitmap_zalloc(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS,
|
|
GFP_KERNEL);
|
|
if (!qpd->doorbell_bitmap)
|
|
return -ENOMEM;
|
|
|
|
/* Mask out doorbells reserved for SDMA, IH, and VCN on SOC15. */
|
|
pr_debug("reserved doorbell 0x%03x - 0x%03x\n", range_start, range_end);
|
|
pr_debug("reserved doorbell 0x%03x - 0x%03x\n",
|
|
range_start + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
|
|
range_end + KFD_QUEUE_DOORBELL_MIRROR_OFFSET);
|
|
|
|
for (i = 0; i < KFD_MAX_NUM_OF_QUEUES_PER_PROCESS / 2; i++) {
|
|
if (i >= range_start && i <= range_end) {
|
|
__set_bit(i, qpd->doorbell_bitmap);
|
|
__set_bit(i + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
|
|
qpd->doorbell_bitmap);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
|
|
struct kfd_process *p)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < p->n_pdds; i++)
|
|
if (p->pdds[i]->dev == dev)
|
|
return p->pdds[i];
|
|
|
|
return NULL;
|
|
}
|
|
|
|
struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
|
|
struct kfd_process *p)
|
|
{
|
|
struct kfd_process_device *pdd = NULL;
|
|
int retval = 0;
|
|
|
|
if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
|
|
return NULL;
|
|
pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
|
|
if (!pdd)
|
|
return NULL;
|
|
|
|
if (init_doorbell_bitmap(&pdd->qpd, dev)) {
|
|
pr_err("Failed to init doorbell for process\n");
|
|
goto err_free_pdd;
|
|
}
|
|
|
|
pdd->dev = dev;
|
|
INIT_LIST_HEAD(&pdd->qpd.queues_list);
|
|
INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
|
|
pdd->qpd.dqm = dev->dqm;
|
|
pdd->qpd.pqm = &p->pqm;
|
|
pdd->qpd.evicted = 0;
|
|
pdd->qpd.mapped_gws_queue = false;
|
|
pdd->process = p;
|
|
pdd->bound = PDD_UNBOUND;
|
|
pdd->already_dequeued = false;
|
|
pdd->runtime_inuse = false;
|
|
pdd->vram_usage = 0;
|
|
pdd->sdma_past_activity_counter = 0;
|
|
pdd->user_gpu_id = dev->id;
|
|
atomic64_set(&pdd->evict_duration_counter, 0);
|
|
|
|
if (dev->shared_resources.enable_mes) {
|
|
retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev,
|
|
AMDGPU_MES_PROC_CTX_SIZE,
|
|
&pdd->proc_ctx_bo,
|
|
&pdd->proc_ctx_gpu_addr,
|
|
&pdd->proc_ctx_cpu_ptr,
|
|
false);
|
|
if (retval) {
|
|
pr_err("failed to allocate process context bo\n");
|
|
goto err_free_pdd;
|
|
}
|
|
memset(pdd->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE);
|
|
}
|
|
|
|
p->pdds[p->n_pdds++] = pdd;
|
|
|
|
/* Init idr used for memory handle translation */
|
|
idr_init(&pdd->alloc_idr);
|
|
|
|
return pdd;
|
|
|
|
err_free_pdd:
|
|
kfree(pdd);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* kfd_process_device_init_vm - Initialize a VM for a process-device
|
|
*
|
|
* @pdd: The process-device
|
|
* @drm_file: Optional pointer to a DRM file descriptor
|
|
*
|
|
* If @drm_file is specified, it will be used to acquire the VM from
|
|
* that file descriptor. If successful, the @pdd takes ownership of
|
|
* the file descriptor.
|
|
*
|
|
* If @drm_file is NULL, a new VM is created.
|
|
*
|
|
* Returns 0 on success, -errno on failure.
|
|
*/
|
|
int kfd_process_device_init_vm(struct kfd_process_device *pdd,
|
|
struct file *drm_file)
|
|
{
|
|
struct amdgpu_fpriv *drv_priv;
|
|
struct amdgpu_vm *avm;
|
|
struct kfd_process *p;
|
|
struct kfd_dev *dev;
|
|
int ret;
|
|
|
|
if (!drm_file)
|
|
return -EINVAL;
|
|
|
|
if (pdd->drm_priv)
|
|
return -EBUSY;
|
|
|
|
ret = amdgpu_file_to_fpriv(drm_file, &drv_priv);
|
|
if (ret)
|
|
return ret;
|
|
avm = &drv_priv->vm;
|
|
|
|
p = pdd->process;
|
|
dev = pdd->dev;
|
|
|
|
ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm,
|
|
&p->kgd_process_info,
|
|
&p->ef);
|
|
if (ret) {
|
|
pr_err("Failed to create process VM object\n");
|
|
return ret;
|
|
}
|
|
pdd->drm_priv = drm_file->private_data;
|
|
atomic64_set(&pdd->tlb_seq, 0);
|
|
|
|
ret = kfd_process_device_reserve_ib_mem(pdd);
|
|
if (ret)
|
|
goto err_reserve_ib_mem;
|
|
ret = kfd_process_device_init_cwsr_dgpu(pdd);
|
|
if (ret)
|
|
goto err_init_cwsr;
|
|
|
|
ret = amdgpu_amdkfd_gpuvm_set_vm_pasid(dev->adev, avm, p->pasid);
|
|
if (ret)
|
|
goto err_set_pasid;
|
|
|
|
pdd->drm_file = drm_file;
|
|
|
|
return 0;
|
|
|
|
err_set_pasid:
|
|
kfd_process_device_destroy_cwsr_dgpu(pdd);
|
|
err_init_cwsr:
|
|
kfd_process_device_destroy_ib_mem(pdd);
|
|
err_reserve_ib_mem:
|
|
pdd->drm_priv = NULL;
|
|
amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Direct the IOMMU to bind the process (specifically the pasid->mm)
|
|
* to the device.
|
|
* Unbinding occurs when the process dies or the device is removed.
|
|
*
|
|
* Assumes that the process lock is held.
|
|
*/
|
|
struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
|
|
struct kfd_process *p)
|
|
{
|
|
struct kfd_process_device *pdd;
|
|
int err;
|
|
|
|
pdd = kfd_get_process_device_data(dev, p);
|
|
if (!pdd) {
|
|
pr_err("Process device data doesn't exist\n");
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
if (!pdd->drm_priv)
|
|
return ERR_PTR(-ENODEV);
|
|
|
|
/*
|
|
* signal runtime-pm system to auto resume and prevent
|
|
* further runtime suspend once device pdd is created until
|
|
* pdd is destroyed.
|
|
*/
|
|
if (!pdd->runtime_inuse) {
|
|
err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev);
|
|
if (err < 0) {
|
|
pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
|
|
return ERR_PTR(err);
|
|
}
|
|
}
|
|
|
|
err = kfd_iommu_bind_process_to_device(pdd);
|
|
if (err)
|
|
goto out;
|
|
|
|
/*
|
|
* make sure that runtime_usage counter is incremented just once
|
|
* per pdd
|
|
*/
|
|
pdd->runtime_inuse = true;
|
|
|
|
return pdd;
|
|
|
|
out:
|
|
/* balance runpm reference count and exit with error */
|
|
if (!pdd->runtime_inuse) {
|
|
pm_runtime_mark_last_busy(adev_to_drm(dev->adev)->dev);
|
|
pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
|
|
}
|
|
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
/* Create specific handle mapped to mem from process local memory idr
|
|
* Assumes that the process lock is held.
|
|
*/
|
|
int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
|
|
void *mem)
|
|
{
|
|
return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
|
|
}
|
|
|
|
/* Translate specific handle from process local memory idr
|
|
* Assumes that the process lock is held.
|
|
*/
|
|
void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
|
|
int handle)
|
|
{
|
|
if (handle < 0)
|
|
return NULL;
|
|
|
|
return idr_find(&pdd->alloc_idr, handle);
|
|
}
|
|
|
|
/* Remove specific handle from process local memory idr
|
|
* Assumes that the process lock is held.
|
|
*/
|
|
void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
|
|
int handle)
|
|
{
|
|
if (handle >= 0)
|
|
idr_remove(&pdd->alloc_idr, handle);
|
|
}
|
|
|
|
/* This increments the process->ref counter. */
|
|
struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
|
|
{
|
|
struct kfd_process *p, *ret_p = NULL;
|
|
unsigned int temp;
|
|
|
|
int idx = srcu_read_lock(&kfd_processes_srcu);
|
|
|
|
hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
|
|
if (p->pasid == pasid) {
|
|
kref_get(&p->ref);
|
|
ret_p = p;
|
|
break;
|
|
}
|
|
}
|
|
|
|
srcu_read_unlock(&kfd_processes_srcu, idx);
|
|
|
|
return ret_p;
|
|
}
|
|
|
|
/* This increments the process->ref counter. */
|
|
struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
|
|
{
|
|
struct kfd_process *p;
|
|
|
|
int idx = srcu_read_lock(&kfd_processes_srcu);
|
|
|
|
p = find_process_by_mm(mm);
|
|
if (p)
|
|
kref_get(&p->ref);
|
|
|
|
srcu_read_unlock(&kfd_processes_srcu, idx);
|
|
|
|
return p;
|
|
}
|
|
|
|
/* kfd_process_evict_queues - Evict all user queues of a process
|
|
*
|
|
* Eviction is reference-counted per process-device. This means multiple
|
|
* evictions from different sources can be nested safely.
|
|
*/
|
|
int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger)
|
|
{
|
|
int r = 0;
|
|
int i;
|
|
unsigned int n_evicted = 0;
|
|
|
|
for (i = 0; i < p->n_pdds; i++) {
|
|
struct kfd_process_device *pdd = p->pdds[i];
|
|
|
|
kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid,
|
|
trigger);
|
|
|
|
r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
|
|
&pdd->qpd);
|
|
/* evict return -EIO if HWS is hang or asic is resetting, in this case
|
|
* we would like to set all the queues to be in evicted state to prevent
|
|
* them been add back since they actually not be saved right now.
|
|
*/
|
|
if (r && r != -EIO) {
|
|
pr_err("Failed to evict process queues\n");
|
|
goto fail;
|
|
}
|
|
n_evicted++;
|
|
}
|
|
|
|
return r;
|
|
|
|
fail:
|
|
/* To keep state consistent, roll back partial eviction by
|
|
* restoring queues
|
|
*/
|
|
for (i = 0; i < p->n_pdds; i++) {
|
|
struct kfd_process_device *pdd = p->pdds[i];
|
|
|
|
if (n_evicted == 0)
|
|
break;
|
|
|
|
kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
|
|
|
|
if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
|
|
&pdd->qpd))
|
|
pr_err("Failed to restore queues\n");
|
|
|
|
n_evicted--;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
/* kfd_process_restore_queues - Restore all user queues of a process */
|
|
int kfd_process_restore_queues(struct kfd_process *p)
|
|
{
|
|
int r, ret = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < p->n_pdds; i++) {
|
|
struct kfd_process_device *pdd = p->pdds[i];
|
|
|
|
kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
|
|
|
|
r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
|
|
&pdd->qpd);
|
|
if (r) {
|
|
pr_err("Failed to restore process queues\n");
|
|
if (!ret)
|
|
ret = r;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < p->n_pdds; i++)
|
|
if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id)
|
|
return i;
|
|
return -EINVAL;
|
|
}
|
|
|
|
int
|
|
kfd_process_gpuid_from_adev(struct kfd_process *p, struct amdgpu_device *adev,
|
|
uint32_t *gpuid, uint32_t *gpuidx)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < p->n_pdds; i++)
|
|
if (p->pdds[i] && p->pdds[i]->dev->adev == adev) {
|
|
*gpuid = p->pdds[i]->user_gpu_id;
|
|
*gpuidx = i;
|
|
return 0;
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
static void evict_process_worker(struct work_struct *work)
|
|
{
|
|
int ret;
|
|
struct kfd_process *p;
|
|
struct delayed_work *dwork;
|
|
|
|
dwork = to_delayed_work(work);
|
|
|
|
/* Process termination destroys this worker thread. So during the
|
|
* lifetime of this thread, kfd_process p will be valid
|
|
*/
|
|
p = container_of(dwork, struct kfd_process, eviction_work);
|
|
WARN_ONCE(p->last_eviction_seqno != p->ef->seqno,
|
|
"Eviction fence mismatch\n");
|
|
|
|
/* Narrow window of overlap between restore and evict work
|
|
* item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos
|
|
* unreserves KFD BOs, it is possible to evicted again. But
|
|
* restore has few more steps of finish. So lets wait for any
|
|
* previous restore work to complete
|
|
*/
|
|
flush_delayed_work(&p->restore_work);
|
|
|
|
pr_debug("Started evicting pasid 0x%x\n", p->pasid);
|
|
ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM);
|
|
if (!ret) {
|
|
dma_fence_signal(p->ef);
|
|
dma_fence_put(p->ef);
|
|
p->ef = NULL;
|
|
queue_delayed_work(kfd_restore_wq, &p->restore_work,
|
|
msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));
|
|
|
|
pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
|
|
} else
|
|
pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
|
|
}
|
|
|
|
static void restore_process_worker(struct work_struct *work)
|
|
{
|
|
struct delayed_work *dwork;
|
|
struct kfd_process *p;
|
|
int ret = 0;
|
|
|
|
dwork = to_delayed_work(work);
|
|
|
|
/* Process termination destroys this worker thread. So during the
|
|
* lifetime of this thread, kfd_process p will be valid
|
|
*/
|
|
p = container_of(dwork, struct kfd_process, restore_work);
|
|
pr_debug("Started restoring pasid 0x%x\n", p->pasid);
|
|
|
|
/* Setting last_restore_timestamp before successful restoration.
|
|
* Otherwise this would have to be set by KGD (restore_process_bos)
|
|
* before KFD BOs are unreserved. If not, the process can be evicted
|
|
* again before the timestamp is set.
|
|
* If restore fails, the timestamp will be set again in the next
|
|
* attempt. This would mean that the minimum GPU quanta would be
|
|
* PROCESS_ACTIVE_TIME_MS - (time to execute the following two
|
|
* functions)
|
|
*/
|
|
|
|
p->last_restore_timestamp = get_jiffies_64();
|
|
ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info,
|
|
&p->ef);
|
|
if (ret) {
|
|
pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
|
|
p->pasid, PROCESS_BACK_OFF_TIME_MS);
|
|
ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
|
|
msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
|
|
WARN(!ret, "reschedule restore work failed\n");
|
|
return;
|
|
}
|
|
|
|
ret = kfd_process_restore_queues(p);
|
|
if (!ret)
|
|
pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
|
|
else
|
|
pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
|
|
}
|
|
|
|
void kfd_suspend_all_processes(void)
|
|
{
|
|
struct kfd_process *p;
|
|
unsigned int temp;
|
|
int idx = srcu_read_lock(&kfd_processes_srcu);
|
|
|
|
WARN(debug_evictions, "Evicting all processes");
|
|
hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
|
|
cancel_delayed_work_sync(&p->eviction_work);
|
|
cancel_delayed_work_sync(&p->restore_work);
|
|
|
|
if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND))
|
|
pr_err("Failed to suspend process 0x%x\n", p->pasid);
|
|
dma_fence_signal(p->ef);
|
|
dma_fence_put(p->ef);
|
|
p->ef = NULL;
|
|
}
|
|
srcu_read_unlock(&kfd_processes_srcu, idx);
|
|
}
|
|
|
|
int kfd_resume_all_processes(void)
|
|
{
|
|
struct kfd_process *p;
|
|
unsigned int temp;
|
|
int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
|
|
|
|
hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
|
|
if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) {
|
|
pr_err("Restore process %d failed during resume\n",
|
|
p->pasid);
|
|
ret = -EFAULT;
|
|
}
|
|
}
|
|
srcu_read_unlock(&kfd_processes_srcu, idx);
|
|
return ret;
|
|
}
|
|
|
|
int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
|
|
struct vm_area_struct *vma)
|
|
{
|
|
struct kfd_process_device *pdd;
|
|
struct qcm_process_device *qpd;
|
|
|
|
if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
|
|
pr_err("Incorrect CWSR mapping size.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
pdd = kfd_get_process_device_data(dev, process);
|
|
if (!pdd)
|
|
return -EINVAL;
|
|
qpd = &pdd->qpd;
|
|
|
|
qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
|
|
get_order(KFD_CWSR_TBA_TMA_SIZE));
|
|
if (!qpd->cwsr_kaddr) {
|
|
pr_err("Error allocating per process CWSR buffer.\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND
|
|
| VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP);
|
|
/* Mapping pages to user process */
|
|
return remap_pfn_range(vma, vma->vm_start,
|
|
PFN_DOWN(__pa(qpd->cwsr_kaddr)),
|
|
KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
|
|
}
|
|
|
|
void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type)
|
|
{
|
|
struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
|
|
uint64_t tlb_seq = amdgpu_vm_tlb_seq(vm);
|
|
struct kfd_dev *dev = pdd->dev;
|
|
|
|
/*
|
|
* It can be that we race and lose here, but that is extremely unlikely
|
|
* and the worst thing which could happen is that we flush the changes
|
|
* into the TLB once more which is harmless.
|
|
*/
|
|
if (atomic64_xchg(&pdd->tlb_seq, tlb_seq) == tlb_seq)
|
|
return;
|
|
|
|
if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
|
|
/* Nothing to flush until a VMID is assigned, which
|
|
* only happens when the first queue is created.
|
|
*/
|
|
if (pdd->qpd.vmid)
|
|
amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->adev,
|
|
pdd->qpd.vmid);
|
|
} else {
|
|
amdgpu_amdkfd_flush_gpu_tlb_pasid(dev->adev,
|
|
pdd->process->pasid, type);
|
|
}
|
|
}
|
|
|
|
struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id)
|
|
{
|
|
int i;
|
|
|
|
if (gpu_id) {
|
|
for (i = 0; i < p->n_pdds; i++) {
|
|
struct kfd_process_device *pdd = p->pdds[i];
|
|
|
|
if (pdd->user_gpu_id == gpu_id)
|
|
return pdd;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id)
|
|
{
|
|
int i;
|
|
|
|
if (!actual_gpu_id)
|
|
return 0;
|
|
|
|
for (i = 0; i < p->n_pdds; i++) {
|
|
struct kfd_process_device *pdd = p->pdds[i];
|
|
|
|
if (pdd->dev->id == actual_gpu_id)
|
|
return pdd->user_gpu_id;
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
#if defined(CONFIG_DEBUG_FS)
|
|
|
|
int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
|
|
{
|
|
struct kfd_process *p;
|
|
unsigned int temp;
|
|
int r = 0;
|
|
|
|
int idx = srcu_read_lock(&kfd_processes_srcu);
|
|
|
|
hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
|
|
seq_printf(m, "Process %d PASID 0x%x:\n",
|
|
p->lead_thread->tgid, p->pasid);
|
|
|
|
mutex_lock(&p->mutex);
|
|
r = pqm_debugfs_mqds(m, &p->pqm);
|
|
mutex_unlock(&p->mutex);
|
|
|
|
if (r)
|
|
break;
|
|
}
|
|
|
|
srcu_read_unlock(&kfd_processes_srcu, idx);
|
|
|
|
return r;
|
|
}
|
|
|
|
#endif
|
|
|