2252 lines
63 KiB
C
2252 lines
63 KiB
C
// SPDX-License-Identifier: GPL-2.0 OR MIT
|
|
/*
|
|
* Copyright 2014-2022 Advanced Micro Devices, Inc.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/acpi.h>
|
|
#include <linux/hash.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/log2.h>
|
|
#include <linux/dmi.h>
|
|
#include <linux/atomic.h>
|
|
|
|
#include "kfd_priv.h"
|
|
#include "kfd_crat.h"
|
|
#include "kfd_topology.h"
|
|
#include "kfd_device_queue_manager.h"
|
|
#include "kfd_iommu.h"
|
|
#include "kfd_svm.h"
|
|
#include "amdgpu_amdkfd.h"
|
|
#include "amdgpu_ras.h"
|
|
#include "amdgpu.h"
|
|
|
|
/* topology_device_list - Master list of all topology devices */
|
|
static struct list_head topology_device_list;
|
|
static struct kfd_system_properties sys_props;
|
|
|
|
static DECLARE_RWSEM(topology_lock);
|
|
static uint32_t topology_crat_proximity_domain;
|
|
|
|
struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock(
|
|
uint32_t proximity_domain)
|
|
{
|
|
struct kfd_topology_device *top_dev;
|
|
struct kfd_topology_device *device = NULL;
|
|
|
|
list_for_each_entry(top_dev, &topology_device_list, list)
|
|
if (top_dev->proximity_domain == proximity_domain) {
|
|
device = top_dev;
|
|
break;
|
|
}
|
|
|
|
return device;
|
|
}
|
|
|
|
struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
|
|
uint32_t proximity_domain)
|
|
{
|
|
struct kfd_topology_device *device = NULL;
|
|
|
|
down_read(&topology_lock);
|
|
|
|
device = kfd_topology_device_by_proximity_domain_no_lock(
|
|
proximity_domain);
|
|
up_read(&topology_lock);
|
|
|
|
return device;
|
|
}
|
|
|
|
struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id)
|
|
{
|
|
struct kfd_topology_device *top_dev = NULL;
|
|
struct kfd_topology_device *ret = NULL;
|
|
|
|
down_read(&topology_lock);
|
|
|
|
list_for_each_entry(top_dev, &topology_device_list, list)
|
|
if (top_dev->gpu_id == gpu_id) {
|
|
ret = top_dev;
|
|
break;
|
|
}
|
|
|
|
up_read(&topology_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct kfd_dev *kfd_device_by_id(uint32_t gpu_id)
|
|
{
|
|
struct kfd_topology_device *top_dev;
|
|
|
|
top_dev = kfd_topology_device_by_id(gpu_id);
|
|
if (!top_dev)
|
|
return NULL;
|
|
|
|
return top_dev->gpu;
|
|
}
|
|
|
|
struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev)
|
|
{
|
|
struct kfd_topology_device *top_dev;
|
|
struct kfd_dev *device = NULL;
|
|
|
|
down_read(&topology_lock);
|
|
|
|
list_for_each_entry(top_dev, &topology_device_list, list)
|
|
if (top_dev->gpu && top_dev->gpu->adev->pdev == pdev) {
|
|
device = top_dev->gpu;
|
|
break;
|
|
}
|
|
|
|
up_read(&topology_lock);
|
|
|
|
return device;
|
|
}
|
|
|
|
struct kfd_dev *kfd_device_by_adev(const struct amdgpu_device *adev)
|
|
{
|
|
struct kfd_topology_device *top_dev;
|
|
struct kfd_dev *device = NULL;
|
|
|
|
down_read(&topology_lock);
|
|
|
|
list_for_each_entry(top_dev, &topology_device_list, list)
|
|
if (top_dev->gpu && top_dev->gpu->adev == adev) {
|
|
device = top_dev->gpu;
|
|
break;
|
|
}
|
|
|
|
up_read(&topology_lock);
|
|
|
|
return device;
|
|
}
|
|
|
|
/* Called with write topology_lock acquired */
|
|
static void kfd_release_topology_device(struct kfd_topology_device *dev)
|
|
{
|
|
struct kfd_mem_properties *mem;
|
|
struct kfd_cache_properties *cache;
|
|
struct kfd_iolink_properties *iolink;
|
|
struct kfd_iolink_properties *p2plink;
|
|
struct kfd_perf_properties *perf;
|
|
|
|
list_del(&dev->list);
|
|
|
|
while (dev->mem_props.next != &dev->mem_props) {
|
|
mem = container_of(dev->mem_props.next,
|
|
struct kfd_mem_properties, list);
|
|
list_del(&mem->list);
|
|
kfree(mem);
|
|
}
|
|
|
|
while (dev->cache_props.next != &dev->cache_props) {
|
|
cache = container_of(dev->cache_props.next,
|
|
struct kfd_cache_properties, list);
|
|
list_del(&cache->list);
|
|
kfree(cache);
|
|
}
|
|
|
|
while (dev->io_link_props.next != &dev->io_link_props) {
|
|
iolink = container_of(dev->io_link_props.next,
|
|
struct kfd_iolink_properties, list);
|
|
list_del(&iolink->list);
|
|
kfree(iolink);
|
|
}
|
|
|
|
while (dev->p2p_link_props.next != &dev->p2p_link_props) {
|
|
p2plink = container_of(dev->p2p_link_props.next,
|
|
struct kfd_iolink_properties, list);
|
|
list_del(&p2plink->list);
|
|
kfree(p2plink);
|
|
}
|
|
|
|
while (dev->perf_props.next != &dev->perf_props) {
|
|
perf = container_of(dev->perf_props.next,
|
|
struct kfd_perf_properties, list);
|
|
list_del(&perf->list);
|
|
kfree(perf);
|
|
}
|
|
|
|
kfree(dev);
|
|
}
|
|
|
|
void kfd_release_topology_device_list(struct list_head *device_list)
|
|
{
|
|
struct kfd_topology_device *dev;
|
|
|
|
while (!list_empty(device_list)) {
|
|
dev = list_first_entry(device_list,
|
|
struct kfd_topology_device, list);
|
|
kfd_release_topology_device(dev);
|
|
}
|
|
}
|
|
|
|
static void kfd_release_live_view(void)
|
|
{
|
|
kfd_release_topology_device_list(&topology_device_list);
|
|
memset(&sys_props, 0, sizeof(sys_props));
|
|
}
|
|
|
|
struct kfd_topology_device *kfd_create_topology_device(
|
|
struct list_head *device_list)
|
|
{
|
|
struct kfd_topology_device *dev;
|
|
|
|
dev = kfd_alloc_struct(dev);
|
|
if (!dev) {
|
|
pr_err("No memory to allocate a topology device");
|
|
return NULL;
|
|
}
|
|
|
|
INIT_LIST_HEAD(&dev->mem_props);
|
|
INIT_LIST_HEAD(&dev->cache_props);
|
|
INIT_LIST_HEAD(&dev->io_link_props);
|
|
INIT_LIST_HEAD(&dev->p2p_link_props);
|
|
INIT_LIST_HEAD(&dev->perf_props);
|
|
|
|
list_add_tail(&dev->list, device_list);
|
|
|
|
return dev;
|
|
}
|
|
|
|
|
|
#define sysfs_show_gen_prop(buffer, offs, fmt, ...) \
|
|
(offs += snprintf(buffer+offs, PAGE_SIZE-offs, \
|
|
fmt, __VA_ARGS__))
|
|
#define sysfs_show_32bit_prop(buffer, offs, name, value) \
|
|
sysfs_show_gen_prop(buffer, offs, "%s %u\n", name, value)
|
|
#define sysfs_show_64bit_prop(buffer, offs, name, value) \
|
|
sysfs_show_gen_prop(buffer, offs, "%s %llu\n", name, value)
|
|
#define sysfs_show_32bit_val(buffer, offs, value) \
|
|
sysfs_show_gen_prop(buffer, offs, "%u\n", value)
|
|
#define sysfs_show_str_val(buffer, offs, value) \
|
|
sysfs_show_gen_prop(buffer, offs, "%s\n", value)
|
|
|
|
static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr,
|
|
char *buffer)
|
|
{
|
|
int offs = 0;
|
|
|
|
/* Making sure that the buffer is an empty string */
|
|
buffer[0] = 0;
|
|
|
|
if (attr == &sys_props.attr_genid) {
|
|
sysfs_show_32bit_val(buffer, offs,
|
|
sys_props.generation_count);
|
|
} else if (attr == &sys_props.attr_props) {
|
|
sysfs_show_64bit_prop(buffer, offs, "platform_oem",
|
|
sys_props.platform_oem);
|
|
sysfs_show_64bit_prop(buffer, offs, "platform_id",
|
|
sys_props.platform_id);
|
|
sysfs_show_64bit_prop(buffer, offs, "platform_rev",
|
|
sys_props.platform_rev);
|
|
} else {
|
|
offs = -EINVAL;
|
|
}
|
|
|
|
return offs;
|
|
}
|
|
|
|
static void kfd_topology_kobj_release(struct kobject *kobj)
|
|
{
|
|
kfree(kobj);
|
|
}
|
|
|
|
static const struct sysfs_ops sysprops_ops = {
|
|
.show = sysprops_show,
|
|
};
|
|
|
|
static struct kobj_type sysprops_type = {
|
|
.release = kfd_topology_kobj_release,
|
|
.sysfs_ops = &sysprops_ops,
|
|
};
|
|
|
|
static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr,
|
|
char *buffer)
|
|
{
|
|
int offs = 0;
|
|
struct kfd_iolink_properties *iolink;
|
|
|
|
/* Making sure that the buffer is an empty string */
|
|
buffer[0] = 0;
|
|
|
|
iolink = container_of(attr, struct kfd_iolink_properties, attr);
|
|
if (iolink->gpu && kfd_devcgroup_check_permission(iolink->gpu))
|
|
return -EPERM;
|
|
sysfs_show_32bit_prop(buffer, offs, "type", iolink->iolink_type);
|
|
sysfs_show_32bit_prop(buffer, offs, "version_major", iolink->ver_maj);
|
|
sysfs_show_32bit_prop(buffer, offs, "version_minor", iolink->ver_min);
|
|
sysfs_show_32bit_prop(buffer, offs, "node_from", iolink->node_from);
|
|
sysfs_show_32bit_prop(buffer, offs, "node_to", iolink->node_to);
|
|
sysfs_show_32bit_prop(buffer, offs, "weight", iolink->weight);
|
|
sysfs_show_32bit_prop(buffer, offs, "min_latency", iolink->min_latency);
|
|
sysfs_show_32bit_prop(buffer, offs, "max_latency", iolink->max_latency);
|
|
sysfs_show_32bit_prop(buffer, offs, "min_bandwidth",
|
|
iolink->min_bandwidth);
|
|
sysfs_show_32bit_prop(buffer, offs, "max_bandwidth",
|
|
iolink->max_bandwidth);
|
|
sysfs_show_32bit_prop(buffer, offs, "recommended_transfer_size",
|
|
iolink->rec_transfer_size);
|
|
sysfs_show_32bit_prop(buffer, offs, "flags", iolink->flags);
|
|
|
|
return offs;
|
|
}
|
|
|
|
static const struct sysfs_ops iolink_ops = {
|
|
.show = iolink_show,
|
|
};
|
|
|
|
static struct kobj_type iolink_type = {
|
|
.release = kfd_topology_kobj_release,
|
|
.sysfs_ops = &iolink_ops,
|
|
};
|
|
|
|
static ssize_t mem_show(struct kobject *kobj, struct attribute *attr,
|
|
char *buffer)
|
|
{
|
|
int offs = 0;
|
|
struct kfd_mem_properties *mem;
|
|
|
|
/* Making sure that the buffer is an empty string */
|
|
buffer[0] = 0;
|
|
|
|
mem = container_of(attr, struct kfd_mem_properties, attr);
|
|
if (mem->gpu && kfd_devcgroup_check_permission(mem->gpu))
|
|
return -EPERM;
|
|
sysfs_show_32bit_prop(buffer, offs, "heap_type", mem->heap_type);
|
|
sysfs_show_64bit_prop(buffer, offs, "size_in_bytes",
|
|
mem->size_in_bytes);
|
|
sysfs_show_32bit_prop(buffer, offs, "flags", mem->flags);
|
|
sysfs_show_32bit_prop(buffer, offs, "width", mem->width);
|
|
sysfs_show_32bit_prop(buffer, offs, "mem_clk_max",
|
|
mem->mem_clk_max);
|
|
|
|
return offs;
|
|
}
|
|
|
|
static const struct sysfs_ops mem_ops = {
|
|
.show = mem_show,
|
|
};
|
|
|
|
static struct kobj_type mem_type = {
|
|
.release = kfd_topology_kobj_release,
|
|
.sysfs_ops = &mem_ops,
|
|
};
|
|
|
|
static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr,
|
|
char *buffer)
|
|
{
|
|
int offs = 0;
|
|
uint32_t i, j;
|
|
struct kfd_cache_properties *cache;
|
|
|
|
/* Making sure that the buffer is an empty string */
|
|
buffer[0] = 0;
|
|
cache = container_of(attr, struct kfd_cache_properties, attr);
|
|
if (cache->gpu && kfd_devcgroup_check_permission(cache->gpu))
|
|
return -EPERM;
|
|
sysfs_show_32bit_prop(buffer, offs, "processor_id_low",
|
|
cache->processor_id_low);
|
|
sysfs_show_32bit_prop(buffer, offs, "level", cache->cache_level);
|
|
sysfs_show_32bit_prop(buffer, offs, "size", cache->cache_size);
|
|
sysfs_show_32bit_prop(buffer, offs, "cache_line_size",
|
|
cache->cacheline_size);
|
|
sysfs_show_32bit_prop(buffer, offs, "cache_lines_per_tag",
|
|
cache->cachelines_per_tag);
|
|
sysfs_show_32bit_prop(buffer, offs, "association", cache->cache_assoc);
|
|
sysfs_show_32bit_prop(buffer, offs, "latency", cache->cache_latency);
|
|
sysfs_show_32bit_prop(buffer, offs, "type", cache->cache_type);
|
|
|
|
offs += snprintf(buffer+offs, PAGE_SIZE-offs, "sibling_map ");
|
|
for (i = 0; i < cache->sibling_map_size; i++)
|
|
for (j = 0; j < sizeof(cache->sibling_map[0])*8; j++)
|
|
/* Check each bit */
|
|
offs += snprintf(buffer+offs, PAGE_SIZE-offs, "%d,",
|
|
(cache->sibling_map[i] >> j) & 1);
|
|
|
|
/* Replace the last "," with end of line */
|
|
buffer[offs-1] = '\n';
|
|
return offs;
|
|
}
|
|
|
|
static const struct sysfs_ops cache_ops = {
|
|
.show = kfd_cache_show,
|
|
};
|
|
|
|
static struct kobj_type cache_type = {
|
|
.release = kfd_topology_kobj_release,
|
|
.sysfs_ops = &cache_ops,
|
|
};
|
|
|
|
/****** Sysfs of Performance Counters ******/
|
|
|
|
struct kfd_perf_attr {
|
|
struct kobj_attribute attr;
|
|
uint32_t data;
|
|
};
|
|
|
|
static ssize_t perf_show(struct kobject *kobj, struct kobj_attribute *attrs,
|
|
char *buf)
|
|
{
|
|
int offs = 0;
|
|
struct kfd_perf_attr *attr;
|
|
|
|
buf[0] = 0;
|
|
attr = container_of(attrs, struct kfd_perf_attr, attr);
|
|
if (!attr->data) /* invalid data for PMC */
|
|
return 0;
|
|
else
|
|
return sysfs_show_32bit_val(buf, offs, attr->data);
|
|
}
|
|
|
|
#define KFD_PERF_DESC(_name, _data) \
|
|
{ \
|
|
.attr = __ATTR(_name, 0444, perf_show, NULL), \
|
|
.data = _data, \
|
|
}
|
|
|
|
static struct kfd_perf_attr perf_attr_iommu[] = {
|
|
KFD_PERF_DESC(max_concurrent, 0),
|
|
KFD_PERF_DESC(num_counters, 0),
|
|
KFD_PERF_DESC(counter_ids, 0),
|
|
};
|
|
/****************************************/
|
|
|
|
static ssize_t node_show(struct kobject *kobj, struct attribute *attr,
|
|
char *buffer)
|
|
{
|
|
int offs = 0;
|
|
struct kfd_topology_device *dev;
|
|
uint32_t log_max_watch_addr;
|
|
|
|
/* Making sure that the buffer is an empty string */
|
|
buffer[0] = 0;
|
|
|
|
if (strcmp(attr->name, "gpu_id") == 0) {
|
|
dev = container_of(attr, struct kfd_topology_device,
|
|
attr_gpuid);
|
|
if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
|
|
return -EPERM;
|
|
return sysfs_show_32bit_val(buffer, offs, dev->gpu_id);
|
|
}
|
|
|
|
if (strcmp(attr->name, "name") == 0) {
|
|
dev = container_of(attr, struct kfd_topology_device,
|
|
attr_name);
|
|
|
|
if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
|
|
return -EPERM;
|
|
return sysfs_show_str_val(buffer, offs, dev->node_props.name);
|
|
}
|
|
|
|
dev = container_of(attr, struct kfd_topology_device,
|
|
attr_props);
|
|
if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
|
|
return -EPERM;
|
|
sysfs_show_32bit_prop(buffer, offs, "cpu_cores_count",
|
|
dev->node_props.cpu_cores_count);
|
|
sysfs_show_32bit_prop(buffer, offs, "simd_count",
|
|
dev->gpu ? dev->node_props.simd_count : 0);
|
|
sysfs_show_32bit_prop(buffer, offs, "mem_banks_count",
|
|
dev->node_props.mem_banks_count);
|
|
sysfs_show_32bit_prop(buffer, offs, "caches_count",
|
|
dev->node_props.caches_count);
|
|
sysfs_show_32bit_prop(buffer, offs, "io_links_count",
|
|
dev->node_props.io_links_count);
|
|
sysfs_show_32bit_prop(buffer, offs, "p2p_links_count",
|
|
dev->node_props.p2p_links_count);
|
|
sysfs_show_32bit_prop(buffer, offs, "cpu_core_id_base",
|
|
dev->node_props.cpu_core_id_base);
|
|
sysfs_show_32bit_prop(buffer, offs, "simd_id_base",
|
|
dev->node_props.simd_id_base);
|
|
sysfs_show_32bit_prop(buffer, offs, "max_waves_per_simd",
|
|
dev->node_props.max_waves_per_simd);
|
|
sysfs_show_32bit_prop(buffer, offs, "lds_size_in_kb",
|
|
dev->node_props.lds_size_in_kb);
|
|
sysfs_show_32bit_prop(buffer, offs, "gds_size_in_kb",
|
|
dev->node_props.gds_size_in_kb);
|
|
sysfs_show_32bit_prop(buffer, offs, "num_gws",
|
|
dev->node_props.num_gws);
|
|
sysfs_show_32bit_prop(buffer, offs, "wave_front_size",
|
|
dev->node_props.wave_front_size);
|
|
sysfs_show_32bit_prop(buffer, offs, "array_count",
|
|
dev->node_props.array_count);
|
|
sysfs_show_32bit_prop(buffer, offs, "simd_arrays_per_engine",
|
|
dev->node_props.simd_arrays_per_engine);
|
|
sysfs_show_32bit_prop(buffer, offs, "cu_per_simd_array",
|
|
dev->node_props.cu_per_simd_array);
|
|
sysfs_show_32bit_prop(buffer, offs, "simd_per_cu",
|
|
dev->node_props.simd_per_cu);
|
|
sysfs_show_32bit_prop(buffer, offs, "max_slots_scratch_cu",
|
|
dev->node_props.max_slots_scratch_cu);
|
|
sysfs_show_32bit_prop(buffer, offs, "gfx_target_version",
|
|
dev->node_props.gfx_target_version);
|
|
sysfs_show_32bit_prop(buffer, offs, "vendor_id",
|
|
dev->node_props.vendor_id);
|
|
sysfs_show_32bit_prop(buffer, offs, "device_id",
|
|
dev->node_props.device_id);
|
|
sysfs_show_32bit_prop(buffer, offs, "location_id",
|
|
dev->node_props.location_id);
|
|
sysfs_show_32bit_prop(buffer, offs, "domain",
|
|
dev->node_props.domain);
|
|
sysfs_show_32bit_prop(buffer, offs, "drm_render_minor",
|
|
dev->node_props.drm_render_minor);
|
|
sysfs_show_64bit_prop(buffer, offs, "hive_id",
|
|
dev->node_props.hive_id);
|
|
sysfs_show_32bit_prop(buffer, offs, "num_sdma_engines",
|
|
dev->node_props.num_sdma_engines);
|
|
sysfs_show_32bit_prop(buffer, offs, "num_sdma_xgmi_engines",
|
|
dev->node_props.num_sdma_xgmi_engines);
|
|
sysfs_show_32bit_prop(buffer, offs, "num_sdma_queues_per_engine",
|
|
dev->node_props.num_sdma_queues_per_engine);
|
|
sysfs_show_32bit_prop(buffer, offs, "num_cp_queues",
|
|
dev->node_props.num_cp_queues);
|
|
|
|
if (dev->gpu) {
|
|
log_max_watch_addr =
|
|
__ilog2_u32(dev->gpu->device_info.num_of_watch_points);
|
|
|
|
if (log_max_watch_addr) {
|
|
dev->node_props.capability |=
|
|
HSA_CAP_WATCH_POINTS_SUPPORTED;
|
|
|
|
dev->node_props.capability |=
|
|
((log_max_watch_addr <<
|
|
HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) &
|
|
HSA_CAP_WATCH_POINTS_TOTALBITS_MASK);
|
|
}
|
|
|
|
if (dev->gpu->adev->asic_type == CHIP_TONGA)
|
|
dev->node_props.capability |=
|
|
HSA_CAP_AQL_QUEUE_DOUBLE_MAP;
|
|
|
|
sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_fcompute",
|
|
dev->node_props.max_engine_clk_fcompute);
|
|
|
|
sysfs_show_64bit_prop(buffer, offs, "local_mem_size", 0ULL);
|
|
|
|
sysfs_show_32bit_prop(buffer, offs, "fw_version",
|
|
dev->gpu->mec_fw_version);
|
|
sysfs_show_32bit_prop(buffer, offs, "capability",
|
|
dev->node_props.capability);
|
|
sysfs_show_32bit_prop(buffer, offs, "sdma_fw_version",
|
|
dev->gpu->sdma_fw_version);
|
|
sysfs_show_64bit_prop(buffer, offs, "unique_id",
|
|
dev->gpu->adev->unique_id);
|
|
|
|
}
|
|
|
|
return sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_ccompute",
|
|
cpufreq_quick_get_max(0)/1000);
|
|
}
|
|
|
|
static const struct sysfs_ops node_ops = {
|
|
.show = node_show,
|
|
};
|
|
|
|
static struct kobj_type node_type = {
|
|
.release = kfd_topology_kobj_release,
|
|
.sysfs_ops = &node_ops,
|
|
};
|
|
|
|
static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr)
|
|
{
|
|
sysfs_remove_file(kobj, attr);
|
|
kobject_del(kobj);
|
|
kobject_put(kobj);
|
|
}
|
|
|
|
static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev)
|
|
{
|
|
struct kfd_iolink_properties *p2plink;
|
|
struct kfd_iolink_properties *iolink;
|
|
struct kfd_cache_properties *cache;
|
|
struct kfd_mem_properties *mem;
|
|
struct kfd_perf_properties *perf;
|
|
|
|
if (dev->kobj_iolink) {
|
|
list_for_each_entry(iolink, &dev->io_link_props, list)
|
|
if (iolink->kobj) {
|
|
kfd_remove_sysfs_file(iolink->kobj,
|
|
&iolink->attr);
|
|
iolink->kobj = NULL;
|
|
}
|
|
kobject_del(dev->kobj_iolink);
|
|
kobject_put(dev->kobj_iolink);
|
|
dev->kobj_iolink = NULL;
|
|
}
|
|
|
|
if (dev->kobj_p2plink) {
|
|
list_for_each_entry(p2plink, &dev->p2p_link_props, list)
|
|
if (p2plink->kobj) {
|
|
kfd_remove_sysfs_file(p2plink->kobj,
|
|
&p2plink->attr);
|
|
p2plink->kobj = NULL;
|
|
}
|
|
kobject_del(dev->kobj_p2plink);
|
|
kobject_put(dev->kobj_p2plink);
|
|
dev->kobj_p2plink = NULL;
|
|
}
|
|
|
|
if (dev->kobj_cache) {
|
|
list_for_each_entry(cache, &dev->cache_props, list)
|
|
if (cache->kobj) {
|
|
kfd_remove_sysfs_file(cache->kobj,
|
|
&cache->attr);
|
|
cache->kobj = NULL;
|
|
}
|
|
kobject_del(dev->kobj_cache);
|
|
kobject_put(dev->kobj_cache);
|
|
dev->kobj_cache = NULL;
|
|
}
|
|
|
|
if (dev->kobj_mem) {
|
|
list_for_each_entry(mem, &dev->mem_props, list)
|
|
if (mem->kobj) {
|
|
kfd_remove_sysfs_file(mem->kobj, &mem->attr);
|
|
mem->kobj = NULL;
|
|
}
|
|
kobject_del(dev->kobj_mem);
|
|
kobject_put(dev->kobj_mem);
|
|
dev->kobj_mem = NULL;
|
|
}
|
|
|
|
if (dev->kobj_perf) {
|
|
list_for_each_entry(perf, &dev->perf_props, list) {
|
|
kfree(perf->attr_group);
|
|
perf->attr_group = NULL;
|
|
}
|
|
kobject_del(dev->kobj_perf);
|
|
kobject_put(dev->kobj_perf);
|
|
dev->kobj_perf = NULL;
|
|
}
|
|
|
|
if (dev->kobj_node) {
|
|
sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid);
|
|
sysfs_remove_file(dev->kobj_node, &dev->attr_name);
|
|
sysfs_remove_file(dev->kobj_node, &dev->attr_props);
|
|
kobject_del(dev->kobj_node);
|
|
kobject_put(dev->kobj_node);
|
|
dev->kobj_node = NULL;
|
|
}
|
|
}
|
|
|
|
static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev,
|
|
uint32_t id)
|
|
{
|
|
struct kfd_iolink_properties *p2plink;
|
|
struct kfd_iolink_properties *iolink;
|
|
struct kfd_cache_properties *cache;
|
|
struct kfd_mem_properties *mem;
|
|
struct kfd_perf_properties *perf;
|
|
int ret;
|
|
uint32_t i, num_attrs;
|
|
struct attribute **attrs;
|
|
|
|
if (WARN_ON(dev->kobj_node))
|
|
return -EEXIST;
|
|
|
|
/*
|
|
* Creating the sysfs folders
|
|
*/
|
|
dev->kobj_node = kfd_alloc_struct(dev->kobj_node);
|
|
if (!dev->kobj_node)
|
|
return -ENOMEM;
|
|
|
|
ret = kobject_init_and_add(dev->kobj_node, &node_type,
|
|
sys_props.kobj_nodes, "%d", id);
|
|
if (ret < 0) {
|
|
kobject_put(dev->kobj_node);
|
|
return ret;
|
|
}
|
|
|
|
dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node);
|
|
if (!dev->kobj_mem)
|
|
return -ENOMEM;
|
|
|
|
dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node);
|
|
if (!dev->kobj_cache)
|
|
return -ENOMEM;
|
|
|
|
dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node);
|
|
if (!dev->kobj_iolink)
|
|
return -ENOMEM;
|
|
|
|
dev->kobj_p2plink = kobject_create_and_add("p2p_links", dev->kobj_node);
|
|
if (!dev->kobj_p2plink)
|
|
return -ENOMEM;
|
|
|
|
dev->kobj_perf = kobject_create_and_add("perf", dev->kobj_node);
|
|
if (!dev->kobj_perf)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* Creating sysfs files for node properties
|
|
*/
|
|
dev->attr_gpuid.name = "gpu_id";
|
|
dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE;
|
|
sysfs_attr_init(&dev->attr_gpuid);
|
|
dev->attr_name.name = "name";
|
|
dev->attr_name.mode = KFD_SYSFS_FILE_MODE;
|
|
sysfs_attr_init(&dev->attr_name);
|
|
dev->attr_props.name = "properties";
|
|
dev->attr_props.mode = KFD_SYSFS_FILE_MODE;
|
|
sysfs_attr_init(&dev->attr_props);
|
|
ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid);
|
|
if (ret < 0)
|
|
return ret;
|
|
ret = sysfs_create_file(dev->kobj_node, &dev->attr_name);
|
|
if (ret < 0)
|
|
return ret;
|
|
ret = sysfs_create_file(dev->kobj_node, &dev->attr_props);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
i = 0;
|
|
list_for_each_entry(mem, &dev->mem_props, list) {
|
|
mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
|
|
if (!mem->kobj)
|
|
return -ENOMEM;
|
|
ret = kobject_init_and_add(mem->kobj, &mem_type,
|
|
dev->kobj_mem, "%d", i);
|
|
if (ret < 0) {
|
|
kobject_put(mem->kobj);
|
|
return ret;
|
|
}
|
|
|
|
mem->attr.name = "properties";
|
|
mem->attr.mode = KFD_SYSFS_FILE_MODE;
|
|
sysfs_attr_init(&mem->attr);
|
|
ret = sysfs_create_file(mem->kobj, &mem->attr);
|
|
if (ret < 0)
|
|
return ret;
|
|
i++;
|
|
}
|
|
|
|
i = 0;
|
|
list_for_each_entry(cache, &dev->cache_props, list) {
|
|
cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
|
|
if (!cache->kobj)
|
|
return -ENOMEM;
|
|
ret = kobject_init_and_add(cache->kobj, &cache_type,
|
|
dev->kobj_cache, "%d", i);
|
|
if (ret < 0) {
|
|
kobject_put(cache->kobj);
|
|
return ret;
|
|
}
|
|
|
|
cache->attr.name = "properties";
|
|
cache->attr.mode = KFD_SYSFS_FILE_MODE;
|
|
sysfs_attr_init(&cache->attr);
|
|
ret = sysfs_create_file(cache->kobj, &cache->attr);
|
|
if (ret < 0)
|
|
return ret;
|
|
i++;
|
|
}
|
|
|
|
i = 0;
|
|
list_for_each_entry(iolink, &dev->io_link_props, list) {
|
|
iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
|
|
if (!iolink->kobj)
|
|
return -ENOMEM;
|
|
ret = kobject_init_and_add(iolink->kobj, &iolink_type,
|
|
dev->kobj_iolink, "%d", i);
|
|
if (ret < 0) {
|
|
kobject_put(iolink->kobj);
|
|
return ret;
|
|
}
|
|
|
|
iolink->attr.name = "properties";
|
|
iolink->attr.mode = KFD_SYSFS_FILE_MODE;
|
|
sysfs_attr_init(&iolink->attr);
|
|
ret = sysfs_create_file(iolink->kobj, &iolink->attr);
|
|
if (ret < 0)
|
|
return ret;
|
|
i++;
|
|
}
|
|
|
|
i = 0;
|
|
list_for_each_entry(p2plink, &dev->p2p_link_props, list) {
|
|
p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
|
|
if (!p2plink->kobj)
|
|
return -ENOMEM;
|
|
ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
|
|
dev->kobj_p2plink, "%d", i);
|
|
if (ret < 0) {
|
|
kobject_put(p2plink->kobj);
|
|
return ret;
|
|
}
|
|
|
|
p2plink->attr.name = "properties";
|
|
p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
|
|
sysfs_attr_init(&p2plink->attr);
|
|
ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
|
|
if (ret < 0)
|
|
return ret;
|
|
i++;
|
|
}
|
|
|
|
/* All hardware blocks have the same number of attributes. */
|
|
num_attrs = ARRAY_SIZE(perf_attr_iommu);
|
|
list_for_each_entry(perf, &dev->perf_props, list) {
|
|
perf->attr_group = kzalloc(sizeof(struct kfd_perf_attr)
|
|
* num_attrs + sizeof(struct attribute_group),
|
|
GFP_KERNEL);
|
|
if (!perf->attr_group)
|
|
return -ENOMEM;
|
|
|
|
attrs = (struct attribute **)(perf->attr_group + 1);
|
|
if (!strcmp(perf->block_name, "iommu")) {
|
|
/* Information of IOMMU's num_counters and counter_ids is shown
|
|
* under /sys/bus/event_source/devices/amd_iommu. We don't
|
|
* duplicate here.
|
|
*/
|
|
perf_attr_iommu[0].data = perf->max_concurrent;
|
|
for (i = 0; i < num_attrs; i++)
|
|
attrs[i] = &perf_attr_iommu[i].attr.attr;
|
|
}
|
|
perf->attr_group->name = perf->block_name;
|
|
perf->attr_group->attrs = attrs;
|
|
ret = sysfs_create_group(dev->kobj_perf, perf->attr_group);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Called with write topology lock acquired */
|
|
static int kfd_build_sysfs_node_tree(void)
|
|
{
|
|
struct kfd_topology_device *dev;
|
|
int ret;
|
|
uint32_t i = 0;
|
|
|
|
list_for_each_entry(dev, &topology_device_list, list) {
|
|
ret = kfd_build_sysfs_node_entry(dev, i);
|
|
if (ret < 0)
|
|
return ret;
|
|
i++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Called with write topology lock acquired */
|
|
static void kfd_remove_sysfs_node_tree(void)
|
|
{
|
|
struct kfd_topology_device *dev;
|
|
|
|
list_for_each_entry(dev, &topology_device_list, list)
|
|
kfd_remove_sysfs_node_entry(dev);
|
|
}
|
|
|
|
static int kfd_topology_update_sysfs(void)
|
|
{
|
|
int ret;
|
|
|
|
if (!sys_props.kobj_topology) {
|
|
sys_props.kobj_topology =
|
|
kfd_alloc_struct(sys_props.kobj_topology);
|
|
if (!sys_props.kobj_topology)
|
|
return -ENOMEM;
|
|
|
|
ret = kobject_init_and_add(sys_props.kobj_topology,
|
|
&sysprops_type, &kfd_device->kobj,
|
|
"topology");
|
|
if (ret < 0) {
|
|
kobject_put(sys_props.kobj_topology);
|
|
return ret;
|
|
}
|
|
|
|
sys_props.kobj_nodes = kobject_create_and_add("nodes",
|
|
sys_props.kobj_topology);
|
|
if (!sys_props.kobj_nodes)
|
|
return -ENOMEM;
|
|
|
|
sys_props.attr_genid.name = "generation_id";
|
|
sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE;
|
|
sysfs_attr_init(&sys_props.attr_genid);
|
|
ret = sysfs_create_file(sys_props.kobj_topology,
|
|
&sys_props.attr_genid);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
sys_props.attr_props.name = "system_properties";
|
|
sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE;
|
|
sysfs_attr_init(&sys_props.attr_props);
|
|
ret = sysfs_create_file(sys_props.kobj_topology,
|
|
&sys_props.attr_props);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
kfd_remove_sysfs_node_tree();
|
|
|
|
return kfd_build_sysfs_node_tree();
|
|
}
|
|
|
|
static void kfd_topology_release_sysfs(void)
|
|
{
|
|
kfd_remove_sysfs_node_tree();
|
|
if (sys_props.kobj_topology) {
|
|
sysfs_remove_file(sys_props.kobj_topology,
|
|
&sys_props.attr_genid);
|
|
sysfs_remove_file(sys_props.kobj_topology,
|
|
&sys_props.attr_props);
|
|
if (sys_props.kobj_nodes) {
|
|
kobject_del(sys_props.kobj_nodes);
|
|
kobject_put(sys_props.kobj_nodes);
|
|
sys_props.kobj_nodes = NULL;
|
|
}
|
|
kobject_del(sys_props.kobj_topology);
|
|
kobject_put(sys_props.kobj_topology);
|
|
sys_props.kobj_topology = NULL;
|
|
}
|
|
}
|
|
|
|
/* Called with write topology_lock acquired */
|
|
static void kfd_topology_update_device_list(struct list_head *temp_list,
|
|
struct list_head *master_list)
|
|
{
|
|
while (!list_empty(temp_list)) {
|
|
list_move_tail(temp_list->next, master_list);
|
|
sys_props.num_devices++;
|
|
}
|
|
}
|
|
|
|
static void kfd_debug_print_topology(void)
|
|
{
|
|
struct kfd_topology_device *dev;
|
|
|
|
down_read(&topology_lock);
|
|
|
|
dev = list_last_entry(&topology_device_list,
|
|
struct kfd_topology_device, list);
|
|
if (dev) {
|
|
if (dev->node_props.cpu_cores_count &&
|
|
dev->node_props.simd_count) {
|
|
pr_info("Topology: Add APU node [0x%0x:0x%0x]\n",
|
|
dev->node_props.device_id,
|
|
dev->node_props.vendor_id);
|
|
} else if (dev->node_props.cpu_cores_count)
|
|
pr_info("Topology: Add CPU node\n");
|
|
else if (dev->node_props.simd_count)
|
|
pr_info("Topology: Add dGPU node [0x%0x:0x%0x]\n",
|
|
dev->node_props.device_id,
|
|
dev->node_props.vendor_id);
|
|
}
|
|
up_read(&topology_lock);
|
|
}
|
|
|
|
/* Helper function for intializing platform_xx members of
|
|
* kfd_system_properties. Uses OEM info from the last CPU/APU node.
|
|
*/
|
|
static void kfd_update_system_properties(void)
|
|
{
|
|
struct kfd_topology_device *dev;
|
|
|
|
down_read(&topology_lock);
|
|
dev = list_last_entry(&topology_device_list,
|
|
struct kfd_topology_device, list);
|
|
if (dev) {
|
|
sys_props.platform_id =
|
|
(*((uint64_t *)dev->oem_id)) & CRAT_OEMID_64BIT_MASK;
|
|
sys_props.platform_oem = *((uint64_t *)dev->oem_table_id);
|
|
sys_props.platform_rev = dev->oem_revision;
|
|
}
|
|
up_read(&topology_lock);
|
|
}
|
|
|
|
static void find_system_memory(const struct dmi_header *dm,
|
|
void *private)
|
|
{
|
|
struct kfd_mem_properties *mem;
|
|
u16 mem_width, mem_clock;
|
|
struct kfd_topology_device *kdev =
|
|
(struct kfd_topology_device *)private;
|
|
const u8 *dmi_data = (const u8 *)(dm + 1);
|
|
|
|
if (dm->type == DMI_ENTRY_MEM_DEVICE && dm->length >= 0x15) {
|
|
mem_width = (u16)(*(const u16 *)(dmi_data + 0x6));
|
|
mem_clock = (u16)(*(const u16 *)(dmi_data + 0x11));
|
|
list_for_each_entry(mem, &kdev->mem_props, list) {
|
|
if (mem_width != 0xFFFF && mem_width != 0)
|
|
mem->width = mem_width;
|
|
if (mem_clock != 0)
|
|
mem->mem_clk_max = mem_clock;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Performance counters information is not part of CRAT but we would like to
|
|
* put them in the sysfs under topology directory for Thunk to get the data.
|
|
* This function is called before updating the sysfs.
|
|
*/
|
|
static int kfd_add_perf_to_topology(struct kfd_topology_device *kdev)
|
|
{
|
|
/* These are the only counters supported so far */
|
|
return kfd_iommu_add_perf_counters(kdev);
|
|
}
|
|
|
|
/* kfd_add_non_crat_information - Add information that is not currently
|
|
* defined in CRAT but is necessary for KFD topology
|
|
* @dev - topology device to which addition info is added
|
|
*/
|
|
static void kfd_add_non_crat_information(struct kfd_topology_device *kdev)
|
|
{
|
|
/* Check if CPU only node. */
|
|
if (!kdev->gpu) {
|
|
/* Add system memory information */
|
|
dmi_walk(find_system_memory, kdev);
|
|
}
|
|
/* TODO: For GPU node, rearrange code from kfd_topology_add_device */
|
|
}
|
|
|
|
/* kfd_is_acpi_crat_invalid - CRAT from ACPI is valid only for AMD APU devices.
|
|
* Ignore CRAT for all other devices. AMD APU is identified if both CPU
|
|
* and GPU cores are present.
|
|
* @device_list - topology device list created by parsing ACPI CRAT table.
|
|
* @return - TRUE if invalid, FALSE is valid.
|
|
*/
|
|
static bool kfd_is_acpi_crat_invalid(struct list_head *device_list)
|
|
{
|
|
struct kfd_topology_device *dev;
|
|
|
|
list_for_each_entry(dev, device_list, list) {
|
|
if (dev->node_props.cpu_cores_count &&
|
|
dev->node_props.simd_count)
|
|
return false;
|
|
}
|
|
pr_info("Ignoring ACPI CRAT on non-APU system\n");
|
|
return true;
|
|
}
|
|
|
|
int kfd_topology_init(void)
|
|
{
|
|
void *crat_image = NULL;
|
|
size_t image_size = 0;
|
|
int ret;
|
|
struct list_head temp_topology_device_list;
|
|
int cpu_only_node = 0;
|
|
struct kfd_topology_device *kdev;
|
|
int proximity_domain;
|
|
|
|
/* topology_device_list - Master list of all topology devices
|
|
* temp_topology_device_list - temporary list created while parsing CRAT
|
|
* or VCRAT. Once parsing is complete the contents of list is moved to
|
|
* topology_device_list
|
|
*/
|
|
|
|
/* Initialize the head for the both the lists */
|
|
INIT_LIST_HEAD(&topology_device_list);
|
|
INIT_LIST_HEAD(&temp_topology_device_list);
|
|
init_rwsem(&topology_lock);
|
|
|
|
memset(&sys_props, 0, sizeof(sys_props));
|
|
|
|
/* Proximity domains in ACPI CRAT tables start counting at
|
|
* 0. The same should be true for virtual CRAT tables created
|
|
* at this stage. GPUs added later in kfd_topology_add_device
|
|
* use a counter.
|
|
*/
|
|
proximity_domain = 0;
|
|
|
|
/*
|
|
* Get the CRAT image from the ACPI. If ACPI doesn't have one
|
|
* or if ACPI CRAT is invalid create a virtual CRAT.
|
|
* NOTE: The current implementation expects all AMD APUs to have
|
|
* CRAT. If no CRAT is available, it is assumed to be a CPU
|
|
*/
|
|
ret = kfd_create_crat_image_acpi(&crat_image, &image_size);
|
|
if (!ret) {
|
|
ret = kfd_parse_crat_table(crat_image,
|
|
&temp_topology_device_list,
|
|
proximity_domain);
|
|
if (ret ||
|
|
kfd_is_acpi_crat_invalid(&temp_topology_device_list)) {
|
|
kfd_release_topology_device_list(
|
|
&temp_topology_device_list);
|
|
kfd_destroy_crat_image(crat_image);
|
|
crat_image = NULL;
|
|
}
|
|
}
|
|
|
|
if (!crat_image) {
|
|
ret = kfd_create_crat_image_virtual(&crat_image, &image_size,
|
|
COMPUTE_UNIT_CPU, NULL,
|
|
proximity_domain);
|
|
cpu_only_node = 1;
|
|
if (ret) {
|
|
pr_err("Error creating VCRAT table for CPU\n");
|
|
return ret;
|
|
}
|
|
|
|
ret = kfd_parse_crat_table(crat_image,
|
|
&temp_topology_device_list,
|
|
proximity_domain);
|
|
if (ret) {
|
|
pr_err("Error parsing VCRAT table for CPU\n");
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
kdev = list_first_entry(&temp_topology_device_list,
|
|
struct kfd_topology_device, list);
|
|
kfd_add_perf_to_topology(kdev);
|
|
|
|
down_write(&topology_lock);
|
|
kfd_topology_update_device_list(&temp_topology_device_list,
|
|
&topology_device_list);
|
|
topology_crat_proximity_domain = sys_props.num_devices-1;
|
|
ret = kfd_topology_update_sysfs();
|
|
up_write(&topology_lock);
|
|
|
|
if (!ret) {
|
|
sys_props.generation_count++;
|
|
kfd_update_system_properties();
|
|
kfd_debug_print_topology();
|
|
} else
|
|
pr_err("Failed to update topology in sysfs ret=%d\n", ret);
|
|
|
|
/* For nodes with GPU, this information gets added
|
|
* when GPU is detected (kfd_topology_add_device).
|
|
*/
|
|
if (cpu_only_node) {
|
|
/* Add additional information to CPU only node created above */
|
|
down_write(&topology_lock);
|
|
kdev = list_first_entry(&topology_device_list,
|
|
struct kfd_topology_device, list);
|
|
up_write(&topology_lock);
|
|
kfd_add_non_crat_information(kdev);
|
|
}
|
|
|
|
err:
|
|
kfd_destroy_crat_image(crat_image);
|
|
return ret;
|
|
}
|
|
|
|
void kfd_topology_shutdown(void)
|
|
{
|
|
down_write(&topology_lock);
|
|
kfd_topology_release_sysfs();
|
|
kfd_release_live_view();
|
|
up_write(&topology_lock);
|
|
}
|
|
|
|
static uint32_t kfd_generate_gpu_id(struct kfd_dev *gpu)
|
|
{
|
|
uint32_t hashout;
|
|
uint32_t buf[7];
|
|
uint64_t local_mem_size;
|
|
int i;
|
|
|
|
if (!gpu)
|
|
return 0;
|
|
|
|
local_mem_size = gpu->local_mem_info.local_mem_size_private +
|
|
gpu->local_mem_info.local_mem_size_public;
|
|
buf[0] = gpu->adev->pdev->devfn;
|
|
buf[1] = gpu->adev->pdev->subsystem_vendor |
|
|
(gpu->adev->pdev->subsystem_device << 16);
|
|
buf[2] = pci_domain_nr(gpu->adev->pdev->bus);
|
|
buf[3] = gpu->adev->pdev->device;
|
|
buf[4] = gpu->adev->pdev->bus->number;
|
|
buf[5] = lower_32_bits(local_mem_size);
|
|
buf[6] = upper_32_bits(local_mem_size);
|
|
|
|
for (i = 0, hashout = 0; i < 7; i++)
|
|
hashout ^= hash_32(buf[i], KFD_GPU_ID_HASH_WIDTH);
|
|
|
|
return hashout;
|
|
}
|
|
/* kfd_assign_gpu - Attach @gpu to the correct kfd topology device. If
|
|
* the GPU device is not already present in the topology device
|
|
* list then return NULL. This means a new topology device has to
|
|
* be created for this GPU.
|
|
*/
|
|
static struct kfd_topology_device *kfd_assign_gpu(struct kfd_dev *gpu)
|
|
{
|
|
struct kfd_topology_device *dev;
|
|
struct kfd_topology_device *out_dev = NULL;
|
|
struct kfd_mem_properties *mem;
|
|
struct kfd_cache_properties *cache;
|
|
struct kfd_iolink_properties *iolink;
|
|
struct kfd_iolink_properties *p2plink;
|
|
|
|
list_for_each_entry(dev, &topology_device_list, list) {
|
|
/* Discrete GPUs need their own topology device list
|
|
* entries. Don't assign them to CPU/APU nodes.
|
|
*/
|
|
if (!gpu->use_iommu_v2 &&
|
|
dev->node_props.cpu_cores_count)
|
|
continue;
|
|
|
|
if (!dev->gpu && (dev->node_props.simd_count > 0)) {
|
|
dev->gpu = gpu;
|
|
out_dev = dev;
|
|
|
|
list_for_each_entry(mem, &dev->mem_props, list)
|
|
mem->gpu = dev->gpu;
|
|
list_for_each_entry(cache, &dev->cache_props, list)
|
|
cache->gpu = dev->gpu;
|
|
list_for_each_entry(iolink, &dev->io_link_props, list)
|
|
iolink->gpu = dev->gpu;
|
|
list_for_each_entry(p2plink, &dev->p2p_link_props, list)
|
|
p2plink->gpu = dev->gpu;
|
|
break;
|
|
}
|
|
}
|
|
return out_dev;
|
|
}
|
|
|
|
static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival)
|
|
{
|
|
/*
|
|
* TODO: Generate an event for thunk about the arrival/removal
|
|
* of the GPU
|
|
*/
|
|
}
|
|
|
|
/* kfd_fill_mem_clk_max_info - Since CRAT doesn't have memory clock info,
|
|
* patch this after CRAT parsing.
|
|
*/
|
|
static void kfd_fill_mem_clk_max_info(struct kfd_topology_device *dev)
|
|
{
|
|
struct kfd_mem_properties *mem;
|
|
struct kfd_local_mem_info local_mem_info;
|
|
|
|
if (!dev)
|
|
return;
|
|
|
|
/* Currently, amdgpu driver (amdgpu_mc) deals only with GPUs with
|
|
* single bank of VRAM local memory.
|
|
* for dGPUs - VCRAT reports only one bank of Local Memory
|
|
* for APUs - If CRAT from ACPI reports more than one bank, then
|
|
* all the banks will report the same mem_clk_max information
|
|
*/
|
|
amdgpu_amdkfd_get_local_mem_info(dev->gpu->adev, &local_mem_info);
|
|
|
|
list_for_each_entry(mem, &dev->mem_props, list)
|
|
mem->mem_clk_max = local_mem_info.mem_clk_max;
|
|
}
|
|
|
|
static void kfd_set_iolink_no_atomics(struct kfd_topology_device *dev,
|
|
struct kfd_topology_device *target_gpu_dev,
|
|
struct kfd_iolink_properties *link)
|
|
{
|
|
/* xgmi always supports atomics between links. */
|
|
if (link->iolink_type == CRAT_IOLINK_TYPE_XGMI)
|
|
return;
|
|
|
|
/* check pcie support to set cpu(dev) flags for target_gpu_dev link. */
|
|
if (target_gpu_dev) {
|
|
uint32_t cap;
|
|
|
|
pcie_capability_read_dword(target_gpu_dev->gpu->adev->pdev,
|
|
PCI_EXP_DEVCAP2, &cap);
|
|
|
|
if (!(cap & (PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
|
|
PCI_EXP_DEVCAP2_ATOMIC_COMP64)))
|
|
link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
|
|
CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
|
|
/* set gpu (dev) flags. */
|
|
} else {
|
|
if (!dev->gpu->pci_atomic_requested ||
|
|
dev->gpu->adev->asic_type == CHIP_HAWAII)
|
|
link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
|
|
CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
|
|
}
|
|
}
|
|
|
|
static void kfd_set_iolink_non_coherent(struct kfd_topology_device *to_dev,
|
|
struct kfd_iolink_properties *outbound_link,
|
|
struct kfd_iolink_properties *inbound_link)
|
|
{
|
|
/* CPU -> GPU with PCIe */
|
|
if (!to_dev->gpu &&
|
|
inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
|
|
inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
|
|
|
|
if (to_dev->gpu) {
|
|
/* GPU <-> GPU with PCIe and
|
|
* Vega20 with XGMI
|
|
*/
|
|
if (inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS ||
|
|
(inbound_link->iolink_type == CRAT_IOLINK_TYPE_XGMI &&
|
|
KFD_GC_VERSION(to_dev->gpu) == IP_VERSION(9, 4, 0))) {
|
|
outbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
|
|
inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void kfd_fill_iolink_non_crat_info(struct kfd_topology_device *dev)
|
|
{
|
|
struct kfd_iolink_properties *link, *inbound_link;
|
|
struct kfd_topology_device *peer_dev;
|
|
|
|
if (!dev || !dev->gpu)
|
|
return;
|
|
|
|
/* GPU only creates direct links so apply flags setting to all */
|
|
list_for_each_entry(link, &dev->io_link_props, list) {
|
|
link->flags = CRAT_IOLINK_FLAGS_ENABLED;
|
|
kfd_set_iolink_no_atomics(dev, NULL, link);
|
|
peer_dev = kfd_topology_device_by_proximity_domain(
|
|
link->node_to);
|
|
|
|
if (!peer_dev)
|
|
continue;
|
|
|
|
/* Include the CPU peer in GPU hive if connected over xGMI. */
|
|
if (!peer_dev->gpu && !peer_dev->node_props.hive_id &&
|
|
dev->node_props.hive_id &&
|
|
dev->gpu->adev->gmc.xgmi.connected_to_cpu)
|
|
peer_dev->node_props.hive_id = dev->node_props.hive_id;
|
|
|
|
list_for_each_entry(inbound_link, &peer_dev->io_link_props,
|
|
list) {
|
|
if (inbound_link->node_to != link->node_from)
|
|
continue;
|
|
|
|
inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
|
|
kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
|
|
kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
|
|
}
|
|
}
|
|
|
|
/* Create indirect links so apply flags setting to all */
|
|
list_for_each_entry(link, &dev->p2p_link_props, list) {
|
|
link->flags = CRAT_IOLINK_FLAGS_ENABLED;
|
|
kfd_set_iolink_no_atomics(dev, NULL, link);
|
|
peer_dev = kfd_topology_device_by_proximity_domain(
|
|
link->node_to);
|
|
|
|
if (!peer_dev)
|
|
continue;
|
|
|
|
list_for_each_entry(inbound_link, &peer_dev->p2p_link_props,
|
|
list) {
|
|
if (inbound_link->node_to != link->node_from)
|
|
continue;
|
|
|
|
inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
|
|
kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
|
|
kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int kfd_build_p2p_node_entry(struct kfd_topology_device *dev,
|
|
struct kfd_iolink_properties *p2plink)
|
|
{
|
|
int ret;
|
|
|
|
p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
|
|
if (!p2plink->kobj)
|
|
return -ENOMEM;
|
|
|
|
ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
|
|
dev->kobj_p2plink, "%d", dev->node_props.p2p_links_count - 1);
|
|
if (ret < 0) {
|
|
kobject_put(p2plink->kobj);
|
|
return ret;
|
|
}
|
|
|
|
p2plink->attr.name = "properties";
|
|
p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
|
|
sysfs_attr_init(&p2plink->attr);
|
|
ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kfd_create_indirect_link_prop(struct kfd_topology_device *kdev, int gpu_node)
|
|
{
|
|
struct kfd_iolink_properties *gpu_link, *tmp_link, *cpu_link;
|
|
struct kfd_iolink_properties *props = NULL, *props2 = NULL;
|
|
struct kfd_topology_device *cpu_dev;
|
|
int ret = 0;
|
|
int i, num_cpu;
|
|
|
|
num_cpu = 0;
|
|
list_for_each_entry(cpu_dev, &topology_device_list, list) {
|
|
if (cpu_dev->gpu)
|
|
break;
|
|
num_cpu++;
|
|
}
|
|
|
|
gpu_link = list_first_entry(&kdev->io_link_props,
|
|
struct kfd_iolink_properties, list);
|
|
if (!gpu_link)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < num_cpu; i++) {
|
|
/* CPU <--> GPU */
|
|
if (gpu_link->node_to == i)
|
|
continue;
|
|
|
|
/* find CPU <--> CPU links */
|
|
cpu_link = NULL;
|
|
cpu_dev = kfd_topology_device_by_proximity_domain(i);
|
|
if (cpu_dev) {
|
|
list_for_each_entry(tmp_link,
|
|
&cpu_dev->io_link_props, list) {
|
|
if (tmp_link->node_to == gpu_link->node_to) {
|
|
cpu_link = tmp_link;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!cpu_link)
|
|
return -ENOMEM;
|
|
|
|
/* CPU <--> CPU <--> GPU, GPU node*/
|
|
props = kfd_alloc_struct(props);
|
|
if (!props)
|
|
return -ENOMEM;
|
|
|
|
memcpy(props, gpu_link, sizeof(struct kfd_iolink_properties));
|
|
props->weight = gpu_link->weight + cpu_link->weight;
|
|
props->min_latency = gpu_link->min_latency + cpu_link->min_latency;
|
|
props->max_latency = gpu_link->max_latency + cpu_link->max_latency;
|
|
props->min_bandwidth = min(gpu_link->min_bandwidth, cpu_link->min_bandwidth);
|
|
props->max_bandwidth = min(gpu_link->max_bandwidth, cpu_link->max_bandwidth);
|
|
|
|
props->node_from = gpu_node;
|
|
props->node_to = i;
|
|
kdev->node_props.p2p_links_count++;
|
|
list_add_tail(&props->list, &kdev->p2p_link_props);
|
|
ret = kfd_build_p2p_node_entry(kdev, props);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* for small Bar, no CPU --> GPU in-direct links */
|
|
if (kfd_dev_is_large_bar(kdev->gpu)) {
|
|
/* CPU <--> CPU <--> GPU, CPU node*/
|
|
props2 = kfd_alloc_struct(props2);
|
|
if (!props2)
|
|
return -ENOMEM;
|
|
|
|
memcpy(props2, props, sizeof(struct kfd_iolink_properties));
|
|
props2->node_from = i;
|
|
props2->node_to = gpu_node;
|
|
props2->kobj = NULL;
|
|
cpu_dev->node_props.p2p_links_count++;
|
|
list_add_tail(&props2->list, &cpu_dev->p2p_link_props);
|
|
ret = kfd_build_p2p_node_entry(cpu_dev, props2);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#if defined(CONFIG_HSA_AMD_P2P)
|
|
static int kfd_add_peer_prop(struct kfd_topology_device *kdev,
|
|
struct kfd_topology_device *peer, int from, int to)
|
|
{
|
|
struct kfd_iolink_properties *props = NULL;
|
|
struct kfd_iolink_properties *iolink1, *iolink2, *iolink3;
|
|
struct kfd_topology_device *cpu_dev;
|
|
int ret = 0;
|
|
|
|
if (!amdgpu_device_is_peer_accessible(
|
|
kdev->gpu->adev,
|
|
peer->gpu->adev))
|
|
return ret;
|
|
|
|
iolink1 = list_first_entry(&kdev->io_link_props,
|
|
struct kfd_iolink_properties, list);
|
|
if (!iolink1)
|
|
return -ENOMEM;
|
|
|
|
iolink2 = list_first_entry(&peer->io_link_props,
|
|
struct kfd_iolink_properties, list);
|
|
if (!iolink2)
|
|
return -ENOMEM;
|
|
|
|
props = kfd_alloc_struct(props);
|
|
if (!props)
|
|
return -ENOMEM;
|
|
|
|
memcpy(props, iolink1, sizeof(struct kfd_iolink_properties));
|
|
|
|
props->weight = iolink1->weight + iolink2->weight;
|
|
props->min_latency = iolink1->min_latency + iolink2->min_latency;
|
|
props->max_latency = iolink1->max_latency + iolink2->max_latency;
|
|
props->min_bandwidth = min(iolink1->min_bandwidth, iolink2->min_bandwidth);
|
|
props->max_bandwidth = min(iolink2->max_bandwidth, iolink2->max_bandwidth);
|
|
|
|
if (iolink1->node_to != iolink2->node_to) {
|
|
/* CPU->CPU link*/
|
|
cpu_dev = kfd_topology_device_by_proximity_domain(iolink1->node_to);
|
|
if (cpu_dev) {
|
|
list_for_each_entry(iolink3, &cpu_dev->io_link_props, list)
|
|
if (iolink3->node_to == iolink2->node_to)
|
|
break;
|
|
|
|
props->weight += iolink3->weight;
|
|
props->min_latency += iolink3->min_latency;
|
|
props->max_latency += iolink3->max_latency;
|
|
props->min_bandwidth = min(props->min_bandwidth,
|
|
iolink3->min_bandwidth);
|
|
props->max_bandwidth = min(props->max_bandwidth,
|
|
iolink3->max_bandwidth);
|
|
} else {
|
|
WARN(1, "CPU node not found");
|
|
}
|
|
}
|
|
|
|
props->node_from = from;
|
|
props->node_to = to;
|
|
peer->node_props.p2p_links_count++;
|
|
list_add_tail(&props->list, &peer->p2p_link_props);
|
|
ret = kfd_build_p2p_node_entry(peer, props);
|
|
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
static int kfd_dev_create_p2p_links(void)
|
|
{
|
|
struct kfd_topology_device *dev;
|
|
struct kfd_topology_device *new_dev;
|
|
#if defined(CONFIG_HSA_AMD_P2P)
|
|
uint32_t i;
|
|
#endif
|
|
uint32_t k;
|
|
int ret = 0;
|
|
|
|
k = 0;
|
|
list_for_each_entry(dev, &topology_device_list, list)
|
|
k++;
|
|
if (k < 2)
|
|
return 0;
|
|
|
|
new_dev = list_last_entry(&topology_device_list, struct kfd_topology_device, list);
|
|
if (WARN_ON(!new_dev->gpu))
|
|
return 0;
|
|
|
|
k--;
|
|
|
|
/* create in-direct links */
|
|
ret = kfd_create_indirect_link_prop(new_dev, k);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
/* create p2p links */
|
|
#if defined(CONFIG_HSA_AMD_P2P)
|
|
i = 0;
|
|
list_for_each_entry(dev, &topology_device_list, list) {
|
|
if (dev == new_dev)
|
|
break;
|
|
if (!dev->gpu || !dev->gpu->adev ||
|
|
(dev->gpu->hive_id &&
|
|
dev->gpu->hive_id == new_dev->gpu->hive_id))
|
|
goto next;
|
|
|
|
/* check if node(s) is/are peer accessible in one direction or bi-direction */
|
|
ret = kfd_add_peer_prop(new_dev, dev, i, k);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
ret = kfd_add_peer_prop(dev, new_dev, k, i);
|
|
if (ret < 0)
|
|
goto out;
|
|
next:
|
|
i++;
|
|
}
|
|
#endif
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
|
|
/* Helper function. See kfd_fill_gpu_cache_info for parameter description */
|
|
static int fill_in_l1_pcache(struct kfd_cache_properties **props_ext,
|
|
struct kfd_gpu_cache_info *pcache_info,
|
|
struct kfd_cu_info *cu_info,
|
|
int cu_bitmask,
|
|
int cache_type, unsigned int cu_processor_id,
|
|
int cu_block)
|
|
{
|
|
unsigned int cu_sibling_map_mask;
|
|
int first_active_cu;
|
|
struct kfd_cache_properties *pcache = NULL;
|
|
|
|
cu_sibling_map_mask = cu_bitmask;
|
|
cu_sibling_map_mask >>= cu_block;
|
|
cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
|
|
first_active_cu = ffs(cu_sibling_map_mask);
|
|
|
|
/* CU could be inactive. In case of shared cache find the first active
|
|
* CU. and incase of non-shared cache check if the CU is inactive. If
|
|
* inactive active skip it
|
|
*/
|
|
if (first_active_cu) {
|
|
pcache = kfd_alloc_struct(pcache);
|
|
if (!pcache)
|
|
return -ENOMEM;
|
|
|
|
memset(pcache, 0, sizeof(struct kfd_cache_properties));
|
|
pcache->processor_id_low = cu_processor_id + (first_active_cu - 1);
|
|
pcache->cache_level = pcache_info[cache_type].cache_level;
|
|
pcache->cache_size = pcache_info[cache_type].cache_size;
|
|
|
|
if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
|
|
pcache->cache_type |= HSA_CACHE_TYPE_DATA;
|
|
if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
|
|
pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
|
|
if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
|
|
pcache->cache_type |= HSA_CACHE_TYPE_CPU;
|
|
if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
|
|
pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
|
|
|
|
/* Sibling map is w.r.t processor_id_low, so shift out
|
|
* inactive CU
|
|
*/
|
|
cu_sibling_map_mask =
|
|
cu_sibling_map_mask >> (first_active_cu - 1);
|
|
|
|
pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF);
|
|
pcache->sibling_map[1] =
|
|
(uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
|
|
pcache->sibling_map[2] =
|
|
(uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
|
|
pcache->sibling_map[3] =
|
|
(uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
|
|
|
|
pcache->sibling_map_size = 4;
|
|
*props_ext = pcache;
|
|
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* Helper function. See kfd_fill_gpu_cache_info for parameter description */
|
|
static int fill_in_l2_l3_pcache(struct kfd_cache_properties **props_ext,
|
|
struct kfd_gpu_cache_info *pcache_info,
|
|
struct kfd_cu_info *cu_info,
|
|
int cache_type, unsigned int cu_processor_id)
|
|
{
|
|
unsigned int cu_sibling_map_mask;
|
|
int first_active_cu;
|
|
int i, j, k;
|
|
struct kfd_cache_properties *pcache = NULL;
|
|
|
|
cu_sibling_map_mask = cu_info->cu_bitmap[0][0];
|
|
cu_sibling_map_mask &=
|
|
((1 << pcache_info[cache_type].num_cu_shared) - 1);
|
|
first_active_cu = ffs(cu_sibling_map_mask);
|
|
|
|
/* CU could be inactive. In case of shared cache find the first active
|
|
* CU. and incase of non-shared cache check if the CU is inactive. If
|
|
* inactive active skip it
|
|
*/
|
|
if (first_active_cu) {
|
|
pcache = kfd_alloc_struct(pcache);
|
|
if (!pcache)
|
|
return -ENOMEM;
|
|
|
|
memset(pcache, 0, sizeof(struct kfd_cache_properties));
|
|
pcache->processor_id_low = cu_processor_id
|
|
+ (first_active_cu - 1);
|
|
pcache->cache_level = pcache_info[cache_type].cache_level;
|
|
pcache->cache_size = pcache_info[cache_type].cache_size;
|
|
|
|
if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
|
|
pcache->cache_type |= HSA_CACHE_TYPE_DATA;
|
|
if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
|
|
pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
|
|
if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
|
|
pcache->cache_type |= HSA_CACHE_TYPE_CPU;
|
|
if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
|
|
pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
|
|
|
|
/* Sibling map is w.r.t processor_id_low, so shift out
|
|
* inactive CU
|
|
*/
|
|
cu_sibling_map_mask = cu_sibling_map_mask >> (first_active_cu - 1);
|
|
k = 0;
|
|
|
|
for (i = 0; i < cu_info->num_shader_engines; i++) {
|
|
for (j = 0; j < cu_info->num_shader_arrays_per_engine; j++) {
|
|
pcache->sibling_map[k] = (uint8_t)(cu_sibling_map_mask & 0xFF);
|
|
pcache->sibling_map[k+1] = (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
|
|
pcache->sibling_map[k+2] = (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
|
|
pcache->sibling_map[k+3] = (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
|
|
k += 4;
|
|
|
|
cu_sibling_map_mask = cu_info->cu_bitmap[i % 4][j + i / 4];
|
|
cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
|
|
}
|
|
}
|
|
pcache->sibling_map_size = k;
|
|
*props_ext = pcache;
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
#define KFD_MAX_CACHE_TYPES 6
|
|
|
|
/* kfd_fill_cache_non_crat_info - Fill GPU cache info using kfd_gpu_cache_info
|
|
* tables
|
|
*/
|
|
static void kfd_fill_cache_non_crat_info(struct kfd_topology_device *dev, struct kfd_dev *kdev)
|
|
{
|
|
struct kfd_gpu_cache_info *pcache_info = NULL;
|
|
int i, j, k;
|
|
int ct = 0;
|
|
unsigned int cu_processor_id;
|
|
int ret;
|
|
unsigned int num_cu_shared;
|
|
struct kfd_cu_info cu_info;
|
|
struct kfd_cu_info *pcu_info;
|
|
int gpu_processor_id;
|
|
struct kfd_cache_properties *props_ext;
|
|
int num_of_entries = 0;
|
|
int num_of_cache_types = 0;
|
|
struct kfd_gpu_cache_info cache_info[KFD_MAX_CACHE_TYPES];
|
|
|
|
amdgpu_amdkfd_get_cu_info(kdev->adev, &cu_info);
|
|
pcu_info = &cu_info;
|
|
|
|
gpu_processor_id = dev->node_props.simd_id_base;
|
|
|
|
pcache_info = cache_info;
|
|
num_of_cache_types = kfd_get_gpu_cache_info(kdev, &pcache_info);
|
|
if (!num_of_cache_types) {
|
|
pr_warn("no cache info found\n");
|
|
return;
|
|
}
|
|
|
|
/* For each type of cache listed in the kfd_gpu_cache_info table,
|
|
* go through all available Compute Units.
|
|
* The [i,j,k] loop will
|
|
* if kfd_gpu_cache_info.num_cu_shared = 1
|
|
* will parse through all available CU
|
|
* If (kfd_gpu_cache_info.num_cu_shared != 1)
|
|
* then it will consider only one CU from
|
|
* the shared unit
|
|
*/
|
|
for (ct = 0; ct < num_of_cache_types; ct++) {
|
|
cu_processor_id = gpu_processor_id;
|
|
if (pcache_info[ct].cache_level == 1) {
|
|
for (i = 0; i < pcu_info->num_shader_engines; i++) {
|
|
for (j = 0; j < pcu_info->num_shader_arrays_per_engine; j++) {
|
|
for (k = 0; k < pcu_info->num_cu_per_sh; k += pcache_info[ct].num_cu_shared) {
|
|
|
|
ret = fill_in_l1_pcache(&props_ext, pcache_info, pcu_info,
|
|
pcu_info->cu_bitmap[i % 4][j + i / 4], ct,
|
|
cu_processor_id, k);
|
|
|
|
if (ret < 0)
|
|
break;
|
|
|
|
if (!ret) {
|
|
num_of_entries++;
|
|
list_add_tail(&props_ext->list, &dev->cache_props);
|
|
}
|
|
|
|
/* Move to next CU block */
|
|
num_cu_shared = ((k + pcache_info[ct].num_cu_shared) <=
|
|
pcu_info->num_cu_per_sh) ?
|
|
pcache_info[ct].num_cu_shared :
|
|
(pcu_info->num_cu_per_sh - k);
|
|
cu_processor_id += num_cu_shared;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
ret = fill_in_l2_l3_pcache(&props_ext, pcache_info,
|
|
pcu_info, ct, cu_processor_id);
|
|
|
|
if (ret < 0)
|
|
break;
|
|
|
|
if (!ret) {
|
|
num_of_entries++;
|
|
list_add_tail(&props_ext->list, &dev->cache_props);
|
|
}
|
|
}
|
|
}
|
|
dev->node_props.caches_count += num_of_entries;
|
|
pr_debug("Added [%d] GPU cache entries\n", num_of_entries);
|
|
}
|
|
|
|
static int kfd_topology_add_device_locked(struct kfd_dev *gpu, uint32_t gpu_id,
|
|
struct kfd_topology_device **dev)
|
|
{
|
|
int proximity_domain = ++topology_crat_proximity_domain;
|
|
struct list_head temp_topology_device_list;
|
|
void *crat_image = NULL;
|
|
size_t image_size = 0;
|
|
int res;
|
|
|
|
res = kfd_create_crat_image_virtual(&crat_image, &image_size,
|
|
COMPUTE_UNIT_GPU, gpu,
|
|
proximity_domain);
|
|
if (res) {
|
|
pr_err("Error creating VCRAT for GPU (ID: 0x%x)\n",
|
|
gpu_id);
|
|
topology_crat_proximity_domain--;
|
|
goto err;
|
|
}
|
|
|
|
INIT_LIST_HEAD(&temp_topology_device_list);
|
|
|
|
res = kfd_parse_crat_table(crat_image,
|
|
&temp_topology_device_list,
|
|
proximity_domain);
|
|
if (res) {
|
|
pr_err("Error parsing VCRAT for GPU (ID: 0x%x)\n",
|
|
gpu_id);
|
|
topology_crat_proximity_domain--;
|
|
goto err;
|
|
}
|
|
|
|
kfd_topology_update_device_list(&temp_topology_device_list,
|
|
&topology_device_list);
|
|
|
|
*dev = kfd_assign_gpu(gpu);
|
|
if (WARN_ON(!*dev)) {
|
|
res = -ENODEV;
|
|
goto err;
|
|
}
|
|
|
|
/* Fill the cache affinity information here for the GPUs
|
|
* using VCRAT
|
|
*/
|
|
kfd_fill_cache_non_crat_info(*dev, gpu);
|
|
|
|
/* Update the SYSFS tree, since we added another topology
|
|
* device
|
|
*/
|
|
res = kfd_topology_update_sysfs();
|
|
if (!res)
|
|
sys_props.generation_count++;
|
|
else
|
|
pr_err("Failed to update GPU (ID: 0x%x) to sysfs topology. res=%d\n",
|
|
gpu_id, res);
|
|
|
|
err:
|
|
kfd_destroy_crat_image(crat_image);
|
|
return res;
|
|
}
|
|
|
|
int kfd_topology_add_device(struct kfd_dev *gpu)
|
|
{
|
|
uint32_t gpu_id;
|
|
struct kfd_topology_device *dev;
|
|
struct kfd_cu_info cu_info;
|
|
int res = 0;
|
|
int i;
|
|
const char *asic_name = amdgpu_asic_name[gpu->adev->asic_type];
|
|
|
|
gpu_id = kfd_generate_gpu_id(gpu);
|
|
pr_debug("Adding new GPU (ID: 0x%x) to topology\n", gpu_id);
|
|
|
|
/* Check to see if this gpu device exists in the topology_device_list.
|
|
* If so, assign the gpu to that device,
|
|
* else create a Virtual CRAT for this gpu device and then parse that
|
|
* CRAT to create a new topology device. Once created assign the gpu to
|
|
* that topology device
|
|
*/
|
|
down_write(&topology_lock);
|
|
dev = kfd_assign_gpu(gpu);
|
|
if (!dev)
|
|
res = kfd_topology_add_device_locked(gpu, gpu_id, &dev);
|
|
up_write(&topology_lock);
|
|
if (res)
|
|
return res;
|
|
|
|
dev->gpu_id = gpu_id;
|
|
gpu->id = gpu_id;
|
|
|
|
kfd_dev_create_p2p_links();
|
|
|
|
/* TODO: Move the following lines to function
|
|
* kfd_add_non_crat_information
|
|
*/
|
|
|
|
/* Fill-in additional information that is not available in CRAT but
|
|
* needed for the topology
|
|
*/
|
|
|
|
amdgpu_amdkfd_get_cu_info(dev->gpu->adev, &cu_info);
|
|
|
|
for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1; i++) {
|
|
dev->node_props.name[i] = __tolower(asic_name[i]);
|
|
if (asic_name[i] == '\0')
|
|
break;
|
|
}
|
|
dev->node_props.name[i] = '\0';
|
|
|
|
dev->node_props.simd_arrays_per_engine =
|
|
cu_info.num_shader_arrays_per_engine;
|
|
|
|
dev->node_props.gfx_target_version = gpu->device_info.gfx_target_version;
|
|
dev->node_props.vendor_id = gpu->adev->pdev->vendor;
|
|
dev->node_props.device_id = gpu->adev->pdev->device;
|
|
dev->node_props.capability |=
|
|
((dev->gpu->adev->rev_id << HSA_CAP_ASIC_REVISION_SHIFT) &
|
|
HSA_CAP_ASIC_REVISION_MASK);
|
|
dev->node_props.location_id = pci_dev_id(gpu->adev->pdev);
|
|
dev->node_props.domain = pci_domain_nr(gpu->adev->pdev->bus);
|
|
dev->node_props.max_engine_clk_fcompute =
|
|
amdgpu_amdkfd_get_max_engine_clock_in_mhz(dev->gpu->adev);
|
|
dev->node_props.max_engine_clk_ccompute =
|
|
cpufreq_quick_get_max(0) / 1000;
|
|
dev->node_props.drm_render_minor =
|
|
gpu->shared_resources.drm_render_minor;
|
|
|
|
dev->node_props.hive_id = gpu->hive_id;
|
|
dev->node_props.num_sdma_engines = kfd_get_num_sdma_engines(gpu);
|
|
dev->node_props.num_sdma_xgmi_engines =
|
|
kfd_get_num_xgmi_sdma_engines(gpu);
|
|
dev->node_props.num_sdma_queues_per_engine =
|
|
gpu->device_info.num_sdma_queues_per_engine -
|
|
gpu->device_info.num_reserved_sdma_queues_per_engine;
|
|
dev->node_props.num_gws = (dev->gpu->gws &&
|
|
dev->gpu->dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) ?
|
|
dev->gpu->adev->gds.gws_size : 0;
|
|
dev->node_props.num_cp_queues = get_cp_queues_num(dev->gpu->dqm);
|
|
|
|
kfd_fill_mem_clk_max_info(dev);
|
|
kfd_fill_iolink_non_crat_info(dev);
|
|
|
|
switch (dev->gpu->adev->asic_type) {
|
|
case CHIP_KAVERI:
|
|
case CHIP_HAWAII:
|
|
case CHIP_TONGA:
|
|
dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_PRE_1_0 <<
|
|
HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
|
|
HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
|
|
break;
|
|
case CHIP_CARRIZO:
|
|
case CHIP_FIJI:
|
|
case CHIP_POLARIS10:
|
|
case CHIP_POLARIS11:
|
|
case CHIP_POLARIS12:
|
|
case CHIP_VEGAM:
|
|
pr_debug("Adding doorbell packet type capability\n");
|
|
dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_1_0 <<
|
|
HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
|
|
HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
|
|
break;
|
|
default:
|
|
if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(9, 0, 1))
|
|
dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_2_0 <<
|
|
HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
|
|
HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
|
|
else
|
|
WARN(1, "Unexpected ASIC family %u",
|
|
dev->gpu->adev->asic_type);
|
|
}
|
|
|
|
/*
|
|
* Overwrite ATS capability according to needs_iommu_device to fix
|
|
* potential missing corresponding bit in CRAT of BIOS.
|
|
*/
|
|
if (dev->gpu->use_iommu_v2)
|
|
dev->node_props.capability |= HSA_CAP_ATS_PRESENT;
|
|
else
|
|
dev->node_props.capability &= ~HSA_CAP_ATS_PRESENT;
|
|
|
|
/* Fix errors in CZ CRAT.
|
|
* simd_count: Carrizo CRAT reports wrong simd_count, probably
|
|
* because it doesn't consider masked out CUs
|
|
* max_waves_per_simd: Carrizo reports wrong max_waves_per_simd
|
|
*/
|
|
if (dev->gpu->adev->asic_type == CHIP_CARRIZO) {
|
|
dev->node_props.simd_count =
|
|
cu_info.simd_per_cu * cu_info.cu_active_number;
|
|
dev->node_props.max_waves_per_simd = 10;
|
|
}
|
|
|
|
/* kfd only concerns sram ecc on GFX and HBM ecc on UMC */
|
|
dev->node_props.capability |=
|
|
((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__GFX)) != 0) ?
|
|
HSA_CAP_SRAM_EDCSUPPORTED : 0;
|
|
dev->node_props.capability |=
|
|
((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__UMC)) != 0) ?
|
|
HSA_CAP_MEM_EDCSUPPORTED : 0;
|
|
|
|
if (KFD_GC_VERSION(dev->gpu) != IP_VERSION(9, 0, 1))
|
|
dev->node_props.capability |= (dev->gpu->adev->ras_enabled != 0) ?
|
|
HSA_CAP_RASEVENTNOTIFY : 0;
|
|
|
|
if (KFD_IS_SVM_API_SUPPORTED(dev->gpu->adev->kfd.dev))
|
|
dev->node_props.capability |= HSA_CAP_SVMAPI_SUPPORTED;
|
|
|
|
kfd_debug_print_topology();
|
|
|
|
kfd_notify_gpu_change(gpu_id, 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* kfd_topology_update_io_links() - Update IO links after device removal.
|
|
* @proximity_domain: Proximity domain value of the dev being removed.
|
|
*
|
|
* The topology list currently is arranged in increasing order of
|
|
* proximity domain.
|
|
*
|
|
* Two things need to be done when a device is removed:
|
|
* 1. All the IO links to this device need to be removed.
|
|
* 2. All nodes after the current device node need to move
|
|
* up once this device node is removed from the topology
|
|
* list. As a result, the proximity domain values for
|
|
* all nodes after the node being deleted reduce by 1.
|
|
* This would also cause the proximity domain values for
|
|
* io links to be updated based on new proximity domain
|
|
* values.
|
|
*
|
|
* Context: The caller must hold write topology_lock.
|
|
*/
|
|
static void kfd_topology_update_io_links(int proximity_domain)
|
|
{
|
|
struct kfd_topology_device *dev;
|
|
struct kfd_iolink_properties *iolink, *p2plink, *tmp;
|
|
|
|
list_for_each_entry(dev, &topology_device_list, list) {
|
|
if (dev->proximity_domain > proximity_domain)
|
|
dev->proximity_domain--;
|
|
|
|
list_for_each_entry_safe(iolink, tmp, &dev->io_link_props, list) {
|
|
/*
|
|
* If there is an io link to the dev being deleted
|
|
* then remove that IO link also.
|
|
*/
|
|
if (iolink->node_to == proximity_domain) {
|
|
list_del(&iolink->list);
|
|
dev->node_props.io_links_count--;
|
|
} else {
|
|
if (iolink->node_from > proximity_domain)
|
|
iolink->node_from--;
|
|
if (iolink->node_to > proximity_domain)
|
|
iolink->node_to--;
|
|
}
|
|
}
|
|
|
|
list_for_each_entry_safe(p2plink, tmp, &dev->p2p_link_props, list) {
|
|
/*
|
|
* If there is a p2p link to the dev being deleted
|
|
* then remove that p2p link also.
|
|
*/
|
|
if (p2plink->node_to == proximity_domain) {
|
|
list_del(&p2plink->list);
|
|
dev->node_props.p2p_links_count--;
|
|
} else {
|
|
if (p2plink->node_from > proximity_domain)
|
|
p2plink->node_from--;
|
|
if (p2plink->node_to > proximity_domain)
|
|
p2plink->node_to--;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
int kfd_topology_remove_device(struct kfd_dev *gpu)
|
|
{
|
|
struct kfd_topology_device *dev, *tmp;
|
|
uint32_t gpu_id;
|
|
int res = -ENODEV;
|
|
int i = 0;
|
|
|
|
down_write(&topology_lock);
|
|
|
|
list_for_each_entry_safe(dev, tmp, &topology_device_list, list) {
|
|
if (dev->gpu == gpu) {
|
|
gpu_id = dev->gpu_id;
|
|
kfd_remove_sysfs_node_entry(dev);
|
|
kfd_release_topology_device(dev);
|
|
sys_props.num_devices--;
|
|
kfd_topology_update_io_links(i);
|
|
topology_crat_proximity_domain = sys_props.num_devices-1;
|
|
sys_props.generation_count++;
|
|
res = 0;
|
|
if (kfd_topology_update_sysfs() < 0)
|
|
kfd_topology_release_sysfs();
|
|
break;
|
|
}
|
|
i++;
|
|
}
|
|
|
|
up_write(&topology_lock);
|
|
|
|
if (!res)
|
|
kfd_notify_gpu_change(gpu_id, 0);
|
|
|
|
return res;
|
|
}
|
|
|
|
/* kfd_topology_enum_kfd_devices - Enumerate through all devices in KFD
|
|
* topology. If GPU device is found @idx, then valid kfd_dev pointer is
|
|
* returned through @kdev
|
|
* Return - 0: On success (@kdev will be NULL for non GPU nodes)
|
|
* -1: If end of list
|
|
*/
|
|
int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev)
|
|
{
|
|
|
|
struct kfd_topology_device *top_dev;
|
|
uint8_t device_idx = 0;
|
|
|
|
*kdev = NULL;
|
|
down_read(&topology_lock);
|
|
|
|
list_for_each_entry(top_dev, &topology_device_list, list) {
|
|
if (device_idx == idx) {
|
|
*kdev = top_dev->gpu;
|
|
up_read(&topology_lock);
|
|
return 0;
|
|
}
|
|
|
|
device_idx++;
|
|
}
|
|
|
|
up_read(&topology_lock);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
static int kfd_cpumask_to_apic_id(const struct cpumask *cpumask)
|
|
{
|
|
int first_cpu_of_numa_node;
|
|
|
|
if (!cpumask || cpumask == cpu_none_mask)
|
|
return -1;
|
|
first_cpu_of_numa_node = cpumask_first(cpumask);
|
|
if (first_cpu_of_numa_node >= nr_cpu_ids)
|
|
return -1;
|
|
#ifdef CONFIG_X86_64
|
|
return cpu_data(first_cpu_of_numa_node).apicid;
|
|
#else
|
|
return first_cpu_of_numa_node;
|
|
#endif
|
|
}
|
|
|
|
/* kfd_numa_node_to_apic_id - Returns the APIC ID of the first logical processor
|
|
* of the given NUMA node (numa_node_id)
|
|
* Return -1 on failure
|
|
*/
|
|
int kfd_numa_node_to_apic_id(int numa_node_id)
|
|
{
|
|
if (numa_node_id == -1) {
|
|
pr_warn("Invalid NUMA Node. Use online CPU mask\n");
|
|
return kfd_cpumask_to_apic_id(cpu_online_mask);
|
|
}
|
|
return kfd_cpumask_to_apic_id(cpumask_of_node(numa_node_id));
|
|
}
|
|
|
|
void kfd_double_confirm_iommu_support(struct kfd_dev *gpu)
|
|
{
|
|
struct kfd_topology_device *dev;
|
|
|
|
gpu->use_iommu_v2 = false;
|
|
|
|
if (!gpu->device_info.needs_iommu_device)
|
|
return;
|
|
|
|
down_read(&topology_lock);
|
|
|
|
/* Only use IOMMUv2 if there is an APU topology node with no GPU
|
|
* assigned yet. This GPU will be assigned to it.
|
|
*/
|
|
list_for_each_entry(dev, &topology_device_list, list)
|
|
if (dev->node_props.cpu_cores_count &&
|
|
dev->node_props.simd_count &&
|
|
!dev->gpu)
|
|
gpu->use_iommu_v2 = true;
|
|
|
|
up_read(&topology_lock);
|
|
}
|
|
|
|
#if defined(CONFIG_DEBUG_FS)
|
|
|
|
int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data)
|
|
{
|
|
struct kfd_topology_device *dev;
|
|
unsigned int i = 0;
|
|
int r = 0;
|
|
|
|
down_read(&topology_lock);
|
|
|
|
list_for_each_entry(dev, &topology_device_list, list) {
|
|
if (!dev->gpu) {
|
|
i++;
|
|
continue;
|
|
}
|
|
|
|
seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
|
|
r = dqm_debugfs_hqds(m, dev->gpu->dqm);
|
|
if (r)
|
|
break;
|
|
}
|
|
|
|
up_read(&topology_lock);
|
|
|
|
return r;
|
|
}
|
|
|
|
int kfd_debugfs_rls_by_device(struct seq_file *m, void *data)
|
|
{
|
|
struct kfd_topology_device *dev;
|
|
unsigned int i = 0;
|
|
int r = 0;
|
|
|
|
down_read(&topology_lock);
|
|
|
|
list_for_each_entry(dev, &topology_device_list, list) {
|
|
if (!dev->gpu) {
|
|
i++;
|
|
continue;
|
|
}
|
|
|
|
seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
|
|
r = pm_debugfs_runlist(m, &dev->gpu->dqm->packet_mgr);
|
|
if (r)
|
|
break;
|
|
}
|
|
|
|
up_read(&topology_lock);
|
|
|
|
return r;
|
|
}
|
|
|
|
#endif
|