linux-zen-server/drivers/gpu/drm/arm/display/komeda/komeda_crtc.c

644 lines
17 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* (C) COPYRIGHT 2018 ARM Limited. All rights reserved.
* Author: James.Qian.Wang <james.qian.wang@arm.com>
*
*/
#include <linux/clk.h>
#include <linux/pm_runtime.h>
#include <linux/spinlock.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_print.h>
#include <drm/drm_vblank.h>
#include "komeda_dev.h"
#include "komeda_kms.h"
void komeda_crtc_get_color_config(struct drm_crtc_state *crtc_st,
u32 *color_depths, u32 *color_formats)
{
struct drm_connector *conn;
struct drm_connector_state *conn_st;
u32 conn_color_formats = ~0u;
int i, min_bpc = 31, conn_bpc = 0;
for_each_new_connector_in_state(crtc_st->state, conn, conn_st, i) {
if (conn_st->crtc != crtc_st->crtc)
continue;
conn_bpc = conn->display_info.bpc ? conn->display_info.bpc : 8;
conn_color_formats &= conn->display_info.color_formats;
if (conn_bpc < min_bpc)
min_bpc = conn_bpc;
}
/* connector doesn't config any color_format, use RGB444 as default */
if (!conn_color_formats)
conn_color_formats = DRM_COLOR_FORMAT_RGB444;
*color_depths = GENMASK(min_bpc, 0);
*color_formats = conn_color_formats;
}
static void komeda_crtc_update_clock_ratio(struct komeda_crtc_state *kcrtc_st)
{
u64 pxlclk, aclk;
if (!kcrtc_st->base.active) {
kcrtc_st->clock_ratio = 0;
return;
}
pxlclk = kcrtc_st->base.adjusted_mode.crtc_clock * 1000ULL;
aclk = komeda_crtc_get_aclk(kcrtc_st);
kcrtc_st->clock_ratio = div64_u64(aclk << 32, pxlclk);
}
/**
* komeda_crtc_atomic_check - build display output data flow
* @crtc: DRM crtc
* @state: the crtc state object
*
* crtc_atomic_check is the final check stage, so beside build a display data
* pipeline according to the crtc_state, but still needs to release or disable
* the unclaimed pipeline resources.
*
* RETURNS:
* Zero for success or -errno
*/
static int
komeda_crtc_atomic_check(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
crtc);
struct komeda_crtc *kcrtc = to_kcrtc(crtc);
struct komeda_crtc_state *kcrtc_st = to_kcrtc_st(crtc_state);
int err;
if (drm_atomic_crtc_needs_modeset(crtc_state))
komeda_crtc_update_clock_ratio(kcrtc_st);
if (crtc_state->active) {
err = komeda_build_display_data_flow(kcrtc, kcrtc_st);
if (err)
return err;
}
/* release unclaimed pipeline resources */
err = komeda_release_unclaimed_resources(kcrtc->slave, kcrtc_st);
if (err)
return err;
err = komeda_release_unclaimed_resources(kcrtc->master, kcrtc_st);
if (err)
return err;
return 0;
}
/* For active a crtc, mainly need two parts of preparation
* 1. adjust display operation mode.
* 2. enable needed clk
*/
static int
komeda_crtc_prepare(struct komeda_crtc *kcrtc)
{
struct komeda_dev *mdev = kcrtc->base.dev->dev_private;
struct komeda_pipeline *master = kcrtc->master;
struct komeda_crtc_state *kcrtc_st = to_kcrtc_st(kcrtc->base.state);
struct drm_display_mode *mode = &kcrtc_st->base.adjusted_mode;
u32 new_mode;
int err;
mutex_lock(&mdev->lock);
new_mode = mdev->dpmode | BIT(master->id);
if (WARN_ON(new_mode == mdev->dpmode)) {
err = 0;
goto unlock;
}
err = mdev->funcs->change_opmode(mdev, new_mode);
if (err) {
DRM_ERROR("failed to change opmode: 0x%x -> 0x%x.\n,",
mdev->dpmode, new_mode);
goto unlock;
}
mdev->dpmode = new_mode;
/* Only need to enable aclk on single display mode, but no need to
* enable aclk it on dual display mode, since the dual mode always
* switch from single display mode, the aclk already enabled, no need
* to enable it again.
*/
if (new_mode != KOMEDA_MODE_DUAL_DISP) {
err = clk_set_rate(mdev->aclk, komeda_crtc_get_aclk(kcrtc_st));
if (err)
DRM_ERROR("failed to set aclk.\n");
err = clk_prepare_enable(mdev->aclk);
if (err)
DRM_ERROR("failed to enable aclk.\n");
}
err = clk_set_rate(master->pxlclk, mode->crtc_clock * 1000);
if (err)
DRM_ERROR("failed to set pxlclk for pipe%d\n", master->id);
err = clk_prepare_enable(master->pxlclk);
if (err)
DRM_ERROR("failed to enable pxl clk for pipe%d.\n", master->id);
unlock:
mutex_unlock(&mdev->lock);
return err;
}
static int
komeda_crtc_unprepare(struct komeda_crtc *kcrtc)
{
struct komeda_dev *mdev = kcrtc->base.dev->dev_private;
struct komeda_pipeline *master = kcrtc->master;
u32 new_mode;
int err;
mutex_lock(&mdev->lock);
new_mode = mdev->dpmode & (~BIT(master->id));
if (WARN_ON(new_mode == mdev->dpmode)) {
err = 0;
goto unlock;
}
err = mdev->funcs->change_opmode(mdev, new_mode);
if (err) {
DRM_ERROR("failed to change opmode: 0x%x -> 0x%x.\n,",
mdev->dpmode, new_mode);
goto unlock;
}
mdev->dpmode = new_mode;
clk_disable_unprepare(master->pxlclk);
if (new_mode == KOMEDA_MODE_INACTIVE)
clk_disable_unprepare(mdev->aclk);
unlock:
mutex_unlock(&mdev->lock);
return err;
}
void komeda_crtc_handle_event(struct komeda_crtc *kcrtc,
struct komeda_events *evts)
{
struct drm_crtc *crtc = &kcrtc->base;
u32 events = evts->pipes[kcrtc->master->id];
if (events & KOMEDA_EVENT_VSYNC)
drm_crtc_handle_vblank(crtc);
if (events & KOMEDA_EVENT_EOW) {
struct komeda_wb_connector *wb_conn = kcrtc->wb_conn;
if (wb_conn)
drm_writeback_signal_completion(&wb_conn->base, 0);
else
DRM_WARN("CRTC[%d]: EOW happen but no wb_connector.\n",
drm_crtc_index(&kcrtc->base));
}
/* will handle it together with the write back support */
if (events & KOMEDA_EVENT_EOW)
DRM_DEBUG("EOW.\n");
if (events & KOMEDA_EVENT_FLIP) {
unsigned long flags;
struct drm_pending_vblank_event *event;
spin_lock_irqsave(&crtc->dev->event_lock, flags);
if (kcrtc->disable_done) {
complete_all(kcrtc->disable_done);
kcrtc->disable_done = NULL;
} else if (crtc->state->event) {
event = crtc->state->event;
/*
* Consume event before notifying drm core that flip
* happened.
*/
crtc->state->event = NULL;
drm_crtc_send_vblank_event(crtc, event);
} else {
DRM_WARN("CRTC[%d]: FLIP happened but no pending commit.\n",
drm_crtc_index(&kcrtc->base));
}
spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
}
}
static void
komeda_crtc_do_flush(struct drm_crtc *crtc,
struct drm_crtc_state *old)
{
struct komeda_crtc *kcrtc = to_kcrtc(crtc);
struct komeda_crtc_state *kcrtc_st = to_kcrtc_st(crtc->state);
struct komeda_dev *mdev = kcrtc->base.dev->dev_private;
struct komeda_pipeline *master = kcrtc->master;
struct komeda_pipeline *slave = kcrtc->slave;
struct komeda_wb_connector *wb_conn = kcrtc->wb_conn;
struct drm_connector_state *conn_st;
DRM_DEBUG_ATOMIC("CRTC%d_FLUSH: active_pipes: 0x%x, affected: 0x%x.\n",
drm_crtc_index(crtc),
kcrtc_st->active_pipes, kcrtc_st->affected_pipes);
/* step 1: update the pipeline/component state to HW */
if (has_bit(master->id, kcrtc_st->affected_pipes))
komeda_pipeline_update(master, old->state);
if (slave && has_bit(slave->id, kcrtc_st->affected_pipes))
komeda_pipeline_update(slave, old->state);
conn_st = wb_conn ? wb_conn->base.base.state : NULL;
if (conn_st && conn_st->writeback_job)
drm_writeback_queue_job(&wb_conn->base, conn_st);
/* step 2: notify the HW to kickoff the update */
mdev->funcs->flush(mdev, master->id, kcrtc_st->active_pipes);
}
static void
komeda_crtc_atomic_enable(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct drm_crtc_state *old = drm_atomic_get_old_crtc_state(state,
crtc);
pm_runtime_get_sync(crtc->dev->dev);
komeda_crtc_prepare(to_kcrtc(crtc));
drm_crtc_vblank_on(crtc);
WARN_ON(drm_crtc_vblank_get(crtc));
komeda_crtc_do_flush(crtc, old);
}
void
komeda_crtc_flush_and_wait_for_flip_done(struct komeda_crtc *kcrtc,
struct completion *input_flip_done)
{
struct drm_device *drm = kcrtc->base.dev;
struct komeda_dev *mdev = kcrtc->master->mdev;
struct completion *flip_done;
struct completion temp;
int timeout;
/* if caller doesn't send a flip_done, use a private flip_done */
if (input_flip_done) {
flip_done = input_flip_done;
} else {
init_completion(&temp);
kcrtc->disable_done = &temp;
flip_done = &temp;
}
mdev->funcs->flush(mdev, kcrtc->master->id, 0);
/* wait the flip take affect.*/
timeout = wait_for_completion_timeout(flip_done, HZ);
if (timeout == 0) {
DRM_ERROR("wait pipe%d flip done timeout\n", kcrtc->master->id);
if (!input_flip_done) {
unsigned long flags;
spin_lock_irqsave(&drm->event_lock, flags);
kcrtc->disable_done = NULL;
spin_unlock_irqrestore(&drm->event_lock, flags);
}
}
}
static void
komeda_crtc_atomic_disable(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct drm_crtc_state *old = drm_atomic_get_old_crtc_state(state,
crtc);
struct komeda_crtc *kcrtc = to_kcrtc(crtc);
struct komeda_crtc_state *old_st = to_kcrtc_st(old);
struct komeda_pipeline *master = kcrtc->master;
struct komeda_pipeline *slave = kcrtc->slave;
struct completion *disable_done;
bool needs_phase2 = false;
DRM_DEBUG_ATOMIC("CRTC%d_DISABLE: active_pipes: 0x%x, affected: 0x%x\n",
drm_crtc_index(crtc),
old_st->active_pipes, old_st->affected_pipes);
if (slave && has_bit(slave->id, old_st->active_pipes))
komeda_pipeline_disable(slave, old->state);
if (has_bit(master->id, old_st->active_pipes))
needs_phase2 = komeda_pipeline_disable(master, old->state);
/* crtc_disable has two scenarios according to the state->active switch.
* 1. active -> inactive
* this commit is a disable commit. and the commit will be finished
* or done after the disable operation. on this case we can directly
* use the crtc->state->event to tracking the HW disable operation.
* 2. active -> active
* the crtc->commit is not for disable, but a modeset operation when
* crtc is active, such commit actually has been completed by 3
* DRM operations:
* crtc_disable, update_planes(crtc_flush), crtc_enable
* so on this case the crtc->commit is for the whole process.
* we can not use it for tracing the disable, we need a temporary
* flip_done for tracing the disable. and crtc->state->event for
* the crtc_enable operation.
* That's also the reason why skip modeset commit in
* komeda_crtc_atomic_flush()
*/
disable_done = (needs_phase2 || crtc->state->active) ?
NULL : &crtc->state->commit->flip_done;
/* wait phase 1 disable done */
komeda_crtc_flush_and_wait_for_flip_done(kcrtc, disable_done);
/* phase 2 */
if (needs_phase2) {
komeda_pipeline_disable(kcrtc->master, old->state);
disable_done = crtc->state->active ?
NULL : &crtc->state->commit->flip_done;
komeda_crtc_flush_and_wait_for_flip_done(kcrtc, disable_done);
}
drm_crtc_vblank_put(crtc);
drm_crtc_vblank_off(crtc);
komeda_crtc_unprepare(kcrtc);
pm_runtime_put(crtc->dev->dev);
}
static void
komeda_crtc_atomic_flush(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
crtc);
struct drm_crtc_state *old = drm_atomic_get_old_crtc_state(state,
crtc);
/* commit with modeset will be handled in enable/disable */
if (drm_atomic_crtc_needs_modeset(crtc_state))
return;
komeda_crtc_do_flush(crtc, old);
}
/* Returns the minimum frequency of the aclk rate (main engine clock) in Hz */
static unsigned long
komeda_calc_min_aclk_rate(struct komeda_crtc *kcrtc,
unsigned long pxlclk)
{
/* Once dual-link one display pipeline drives two display outputs,
* the aclk needs run on the double rate of pxlclk
*/
if (kcrtc->master->dual_link)
return pxlclk * 2;
else
return pxlclk;
}
/* Get current aclk rate that specified by state */
unsigned long komeda_crtc_get_aclk(struct komeda_crtc_state *kcrtc_st)
{
struct drm_crtc *crtc = kcrtc_st->base.crtc;
struct komeda_dev *mdev = crtc->dev->dev_private;
unsigned long pxlclk = kcrtc_st->base.adjusted_mode.crtc_clock * 1000;
unsigned long min_aclk;
min_aclk = komeda_calc_min_aclk_rate(to_kcrtc(crtc), pxlclk);
return clk_round_rate(mdev->aclk, min_aclk);
}
static enum drm_mode_status
komeda_crtc_mode_valid(struct drm_crtc *crtc, const struct drm_display_mode *m)
{
struct komeda_dev *mdev = crtc->dev->dev_private;
struct komeda_crtc *kcrtc = to_kcrtc(crtc);
struct komeda_pipeline *master = kcrtc->master;
unsigned long min_pxlclk, min_aclk;
if (m->flags & DRM_MODE_FLAG_INTERLACE)
return MODE_NO_INTERLACE;
min_pxlclk = m->clock * 1000;
if (master->dual_link)
min_pxlclk /= 2;
if (min_pxlclk != clk_round_rate(master->pxlclk, min_pxlclk)) {
DRM_DEBUG_ATOMIC("pxlclk doesn't support %lu Hz\n", min_pxlclk);
return MODE_NOCLOCK;
}
min_aclk = komeda_calc_min_aclk_rate(to_kcrtc(crtc), min_pxlclk);
if (clk_round_rate(mdev->aclk, min_aclk) < min_aclk) {
DRM_DEBUG_ATOMIC("engine clk can't satisfy the requirement of %s-clk: %lu.\n",
m->name, min_pxlclk);
return MODE_CLOCK_HIGH;
}
return MODE_OK;
}
static bool komeda_crtc_mode_fixup(struct drm_crtc *crtc,
const struct drm_display_mode *m,
struct drm_display_mode *adjusted_mode)
{
struct komeda_crtc *kcrtc = to_kcrtc(crtc);
unsigned long clk_rate;
drm_mode_set_crtcinfo(adjusted_mode, 0);
/* In dual link half the horizontal settings */
if (kcrtc->master->dual_link) {
adjusted_mode->crtc_clock /= 2;
adjusted_mode->crtc_hdisplay /= 2;
adjusted_mode->crtc_hsync_start /= 2;
adjusted_mode->crtc_hsync_end /= 2;
adjusted_mode->crtc_htotal /= 2;
}
clk_rate = adjusted_mode->crtc_clock * 1000;
/* crtc_clock will be used as the komeda output pixel clock */
adjusted_mode->crtc_clock = clk_round_rate(kcrtc->master->pxlclk,
clk_rate) / 1000;
return true;
}
static const struct drm_crtc_helper_funcs komeda_crtc_helper_funcs = {
.atomic_check = komeda_crtc_atomic_check,
.atomic_flush = komeda_crtc_atomic_flush,
.atomic_enable = komeda_crtc_atomic_enable,
.atomic_disable = komeda_crtc_atomic_disable,
.mode_valid = komeda_crtc_mode_valid,
.mode_fixup = komeda_crtc_mode_fixup,
};
static void komeda_crtc_reset(struct drm_crtc *crtc)
{
struct komeda_crtc_state *state;
if (crtc->state)
__drm_atomic_helper_crtc_destroy_state(crtc->state);
kfree(to_kcrtc_st(crtc->state));
crtc->state = NULL;
state = kzalloc(sizeof(*state), GFP_KERNEL);
if (state)
__drm_atomic_helper_crtc_reset(crtc, &state->base);
}
static struct drm_crtc_state *
komeda_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
{
struct komeda_crtc_state *old = to_kcrtc_st(crtc->state);
struct komeda_crtc_state *new;
new = kzalloc(sizeof(*new), GFP_KERNEL);
if (!new)
return NULL;
__drm_atomic_helper_crtc_duplicate_state(crtc, &new->base);
new->affected_pipes = old->active_pipes;
new->clock_ratio = old->clock_ratio;
new->max_slave_zorder = old->max_slave_zorder;
return &new->base;
}
static void komeda_crtc_atomic_destroy_state(struct drm_crtc *crtc,
struct drm_crtc_state *state)
{
__drm_atomic_helper_crtc_destroy_state(state);
kfree(to_kcrtc_st(state));
}
static int komeda_crtc_vblank_enable(struct drm_crtc *crtc)
{
struct komeda_dev *mdev = crtc->dev->dev_private;
struct komeda_crtc *kcrtc = to_kcrtc(crtc);
mdev->funcs->on_off_vblank(mdev, kcrtc->master->id, true);
return 0;
}
static void komeda_crtc_vblank_disable(struct drm_crtc *crtc)
{
struct komeda_dev *mdev = crtc->dev->dev_private;
struct komeda_crtc *kcrtc = to_kcrtc(crtc);
mdev->funcs->on_off_vblank(mdev, kcrtc->master->id, false);
}
static const struct drm_crtc_funcs komeda_crtc_funcs = {
.destroy = drm_crtc_cleanup,
.set_config = drm_atomic_helper_set_config,
.page_flip = drm_atomic_helper_page_flip,
.reset = komeda_crtc_reset,
.atomic_duplicate_state = komeda_crtc_atomic_duplicate_state,
.atomic_destroy_state = komeda_crtc_atomic_destroy_state,
.enable_vblank = komeda_crtc_vblank_enable,
.disable_vblank = komeda_crtc_vblank_disable,
};
int komeda_kms_setup_crtcs(struct komeda_kms_dev *kms,
struct komeda_dev *mdev)
{
struct komeda_crtc *crtc;
struct komeda_pipeline *master;
char str[16];
int i;
kms->n_crtcs = 0;
for (i = 0; i < mdev->n_pipelines; i++) {
crtc = &kms->crtcs[kms->n_crtcs];
master = mdev->pipelines[i];
crtc->master = master;
crtc->slave = komeda_pipeline_get_slave(master);
if (crtc->slave)
sprintf(str, "pipe-%d", crtc->slave->id);
else
sprintf(str, "None");
DRM_INFO("CRTC-%d: master(pipe-%d) slave(%s).\n",
kms->n_crtcs, master->id, str);
kms->n_crtcs++;
}
return 0;
}
static struct drm_plane *
get_crtc_primary(struct komeda_kms_dev *kms, struct komeda_crtc *crtc)
{
struct komeda_plane *kplane;
struct drm_plane *plane;
drm_for_each_plane(plane, &kms->base) {
if (plane->type != DRM_PLANE_TYPE_PRIMARY)
continue;
kplane = to_kplane(plane);
/* only master can be primary */
if (kplane->layer->base.pipeline == crtc->master)
return plane;
}
return NULL;
}
static int komeda_crtc_add(struct komeda_kms_dev *kms,
struct komeda_crtc *kcrtc)
{
struct drm_crtc *crtc = &kcrtc->base;
int err;
err = drm_crtc_init_with_planes(&kms->base, crtc,
get_crtc_primary(kms, kcrtc), NULL,
&komeda_crtc_funcs, NULL);
if (err)
return err;
drm_crtc_helper_add(crtc, &komeda_crtc_helper_funcs);
crtc->port = kcrtc->master->of_output_port;
drm_crtc_enable_color_mgmt(crtc, 0, true, KOMEDA_COLOR_LUT_SIZE);
return err;
}
int komeda_kms_add_crtcs(struct komeda_kms_dev *kms, struct komeda_dev *mdev)
{
int i, err;
for (i = 0; i < kms->n_crtcs; i++) {
err = komeda_crtc_add(kms, &kms->crtcs[i]);
if (err)
return err;
}
return 0;
}