linux-zen-server/drivers/gpu/drm/msm/disp/dpu1/dpu_hw_util.c

497 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved.
* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
*/
#define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__
#include "msm_drv.h"
#include "dpu_kms.h"
#include "dpu_hw_mdss.h"
#include "dpu_hw_util.h"
/* using a file static variables for debugfs access */
static u32 dpu_hw_util_log_mask = DPU_DBG_MASK_NONE;
/* DPU_SCALER_QSEED3 */
#define QSEED3_HW_VERSION 0x00
#define QSEED3_OP_MODE 0x04
#define QSEED3_RGB2Y_COEFF 0x08
#define QSEED3_PHASE_INIT 0x0C
#define QSEED3_PHASE_STEP_Y_H 0x10
#define QSEED3_PHASE_STEP_Y_V 0x14
#define QSEED3_PHASE_STEP_UV_H 0x18
#define QSEED3_PHASE_STEP_UV_V 0x1C
#define QSEED3_PRELOAD 0x20
#define QSEED3_DE_SHARPEN 0x24
#define QSEED3_DE_SHARPEN_CTL 0x28
#define QSEED3_DE_SHAPE_CTL 0x2C
#define QSEED3_DE_THRESHOLD 0x30
#define QSEED3_DE_ADJUST_DATA_0 0x34
#define QSEED3_DE_ADJUST_DATA_1 0x38
#define QSEED3_DE_ADJUST_DATA_2 0x3C
#define QSEED3_SRC_SIZE_Y_RGB_A 0x40
#define QSEED3_SRC_SIZE_UV 0x44
#define QSEED3_DST_SIZE 0x48
#define QSEED3_COEF_LUT_CTRL 0x4C
#define QSEED3_COEF_LUT_SWAP_BIT 0
#define QSEED3_COEF_LUT_DIR_BIT 1
#define QSEED3_COEF_LUT_Y_CIR_BIT 2
#define QSEED3_COEF_LUT_UV_CIR_BIT 3
#define QSEED3_COEF_LUT_Y_SEP_BIT 4
#define QSEED3_COEF_LUT_UV_SEP_BIT 5
#define QSEED3_BUFFER_CTRL 0x50
#define QSEED3_CLK_CTRL0 0x54
#define QSEED3_CLK_CTRL1 0x58
#define QSEED3_CLK_STATUS 0x5C
#define QSEED3_PHASE_INIT_Y_H 0x90
#define QSEED3_PHASE_INIT_Y_V 0x94
#define QSEED3_PHASE_INIT_UV_H 0x98
#define QSEED3_PHASE_INIT_UV_V 0x9C
#define QSEED3_COEF_LUT 0x100
#define QSEED3_FILTERS 5
#define QSEED3_LUT_REGIONS 4
#define QSEED3_CIRCULAR_LUTS 9
#define QSEED3_SEPARABLE_LUTS 10
#define QSEED3_LUT_SIZE 60
#define QSEED3_ENABLE 2
#define QSEED3_DIR_LUT_SIZE (200 * sizeof(u32))
#define QSEED3_CIR_LUT_SIZE \
(QSEED3_LUT_SIZE * QSEED3_CIRCULAR_LUTS * sizeof(u32))
#define QSEED3_SEP_LUT_SIZE \
(QSEED3_LUT_SIZE * QSEED3_SEPARABLE_LUTS * sizeof(u32))
/* DPU_SCALER_QSEED3LITE */
#define QSEED3LITE_COEF_LUT_Y_SEP_BIT 4
#define QSEED3LITE_COEF_LUT_UV_SEP_BIT 5
#define QSEED3LITE_COEF_LUT_CTRL 0x4C
#define QSEED3LITE_COEF_LUT_SWAP_BIT 0
#define QSEED3LITE_DIR_FILTER_WEIGHT 0x60
#define QSEED3LITE_FILTERS 2
#define QSEED3LITE_SEPARABLE_LUTS 10
#define QSEED3LITE_LUT_SIZE 33
#define QSEED3LITE_SEP_LUT_SIZE \
(QSEED3LITE_LUT_SIZE * QSEED3LITE_SEPARABLE_LUTS * sizeof(u32))
void dpu_reg_write(struct dpu_hw_blk_reg_map *c,
u32 reg_off,
u32 val,
const char *name)
{
/* don't need to mutex protect this */
if (c->log_mask & dpu_hw_util_log_mask)
DPU_DEBUG_DRIVER("[%s:0x%X] <= 0x%X\n",
name, reg_off, val);
writel_relaxed(val, c->blk_addr + reg_off);
}
int dpu_reg_read(struct dpu_hw_blk_reg_map *c, u32 reg_off)
{
return readl_relaxed(c->blk_addr + reg_off);
}
u32 *dpu_hw_util_get_log_mask_ptr(void)
{
return &dpu_hw_util_log_mask;
}
static void _dpu_hw_setup_scaler3_lut(struct dpu_hw_blk_reg_map *c,
struct dpu_hw_scaler3_cfg *scaler3_cfg, u32 offset)
{
int i, j, filter;
int config_lut = 0x0;
unsigned long lut_flags;
u32 lut_addr, lut_offset, lut_len;
u32 *lut[QSEED3_FILTERS] = {NULL, NULL, NULL, NULL, NULL};
static const uint32_t off_tbl[QSEED3_FILTERS][QSEED3_LUT_REGIONS][2] = {
{{18, 0x000}, {12, 0x120}, {12, 0x1E0}, {8, 0x2A0} },
{{6, 0x320}, {3, 0x3E0}, {3, 0x440}, {3, 0x4A0} },
{{6, 0x500}, {3, 0x5c0}, {3, 0x620}, {3, 0x680} },
{{6, 0x380}, {3, 0x410}, {3, 0x470}, {3, 0x4d0} },
{{6, 0x560}, {3, 0x5f0}, {3, 0x650}, {3, 0x6b0} },
};
lut_flags = (unsigned long) scaler3_cfg->lut_flag;
if (test_bit(QSEED3_COEF_LUT_DIR_BIT, &lut_flags) &&
(scaler3_cfg->dir_len == QSEED3_DIR_LUT_SIZE)) {
lut[0] = scaler3_cfg->dir_lut;
config_lut = 1;
}
if (test_bit(QSEED3_COEF_LUT_Y_CIR_BIT, &lut_flags) &&
(scaler3_cfg->y_rgb_cir_lut_idx < QSEED3_CIRCULAR_LUTS) &&
(scaler3_cfg->cir_len == QSEED3_CIR_LUT_SIZE)) {
lut[1] = scaler3_cfg->cir_lut +
scaler3_cfg->y_rgb_cir_lut_idx * QSEED3_LUT_SIZE;
config_lut = 1;
}
if (test_bit(QSEED3_COEF_LUT_UV_CIR_BIT, &lut_flags) &&
(scaler3_cfg->uv_cir_lut_idx < QSEED3_CIRCULAR_LUTS) &&
(scaler3_cfg->cir_len == QSEED3_CIR_LUT_SIZE)) {
lut[2] = scaler3_cfg->cir_lut +
scaler3_cfg->uv_cir_lut_idx * QSEED3_LUT_SIZE;
config_lut = 1;
}
if (test_bit(QSEED3_COEF_LUT_Y_SEP_BIT, &lut_flags) &&
(scaler3_cfg->y_rgb_sep_lut_idx < QSEED3_SEPARABLE_LUTS) &&
(scaler3_cfg->sep_len == QSEED3_SEP_LUT_SIZE)) {
lut[3] = scaler3_cfg->sep_lut +
scaler3_cfg->y_rgb_sep_lut_idx * QSEED3_LUT_SIZE;
config_lut = 1;
}
if (test_bit(QSEED3_COEF_LUT_UV_SEP_BIT, &lut_flags) &&
(scaler3_cfg->uv_sep_lut_idx < QSEED3_SEPARABLE_LUTS) &&
(scaler3_cfg->sep_len == QSEED3_SEP_LUT_SIZE)) {
lut[4] = scaler3_cfg->sep_lut +
scaler3_cfg->uv_sep_lut_idx * QSEED3_LUT_SIZE;
config_lut = 1;
}
if (config_lut) {
for (filter = 0; filter < QSEED3_FILTERS; filter++) {
if (!lut[filter])
continue;
lut_offset = 0;
for (i = 0; i < QSEED3_LUT_REGIONS; i++) {
lut_addr = QSEED3_COEF_LUT + offset
+ off_tbl[filter][i][1];
lut_len = off_tbl[filter][i][0] << 2;
for (j = 0; j < lut_len; j++) {
DPU_REG_WRITE(c,
lut_addr,
(lut[filter])[lut_offset++]);
lut_addr += 4;
}
}
}
}
if (test_bit(QSEED3_COEF_LUT_SWAP_BIT, &lut_flags))
DPU_REG_WRITE(c, QSEED3_COEF_LUT_CTRL + offset, BIT(0));
}
static void _dpu_hw_setup_scaler3lite_lut(struct dpu_hw_blk_reg_map *c,
struct dpu_hw_scaler3_cfg *scaler3_cfg, u32 offset)
{
int j, filter;
int config_lut = 0x0;
unsigned long lut_flags;
u32 lut_addr, lut_offset;
u32 *lut[QSEED3LITE_FILTERS] = {NULL, NULL};
static const uint32_t off_tbl[QSEED3_FILTERS] = { 0x000, 0x200 };
DPU_REG_WRITE(c, QSEED3LITE_DIR_FILTER_WEIGHT + offset, scaler3_cfg->dir_weight);
if (!scaler3_cfg->sep_lut)
return;
lut_flags = (unsigned long) scaler3_cfg->lut_flag;
if (test_bit(QSEED3_COEF_LUT_Y_SEP_BIT, &lut_flags) &&
(scaler3_cfg->y_rgb_sep_lut_idx < QSEED3LITE_SEPARABLE_LUTS) &&
(scaler3_cfg->sep_len == QSEED3LITE_SEP_LUT_SIZE)) {
lut[0] = scaler3_cfg->sep_lut +
scaler3_cfg->y_rgb_sep_lut_idx * QSEED3LITE_LUT_SIZE;
config_lut = 1;
}
if (test_bit(QSEED3_COEF_LUT_UV_SEP_BIT, &lut_flags) &&
(scaler3_cfg->uv_sep_lut_idx < QSEED3LITE_SEPARABLE_LUTS) &&
(scaler3_cfg->sep_len == QSEED3LITE_SEP_LUT_SIZE)) {
lut[1] = scaler3_cfg->sep_lut +
scaler3_cfg->uv_sep_lut_idx * QSEED3LITE_LUT_SIZE;
config_lut = 1;
}
if (config_lut) {
for (filter = 0; filter < QSEED3LITE_FILTERS; filter++) {
if (!lut[filter])
continue;
lut_offset = 0;
lut_addr = QSEED3_COEF_LUT + offset + off_tbl[filter];
for (j = 0; j < QSEED3LITE_LUT_SIZE; j++) {
DPU_REG_WRITE(c,
lut_addr,
(lut[filter])[lut_offset++]);
lut_addr += 4;
}
}
}
if (test_bit(QSEED3_COEF_LUT_SWAP_BIT, &lut_flags))
DPU_REG_WRITE(c, QSEED3_COEF_LUT_CTRL + offset, BIT(0));
}
static void _dpu_hw_setup_scaler3_de(struct dpu_hw_blk_reg_map *c,
struct dpu_hw_scaler3_de_cfg *de_cfg, u32 offset)
{
u32 sharp_lvl, sharp_ctl, shape_ctl, de_thr;
u32 adjust_a, adjust_b, adjust_c;
if (!de_cfg->enable)
return;
sharp_lvl = (de_cfg->sharpen_level1 & 0x1FF) |
((de_cfg->sharpen_level2 & 0x1FF) << 16);
sharp_ctl = ((de_cfg->limit & 0xF) << 9) |
((de_cfg->prec_shift & 0x7) << 13) |
((de_cfg->clip & 0x7) << 16);
shape_ctl = (de_cfg->thr_quiet & 0xFF) |
((de_cfg->thr_dieout & 0x3FF) << 16);
de_thr = (de_cfg->thr_low & 0x3FF) |
((de_cfg->thr_high & 0x3FF) << 16);
adjust_a = (de_cfg->adjust_a[0] & 0x3FF) |
((de_cfg->adjust_a[1] & 0x3FF) << 10) |
((de_cfg->adjust_a[2] & 0x3FF) << 20);
adjust_b = (de_cfg->adjust_b[0] & 0x3FF) |
((de_cfg->adjust_b[1] & 0x3FF) << 10) |
((de_cfg->adjust_b[2] & 0x3FF) << 20);
adjust_c = (de_cfg->adjust_c[0] & 0x3FF) |
((de_cfg->adjust_c[1] & 0x3FF) << 10) |
((de_cfg->adjust_c[2] & 0x3FF) << 20);
DPU_REG_WRITE(c, QSEED3_DE_SHARPEN + offset, sharp_lvl);
DPU_REG_WRITE(c, QSEED3_DE_SHARPEN_CTL + offset, sharp_ctl);
DPU_REG_WRITE(c, QSEED3_DE_SHAPE_CTL + offset, shape_ctl);
DPU_REG_WRITE(c, QSEED3_DE_THRESHOLD + offset, de_thr);
DPU_REG_WRITE(c, QSEED3_DE_ADJUST_DATA_0 + offset, adjust_a);
DPU_REG_WRITE(c, QSEED3_DE_ADJUST_DATA_1 + offset, adjust_b);
DPU_REG_WRITE(c, QSEED3_DE_ADJUST_DATA_2 + offset, adjust_c);
}
void dpu_hw_setup_scaler3(struct dpu_hw_blk_reg_map *c,
struct dpu_hw_scaler3_cfg *scaler3_cfg,
u32 scaler_offset, u32 scaler_version,
const struct dpu_format *format)
{
u32 op_mode = 0;
u32 phase_init, preload, src_y_rgb, src_uv, dst;
if (!scaler3_cfg->enable)
goto end;
op_mode |= BIT(0);
op_mode |= (scaler3_cfg->y_rgb_filter_cfg & 0x3) << 16;
if (format && DPU_FORMAT_IS_YUV(format)) {
op_mode |= BIT(12);
op_mode |= (scaler3_cfg->uv_filter_cfg & 0x3) << 24;
}
op_mode |= (scaler3_cfg->blend_cfg & 1) << 31;
op_mode |= (scaler3_cfg->dir_en) ? BIT(4) : 0;
preload =
((scaler3_cfg->preload_x[0] & 0x7F) << 0) |
((scaler3_cfg->preload_y[0] & 0x7F) << 8) |
((scaler3_cfg->preload_x[1] & 0x7F) << 16) |
((scaler3_cfg->preload_y[1] & 0x7F) << 24);
src_y_rgb = (scaler3_cfg->src_width[0] & 0x1FFFF) |
((scaler3_cfg->src_height[0] & 0x1FFFF) << 16);
src_uv = (scaler3_cfg->src_width[1] & 0x1FFFF) |
((scaler3_cfg->src_height[1] & 0x1FFFF) << 16);
dst = (scaler3_cfg->dst_width & 0x1FFFF) |
((scaler3_cfg->dst_height & 0x1FFFF) << 16);
if (scaler3_cfg->de.enable) {
_dpu_hw_setup_scaler3_de(c, &scaler3_cfg->de, scaler_offset);
op_mode |= BIT(8);
}
if (scaler3_cfg->lut_flag) {
if (scaler_version < 0x2004)
_dpu_hw_setup_scaler3_lut(c, scaler3_cfg, scaler_offset);
else
_dpu_hw_setup_scaler3lite_lut(c, scaler3_cfg, scaler_offset);
}
if (scaler_version == 0x1002) {
phase_init =
((scaler3_cfg->init_phase_x[0] & 0x3F) << 0) |
((scaler3_cfg->init_phase_y[0] & 0x3F) << 8) |
((scaler3_cfg->init_phase_x[1] & 0x3F) << 16) |
((scaler3_cfg->init_phase_y[1] & 0x3F) << 24);
DPU_REG_WRITE(c, QSEED3_PHASE_INIT + scaler_offset, phase_init);
} else {
DPU_REG_WRITE(c, QSEED3_PHASE_INIT_Y_H + scaler_offset,
scaler3_cfg->init_phase_x[0] & 0x1FFFFF);
DPU_REG_WRITE(c, QSEED3_PHASE_INIT_Y_V + scaler_offset,
scaler3_cfg->init_phase_y[0] & 0x1FFFFF);
DPU_REG_WRITE(c, QSEED3_PHASE_INIT_UV_H + scaler_offset,
scaler3_cfg->init_phase_x[1] & 0x1FFFFF);
DPU_REG_WRITE(c, QSEED3_PHASE_INIT_UV_V + scaler_offset,
scaler3_cfg->init_phase_y[1] & 0x1FFFFF);
}
DPU_REG_WRITE(c, QSEED3_PHASE_STEP_Y_H + scaler_offset,
scaler3_cfg->phase_step_x[0] & 0xFFFFFF);
DPU_REG_WRITE(c, QSEED3_PHASE_STEP_Y_V + scaler_offset,
scaler3_cfg->phase_step_y[0] & 0xFFFFFF);
DPU_REG_WRITE(c, QSEED3_PHASE_STEP_UV_H + scaler_offset,
scaler3_cfg->phase_step_x[1] & 0xFFFFFF);
DPU_REG_WRITE(c, QSEED3_PHASE_STEP_UV_V + scaler_offset,
scaler3_cfg->phase_step_y[1] & 0xFFFFFF);
DPU_REG_WRITE(c, QSEED3_PRELOAD + scaler_offset, preload);
DPU_REG_WRITE(c, QSEED3_SRC_SIZE_Y_RGB_A + scaler_offset, src_y_rgb);
DPU_REG_WRITE(c, QSEED3_SRC_SIZE_UV + scaler_offset, src_uv);
DPU_REG_WRITE(c, QSEED3_DST_SIZE + scaler_offset, dst);
end:
if (format && !DPU_FORMAT_IS_DX(format))
op_mode |= BIT(14);
if (format && format->alpha_enable) {
op_mode |= BIT(10);
if (scaler_version == 0x1002)
op_mode |= (scaler3_cfg->alpha_filter_cfg & 0x1) << 30;
else
op_mode |= (scaler3_cfg->alpha_filter_cfg & 0x3) << 29;
}
DPU_REG_WRITE(c, QSEED3_OP_MODE + scaler_offset, op_mode);
}
u32 dpu_hw_get_scaler3_ver(struct dpu_hw_blk_reg_map *c,
u32 scaler_offset)
{
return DPU_REG_READ(c, QSEED3_HW_VERSION + scaler_offset);
}
void dpu_hw_csc_setup(struct dpu_hw_blk_reg_map *c,
u32 csc_reg_off,
const struct dpu_csc_cfg *data, bool csc10)
{
static const u32 matrix_shift = 7;
u32 clamp_shift = csc10 ? 16 : 8;
u32 val;
/* matrix coeff - convert S15.16 to S4.9 */
val = ((data->csc_mv[0] >> matrix_shift) & 0x1FFF) |
(((data->csc_mv[1] >> matrix_shift) & 0x1FFF) << 16);
DPU_REG_WRITE(c, csc_reg_off, val);
val = ((data->csc_mv[2] >> matrix_shift) & 0x1FFF) |
(((data->csc_mv[3] >> matrix_shift) & 0x1FFF) << 16);
DPU_REG_WRITE(c, csc_reg_off + 0x4, val);
val = ((data->csc_mv[4] >> matrix_shift) & 0x1FFF) |
(((data->csc_mv[5] >> matrix_shift) & 0x1FFF) << 16);
DPU_REG_WRITE(c, csc_reg_off + 0x8, val);
val = ((data->csc_mv[6] >> matrix_shift) & 0x1FFF) |
(((data->csc_mv[7] >> matrix_shift) & 0x1FFF) << 16);
DPU_REG_WRITE(c, csc_reg_off + 0xc, val);
val = (data->csc_mv[8] >> matrix_shift) & 0x1FFF;
DPU_REG_WRITE(c, csc_reg_off + 0x10, val);
/* Pre clamp */
val = (data->csc_pre_lv[0] << clamp_shift) | data->csc_pre_lv[1];
DPU_REG_WRITE(c, csc_reg_off + 0x14, val);
val = (data->csc_pre_lv[2] << clamp_shift) | data->csc_pre_lv[3];
DPU_REG_WRITE(c, csc_reg_off + 0x18, val);
val = (data->csc_pre_lv[4] << clamp_shift) | data->csc_pre_lv[5];
DPU_REG_WRITE(c, csc_reg_off + 0x1c, val);
/* Post clamp */
val = (data->csc_post_lv[0] << clamp_shift) | data->csc_post_lv[1];
DPU_REG_WRITE(c, csc_reg_off + 0x20, val);
val = (data->csc_post_lv[2] << clamp_shift) | data->csc_post_lv[3];
DPU_REG_WRITE(c, csc_reg_off + 0x24, val);
val = (data->csc_post_lv[4] << clamp_shift) | data->csc_post_lv[5];
DPU_REG_WRITE(c, csc_reg_off + 0x28, val);
/* Pre-Bias */
DPU_REG_WRITE(c, csc_reg_off + 0x2c, data->csc_pre_bv[0]);
DPU_REG_WRITE(c, csc_reg_off + 0x30, data->csc_pre_bv[1]);
DPU_REG_WRITE(c, csc_reg_off + 0x34, data->csc_pre_bv[2]);
/* Post-Bias */
DPU_REG_WRITE(c, csc_reg_off + 0x38, data->csc_post_bv[0]);
DPU_REG_WRITE(c, csc_reg_off + 0x3c, data->csc_post_bv[1]);
DPU_REG_WRITE(c, csc_reg_off + 0x40, data->csc_post_bv[2]);
}
/**
* _dpu_hw_get_qos_lut - get LUT mapping based on fill level
* @tbl: Pointer to LUT table
* @total_fl: fill level
* Return: LUT setting corresponding to the fill level
*/
u64 _dpu_hw_get_qos_lut(const struct dpu_qos_lut_tbl *tbl,
u32 total_fl)
{
int i;
if (!tbl || !tbl->nentry || !tbl->entries)
return 0;
for (i = 0; i < tbl->nentry; i++)
if (total_fl <= tbl->entries[i].fl)
return tbl->entries[i].lut;
/* if last fl is zero, use as default */
if (!tbl->entries[i-1].fl)
return tbl->entries[i-1].lut;
return 0;
}
void dpu_hw_setup_misr(struct dpu_hw_blk_reg_map *c,
u32 misr_ctrl_offset,
bool enable, u32 frame_count)
{
u32 config = 0;
DPU_REG_WRITE(c, misr_ctrl_offset, MISR_CTRL_STATUS_CLEAR);
/* Clear old MISR value (in case it's read before a new value is calculated)*/
wmb();
if (enable) {
config = (frame_count & MISR_FRAME_COUNT_MASK) |
MISR_CTRL_ENABLE | MISR_CTRL_FREE_RUN_MASK;
DPU_REG_WRITE(c, misr_ctrl_offset, config);
} else {
DPU_REG_WRITE(c, misr_ctrl_offset, 0);
}
}
int dpu_hw_collect_misr(struct dpu_hw_blk_reg_map *c,
u32 misr_ctrl_offset,
u32 misr_signature_offset,
u32 *misr_value)
{
u32 ctrl = 0;
if (!misr_value)
return -EINVAL;
ctrl = DPU_REG_READ(c, misr_ctrl_offset);
if (!(ctrl & MISR_CTRL_ENABLE))
return -ENODATA;
if (!(ctrl & MISR_CTRL_STATUS))
return -EINVAL;
*misr_value = DPU_REG_READ(c, misr_signature_offset);
return 0;
}