linux-zen-server/drivers/gpu/drm/msm/disp/dpu1/dpu_kms.c

1338 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2013 Red Hat
* Copyright (c) 2014-2018, The Linux Foundation. All rights reserved.
* Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved.
*
* Author: Rob Clark <robdclark@gmail.com>
*/
#define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__
#include <linux/debugfs.h>
#include <linux/dma-buf.h>
#include <linux/of_irq.h>
#include <linux/pm_opp.h>
#include <drm/drm_crtc.h>
#include <drm/drm_file.h>
#include <drm/drm_framebuffer.h>
#include <drm/drm_vblank.h>
#include <drm/drm_writeback.h>
#include "msm_drv.h"
#include "msm_mmu.h"
#include "msm_gem.h"
#include "disp/msm_disp_snapshot.h"
#include "dpu_core_irq.h"
#include "dpu_crtc.h"
#include "dpu_encoder.h"
#include "dpu_formats.h"
#include "dpu_hw_vbif.h"
#include "dpu_kms.h"
#include "dpu_plane.h"
#include "dpu_vbif.h"
#include "dpu_writeback.h"
#define CREATE_TRACE_POINTS
#include "dpu_trace.h"
/*
* To enable overall DRM driver logging
* # echo 0x2 > /sys/module/drm/parameters/debug
*
* To enable DRM driver h/w logging
* # echo <mask> > /sys/kernel/debug/dri/0/debug/hw_log_mask
*
* See dpu_hw_mdss.h for h/w logging mask definitions (search for DPU_DBG_MASK_)
*/
#define DPU_DEBUGFS_DIR "msm_dpu"
#define DPU_DEBUGFS_HWMASKNAME "hw_log_mask"
static int dpu_kms_hw_init(struct msm_kms *kms);
static void _dpu_kms_mmu_destroy(struct dpu_kms *dpu_kms);
#ifdef CONFIG_DEBUG_FS
static int _dpu_danger_signal_status(struct seq_file *s,
bool danger_status)
{
struct dpu_kms *kms = (struct dpu_kms *)s->private;
struct dpu_danger_safe_status status;
int i;
if (!kms->hw_mdp) {
DPU_ERROR("invalid arg(s)\n");
return 0;
}
memset(&status, 0, sizeof(struct dpu_danger_safe_status));
pm_runtime_get_sync(&kms->pdev->dev);
if (danger_status) {
seq_puts(s, "\nDanger signal status:\n");
if (kms->hw_mdp->ops.get_danger_status)
kms->hw_mdp->ops.get_danger_status(kms->hw_mdp,
&status);
} else {
seq_puts(s, "\nSafe signal status:\n");
if (kms->hw_mdp->ops.get_safe_status)
kms->hw_mdp->ops.get_safe_status(kms->hw_mdp,
&status);
}
pm_runtime_put_sync(&kms->pdev->dev);
seq_printf(s, "MDP : 0x%x\n", status.mdp);
for (i = SSPP_VIG0; i < SSPP_MAX; i++)
seq_printf(s, "SSPP%d : 0x%x \n", i - SSPP_VIG0,
status.sspp[i]);
seq_puts(s, "\n");
return 0;
}
static int dpu_debugfs_danger_stats_show(struct seq_file *s, void *v)
{
return _dpu_danger_signal_status(s, true);
}
DEFINE_SHOW_ATTRIBUTE(dpu_debugfs_danger_stats);
static int dpu_debugfs_safe_stats_show(struct seq_file *s, void *v)
{
return _dpu_danger_signal_status(s, false);
}
DEFINE_SHOW_ATTRIBUTE(dpu_debugfs_safe_stats);
static ssize_t _dpu_plane_danger_read(struct file *file,
char __user *buff, size_t count, loff_t *ppos)
{
struct dpu_kms *kms = file->private_data;
int len;
char buf[40];
len = scnprintf(buf, sizeof(buf), "%d\n", !kms->has_danger_ctrl);
return simple_read_from_buffer(buff, count, ppos, buf, len);
}
static void _dpu_plane_set_danger_state(struct dpu_kms *kms, bool enable)
{
struct drm_plane *plane;
drm_for_each_plane(plane, kms->dev) {
if (plane->fb && plane->state) {
dpu_plane_danger_signal_ctrl(plane, enable);
DPU_DEBUG("plane:%d img:%dx%d ",
plane->base.id, plane->fb->width,
plane->fb->height);
DPU_DEBUG("src[%d,%d,%d,%d] dst[%d,%d,%d,%d]\n",
plane->state->src_x >> 16,
plane->state->src_y >> 16,
plane->state->src_w >> 16,
plane->state->src_h >> 16,
plane->state->crtc_x, plane->state->crtc_y,
plane->state->crtc_w, plane->state->crtc_h);
} else {
DPU_DEBUG("Inactive plane:%d\n", plane->base.id);
}
}
}
static ssize_t _dpu_plane_danger_write(struct file *file,
const char __user *user_buf, size_t count, loff_t *ppos)
{
struct dpu_kms *kms = file->private_data;
int disable_panic;
int ret;
ret = kstrtouint_from_user(user_buf, count, 0, &disable_panic);
if (ret)
return ret;
if (disable_panic) {
/* Disable panic signal for all active pipes */
DPU_DEBUG("Disabling danger:\n");
_dpu_plane_set_danger_state(kms, false);
kms->has_danger_ctrl = false;
} else {
/* Enable panic signal for all active pipes */
DPU_DEBUG("Enabling danger:\n");
kms->has_danger_ctrl = true;
_dpu_plane_set_danger_state(kms, true);
}
return count;
}
static const struct file_operations dpu_plane_danger_enable = {
.open = simple_open,
.read = _dpu_plane_danger_read,
.write = _dpu_plane_danger_write,
};
static void dpu_debugfs_danger_init(struct dpu_kms *dpu_kms,
struct dentry *parent)
{
struct dentry *entry = debugfs_create_dir("danger", parent);
debugfs_create_file("danger_status", 0600, entry,
dpu_kms, &dpu_debugfs_danger_stats_fops);
debugfs_create_file("safe_status", 0600, entry,
dpu_kms, &dpu_debugfs_safe_stats_fops);
debugfs_create_file("disable_danger", 0600, entry,
dpu_kms, &dpu_plane_danger_enable);
}
/*
* Companion structure for dpu_debugfs_create_regset32.
*/
struct dpu_debugfs_regset32 {
uint32_t offset;
uint32_t blk_len;
struct dpu_kms *dpu_kms;
};
static int dpu_regset32_show(struct seq_file *s, void *data)
{
struct dpu_debugfs_regset32 *regset = s->private;
struct dpu_kms *dpu_kms = regset->dpu_kms;
void __iomem *base;
uint32_t i, addr;
if (!dpu_kms->mmio)
return 0;
base = dpu_kms->mmio + regset->offset;
/* insert padding spaces, if needed */
if (regset->offset & 0xF) {
seq_printf(s, "[%x]", regset->offset & ~0xF);
for (i = 0; i < (regset->offset & 0xF); i += 4)
seq_puts(s, " ");
}
pm_runtime_get_sync(&dpu_kms->pdev->dev);
/* main register output */
for (i = 0; i < regset->blk_len; i += 4) {
addr = regset->offset + i;
if ((addr & 0xF) == 0x0)
seq_printf(s, i ? "\n[%x]" : "[%x]", addr);
seq_printf(s, " %08x", readl_relaxed(base + i));
}
seq_puts(s, "\n");
pm_runtime_put_sync(&dpu_kms->pdev->dev);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(dpu_regset32);
void dpu_debugfs_create_regset32(const char *name, umode_t mode,
void *parent,
uint32_t offset, uint32_t length, struct dpu_kms *dpu_kms)
{
struct dpu_debugfs_regset32 *regset;
if (WARN_ON(!name || !dpu_kms || !length))
return;
regset = devm_kzalloc(&dpu_kms->pdev->dev, sizeof(*regset), GFP_KERNEL);
if (!regset)
return;
/* make sure offset is a multiple of 4 */
regset->offset = round_down(offset, 4);
regset->blk_len = length;
regset->dpu_kms = dpu_kms;
debugfs_create_file(name, mode, parent, regset, &dpu_regset32_fops);
}
static int dpu_kms_debugfs_init(struct msm_kms *kms, struct drm_minor *minor)
{
struct dpu_kms *dpu_kms = to_dpu_kms(kms);
void *p = dpu_hw_util_get_log_mask_ptr();
struct dentry *entry;
struct drm_device *dev;
struct msm_drm_private *priv;
int i;
if (!p)
return -EINVAL;
/* Only create a set of debugfs for the primary node, ignore render nodes */
if (minor->type != DRM_MINOR_PRIMARY)
return 0;
dev = dpu_kms->dev;
priv = dev->dev_private;
entry = debugfs_create_dir("debug", minor->debugfs_root);
debugfs_create_x32(DPU_DEBUGFS_HWMASKNAME, 0600, entry, p);
dpu_debugfs_danger_init(dpu_kms, entry);
dpu_debugfs_vbif_init(dpu_kms, entry);
dpu_debugfs_core_irq_init(dpu_kms, entry);
dpu_debugfs_sspp_init(dpu_kms, entry);
for (i = 0; i < ARRAY_SIZE(priv->dp); i++) {
if (priv->dp[i])
msm_dp_debugfs_init(priv->dp[i], minor);
}
return dpu_core_perf_debugfs_init(dpu_kms, entry);
}
#endif
/* Global/shared object state funcs */
/*
* This is a helper that returns the private state currently in operation.
* Note that this would return the "old_state" if called in the atomic check
* path, and the "new_state" after the atomic swap has been done.
*/
struct dpu_global_state *
dpu_kms_get_existing_global_state(struct dpu_kms *dpu_kms)
{
return to_dpu_global_state(dpu_kms->global_state.state);
}
/*
* This acquires the modeset lock set aside for global state, creates
* a new duplicated private object state.
*/
struct dpu_global_state *dpu_kms_get_global_state(struct drm_atomic_state *s)
{
struct msm_drm_private *priv = s->dev->dev_private;
struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
struct drm_private_state *priv_state;
int ret;
ret = drm_modeset_lock(&dpu_kms->global_state_lock, s->acquire_ctx);
if (ret)
return ERR_PTR(ret);
priv_state = drm_atomic_get_private_obj_state(s,
&dpu_kms->global_state);
if (IS_ERR(priv_state))
return ERR_CAST(priv_state);
return to_dpu_global_state(priv_state);
}
static struct drm_private_state *
dpu_kms_global_duplicate_state(struct drm_private_obj *obj)
{
struct dpu_global_state *state;
state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
if (!state)
return NULL;
__drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
return &state->base;
}
static void dpu_kms_global_destroy_state(struct drm_private_obj *obj,
struct drm_private_state *state)
{
struct dpu_global_state *dpu_state = to_dpu_global_state(state);
kfree(dpu_state);
}
static const struct drm_private_state_funcs dpu_kms_global_state_funcs = {
.atomic_duplicate_state = dpu_kms_global_duplicate_state,
.atomic_destroy_state = dpu_kms_global_destroy_state,
};
static int dpu_kms_global_obj_init(struct dpu_kms *dpu_kms)
{
struct dpu_global_state *state;
drm_modeset_lock_init(&dpu_kms->global_state_lock);
state = kzalloc(sizeof(*state), GFP_KERNEL);
if (!state)
return -ENOMEM;
drm_atomic_private_obj_init(dpu_kms->dev, &dpu_kms->global_state,
&state->base,
&dpu_kms_global_state_funcs);
return 0;
}
static int dpu_kms_parse_data_bus_icc_path(struct dpu_kms *dpu_kms)
{
struct icc_path *path0;
struct icc_path *path1;
struct drm_device *dev = dpu_kms->dev;
struct device *dpu_dev = dev->dev;
path0 = msm_icc_get(dpu_dev, "mdp0-mem");
path1 = msm_icc_get(dpu_dev, "mdp1-mem");
if (IS_ERR_OR_NULL(path0))
return PTR_ERR_OR_ZERO(path0);
dpu_kms->path[0] = path0;
dpu_kms->num_paths = 1;
if (!IS_ERR_OR_NULL(path1)) {
dpu_kms->path[1] = path1;
dpu_kms->num_paths++;
}
return 0;
}
static int dpu_kms_enable_vblank(struct msm_kms *kms, struct drm_crtc *crtc)
{
return dpu_crtc_vblank(crtc, true);
}
static void dpu_kms_disable_vblank(struct msm_kms *kms, struct drm_crtc *crtc)
{
dpu_crtc_vblank(crtc, false);
}
static void dpu_kms_enable_commit(struct msm_kms *kms)
{
struct dpu_kms *dpu_kms = to_dpu_kms(kms);
pm_runtime_get_sync(&dpu_kms->pdev->dev);
}
static void dpu_kms_disable_commit(struct msm_kms *kms)
{
struct dpu_kms *dpu_kms = to_dpu_kms(kms);
pm_runtime_put_sync(&dpu_kms->pdev->dev);
}
static ktime_t dpu_kms_vsync_time(struct msm_kms *kms, struct drm_crtc *crtc)
{
struct drm_encoder *encoder;
drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) {
ktime_t vsync_time;
if (dpu_encoder_vsync_time(encoder, &vsync_time) == 0)
return vsync_time;
}
return ktime_get();
}
static void dpu_kms_prepare_commit(struct msm_kms *kms,
struct drm_atomic_state *state)
{
struct drm_crtc *crtc;
struct drm_crtc_state *crtc_state;
struct drm_encoder *encoder;
int i;
if (!kms)
return;
/* Call prepare_commit for all affected encoders */
for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
drm_for_each_encoder_mask(encoder, crtc->dev,
crtc_state->encoder_mask) {
dpu_encoder_prepare_commit(encoder);
}
}
}
static void dpu_kms_flush_commit(struct msm_kms *kms, unsigned crtc_mask)
{
struct dpu_kms *dpu_kms = to_dpu_kms(kms);
struct drm_crtc *crtc;
for_each_crtc_mask(dpu_kms->dev, crtc, crtc_mask) {
if (!crtc->state->active)
continue;
trace_dpu_kms_commit(DRMID(crtc));
dpu_crtc_commit_kickoff(crtc);
}
}
static void dpu_kms_complete_commit(struct msm_kms *kms, unsigned crtc_mask)
{
struct dpu_kms *dpu_kms = to_dpu_kms(kms);
struct drm_crtc *crtc;
DPU_ATRACE_BEGIN("kms_complete_commit");
for_each_crtc_mask(dpu_kms->dev, crtc, crtc_mask)
dpu_crtc_complete_commit(crtc);
DPU_ATRACE_END("kms_complete_commit");
}
static void dpu_kms_wait_for_commit_done(struct msm_kms *kms,
struct drm_crtc *crtc)
{
struct drm_encoder *encoder;
struct drm_device *dev;
int ret;
if (!kms || !crtc || !crtc->state) {
DPU_ERROR("invalid params\n");
return;
}
dev = crtc->dev;
if (!crtc->state->enable) {
DPU_DEBUG("[crtc:%d] not enable\n", crtc->base.id);
return;
}
if (!crtc->state->active) {
DPU_DEBUG("[crtc:%d] not active\n", crtc->base.id);
return;
}
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
if (encoder->crtc != crtc)
continue;
/*
* Wait for post-flush if necessary to delay before
* plane_cleanup. For example, wait for vsync in case of video
* mode panels. This may be a no-op for command mode panels.
*/
trace_dpu_kms_wait_for_commit_done(DRMID(crtc));
ret = dpu_encoder_wait_for_event(encoder, MSM_ENC_COMMIT_DONE);
if (ret && ret != -EWOULDBLOCK) {
DPU_ERROR("wait for commit done returned %d\n", ret);
break;
}
}
}
static void dpu_kms_wait_flush(struct msm_kms *kms, unsigned crtc_mask)
{
struct dpu_kms *dpu_kms = to_dpu_kms(kms);
struct drm_crtc *crtc;
for_each_crtc_mask(dpu_kms->dev, crtc, crtc_mask)
dpu_kms_wait_for_commit_done(kms, crtc);
}
static int _dpu_kms_initialize_dsi(struct drm_device *dev,
struct msm_drm_private *priv,
struct dpu_kms *dpu_kms)
{
struct drm_encoder *encoder = NULL;
struct msm_display_info info;
int i, rc = 0;
if (!(priv->dsi[0] || priv->dsi[1]))
return rc;
/*
* We support following confiurations:
* - Single DSI host (dsi0 or dsi1)
* - Two independent DSI hosts
* - Bonded DSI0 and DSI1 hosts
*
* TODO: Support swapping DSI0 and DSI1 in the bonded setup.
*/
for (i = 0; i < ARRAY_SIZE(priv->dsi); i++) {
int other = (i + 1) % 2;
if (!priv->dsi[i])
continue;
if (msm_dsi_is_bonded_dsi(priv->dsi[i]) &&
!msm_dsi_is_master_dsi(priv->dsi[i]))
continue;
encoder = dpu_encoder_init(dev, DRM_MODE_ENCODER_DSI);
if (IS_ERR(encoder)) {
DPU_ERROR("encoder init failed for dsi display\n");
return PTR_ERR(encoder);
}
memset(&info, 0, sizeof(info));
info.intf_type = encoder->encoder_type;
rc = msm_dsi_modeset_init(priv->dsi[i], dev, encoder);
if (rc) {
DPU_ERROR("modeset_init failed for dsi[%d], rc = %d\n",
i, rc);
break;
}
info.h_tile_instance[info.num_of_h_tiles++] = i;
info.is_cmd_mode = msm_dsi_is_cmd_mode(priv->dsi[i]);
info.dsc = msm_dsi_get_dsc_config(priv->dsi[i]);
if (msm_dsi_is_bonded_dsi(priv->dsi[i]) && priv->dsi[other]) {
rc = msm_dsi_modeset_init(priv->dsi[other], dev, encoder);
if (rc) {
DPU_ERROR("modeset_init failed for dsi[%d], rc = %d\n",
other, rc);
break;
}
info.h_tile_instance[info.num_of_h_tiles++] = other;
}
rc = dpu_encoder_setup(dev, encoder, &info);
if (rc)
DPU_ERROR("failed to setup DPU encoder %d: rc:%d\n",
encoder->base.id, rc);
}
return rc;
}
static int _dpu_kms_initialize_displayport(struct drm_device *dev,
struct msm_drm_private *priv,
struct dpu_kms *dpu_kms)
{
struct drm_encoder *encoder = NULL;
struct msm_display_info info;
int rc;
int i;
for (i = 0; i < ARRAY_SIZE(priv->dp); i++) {
if (!priv->dp[i])
continue;
encoder = dpu_encoder_init(dev, DRM_MODE_ENCODER_TMDS);
if (IS_ERR(encoder)) {
DPU_ERROR("encoder init failed for dsi display\n");
return PTR_ERR(encoder);
}
memset(&info, 0, sizeof(info));
rc = msm_dp_modeset_init(priv->dp[i], dev, encoder);
if (rc) {
DPU_ERROR("modeset_init failed for DP, rc = %d\n", rc);
drm_encoder_cleanup(encoder);
return rc;
}
info.num_of_h_tiles = 1;
info.h_tile_instance[0] = i;
info.intf_type = encoder->encoder_type;
rc = dpu_encoder_setup(dev, encoder, &info);
if (rc) {
DPU_ERROR("failed to setup DPU encoder %d: rc:%d\n",
encoder->base.id, rc);
return rc;
}
}
return 0;
}
static int _dpu_kms_initialize_writeback(struct drm_device *dev,
struct msm_drm_private *priv, struct dpu_kms *dpu_kms,
const u32 *wb_formats, int n_formats)
{
struct drm_encoder *encoder = NULL;
struct msm_display_info info;
int rc;
encoder = dpu_encoder_init(dev, DRM_MODE_ENCODER_VIRTUAL);
if (IS_ERR(encoder)) {
DPU_ERROR("encoder init failed for dsi display\n");
return PTR_ERR(encoder);
}
memset(&info, 0, sizeof(info));
rc = dpu_writeback_init(dev, encoder, wb_formats,
n_formats);
if (rc) {
DPU_ERROR("dpu_writeback_init, rc = %d\n", rc);
drm_encoder_cleanup(encoder);
return rc;
}
info.num_of_h_tiles = 1;
/* use only WB idx 2 instance for DPU */
info.h_tile_instance[0] = WB_2;
info.intf_type = encoder->encoder_type;
rc = dpu_encoder_setup(dev, encoder, &info);
if (rc) {
DPU_ERROR("failed to setup DPU encoder %d: rc:%d\n",
encoder->base.id, rc);
return rc;
}
return 0;
}
/**
* _dpu_kms_setup_displays - create encoders, bridges and connectors
* for underlying displays
* @dev: Pointer to drm device structure
* @priv: Pointer to private drm device data
* @dpu_kms: Pointer to dpu kms structure
* Returns: Zero on success
*/
static int _dpu_kms_setup_displays(struct drm_device *dev,
struct msm_drm_private *priv,
struct dpu_kms *dpu_kms)
{
int rc = 0;
int i;
rc = _dpu_kms_initialize_dsi(dev, priv, dpu_kms);
if (rc) {
DPU_ERROR("initialize_dsi failed, rc = %d\n", rc);
return rc;
}
rc = _dpu_kms_initialize_displayport(dev, priv, dpu_kms);
if (rc) {
DPU_ERROR("initialize_DP failed, rc = %d\n", rc);
return rc;
}
/* Since WB isn't a driver check the catalog before initializing */
if (dpu_kms->catalog->wb_count) {
for (i = 0; i < dpu_kms->catalog->wb_count; i++) {
if (dpu_kms->catalog->wb[i].id == WB_2) {
rc = _dpu_kms_initialize_writeback(dev, priv, dpu_kms,
dpu_kms->catalog->wb[i].format_list,
dpu_kms->catalog->wb[i].num_formats);
if (rc) {
DPU_ERROR("initialize_WB failed, rc = %d\n", rc);
return rc;
}
}
}
}
return rc;
}
#define MAX_PLANES 20
static int _dpu_kms_drm_obj_init(struct dpu_kms *dpu_kms)
{
struct drm_device *dev;
struct drm_plane *primary_planes[MAX_PLANES], *plane;
struct drm_plane *cursor_planes[MAX_PLANES] = { NULL };
struct drm_crtc *crtc;
struct drm_encoder *encoder;
unsigned int num_encoders;
struct msm_drm_private *priv;
const struct dpu_mdss_cfg *catalog;
int primary_planes_idx = 0, cursor_planes_idx = 0, i, ret;
int max_crtc_count;
dev = dpu_kms->dev;
priv = dev->dev_private;
catalog = dpu_kms->catalog;
/*
* Create encoder and query display drivers to create
* bridges and connectors
*/
ret = _dpu_kms_setup_displays(dev, priv, dpu_kms);
if (ret)
return ret;
num_encoders = 0;
drm_for_each_encoder(encoder, dev)
num_encoders++;
max_crtc_count = min(catalog->mixer_count, num_encoders);
/* Create the planes, keeping track of one primary/cursor per crtc */
for (i = 0; i < catalog->sspp_count; i++) {
enum drm_plane_type type;
if ((catalog->sspp[i].features & BIT(DPU_SSPP_CURSOR))
&& cursor_planes_idx < max_crtc_count)
type = DRM_PLANE_TYPE_CURSOR;
else if (primary_planes_idx < max_crtc_count)
type = DRM_PLANE_TYPE_PRIMARY;
else
type = DRM_PLANE_TYPE_OVERLAY;
DPU_DEBUG("Create plane type %d with features %lx (cur %lx)\n",
type, catalog->sspp[i].features,
catalog->sspp[i].features & BIT(DPU_SSPP_CURSOR));
plane = dpu_plane_init(dev, catalog->sspp[i].id, type,
(1UL << max_crtc_count) - 1);
if (IS_ERR(plane)) {
DPU_ERROR("dpu_plane_init failed\n");
ret = PTR_ERR(plane);
return ret;
}
if (type == DRM_PLANE_TYPE_CURSOR)
cursor_planes[cursor_planes_idx++] = plane;
else if (type == DRM_PLANE_TYPE_PRIMARY)
primary_planes[primary_planes_idx++] = plane;
}
max_crtc_count = min(max_crtc_count, primary_planes_idx);
/* Create one CRTC per encoder */
for (i = 0; i < max_crtc_count; i++) {
crtc = dpu_crtc_init(dev, primary_planes[i], cursor_planes[i]);
if (IS_ERR(crtc)) {
ret = PTR_ERR(crtc);
return ret;
}
priv->crtcs[priv->num_crtcs++] = crtc;
}
/* All CRTCs are compatible with all encoders */
drm_for_each_encoder(encoder, dev)
encoder->possible_crtcs = (1 << priv->num_crtcs) - 1;
return 0;
}
static void _dpu_kms_hw_destroy(struct dpu_kms *dpu_kms)
{
int i;
if (dpu_kms->hw_intr)
dpu_hw_intr_destroy(dpu_kms->hw_intr);
dpu_kms->hw_intr = NULL;
/* safe to call these more than once during shutdown */
_dpu_kms_mmu_destroy(dpu_kms);
if (dpu_kms->catalog) {
for (i = 0; i < ARRAY_SIZE(dpu_kms->hw_vbif); i++) {
if (dpu_kms->hw_vbif[i]) {
dpu_hw_vbif_destroy(dpu_kms->hw_vbif[i]);
dpu_kms->hw_vbif[i] = NULL;
}
}
}
if (dpu_kms->rm_init)
dpu_rm_destroy(&dpu_kms->rm);
dpu_kms->rm_init = false;
dpu_kms->catalog = NULL;
if (dpu_kms->vbif[VBIF_NRT])
devm_iounmap(&dpu_kms->pdev->dev, dpu_kms->vbif[VBIF_NRT]);
dpu_kms->vbif[VBIF_NRT] = NULL;
if (dpu_kms->vbif[VBIF_RT])
devm_iounmap(&dpu_kms->pdev->dev, dpu_kms->vbif[VBIF_RT]);
dpu_kms->vbif[VBIF_RT] = NULL;
if (dpu_kms->hw_mdp)
dpu_hw_mdp_destroy(dpu_kms->hw_mdp);
dpu_kms->hw_mdp = NULL;
if (dpu_kms->mmio)
devm_iounmap(&dpu_kms->pdev->dev, dpu_kms->mmio);
dpu_kms->mmio = NULL;
}
static void dpu_kms_destroy(struct msm_kms *kms)
{
struct dpu_kms *dpu_kms;
if (!kms) {
DPU_ERROR("invalid kms\n");
return;
}
dpu_kms = to_dpu_kms(kms);
_dpu_kms_hw_destroy(dpu_kms);
msm_kms_destroy(&dpu_kms->base);
if (dpu_kms->rpm_enabled)
pm_runtime_disable(&dpu_kms->pdev->dev);
}
static int dpu_irq_postinstall(struct msm_kms *kms)
{
struct msm_drm_private *priv;
struct dpu_kms *dpu_kms = to_dpu_kms(kms);
int i;
if (!dpu_kms || !dpu_kms->dev)
return -EINVAL;
priv = dpu_kms->dev->dev_private;
if (!priv)
return -EINVAL;
for (i = 0; i < ARRAY_SIZE(priv->dp); i++)
msm_dp_irq_postinstall(priv->dp[i]);
return 0;
}
static void dpu_kms_mdp_snapshot(struct msm_disp_state *disp_state, struct msm_kms *kms)
{
int i;
struct dpu_kms *dpu_kms;
const struct dpu_mdss_cfg *cat;
dpu_kms = to_dpu_kms(kms);
cat = dpu_kms->catalog;
pm_runtime_get_sync(&dpu_kms->pdev->dev);
/* dump CTL sub-blocks HW regs info */
for (i = 0; i < cat->ctl_count; i++)
msm_disp_snapshot_add_block(disp_state, cat->ctl[i].len,
dpu_kms->mmio + cat->ctl[i].base, "ctl_%d", i);
/* dump DSPP sub-blocks HW regs info */
for (i = 0; i < cat->dspp_count; i++)
msm_disp_snapshot_add_block(disp_state, cat->dspp[i].len,
dpu_kms->mmio + cat->dspp[i].base, "dspp_%d", i);
/* dump INTF sub-blocks HW regs info */
for (i = 0; i < cat->intf_count; i++)
msm_disp_snapshot_add_block(disp_state, cat->intf[i].len,
dpu_kms->mmio + cat->intf[i].base, "intf_%d", i);
/* dump PP sub-blocks HW regs info */
for (i = 0; i < cat->pingpong_count; i++)
msm_disp_snapshot_add_block(disp_state, cat->pingpong[i].len,
dpu_kms->mmio + cat->pingpong[i].base, "pingpong_%d", i);
/* dump SSPP sub-blocks HW regs info */
for (i = 0; i < cat->sspp_count; i++)
msm_disp_snapshot_add_block(disp_state, cat->sspp[i].len,
dpu_kms->mmio + cat->sspp[i].base, "sspp_%d", i);
/* dump LM sub-blocks HW regs info */
for (i = 0; i < cat->mixer_count; i++)
msm_disp_snapshot_add_block(disp_state, cat->mixer[i].len,
dpu_kms->mmio + cat->mixer[i].base, "lm_%d", i);
/* dump WB sub-blocks HW regs info */
for (i = 0; i < cat->wb_count; i++)
msm_disp_snapshot_add_block(disp_state, cat->wb[i].len,
dpu_kms->mmio + cat->wb[i].base, "wb_%d", i);
if (cat->mdp[0].features & BIT(DPU_MDP_PERIPH_0_REMOVED)) {
msm_disp_snapshot_add_block(disp_state, MDP_PERIPH_TOP0,
dpu_kms->mmio + cat->mdp[0].base, "top");
msm_disp_snapshot_add_block(disp_state, cat->mdp[0].len - MDP_PERIPH_TOP0_END,
dpu_kms->mmio + cat->mdp[0].base + MDP_PERIPH_TOP0_END, "top_2");
} else {
msm_disp_snapshot_add_block(disp_state, cat->mdp[0].len,
dpu_kms->mmio + cat->mdp[0].base, "top");
}
/* dump DSC sub-blocks HW regs info */
for (i = 0; i < cat->dsc_count; i++)
msm_disp_snapshot_add_block(disp_state, cat->dsc[i].len,
dpu_kms->mmio + cat->dsc[i].base, "dsc_%d", i);
pm_runtime_put_sync(&dpu_kms->pdev->dev);
}
static const struct msm_kms_funcs kms_funcs = {
.hw_init = dpu_kms_hw_init,
.irq_preinstall = dpu_core_irq_preinstall,
.irq_postinstall = dpu_irq_postinstall,
.irq_uninstall = dpu_core_irq_uninstall,
.irq = dpu_core_irq,
.enable_commit = dpu_kms_enable_commit,
.disable_commit = dpu_kms_disable_commit,
.vsync_time = dpu_kms_vsync_time,
.prepare_commit = dpu_kms_prepare_commit,
.flush_commit = dpu_kms_flush_commit,
.wait_flush = dpu_kms_wait_flush,
.complete_commit = dpu_kms_complete_commit,
.enable_vblank = dpu_kms_enable_vblank,
.disable_vblank = dpu_kms_disable_vblank,
.check_modified_format = dpu_format_check_modified_format,
.get_format = dpu_get_msm_format,
.destroy = dpu_kms_destroy,
.snapshot = dpu_kms_mdp_snapshot,
#ifdef CONFIG_DEBUG_FS
.debugfs_init = dpu_kms_debugfs_init,
#endif
};
static void _dpu_kms_mmu_destroy(struct dpu_kms *dpu_kms)
{
struct msm_mmu *mmu;
if (!dpu_kms->base.aspace)
return;
mmu = dpu_kms->base.aspace->mmu;
mmu->funcs->detach(mmu);
msm_gem_address_space_put(dpu_kms->base.aspace);
dpu_kms->base.aspace = NULL;
}
static int _dpu_kms_mmu_init(struct dpu_kms *dpu_kms)
{
struct msm_gem_address_space *aspace;
aspace = msm_kms_init_aspace(dpu_kms->dev);
if (IS_ERR(aspace))
return PTR_ERR(aspace);
dpu_kms->base.aspace = aspace;
return 0;
}
u64 dpu_kms_get_clk_rate(struct dpu_kms *dpu_kms, char *clock_name)
{
struct clk *clk;
clk = msm_clk_bulk_get_clock(dpu_kms->clocks, dpu_kms->num_clocks, clock_name);
if (!clk)
return -EINVAL;
return clk_get_rate(clk);
}
static int dpu_kms_hw_init(struct msm_kms *kms)
{
struct dpu_kms *dpu_kms;
struct drm_device *dev;
int i, rc = -EINVAL;
if (!kms) {
DPU_ERROR("invalid kms\n");
return rc;
}
dpu_kms = to_dpu_kms(kms);
dev = dpu_kms->dev;
rc = dpu_kms_global_obj_init(dpu_kms);
if (rc)
return rc;
atomic_set(&dpu_kms->bandwidth_ref, 0);
dpu_kms->mmio = msm_ioremap(dpu_kms->pdev, "mdp");
if (IS_ERR(dpu_kms->mmio)) {
rc = PTR_ERR(dpu_kms->mmio);
DPU_ERROR("mdp register memory map failed: %d\n", rc);
dpu_kms->mmio = NULL;
goto error;
}
DRM_DEBUG("mapped dpu address space @%pK\n", dpu_kms->mmio);
dpu_kms->vbif[VBIF_RT] = msm_ioremap(dpu_kms->pdev, "vbif");
if (IS_ERR(dpu_kms->vbif[VBIF_RT])) {
rc = PTR_ERR(dpu_kms->vbif[VBIF_RT]);
DPU_ERROR("vbif register memory map failed: %d\n", rc);
dpu_kms->vbif[VBIF_RT] = NULL;
goto error;
}
dpu_kms->vbif[VBIF_NRT] = msm_ioremap_quiet(dpu_kms->pdev, "vbif_nrt");
if (IS_ERR(dpu_kms->vbif[VBIF_NRT])) {
dpu_kms->vbif[VBIF_NRT] = NULL;
DPU_DEBUG("VBIF NRT is not defined");
}
dpu_kms->reg_dma = msm_ioremap_quiet(dpu_kms->pdev, "regdma");
if (IS_ERR(dpu_kms->reg_dma)) {
dpu_kms->reg_dma = NULL;
DPU_DEBUG("REG_DMA is not defined");
}
dpu_kms_parse_data_bus_icc_path(dpu_kms);
rc = pm_runtime_resume_and_get(&dpu_kms->pdev->dev);
if (rc < 0)
goto error;
dpu_kms->core_rev = readl_relaxed(dpu_kms->mmio + 0x0);
pr_info("dpu hardware revision:0x%x\n", dpu_kms->core_rev);
dpu_kms->catalog = dpu_hw_catalog_init(dpu_kms->core_rev);
if (IS_ERR_OR_NULL(dpu_kms->catalog)) {
rc = PTR_ERR(dpu_kms->catalog);
if (!dpu_kms->catalog)
rc = -EINVAL;
DPU_ERROR("catalog init failed: %d\n", rc);
dpu_kms->catalog = NULL;
goto power_error;
}
/*
* Now we need to read the HW catalog and initialize resources such as
* clocks, regulators, GDSC/MMAGIC, ioremap the register ranges etc
*/
rc = _dpu_kms_mmu_init(dpu_kms);
if (rc) {
DPU_ERROR("dpu_kms_mmu_init failed: %d\n", rc);
goto power_error;
}
rc = dpu_rm_init(&dpu_kms->rm, dpu_kms->catalog, dpu_kms->mmio);
if (rc) {
DPU_ERROR("rm init failed: %d\n", rc);
goto power_error;
}
dpu_kms->rm_init = true;
dpu_kms->hw_mdp = dpu_hw_mdptop_init(MDP_TOP, dpu_kms->mmio,
dpu_kms->catalog);
if (IS_ERR(dpu_kms->hw_mdp)) {
rc = PTR_ERR(dpu_kms->hw_mdp);
DPU_ERROR("failed to get hw_mdp: %d\n", rc);
dpu_kms->hw_mdp = NULL;
goto power_error;
}
for (i = 0; i < dpu_kms->catalog->vbif_count; i++) {
u32 vbif_idx = dpu_kms->catalog->vbif[i].id;
dpu_kms->hw_vbif[vbif_idx] = dpu_hw_vbif_init(vbif_idx,
dpu_kms->vbif[vbif_idx], dpu_kms->catalog);
if (IS_ERR(dpu_kms->hw_vbif[vbif_idx])) {
rc = PTR_ERR(dpu_kms->hw_vbif[vbif_idx]);
DPU_ERROR("failed to init vbif %d: %d\n", vbif_idx, rc);
dpu_kms->hw_vbif[vbif_idx] = NULL;
goto power_error;
}
}
rc = dpu_core_perf_init(&dpu_kms->perf, dev, dpu_kms->catalog,
msm_clk_bulk_get_clock(dpu_kms->clocks, dpu_kms->num_clocks, "core"));
if (rc) {
DPU_ERROR("failed to init perf %d\n", rc);
goto perf_err;
}
dpu_kms->hw_intr = dpu_hw_intr_init(dpu_kms->mmio, dpu_kms->catalog);
if (IS_ERR_OR_NULL(dpu_kms->hw_intr)) {
rc = PTR_ERR(dpu_kms->hw_intr);
DPU_ERROR("hw_intr init failed: %d\n", rc);
dpu_kms->hw_intr = NULL;
goto hw_intr_init_err;
}
dev->mode_config.min_width = 0;
dev->mode_config.min_height = 0;
/*
* max crtc width is equal to the max mixer width * 2 and max height is
* is 4K
*/
dev->mode_config.max_width =
dpu_kms->catalog->caps->max_mixer_width * 2;
dev->mode_config.max_height = 4096;
dev->max_vblank_count = 0xffffffff;
/* Disable vblank irqs aggressively for power-saving */
dev->vblank_disable_immediate = true;
/*
* _dpu_kms_drm_obj_init should create the DRM related objects
* i.e. CRTCs, planes, encoders, connectors and so forth
*/
rc = _dpu_kms_drm_obj_init(dpu_kms);
if (rc) {
DPU_ERROR("modeset init failed: %d\n", rc);
goto drm_obj_init_err;
}
dpu_vbif_init_memtypes(dpu_kms);
pm_runtime_put_sync(&dpu_kms->pdev->dev);
return 0;
drm_obj_init_err:
dpu_core_perf_destroy(&dpu_kms->perf);
hw_intr_init_err:
perf_err:
power_error:
pm_runtime_put_sync(&dpu_kms->pdev->dev);
error:
_dpu_kms_hw_destroy(dpu_kms);
return rc;
}
static int dpu_kms_init(struct drm_device *ddev)
{
struct msm_drm_private *priv = ddev->dev_private;
struct device *dev = ddev->dev;
struct platform_device *pdev = to_platform_device(dev);
struct dpu_kms *dpu_kms;
int irq;
struct dev_pm_opp *opp;
int ret = 0;
unsigned long max_freq = ULONG_MAX;
dpu_kms = devm_kzalloc(&pdev->dev, sizeof(*dpu_kms), GFP_KERNEL);
if (!dpu_kms)
return -ENOMEM;
ret = devm_pm_opp_set_clkname(dev, "core");
if (ret)
return ret;
/* OPP table is optional */
ret = devm_pm_opp_of_add_table(dev);
if (ret && ret != -ENODEV) {
dev_err(dev, "invalid OPP table in device tree\n");
return ret;
}
ret = devm_clk_bulk_get_all(&pdev->dev, &dpu_kms->clocks);
if (ret < 0) {
DPU_ERROR("failed to parse clocks, ret=%d\n", ret);
return ret;
}
dpu_kms->num_clocks = ret;
opp = dev_pm_opp_find_freq_floor(dev, &max_freq);
if (!IS_ERR(opp))
dev_pm_opp_put(opp);
dev_pm_opp_set_rate(dev, max_freq);
ret = msm_kms_init(&dpu_kms->base, &kms_funcs);
if (ret) {
DPU_ERROR("failed to init kms, ret=%d\n", ret);
return ret;
}
dpu_kms->dev = ddev;
dpu_kms->pdev = pdev;
pm_runtime_enable(&pdev->dev);
dpu_kms->rpm_enabled = true;
priv->kms = &dpu_kms->base;
irq = irq_of_parse_and_map(dpu_kms->pdev->dev.of_node, 0);
if (!irq) {
DPU_ERROR("failed to get irq\n");
return -EINVAL;
}
dpu_kms->base.irq = irq;
return 0;
}
static int dpu_dev_probe(struct platform_device *pdev)
{
return msm_drv_probe(&pdev->dev, dpu_kms_init);
}
static int dpu_dev_remove(struct platform_device *pdev)
{
component_master_del(&pdev->dev, &msm_drm_ops);
return 0;
}
static int __maybe_unused dpu_runtime_suspend(struct device *dev)
{
int i;
struct platform_device *pdev = to_platform_device(dev);
struct msm_drm_private *priv = platform_get_drvdata(pdev);
struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
/* Drop the performance state vote */
dev_pm_opp_set_rate(dev, 0);
clk_bulk_disable_unprepare(dpu_kms->num_clocks, dpu_kms->clocks);
for (i = 0; i < dpu_kms->num_paths; i++)
icc_set_bw(dpu_kms->path[i], 0, 0);
return 0;
}
static int __maybe_unused dpu_runtime_resume(struct device *dev)
{
int rc = -1;
struct platform_device *pdev = to_platform_device(dev);
struct msm_drm_private *priv = platform_get_drvdata(pdev);
struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
struct drm_encoder *encoder;
struct drm_device *ddev;
ddev = dpu_kms->dev;
rc = clk_bulk_prepare_enable(dpu_kms->num_clocks, dpu_kms->clocks);
if (rc) {
DPU_ERROR("clock enable failed rc:%d\n", rc);
return rc;
}
dpu_vbif_init_memtypes(dpu_kms);
drm_for_each_encoder(encoder, ddev)
dpu_encoder_virt_runtime_resume(encoder);
return rc;
}
static const struct dev_pm_ops dpu_pm_ops = {
SET_RUNTIME_PM_OPS(dpu_runtime_suspend, dpu_runtime_resume, NULL)
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
.prepare = msm_pm_prepare,
.complete = msm_pm_complete,
};
static const struct of_device_id dpu_dt_match[] = {
{ .compatible = "qcom,msm8998-dpu", },
{ .compatible = "qcom,qcm2290-dpu", },
{ .compatible = "qcom,sdm845-dpu", },
{ .compatible = "qcom,sc7180-dpu", },
{ .compatible = "qcom,sc7280-dpu", },
{ .compatible = "qcom,sc8180x-dpu", },
{ .compatible = "qcom,sc8280xp-dpu", },
{ .compatible = "qcom,sm6115-dpu", },
{ .compatible = "qcom,sm8150-dpu", },
{ .compatible = "qcom,sm8250-dpu", },
{ .compatible = "qcom,sm8350-dpu", },
{ .compatible = "qcom,sm8450-dpu", },
{ .compatible = "qcom,sm8550-dpu", },
{}
};
MODULE_DEVICE_TABLE(of, dpu_dt_match);
static struct platform_driver dpu_driver = {
.probe = dpu_dev_probe,
.remove = dpu_dev_remove,
.shutdown = msm_drv_shutdown,
.driver = {
.name = "msm_dpu",
.of_match_table = dpu_dt_match,
.pm = &dpu_pm_ops,
},
};
void __init msm_dpu_register(void)
{
platform_driver_register(&dpu_driver);
}
void __exit msm_dpu_unregister(void)
{
platform_driver_unregister(&dpu_driver);
}