linux-zen-server/drivers/hwmon/adm1021.c

506 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* adm1021.c - Part of lm_sensors, Linux kernel modules for hardware
* monitoring
* Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl> and
* Philip Edelbrock <phil@netroedge.com>
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/err.h>
#include <linux/mutex.h>
/* Addresses to scan */
static const unsigned short normal_i2c[] = {
0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b, 0x4c, 0x4d, 0x4e, I2C_CLIENT_END };
enum chips {
adm1021, adm1023, max1617, max1617a, thmc10, lm84, gl523sm, mc1066 };
/* adm1021 constants specified below */
/* The adm1021 registers */
/* Read-only */
/* For nr in 0-1 */
#define ADM1021_REG_TEMP(nr) (nr)
#define ADM1021_REG_STATUS 0x02
/* 0x41 = AD, 0x49 = TI, 0x4D = Maxim, 0x23 = Genesys , 0x54 = Onsemi */
#define ADM1021_REG_MAN_ID 0xFE
/* ADM1021 = 0x0X, ADM1023 = 0x3X */
#define ADM1021_REG_DEV_ID 0xFF
/* These use different addresses for reading/writing */
#define ADM1021_REG_CONFIG_R 0x03
#define ADM1021_REG_CONFIG_W 0x09
#define ADM1021_REG_CONV_RATE_R 0x04
#define ADM1021_REG_CONV_RATE_W 0x0A
/* These are for the ADM1023's additional precision on the remote temp sensor */
#define ADM1023_REG_REM_TEMP_PREC 0x10
#define ADM1023_REG_REM_OFFSET 0x11
#define ADM1023_REG_REM_OFFSET_PREC 0x12
#define ADM1023_REG_REM_TOS_PREC 0x13
#define ADM1023_REG_REM_THYST_PREC 0x14
/* limits */
/* For nr in 0-1 */
#define ADM1021_REG_TOS_R(nr) (0x05 + 2 * (nr))
#define ADM1021_REG_TOS_W(nr) (0x0B + 2 * (nr))
#define ADM1021_REG_THYST_R(nr) (0x06 + 2 * (nr))
#define ADM1021_REG_THYST_W(nr) (0x0C + 2 * (nr))
/* write-only */
#define ADM1021_REG_ONESHOT 0x0F
/* Initial values */
/*
* Note: Even though I left the low and high limits named os and hyst,
* they don't quite work like a thermostat the way the LM75 does. I.e.,
* a lower temp than THYST actually triggers an alarm instead of
* clearing it. Weird, ey? --Phil
*/
/* Each client has this additional data */
struct adm1021_data {
struct i2c_client *client;
enum chips type;
const struct attribute_group *groups[3];
struct mutex update_lock;
bool valid; /* true if following fields are valid */
char low_power; /* !=0 if device in low power mode */
unsigned long last_updated; /* In jiffies */
int temp_max[2]; /* Register values */
int temp_min[2];
int temp[2];
u8 alarms;
/* Special values for ADM1023 only */
u8 remote_temp_offset;
u8 remote_temp_offset_prec;
};
/* (amalysh) read only mode, otherwise any limit's writing confuse BIOS */
static bool read_only;
static struct adm1021_data *adm1021_update_device(struct device *dev)
{
struct adm1021_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
mutex_lock(&data->update_lock);
if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
|| !data->valid) {
int i;
dev_dbg(dev, "Starting adm1021 update\n");
for (i = 0; i < 2; i++) {
data->temp[i] = 1000 *
(s8) i2c_smbus_read_byte_data(
client, ADM1021_REG_TEMP(i));
data->temp_max[i] = 1000 *
(s8) i2c_smbus_read_byte_data(
client, ADM1021_REG_TOS_R(i));
if (data->type != lm84) {
data->temp_min[i] = 1000 *
(s8) i2c_smbus_read_byte_data(client,
ADM1021_REG_THYST_R(i));
}
}
data->alarms = i2c_smbus_read_byte_data(client,
ADM1021_REG_STATUS) & 0x7c;
if (data->type == adm1023) {
/*
* The ADM1023 provides 3 extra bits of precision for
* the remote sensor in extra registers.
*/
data->temp[1] += 125 * (i2c_smbus_read_byte_data(
client, ADM1023_REG_REM_TEMP_PREC) >> 5);
data->temp_max[1] += 125 * (i2c_smbus_read_byte_data(
client, ADM1023_REG_REM_TOS_PREC) >> 5);
data->temp_min[1] += 125 * (i2c_smbus_read_byte_data(
client, ADM1023_REG_REM_THYST_PREC) >> 5);
data->remote_temp_offset =
i2c_smbus_read_byte_data(client,
ADM1023_REG_REM_OFFSET);
data->remote_temp_offset_prec =
i2c_smbus_read_byte_data(client,
ADM1023_REG_REM_OFFSET_PREC);
}
data->last_updated = jiffies;
data->valid = true;
}
mutex_unlock(&data->update_lock);
return data;
}
static ssize_t temp_show(struct device *dev, struct device_attribute *devattr,
char *buf)
{
int index = to_sensor_dev_attr(devattr)->index;
struct adm1021_data *data = adm1021_update_device(dev);
return sprintf(buf, "%d\n", data->temp[index]);
}
static ssize_t temp_max_show(struct device *dev,
struct device_attribute *devattr, char *buf)
{
int index = to_sensor_dev_attr(devattr)->index;
struct adm1021_data *data = adm1021_update_device(dev);
return sprintf(buf, "%d\n", data->temp_max[index]);
}
static ssize_t temp_min_show(struct device *dev,
struct device_attribute *devattr, char *buf)
{
int index = to_sensor_dev_attr(devattr)->index;
struct adm1021_data *data = adm1021_update_device(dev);
return sprintf(buf, "%d\n", data->temp_min[index]);
}
static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
int index = to_sensor_dev_attr(attr)->index;
struct adm1021_data *data = adm1021_update_device(dev);
return sprintf(buf, "%u\n", (data->alarms >> index) & 1);
}
static ssize_t alarms_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct adm1021_data *data = adm1021_update_device(dev);
return sprintf(buf, "%u\n", data->alarms);
}
static ssize_t temp_max_store(struct device *dev,
struct device_attribute *devattr,
const char *buf, size_t count)
{
int index = to_sensor_dev_attr(devattr)->index;
struct adm1021_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
long temp;
int reg_val, err;
err = kstrtol(buf, 10, &temp);
if (err)
return err;
temp /= 1000;
mutex_lock(&data->update_lock);
reg_val = clamp_val(temp, -128, 127);
data->temp_max[index] = reg_val * 1000;
if (!read_only)
i2c_smbus_write_byte_data(client, ADM1021_REG_TOS_W(index),
reg_val);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t temp_min_store(struct device *dev,
struct device_attribute *devattr,
const char *buf, size_t count)
{
int index = to_sensor_dev_attr(devattr)->index;
struct adm1021_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
long temp;
int reg_val, err;
err = kstrtol(buf, 10, &temp);
if (err)
return err;
temp /= 1000;
mutex_lock(&data->update_lock);
reg_val = clamp_val(temp, -128, 127);
data->temp_min[index] = reg_val * 1000;
if (!read_only)
i2c_smbus_write_byte_data(client, ADM1021_REG_THYST_W(index),
reg_val);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t low_power_show(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct adm1021_data *data = adm1021_update_device(dev);
return sprintf(buf, "%d\n", data->low_power);
}
static ssize_t low_power_store(struct device *dev,
struct device_attribute *devattr,
const char *buf, size_t count)
{
struct adm1021_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
char low_power;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
low_power = val != 0;
mutex_lock(&data->update_lock);
if (low_power != data->low_power) {
int config = i2c_smbus_read_byte_data(
client, ADM1021_REG_CONFIG_R);
data->low_power = low_power;
i2c_smbus_write_byte_data(client, ADM1021_REG_CONFIG_W,
(config & 0xBF) | (low_power << 6));
}
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0);
static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0);
static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1);
static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1);
static SENSOR_DEVICE_ATTR_RO(temp1_max_alarm, alarm, 6);
static SENSOR_DEVICE_ATTR_RO(temp1_min_alarm, alarm, 5);
static SENSOR_DEVICE_ATTR_RO(temp2_max_alarm, alarm, 4);
static SENSOR_DEVICE_ATTR_RO(temp2_min_alarm, alarm, 3);
static SENSOR_DEVICE_ATTR_RO(temp2_fault, alarm, 2);
static DEVICE_ATTR_RO(alarms);
static DEVICE_ATTR_RW(low_power);
static struct attribute *adm1021_attributes[] = {
&sensor_dev_attr_temp1_max.dev_attr.attr,
&sensor_dev_attr_temp1_input.dev_attr.attr,
&sensor_dev_attr_temp2_max.dev_attr.attr,
&sensor_dev_attr_temp2_input.dev_attr.attr,
&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_fault.dev_attr.attr,
&dev_attr_alarms.attr,
&dev_attr_low_power.attr,
NULL
};
static const struct attribute_group adm1021_group = {
.attrs = adm1021_attributes,
};
static struct attribute *adm1021_min_attributes[] = {
&sensor_dev_attr_temp1_min.dev_attr.attr,
&sensor_dev_attr_temp2_min.dev_attr.attr,
&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
NULL
};
static const struct attribute_group adm1021_min_group = {
.attrs = adm1021_min_attributes,
};
/* Return 0 if detection is successful, -ENODEV otherwise */
static int adm1021_detect(struct i2c_client *client,
struct i2c_board_info *info)
{
struct i2c_adapter *adapter = client->adapter;
const char *type_name;
int reg, conv_rate, status, config, man_id, dev_id;
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
pr_debug("detect failed, smbus byte data not supported!\n");
return -ENODEV;
}
status = i2c_smbus_read_byte_data(client, ADM1021_REG_STATUS);
conv_rate = i2c_smbus_read_byte_data(client,
ADM1021_REG_CONV_RATE_R);
config = i2c_smbus_read_byte_data(client, ADM1021_REG_CONFIG_R);
/* Check unused bits */
if ((status & 0x03) || (config & 0x3F) || (conv_rate & 0xF8)) {
pr_debug("detect failed, chip not detected!\n");
return -ENODEV;
}
/* Determine the chip type. */
man_id = i2c_smbus_read_byte_data(client, ADM1021_REG_MAN_ID);
dev_id = i2c_smbus_read_byte_data(client, ADM1021_REG_DEV_ID);
if (man_id < 0 || dev_id < 0)
return -ENODEV;
if (man_id == 0x4d && dev_id == 0x01) {
/*
* dev_id 0x01 matches MAX6680, MAX6695, MAX6696, and possibly
* others. Read register which is unsupported on MAX1617 but
* exists on all those chips and compare with the dev_id
* register. If it matches, it may be a MAX1617A.
*/
reg = i2c_smbus_read_byte_data(client,
ADM1023_REG_REM_TEMP_PREC);
if (reg != dev_id)
return -ENODEV;
type_name = "max1617a";
} else if (man_id == 0x41) {
if ((dev_id & 0xF0) == 0x30)
type_name = "adm1023";
else if ((dev_id & 0xF0) == 0x00)
type_name = "adm1021";
else
return -ENODEV;
} else if (man_id == 0x49)
type_name = "thmc10";
else if (man_id == 0x23)
type_name = "gl523sm";
else if (man_id == 0x54)
type_name = "mc1066";
else {
int lte, rte, lhi, rhi, llo, rlo;
/* extra checks for LM84 and MAX1617 to avoid misdetections */
llo = i2c_smbus_read_byte_data(client, ADM1021_REG_THYST_R(0));
rlo = i2c_smbus_read_byte_data(client, ADM1021_REG_THYST_R(1));
/* fail if any of the additional register reads failed */
if (llo < 0 || rlo < 0)
return -ENODEV;
lte = i2c_smbus_read_byte_data(client, ADM1021_REG_TEMP(0));
rte = i2c_smbus_read_byte_data(client, ADM1021_REG_TEMP(1));
lhi = i2c_smbus_read_byte_data(client, ADM1021_REG_TOS_R(0));
rhi = i2c_smbus_read_byte_data(client, ADM1021_REG_TOS_R(1));
/*
* Fail for negative temperatures and negative high limits.
* This check also catches read errors on the tested registers.
*/
if ((s8)lte < 0 || (s8)rte < 0 || (s8)lhi < 0 || (s8)rhi < 0)
return -ENODEV;
/* fail if all registers hold the same value */
if (lte == rte && lte == lhi && lte == rhi && lte == llo
&& lte == rlo)
return -ENODEV;
/*
* LM84 Mfr ID is in a different place,
* and it has more unused bits. Registers at 0xfe and 0xff
* are undefined and return the most recently read value,
* here the value of the configuration register.
*/
if (conv_rate == 0x00
&& man_id == config && dev_id == config
&& (config & 0x7F) == 0x00
&& (status & 0xAB) == 0x00) {
type_name = "lm84";
} else {
if ((config & 0x3f) || (status & 0x03))
return -ENODEV;
/* fail if low limits are larger than high limits */
if ((s8)llo > lhi || (s8)rlo > rhi)
return -ENODEV;
type_name = "max1617";
}
}
pr_debug("Detected chip %s at adapter %d, address 0x%02x.\n",
type_name, i2c_adapter_id(adapter), client->addr);
strscpy(info->type, type_name, I2C_NAME_SIZE);
return 0;
}
static void adm1021_init_client(struct i2c_client *client)
{
/* Enable ADC and disable suspend mode */
i2c_smbus_write_byte_data(client, ADM1021_REG_CONFIG_W,
i2c_smbus_read_byte_data(client, ADM1021_REG_CONFIG_R) & 0xBF);
/* Set Conversion rate to 1/sec (this can be tinkered with) */
i2c_smbus_write_byte_data(client, ADM1021_REG_CONV_RATE_W, 0x04);
}
static const struct i2c_device_id adm1021_id[];
static int adm1021_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct adm1021_data *data;
struct device *hwmon_dev;
data = devm_kzalloc(dev, sizeof(struct adm1021_data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->client = client;
data->type = i2c_match_id(adm1021_id, client)->driver_data;
mutex_init(&data->update_lock);
/* Initialize the ADM1021 chip */
if (data->type != lm84 && !read_only)
adm1021_init_client(client);
data->groups[0] = &adm1021_group;
if (data->type != lm84)
data->groups[1] = &adm1021_min_group;
hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
data, data->groups);
return PTR_ERR_OR_ZERO(hwmon_dev);
}
static const struct i2c_device_id adm1021_id[] = {
{ "adm1021", adm1021 },
{ "adm1023", adm1023 },
{ "max1617", max1617 },
{ "max1617a", max1617a },
{ "thmc10", thmc10 },
{ "lm84", lm84 },
{ "gl523sm", gl523sm },
{ "mc1066", mc1066 },
{ }
};
MODULE_DEVICE_TABLE(i2c, adm1021_id);
static struct i2c_driver adm1021_driver = {
.class = I2C_CLASS_HWMON,
.driver = {
.name = "adm1021",
},
.probe_new = adm1021_probe,
.id_table = adm1021_id,
.detect = adm1021_detect,
.address_list = normal_i2c,
};
module_i2c_driver(adm1021_driver);
MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl> and "
"Philip Edelbrock <phil@netroedge.com>");
MODULE_DESCRIPTION("adm1021 driver");
MODULE_LICENSE("GPL");
module_param(read_only, bool, 0);
MODULE_PARM_DESC(read_only, "Don't set any values, read only mode");