linux-zen-server/drivers/isdn/hardware/mISDN/hfcsusb.c

2149 lines
54 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/* hfcsusb.c
* mISDN driver for Colognechip HFC-S USB chip
*
* Copyright 2001 by Peter Sprenger (sprenger@moving-bytes.de)
* Copyright 2008 by Martin Bachem (info@bachem-it.com)
*
* module params
* debug=<n>, default=0, with n=0xHHHHGGGG
* H - l1 driver flags described in hfcsusb.h
* G - common mISDN debug flags described at mISDNhw.h
*
* poll=<n>, default 128
* n : burst size of PH_DATA_IND at transparent rx data
*
* Revision: 0.3.3 (socket), 2008-11-05
*/
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/usb.h>
#include <linux/mISDNhw.h>
#include <linux/slab.h>
#include "hfcsusb.h"
static unsigned int debug;
static int poll = DEFAULT_TRANSP_BURST_SZ;
static LIST_HEAD(HFClist);
static DEFINE_RWLOCK(HFClock);
MODULE_AUTHOR("Martin Bachem");
MODULE_LICENSE("GPL");
module_param(debug, uint, S_IRUGO | S_IWUSR);
module_param(poll, int, 0);
static int hfcsusb_cnt;
/* some function prototypes */
static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command);
static void release_hw(struct hfcsusb *hw);
static void reset_hfcsusb(struct hfcsusb *hw);
static void setPortMode(struct hfcsusb *hw);
static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel);
static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel);
static int hfcsusb_setup_bch(struct bchannel *bch, int protocol);
static void deactivate_bchannel(struct bchannel *bch);
static int hfcsusb_ph_info(struct hfcsusb *hw);
/* start next background transfer for control channel */
static void
ctrl_start_transfer(struct hfcsusb *hw)
{
if (debug & DBG_HFC_CALL_TRACE)
printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
if (hw->ctrl_cnt) {
hw->ctrl_urb->pipe = hw->ctrl_out_pipe;
hw->ctrl_urb->setup_packet = (u_char *)&hw->ctrl_write;
hw->ctrl_urb->transfer_buffer = NULL;
hw->ctrl_urb->transfer_buffer_length = 0;
hw->ctrl_write.wIndex =
cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].hfcs_reg);
hw->ctrl_write.wValue =
cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].reg_val);
usb_submit_urb(hw->ctrl_urb, GFP_ATOMIC);
}
}
/*
* queue a control transfer request to write HFC-S USB
* chip register using CTRL resuest queue
*/
static int write_reg(struct hfcsusb *hw, __u8 reg, __u8 val)
{
struct ctrl_buf *buf;
if (debug & DBG_HFC_CALL_TRACE)
printk(KERN_DEBUG "%s: %s reg(0x%02x) val(0x%02x)\n",
hw->name, __func__, reg, val);
spin_lock(&hw->ctrl_lock);
if (hw->ctrl_cnt >= HFC_CTRL_BUFSIZE) {
spin_unlock(&hw->ctrl_lock);
return 1;
}
buf = &hw->ctrl_buff[hw->ctrl_in_idx];
buf->hfcs_reg = reg;
buf->reg_val = val;
if (++hw->ctrl_in_idx >= HFC_CTRL_BUFSIZE)
hw->ctrl_in_idx = 0;
if (++hw->ctrl_cnt == 1)
ctrl_start_transfer(hw);
spin_unlock(&hw->ctrl_lock);
return 0;
}
/* control completion routine handling background control cmds */
static void
ctrl_complete(struct urb *urb)
{
struct hfcsusb *hw = (struct hfcsusb *) urb->context;
if (debug & DBG_HFC_CALL_TRACE)
printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
urb->dev = hw->dev;
if (hw->ctrl_cnt) {
hw->ctrl_cnt--; /* decrement actual count */
if (++hw->ctrl_out_idx >= HFC_CTRL_BUFSIZE)
hw->ctrl_out_idx = 0; /* pointer wrap */
ctrl_start_transfer(hw); /* start next transfer */
}
}
/* handle LED bits */
static void
set_led_bit(struct hfcsusb *hw, signed short led_bits, int set_on)
{
if (set_on) {
if (led_bits < 0)
hw->led_state &= ~abs(led_bits);
else
hw->led_state |= led_bits;
} else {
if (led_bits < 0)
hw->led_state |= abs(led_bits);
else
hw->led_state &= ~led_bits;
}
}
/* handle LED requests */
static void
handle_led(struct hfcsusb *hw, int event)
{
struct hfcsusb_vdata *driver_info = (struct hfcsusb_vdata *)
hfcsusb_idtab[hw->vend_idx].driver_info;
__u8 tmpled;
if (driver_info->led_scheme == LED_OFF)
return;
tmpled = hw->led_state;
switch (event) {
case LED_POWER_ON:
set_led_bit(hw, driver_info->led_bits[0], 1);
set_led_bit(hw, driver_info->led_bits[1], 0);
set_led_bit(hw, driver_info->led_bits[2], 0);
set_led_bit(hw, driver_info->led_bits[3], 0);
break;
case LED_POWER_OFF:
set_led_bit(hw, driver_info->led_bits[0], 0);
set_led_bit(hw, driver_info->led_bits[1], 0);
set_led_bit(hw, driver_info->led_bits[2], 0);
set_led_bit(hw, driver_info->led_bits[3], 0);
break;
case LED_S0_ON:
set_led_bit(hw, driver_info->led_bits[1], 1);
break;
case LED_S0_OFF:
set_led_bit(hw, driver_info->led_bits[1], 0);
break;
case LED_B1_ON:
set_led_bit(hw, driver_info->led_bits[2], 1);
break;
case LED_B1_OFF:
set_led_bit(hw, driver_info->led_bits[2], 0);
break;
case LED_B2_ON:
set_led_bit(hw, driver_info->led_bits[3], 1);
break;
case LED_B2_OFF:
set_led_bit(hw, driver_info->led_bits[3], 0);
break;
}
if (hw->led_state != tmpled) {
if (debug & DBG_HFC_CALL_TRACE)
printk(KERN_DEBUG "%s: %s reg(0x%02x) val(x%02x)\n",
hw->name, __func__,
HFCUSB_P_DATA, hw->led_state);
write_reg(hw, HFCUSB_P_DATA, hw->led_state);
}
}
/*
* Layer2 -> Layer 1 Bchannel data
*/
static int
hfcusb_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
{
struct bchannel *bch = container_of(ch, struct bchannel, ch);
struct hfcsusb *hw = bch->hw;
int ret = -EINVAL;
struct mISDNhead *hh = mISDN_HEAD_P(skb);
u_long flags;
if (debug & DBG_HFC_CALL_TRACE)
printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
switch (hh->prim) {
case PH_DATA_REQ:
spin_lock_irqsave(&hw->lock, flags);
ret = bchannel_senddata(bch, skb);
spin_unlock_irqrestore(&hw->lock, flags);
if (debug & DBG_HFC_CALL_TRACE)
printk(KERN_DEBUG "%s: %s PH_DATA_REQ ret(%i)\n",
hw->name, __func__, ret);
if (ret > 0)
ret = 0;
return ret;
case PH_ACTIVATE_REQ:
if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
hfcsusb_start_endpoint(hw, bch->nr - 1);
ret = hfcsusb_setup_bch(bch, ch->protocol);
} else
ret = 0;
if (!ret)
_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
0, NULL, GFP_KERNEL);
break;
case PH_DEACTIVATE_REQ:
deactivate_bchannel(bch);
_queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY,
0, NULL, GFP_KERNEL);
ret = 0;
break;
}
if (!ret)
dev_kfree_skb(skb);
return ret;
}
/*
* send full D/B channel status information
* as MPH_INFORMATION_IND
*/
static int
hfcsusb_ph_info(struct hfcsusb *hw)
{
struct ph_info *phi;
struct dchannel *dch = &hw->dch;
int i;
phi = kzalloc(struct_size(phi, bch, dch->dev.nrbchan), GFP_ATOMIC);
if (!phi)
return -ENOMEM;
phi->dch.ch.protocol = hw->protocol;
phi->dch.ch.Flags = dch->Flags;
phi->dch.state = dch->state;
phi->dch.num_bch = dch->dev.nrbchan;
for (i = 0; i < dch->dev.nrbchan; i++) {
phi->bch[i].protocol = hw->bch[i].ch.protocol;
phi->bch[i].Flags = hw->bch[i].Flags;
}
_queue_data(&dch->dev.D, MPH_INFORMATION_IND, MISDN_ID_ANY,
struct_size(phi, bch, dch->dev.nrbchan), phi, GFP_ATOMIC);
kfree(phi);
return 0;
}
/*
* Layer2 -> Layer 1 Dchannel data
*/
static int
hfcusb_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
{
struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
struct dchannel *dch = container_of(dev, struct dchannel, dev);
struct mISDNhead *hh = mISDN_HEAD_P(skb);
struct hfcsusb *hw = dch->hw;
int ret = -EINVAL;
u_long flags;
switch (hh->prim) {
case PH_DATA_REQ:
if (debug & DBG_HFC_CALL_TRACE)
printk(KERN_DEBUG "%s: %s: PH_DATA_REQ\n",
hw->name, __func__);
spin_lock_irqsave(&hw->lock, flags);
ret = dchannel_senddata(dch, skb);
spin_unlock_irqrestore(&hw->lock, flags);
if (ret > 0) {
ret = 0;
queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
}
break;
case PH_ACTIVATE_REQ:
if (debug & DBG_HFC_CALL_TRACE)
printk(KERN_DEBUG "%s: %s: PH_ACTIVATE_REQ %s\n",
hw->name, __func__,
(hw->protocol == ISDN_P_NT_S0) ? "NT" : "TE");
if (hw->protocol == ISDN_P_NT_S0) {
ret = 0;
if (test_bit(FLG_ACTIVE, &dch->Flags)) {
_queue_data(&dch->dev.D,
PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
NULL, GFP_ATOMIC);
} else {
hfcsusb_ph_command(hw,
HFC_L1_ACTIVATE_NT);
test_and_set_bit(FLG_L2_ACTIVATED,
&dch->Flags);
}
} else {
hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE);
ret = l1_event(dch->l1, hh->prim);
}
break;
case PH_DEACTIVATE_REQ:
if (debug & DBG_HFC_CALL_TRACE)
printk(KERN_DEBUG "%s: %s: PH_DEACTIVATE_REQ\n",
hw->name, __func__);
test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
if (hw->protocol == ISDN_P_NT_S0) {
struct sk_buff_head free_queue;
__skb_queue_head_init(&free_queue);
hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT);
spin_lock_irqsave(&hw->lock, flags);
skb_queue_splice_init(&dch->squeue, &free_queue);
if (dch->tx_skb) {
__skb_queue_tail(&free_queue, dch->tx_skb);
dch->tx_skb = NULL;
}
dch->tx_idx = 0;
if (dch->rx_skb) {
__skb_queue_tail(&free_queue, dch->rx_skb);
dch->rx_skb = NULL;
}
test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
spin_unlock_irqrestore(&hw->lock, flags);
__skb_queue_purge(&free_queue);
#ifdef FIXME
if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
dchannel_sched_event(&hc->dch, D_CLEARBUSY);
#endif
ret = 0;
} else
ret = l1_event(dch->l1, hh->prim);
break;
case MPH_INFORMATION_REQ:
ret = hfcsusb_ph_info(hw);
break;
}
return ret;
}
/*
* Layer 1 callback function
*/
static int
hfc_l1callback(struct dchannel *dch, u_int cmd)
{
struct hfcsusb *hw = dch->hw;
if (debug & DBG_HFC_CALL_TRACE)
printk(KERN_DEBUG "%s: %s cmd 0x%x\n",
hw->name, __func__, cmd);
switch (cmd) {
case INFO3_P8:
case INFO3_P10:
case HW_RESET_REQ:
case HW_POWERUP_REQ:
break;
case HW_DEACT_REQ:
skb_queue_purge(&dch->squeue);
if (dch->tx_skb) {
dev_kfree_skb(dch->tx_skb);
dch->tx_skb = NULL;
}
dch->tx_idx = 0;
if (dch->rx_skb) {
dev_kfree_skb(dch->rx_skb);
dch->rx_skb = NULL;
}
test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
break;
case PH_ACTIVATE_IND:
test_and_set_bit(FLG_ACTIVE, &dch->Flags);
_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
GFP_ATOMIC);
break;
case PH_DEACTIVATE_IND:
test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
GFP_ATOMIC);
break;
default:
if (dch->debug & DEBUG_HW)
printk(KERN_DEBUG "%s: %s: unknown cmd %x\n",
hw->name, __func__, cmd);
return -1;
}
return hfcsusb_ph_info(hw);
}
static int
open_dchannel(struct hfcsusb *hw, struct mISDNchannel *ch,
struct channel_req *rq)
{
int err = 0;
if (debug & DEBUG_HW_OPEN)
printk(KERN_DEBUG "%s: %s: dev(%d) open addr(%i) from %p\n",
hw->name, __func__, hw->dch.dev.id, rq->adr.channel,
__builtin_return_address(0));
if (rq->protocol == ISDN_P_NONE)
return -EINVAL;
test_and_clear_bit(FLG_ACTIVE, &hw->dch.Flags);
test_and_clear_bit(FLG_ACTIVE, &hw->ech.Flags);
hfcsusb_start_endpoint(hw, HFC_CHAN_D);
/* E-Channel logging */
if (rq->adr.channel == 1) {
if (hw->fifos[HFCUSB_PCM_RX].pipe) {
hfcsusb_start_endpoint(hw, HFC_CHAN_E);
set_bit(FLG_ACTIVE, &hw->ech.Flags);
_queue_data(&hw->ech.dev.D, PH_ACTIVATE_IND,
MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
} else
return -EINVAL;
}
if (!hw->initdone) {
hw->protocol = rq->protocol;
if (rq->protocol == ISDN_P_TE_S0) {
err = create_l1(&hw->dch, hfc_l1callback);
if (err)
return err;
}
setPortMode(hw);
ch->protocol = rq->protocol;
hw->initdone = 1;
} else {
if (rq->protocol != ch->protocol)
return -EPROTONOSUPPORT;
}
if (((ch->protocol == ISDN_P_NT_S0) && (hw->dch.state == 3)) ||
((ch->protocol == ISDN_P_TE_S0) && (hw->dch.state == 7)))
_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
0, NULL, GFP_KERNEL);
rq->ch = ch;
if (!try_module_get(THIS_MODULE))
printk(KERN_WARNING "%s: %s: cannot get module\n",
hw->name, __func__);
return 0;
}
static int
open_bchannel(struct hfcsusb *hw, struct channel_req *rq)
{
struct bchannel *bch;
if (rq->adr.channel == 0 || rq->adr.channel > 2)
return -EINVAL;
if (rq->protocol == ISDN_P_NONE)
return -EINVAL;
if (debug & DBG_HFC_CALL_TRACE)
printk(KERN_DEBUG "%s: %s B%i\n",
hw->name, __func__, rq->adr.channel);
bch = &hw->bch[rq->adr.channel - 1];
if (test_and_set_bit(FLG_OPEN, &bch->Flags))
return -EBUSY; /* b-channel can be only open once */
bch->ch.protocol = rq->protocol;
rq->ch = &bch->ch;
if (!try_module_get(THIS_MODULE))
printk(KERN_WARNING "%s: %s:cannot get module\n",
hw->name, __func__);
return 0;
}
static int
channel_ctrl(struct hfcsusb *hw, struct mISDN_ctrl_req *cq)
{
int ret = 0;
if (debug & DBG_HFC_CALL_TRACE)
printk(KERN_DEBUG "%s: %s op(0x%x) channel(0x%x)\n",
hw->name, __func__, (cq->op), (cq->channel));
switch (cq->op) {
case MISDN_CTRL_GETOP:
cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
MISDN_CTRL_DISCONNECT;
break;
default:
printk(KERN_WARNING "%s: %s: unknown Op %x\n",
hw->name, __func__, cq->op);
ret = -EINVAL;
break;
}
return ret;
}
/*
* device control function
*/
static int
hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
{
struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
struct dchannel *dch = container_of(dev, struct dchannel, dev);
struct hfcsusb *hw = dch->hw;
struct channel_req *rq;
int err = 0;
if (dch->debug & DEBUG_HW)
printk(KERN_DEBUG "%s: %s: cmd:%x %p\n",
hw->name, __func__, cmd, arg);
switch (cmd) {
case OPEN_CHANNEL:
rq = arg;
if ((rq->protocol == ISDN_P_TE_S0) ||
(rq->protocol == ISDN_P_NT_S0))
err = open_dchannel(hw, ch, rq);
else
err = open_bchannel(hw, rq);
if (!err)
hw->open++;
break;
case CLOSE_CHANNEL:
hw->open--;
if (debug & DEBUG_HW_OPEN)
printk(KERN_DEBUG
"%s: %s: dev(%d) close from %p (open %d)\n",
hw->name, __func__, hw->dch.dev.id,
__builtin_return_address(0), hw->open);
if (!hw->open) {
hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
if (hw->fifos[HFCUSB_PCM_RX].pipe)
hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
handle_led(hw, LED_POWER_ON);
}
module_put(THIS_MODULE);
break;
case CONTROL_CHANNEL:
err = channel_ctrl(hw, arg);
break;
default:
if (dch->debug & DEBUG_HW)
printk(KERN_DEBUG "%s: %s: unknown command %x\n",
hw->name, __func__, cmd);
return -EINVAL;
}
return err;
}
/*
* S0 TE state change event handler
*/
static void
ph_state_te(struct dchannel *dch)
{
struct hfcsusb *hw = dch->hw;
if (debug & DEBUG_HW) {
if (dch->state <= HFC_MAX_TE_LAYER1_STATE)
printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__,
HFC_TE_LAYER1_STATES[dch->state]);
else
printk(KERN_DEBUG "%s: %s: TE F%d\n",
hw->name, __func__, dch->state);
}
switch (dch->state) {
case 0:
l1_event(dch->l1, HW_RESET_IND);
break;
case 3:
l1_event(dch->l1, HW_DEACT_IND);
break;
case 5:
case 8:
l1_event(dch->l1, ANYSIGNAL);
break;
case 6:
l1_event(dch->l1, INFO2);
break;
case 7:
l1_event(dch->l1, INFO4_P8);
break;
}
if (dch->state == 7)
handle_led(hw, LED_S0_ON);
else
handle_led(hw, LED_S0_OFF);
}
/*
* S0 NT state change event handler
*/
static void
ph_state_nt(struct dchannel *dch)
{
struct hfcsusb *hw = dch->hw;
if (debug & DEBUG_HW) {
if (dch->state <= HFC_MAX_NT_LAYER1_STATE)
printk(KERN_DEBUG "%s: %s: %s\n",
hw->name, __func__,
HFC_NT_LAYER1_STATES[dch->state]);
else
printk(KERN_INFO DRIVER_NAME "%s: %s: NT G%d\n",
hw->name, __func__, dch->state);
}
switch (dch->state) {
case (1):
test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
hw->nt_timer = 0;
hw->timers &= ~NT_ACTIVATION_TIMER;
handle_led(hw, LED_S0_OFF);
break;
case (2):
if (hw->nt_timer < 0) {
hw->nt_timer = 0;
hw->timers &= ~NT_ACTIVATION_TIMER;
hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT);
} else {
hw->timers |= NT_ACTIVATION_TIMER;
hw->nt_timer = NT_T1_COUNT;
/* allow G2 -> G3 transition */
write_reg(hw, HFCUSB_STATES, 2 | HFCUSB_NT_G2_G3);
}
break;
case (3):
hw->nt_timer = 0;
hw->timers &= ~NT_ACTIVATION_TIMER;
test_and_set_bit(FLG_ACTIVE, &dch->Flags);
_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
handle_led(hw, LED_S0_ON);
break;
case (4):
hw->nt_timer = 0;
hw->timers &= ~NT_ACTIVATION_TIMER;
break;
default:
break;
}
hfcsusb_ph_info(hw);
}
static void
ph_state(struct dchannel *dch)
{
struct hfcsusb *hw = dch->hw;
if (hw->protocol == ISDN_P_NT_S0)
ph_state_nt(dch);
else if (hw->protocol == ISDN_P_TE_S0)
ph_state_te(dch);
}
/*
* disable/enable BChannel for desired protocoll
*/
static int
hfcsusb_setup_bch(struct bchannel *bch, int protocol)
{
struct hfcsusb *hw = bch->hw;
__u8 conhdlc, sctrl, sctrl_r;
if (debug & DEBUG_HW)
printk(KERN_DEBUG "%s: %s: protocol %x-->%x B%d\n",
hw->name, __func__, bch->state, protocol,
bch->nr);
/* setup val for CON_HDLC */
conhdlc = 0;
if (protocol > ISDN_P_NONE)
conhdlc = 8; /* enable FIFO */
switch (protocol) {
case (-1): /* used for init */
bch->state = -1;
fallthrough;
case (ISDN_P_NONE):
if (bch->state == ISDN_P_NONE)
return 0; /* already in idle state */
bch->state = ISDN_P_NONE;
clear_bit(FLG_HDLC, &bch->Flags);
clear_bit(FLG_TRANSPARENT, &bch->Flags);
break;
case (ISDN_P_B_RAW):
conhdlc |= 2;
bch->state = protocol;
set_bit(FLG_TRANSPARENT, &bch->Flags);
break;
case (ISDN_P_B_HDLC):
bch->state = protocol;
set_bit(FLG_HDLC, &bch->Flags);
break;
default:
if (debug & DEBUG_HW)
printk(KERN_DEBUG "%s: %s: prot not known %x\n",
hw->name, __func__, protocol);
return -ENOPROTOOPT;
}
if (protocol >= ISDN_P_NONE) {
write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 0 : 2);
write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
write_reg(hw, HFCUSB_INC_RES_F, 2);
write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 1 : 3);
write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
write_reg(hw, HFCUSB_INC_RES_F, 2);
sctrl = 0x40 + ((hw->protocol == ISDN_P_TE_S0) ? 0x00 : 0x04);
sctrl_r = 0x0;
if (test_bit(FLG_ACTIVE, &hw->bch[0].Flags)) {
sctrl |= 1;
sctrl_r |= 1;
}
if (test_bit(FLG_ACTIVE, &hw->bch[1].Flags)) {
sctrl |= 2;
sctrl_r |= 2;
}
write_reg(hw, HFCUSB_SCTRL, sctrl);
write_reg(hw, HFCUSB_SCTRL_R, sctrl_r);
if (protocol > ISDN_P_NONE)
handle_led(hw, (bch->nr == 1) ? LED_B1_ON : LED_B2_ON);
else
handle_led(hw, (bch->nr == 1) ? LED_B1_OFF :
LED_B2_OFF);
}
return hfcsusb_ph_info(hw);
}
static void
hfcsusb_ph_command(struct hfcsusb *hw, u_char command)
{
if (debug & DEBUG_HW)
printk(KERN_DEBUG "%s: %s: %x\n",
hw->name, __func__, command);
switch (command) {
case HFC_L1_ACTIVATE_TE:
/* force sending sending INFO1 */
write_reg(hw, HFCUSB_STATES, 0x14);
/* start l1 activation */
write_reg(hw, HFCUSB_STATES, 0x04);
break;
case HFC_L1_FORCE_DEACTIVATE_TE:
write_reg(hw, HFCUSB_STATES, 0x10);
write_reg(hw, HFCUSB_STATES, 0x03);
break;
case HFC_L1_ACTIVATE_NT:
if (hw->dch.state == 3)
_queue_data(&hw->dch.dev.D, PH_ACTIVATE_IND,
MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
else
write_reg(hw, HFCUSB_STATES, HFCUSB_ACTIVATE |
HFCUSB_DO_ACTION | HFCUSB_NT_G2_G3);
break;
case HFC_L1_DEACTIVATE_NT:
write_reg(hw, HFCUSB_STATES,
HFCUSB_DO_ACTION);
break;
}
}
/*
* Layer 1 B-channel hardware access
*/
static int
channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
{
return mISDN_ctrl_bchannel(bch, cq);
}
/* collect data from incoming interrupt or isochron USB data */
static void
hfcsusb_rx_frame(struct usb_fifo *fifo, __u8 *data, unsigned int len,
int finish)
{
struct hfcsusb *hw = fifo->hw;
struct sk_buff *rx_skb = NULL;
int maxlen = 0;
int fifon = fifo->fifonum;
int i;
int hdlc = 0;
unsigned long flags;
if (debug & DBG_HFC_CALL_TRACE)
printk(KERN_DEBUG "%s: %s: fifo(%i) len(%i) "
"dch(%p) bch(%p) ech(%p)\n",
hw->name, __func__, fifon, len,
fifo->dch, fifo->bch, fifo->ech);
if (!len)
return;
if ((!!fifo->dch + !!fifo->bch + !!fifo->ech) != 1) {
printk(KERN_DEBUG "%s: %s: undefined channel\n",
hw->name, __func__);
return;
}
spin_lock_irqsave(&hw->lock, flags);
if (fifo->dch) {
rx_skb = fifo->dch->rx_skb;
maxlen = fifo->dch->maxlen;
hdlc = 1;
}
if (fifo->bch) {
if (test_bit(FLG_RX_OFF, &fifo->bch->Flags)) {
fifo->bch->dropcnt += len;
spin_unlock_irqrestore(&hw->lock, flags);
return;
}
maxlen = bchannel_get_rxbuf(fifo->bch, len);
rx_skb = fifo->bch->rx_skb;
if (maxlen < 0) {
if (rx_skb)
skb_trim(rx_skb, 0);
pr_warn("%s.B%d: No bufferspace for %d bytes\n",
hw->name, fifo->bch->nr, len);
spin_unlock_irqrestore(&hw->lock, flags);
return;
}
maxlen = fifo->bch->maxlen;
hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
}
if (fifo->ech) {
rx_skb = fifo->ech->rx_skb;
maxlen = fifo->ech->maxlen;
hdlc = 1;
}
if (fifo->dch || fifo->ech) {
if (!rx_skb) {
rx_skb = mI_alloc_skb(maxlen, GFP_ATOMIC);
if (rx_skb) {
if (fifo->dch)
fifo->dch->rx_skb = rx_skb;
if (fifo->ech)
fifo->ech->rx_skb = rx_skb;
skb_trim(rx_skb, 0);
} else {
printk(KERN_DEBUG "%s: %s: No mem for rx_skb\n",
hw->name, __func__);
spin_unlock_irqrestore(&hw->lock, flags);
return;
}
}
/* D/E-Channel SKB range check */
if ((rx_skb->len + len) >= MAX_DFRAME_LEN_L1) {
printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
"for fifo(%d) HFCUSB_D_RX\n",
hw->name, __func__, fifon);
skb_trim(rx_skb, 0);
spin_unlock_irqrestore(&hw->lock, flags);
return;
}
}
skb_put_data(rx_skb, data, len);
if (hdlc) {
/* we have a complete hdlc packet */
if (finish) {
if ((rx_skb->len > 3) &&
(!(rx_skb->data[rx_skb->len - 1]))) {
if (debug & DBG_HFC_FIFO_VERBOSE) {
printk(KERN_DEBUG "%s: %s: fifon(%i)"
" new RX len(%i): ",
hw->name, __func__, fifon,
rx_skb->len);
i = 0;
while (i < rx_skb->len)
printk("%02x ",
rx_skb->data[i++]);
printk("\n");
}
/* remove CRC & status */
skb_trim(rx_skb, rx_skb->len - 3);
if (fifo->dch)
recv_Dchannel(fifo->dch);
if (fifo->bch)
recv_Bchannel(fifo->bch, MISDN_ID_ANY,
0);
if (fifo->ech)
recv_Echannel(fifo->ech,
&hw->dch);
} else {
if (debug & DBG_HFC_FIFO_VERBOSE) {
printk(KERN_DEBUG
"%s: CRC or minlen ERROR fifon(%i) "
"RX len(%i): ",
hw->name, fifon, rx_skb->len);
i = 0;
while (i < rx_skb->len)
printk("%02x ",
rx_skb->data[i++]);
printk("\n");
}
skb_trim(rx_skb, 0);
}
}
} else {
/* deliver transparent data to layer2 */
recv_Bchannel(fifo->bch, MISDN_ID_ANY, false);
}
spin_unlock_irqrestore(&hw->lock, flags);
}
static void
fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
void *buf, int num_packets, int packet_size, int interval,
usb_complete_t complete, void *context)
{
int k;
usb_fill_bulk_urb(urb, dev, pipe, buf, packet_size * num_packets,
complete, context);
urb->number_of_packets = num_packets;
urb->transfer_flags = URB_ISO_ASAP;
urb->actual_length = 0;
urb->interval = interval;
for (k = 0; k < num_packets; k++) {
urb->iso_frame_desc[k].offset = packet_size * k;
urb->iso_frame_desc[k].length = packet_size;
urb->iso_frame_desc[k].actual_length = 0;
}
}
/* receive completion routine for all ISO tx fifos */
static void
rx_iso_complete(struct urb *urb)
{
struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
struct usb_fifo *fifo = context_iso_urb->owner_fifo;
struct hfcsusb *hw = fifo->hw;
int k, len, errcode, offset, num_isoc_packets, fifon, maxlen,
status, iso_status, i;
__u8 *buf;
static __u8 eof[8];
__u8 s0_state;
unsigned long flags;
fifon = fifo->fifonum;
status = urb->status;
spin_lock_irqsave(&hw->lock, flags);
if (fifo->stop_gracefull) {
fifo->stop_gracefull = 0;
fifo->active = 0;
spin_unlock_irqrestore(&hw->lock, flags);
return;
}
spin_unlock_irqrestore(&hw->lock, flags);
/*
* ISO transfer only partially completed,
* look at individual frame status for details
*/
if (status == -EXDEV) {
if (debug & DEBUG_HW)
printk(KERN_DEBUG "%s: %s: with -EXDEV "
"urb->status %d, fifonum %d\n",
hw->name, __func__, status, fifon);
/* clear status, so go on with ISO transfers */
status = 0;
}
s0_state = 0;
if (fifo->active && !status) {
num_isoc_packets = iso_packets[fifon];
maxlen = fifo->usb_packet_maxlen;
for (k = 0; k < num_isoc_packets; ++k) {
len = urb->iso_frame_desc[k].actual_length;
offset = urb->iso_frame_desc[k].offset;
buf = context_iso_urb->buffer + offset;
iso_status = urb->iso_frame_desc[k].status;
if (iso_status && (debug & DBG_HFC_FIFO_VERBOSE)) {
printk(KERN_DEBUG "%s: %s: "
"ISO packet %i, status: %i\n",
hw->name, __func__, k, iso_status);
}
/* USB data log for every D ISO in */
if ((fifon == HFCUSB_D_RX) &&
(debug & DBG_HFC_USB_VERBOSE)) {
printk(KERN_DEBUG
"%s: %s: %d (%d/%d) len(%d) ",
hw->name, __func__, urb->start_frame,
k, num_isoc_packets - 1,
len);
for (i = 0; i < len; i++)
printk("%x ", buf[i]);
printk("\n");
}
if (!iso_status) {
if (fifo->last_urblen != maxlen) {
/*
* save fifo fill-level threshold bits
* to use them later in TX ISO URB
* completions
*/
hw->threshold_mask = buf[1];
if (fifon == HFCUSB_D_RX)
s0_state = (buf[0] >> 4);
eof[fifon] = buf[0] & 1;
if (len > 2)
hfcsusb_rx_frame(fifo, buf + 2,
len - 2, (len < maxlen)
? eof[fifon] : 0);
} else
hfcsusb_rx_frame(fifo, buf, len,
(len < maxlen) ?
eof[fifon] : 0);
fifo->last_urblen = len;
}
}
/* signal S0 layer1 state change */
if ((s0_state) && (hw->initdone) &&
(s0_state != hw->dch.state)) {
hw->dch.state = s0_state;
schedule_event(&hw->dch, FLG_PHCHANGE);
}
fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
context_iso_urb->buffer, num_isoc_packets,
fifo->usb_packet_maxlen, fifo->intervall,
(usb_complete_t)rx_iso_complete, urb->context);
errcode = usb_submit_urb(urb, GFP_ATOMIC);
if (errcode < 0) {
if (debug & DEBUG_HW)
printk(KERN_DEBUG "%s: %s: error submitting "
"ISO URB: %d\n",
hw->name, __func__, errcode);
}
} else {
if (status && (debug & DBG_HFC_URB_INFO))
printk(KERN_DEBUG "%s: %s: rx_iso_complete : "
"urb->status %d, fifonum %d\n",
hw->name, __func__, status, fifon);
}
}
/* receive completion routine for all interrupt rx fifos */
static void
rx_int_complete(struct urb *urb)
{
int len, status, i;
__u8 *buf, maxlen, fifon;
struct usb_fifo *fifo = (struct usb_fifo *) urb->context;
struct hfcsusb *hw = fifo->hw;
static __u8 eof[8];
unsigned long flags;
spin_lock_irqsave(&hw->lock, flags);
if (fifo->stop_gracefull) {
fifo->stop_gracefull = 0;
fifo->active = 0;
spin_unlock_irqrestore(&hw->lock, flags);
return;
}
spin_unlock_irqrestore(&hw->lock, flags);
fifon = fifo->fifonum;
if ((!fifo->active) || (urb->status)) {
if (debug & DBG_HFC_URB_ERROR)
printk(KERN_DEBUG
"%s: %s: RX-Fifo %i is going down (%i)\n",
hw->name, __func__, fifon, urb->status);
fifo->urb->interval = 0; /* cancel automatic rescheduling */
return;
}
len = urb->actual_length;
buf = fifo->buffer;
maxlen = fifo->usb_packet_maxlen;
/* USB data log for every D INT in */
if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) {
printk(KERN_DEBUG "%s: %s: D RX INT len(%d) ",
hw->name, __func__, len);
for (i = 0; i < len; i++)
printk("%02x ", buf[i]);
printk("\n");
}
if (fifo->last_urblen != fifo->usb_packet_maxlen) {
/* the threshold mask is in the 2nd status byte */
hw->threshold_mask = buf[1];
/* signal S0 layer1 state change */
if (hw->initdone && ((buf[0] >> 4) != hw->dch.state)) {
hw->dch.state = (buf[0] >> 4);
schedule_event(&hw->dch, FLG_PHCHANGE);
}
eof[fifon] = buf[0] & 1;
/* if we have more than the 2 status bytes -> collect data */
if (len > 2)
hfcsusb_rx_frame(fifo, buf + 2,
urb->actual_length - 2,
(len < maxlen) ? eof[fifon] : 0);
} else {
hfcsusb_rx_frame(fifo, buf, urb->actual_length,
(len < maxlen) ? eof[fifon] : 0);
}
fifo->last_urblen = urb->actual_length;
status = usb_submit_urb(urb, GFP_ATOMIC);
if (status) {
if (debug & DEBUG_HW)
printk(KERN_DEBUG "%s: %s: error resubmitting USB\n",
hw->name, __func__);
}
}
/* transmit completion routine for all ISO tx fifos */
static void
tx_iso_complete(struct urb *urb)
{
struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
struct usb_fifo *fifo = context_iso_urb->owner_fifo;
struct hfcsusb *hw = fifo->hw;
struct sk_buff *tx_skb;
int k, tx_offset, num_isoc_packets, sink, remain, current_len,
errcode, hdlc, i;
int *tx_idx;
int frame_complete, fifon, status, fillempty = 0;
__u8 threshbit, *p;
unsigned long flags;
spin_lock_irqsave(&hw->lock, flags);
if (fifo->stop_gracefull) {
fifo->stop_gracefull = 0;
fifo->active = 0;
spin_unlock_irqrestore(&hw->lock, flags);
return;
}
if (fifo->dch) {
tx_skb = fifo->dch->tx_skb;
tx_idx = &fifo->dch->tx_idx;
hdlc = 1;
} else if (fifo->bch) {
tx_skb = fifo->bch->tx_skb;
tx_idx = &fifo->bch->tx_idx;
hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
if (!tx_skb && !hdlc &&
test_bit(FLG_FILLEMPTY, &fifo->bch->Flags))
fillempty = 1;
} else {
printk(KERN_DEBUG "%s: %s: neither BCH nor DCH\n",
hw->name, __func__);
spin_unlock_irqrestore(&hw->lock, flags);
return;
}
fifon = fifo->fifonum;
status = urb->status;
tx_offset = 0;
/*
* ISO transfer only partially completed,
* look at individual frame status for details
*/
if (status == -EXDEV) {
if (debug & DBG_HFC_URB_ERROR)
printk(KERN_DEBUG "%s: %s: "
"-EXDEV (%i) fifon (%d)\n",
hw->name, __func__, status, fifon);
/* clear status, so go on with ISO transfers */
status = 0;
}
if (fifo->active && !status) {
/* is FifoFull-threshold set for our channel? */
threshbit = (hw->threshold_mask & (1 << fifon));
num_isoc_packets = iso_packets[fifon];
/* predict dataflow to avoid fifo overflow */
if (fifon >= HFCUSB_D_TX)
sink = (threshbit) ? SINK_DMIN : SINK_DMAX;
else
sink = (threshbit) ? SINK_MIN : SINK_MAX;
fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
context_iso_urb->buffer, num_isoc_packets,
fifo->usb_packet_maxlen, fifo->intervall,
(usb_complete_t)tx_iso_complete, urb->context);
memset(context_iso_urb->buffer, 0,
sizeof(context_iso_urb->buffer));
frame_complete = 0;
for (k = 0; k < num_isoc_packets; ++k) {
/* analyze tx success of previous ISO packets */
if (debug & DBG_HFC_URB_ERROR) {
errcode = urb->iso_frame_desc[k].status;
if (errcode) {
printk(KERN_DEBUG "%s: %s: "
"ISO packet %i, status: %i\n",
hw->name, __func__, k, errcode);
}
}
/* Generate next ISO Packets */
if (tx_skb)
remain = tx_skb->len - *tx_idx;
else if (fillempty)
remain = 15; /* > not complete */
else
remain = 0;
if (remain > 0) {
fifo->bit_line -= sink;
current_len = (0 - fifo->bit_line) / 8;
if (current_len > 14)
current_len = 14;
if (current_len < 0)
current_len = 0;
if (remain < current_len)
current_len = remain;
/* how much bit do we put on the line? */
fifo->bit_line += current_len * 8;
context_iso_urb->buffer[tx_offset] = 0;
if (current_len == remain) {
if (hdlc) {
/* signal frame completion */
context_iso_urb->
buffer[tx_offset] = 1;
/* add 2 byte flags and 16bit
* CRC at end of ISDN frame */
fifo->bit_line += 32;
}
frame_complete = 1;
}
/* copy tx data to iso-urb buffer */
p = context_iso_urb->buffer + tx_offset + 1;
if (fillempty) {
memset(p, fifo->bch->fill[0],
current_len);
} else {
memcpy(p, (tx_skb->data + *tx_idx),
current_len);
*tx_idx += current_len;
}
urb->iso_frame_desc[k].offset = tx_offset;
urb->iso_frame_desc[k].length = current_len + 1;
/* USB data log for every D ISO out */
if ((fifon == HFCUSB_D_RX) && !fillempty &&
(debug & DBG_HFC_USB_VERBOSE)) {
printk(KERN_DEBUG
"%s: %s (%d/%d) offs(%d) len(%d) ",
hw->name, __func__,
k, num_isoc_packets - 1,
urb->iso_frame_desc[k].offset,
urb->iso_frame_desc[k].length);
for (i = urb->iso_frame_desc[k].offset;
i < (urb->iso_frame_desc[k].offset
+ urb->iso_frame_desc[k].length);
i++)
printk("%x ",
context_iso_urb->buffer[i]);
printk(" skb->len(%i) tx-idx(%d)\n",
tx_skb->len, *tx_idx);
}
tx_offset += (current_len + 1);
} else {
urb->iso_frame_desc[k].offset = tx_offset++;
urb->iso_frame_desc[k].length = 1;
/* we lower data margin every msec */
fifo->bit_line -= sink;
if (fifo->bit_line < BITLINE_INF)
fifo->bit_line = BITLINE_INF;
}
if (frame_complete) {
frame_complete = 0;
if (debug & DBG_HFC_FIFO_VERBOSE) {
printk(KERN_DEBUG "%s: %s: "
"fifon(%i) new TX len(%i): ",
hw->name, __func__,
fifon, tx_skb->len);
i = 0;
while (i < tx_skb->len)
printk("%02x ",
tx_skb->data[i++]);
printk("\n");
}
dev_consume_skb_irq(tx_skb);
tx_skb = NULL;
if (fifo->dch && get_next_dframe(fifo->dch))
tx_skb = fifo->dch->tx_skb;
else if (fifo->bch &&
get_next_bframe(fifo->bch))
tx_skb = fifo->bch->tx_skb;
}
}
errcode = usb_submit_urb(urb, GFP_ATOMIC);
if (errcode < 0) {
if (debug & DEBUG_HW)
printk(KERN_DEBUG
"%s: %s: error submitting ISO URB: %d \n",
hw->name, __func__, errcode);
}
/*
* abuse DChannel tx iso completion to trigger NT mode state
* changes tx_iso_complete is assumed to be called every
* fifo->intervall (ms)
*/
if ((fifon == HFCUSB_D_TX) && (hw->protocol == ISDN_P_NT_S0)
&& (hw->timers & NT_ACTIVATION_TIMER)) {
if ((--hw->nt_timer) < 0)
schedule_event(&hw->dch, FLG_PHCHANGE);
}
} else {
if (status && (debug & DBG_HFC_URB_ERROR))
printk(KERN_DEBUG "%s: %s: urb->status %s (%i)"
"fifonum=%d\n",
hw->name, __func__,
symbolic(urb_errlist, status), status, fifon);
}
spin_unlock_irqrestore(&hw->lock, flags);
}
/*
* allocs urbs and start isoc transfer with two pending urbs to avoid
* gaps in the transfer chain
*/
static int
start_isoc_chain(struct usb_fifo *fifo, int num_packets_per_urb,
usb_complete_t complete, int packet_size)
{
struct hfcsusb *hw = fifo->hw;
int i, k, errcode;
if (debug)
printk(KERN_DEBUG "%s: %s: fifo %i\n",
hw->name, __func__, fifo->fifonum);
/* allocate Memory for Iso out Urbs */
for (i = 0; i < 2; i++) {
if (!(fifo->iso[i].urb)) {
fifo->iso[i].urb =
usb_alloc_urb(num_packets_per_urb, GFP_KERNEL);
if (!(fifo->iso[i].urb)) {
printk(KERN_DEBUG
"%s: %s: alloc urb for fifo %i failed",
hw->name, __func__, fifo->fifonum);
continue;
}
fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo;
fifo->iso[i].indx = i;
/* Init the first iso */
if (ISO_BUFFER_SIZE >=
(fifo->usb_packet_maxlen *
num_packets_per_urb)) {
fill_isoc_urb(fifo->iso[i].urb,
fifo->hw->dev, fifo->pipe,
fifo->iso[i].buffer,
num_packets_per_urb,
fifo->usb_packet_maxlen,
fifo->intervall, complete,
&fifo->iso[i]);
memset(fifo->iso[i].buffer, 0,
sizeof(fifo->iso[i].buffer));
for (k = 0; k < num_packets_per_urb; k++) {
fifo->iso[i].urb->
iso_frame_desc[k].offset =
k * packet_size;
fifo->iso[i].urb->
iso_frame_desc[k].length =
packet_size;
}
} else {
printk(KERN_DEBUG
"%s: %s: ISO Buffer size to small!\n",
hw->name, __func__);
}
}
fifo->bit_line = BITLINE_INF;
errcode = usb_submit_urb(fifo->iso[i].urb, GFP_KERNEL);
fifo->active = (errcode >= 0) ? 1 : 0;
fifo->stop_gracefull = 0;
if (errcode < 0) {
printk(KERN_DEBUG "%s: %s: %s URB nr:%d\n",
hw->name, __func__,
symbolic(urb_errlist, errcode), i);
}
}
return fifo->active;
}
static void
stop_iso_gracefull(struct usb_fifo *fifo)
{
struct hfcsusb *hw = fifo->hw;
int i, timeout;
u_long flags;
for (i = 0; i < 2; i++) {
spin_lock_irqsave(&hw->lock, flags);
if (debug)
printk(KERN_DEBUG "%s: %s for fifo %i.%i\n",
hw->name, __func__, fifo->fifonum, i);
fifo->stop_gracefull = 1;
spin_unlock_irqrestore(&hw->lock, flags);
}
for (i = 0; i < 2; i++) {
timeout = 3;
while (fifo->stop_gracefull && timeout--)
schedule_timeout_interruptible((HZ / 1000) * 16);
if (debug && fifo->stop_gracefull)
printk(KERN_DEBUG "%s: ERROR %s for fifo %i.%i\n",
hw->name, __func__, fifo->fifonum, i);
}
}
static void
stop_int_gracefull(struct usb_fifo *fifo)
{
struct hfcsusb *hw = fifo->hw;
int timeout;
u_long flags;
spin_lock_irqsave(&hw->lock, flags);
if (debug)
printk(KERN_DEBUG "%s: %s for fifo %i\n",
hw->name, __func__, fifo->fifonum);
fifo->stop_gracefull = 1;
spin_unlock_irqrestore(&hw->lock, flags);
timeout = 3;
while (fifo->stop_gracefull && timeout--)
schedule_timeout_interruptible((HZ / 1000) * 3);
if (debug && fifo->stop_gracefull)
printk(KERN_DEBUG "%s: ERROR %s for fifo %i\n",
hw->name, __func__, fifo->fifonum);
}
/* start the interrupt transfer for the given fifo */
static void
start_int_fifo(struct usb_fifo *fifo)
{
struct hfcsusb *hw = fifo->hw;
int errcode;
if (debug)
printk(KERN_DEBUG "%s: %s: INT IN fifo:%d\n",
hw->name, __func__, fifo->fifonum);
if (!fifo->urb) {
fifo->urb = usb_alloc_urb(0, GFP_KERNEL);
if (!fifo->urb)
return;
}
usb_fill_int_urb(fifo->urb, fifo->hw->dev, fifo->pipe,
fifo->buffer, fifo->usb_packet_maxlen,
(usb_complete_t)rx_int_complete, fifo, fifo->intervall);
fifo->active = 1;
fifo->stop_gracefull = 0;
errcode = usb_submit_urb(fifo->urb, GFP_KERNEL);
if (errcode) {
printk(KERN_DEBUG "%s: %s: submit URB: status:%i\n",
hw->name, __func__, errcode);
fifo->active = 0;
}
}
static void
setPortMode(struct hfcsusb *hw)
{
if (debug & DEBUG_HW)
printk(KERN_DEBUG "%s: %s %s\n", hw->name, __func__,
(hw->protocol == ISDN_P_TE_S0) ? "TE" : "NT");
if (hw->protocol == ISDN_P_TE_S0) {
write_reg(hw, HFCUSB_SCTRL, 0x40);
write_reg(hw, HFCUSB_SCTRL_E, 0x00);
write_reg(hw, HFCUSB_CLKDEL, CLKDEL_TE);
write_reg(hw, HFCUSB_STATES, 3 | 0x10);
write_reg(hw, HFCUSB_STATES, 3);
} else {
write_reg(hw, HFCUSB_SCTRL, 0x44);
write_reg(hw, HFCUSB_SCTRL_E, 0x09);
write_reg(hw, HFCUSB_CLKDEL, CLKDEL_NT);
write_reg(hw, HFCUSB_STATES, 1 | 0x10);
write_reg(hw, HFCUSB_STATES, 1);
}
}
static void
reset_hfcsusb(struct hfcsusb *hw)
{
struct usb_fifo *fifo;
int i;
if (debug & DEBUG_HW)
printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
/* do Chip reset */
write_reg(hw, HFCUSB_CIRM, 8);
/* aux = output, reset off */
write_reg(hw, HFCUSB_CIRM, 0x10);
/* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */
write_reg(hw, HFCUSB_USB_SIZE, (hw->packet_size / 8) |
((hw->packet_size / 8) << 4));
/* set USB_SIZE_I to match the wMaxPacketSize for ISO transfers */
write_reg(hw, HFCUSB_USB_SIZE_I, hw->iso_packet_size);
/* enable PCM/GCI master mode */
write_reg(hw, HFCUSB_MST_MODE1, 0); /* set default values */
write_reg(hw, HFCUSB_MST_MODE0, 1); /* enable master mode */
/* init the fifos */
write_reg(hw, HFCUSB_F_THRES,
(HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4));
fifo = hw->fifos;
for (i = 0; i < HFCUSB_NUM_FIFOS; i++) {
write_reg(hw, HFCUSB_FIFO, i); /* select the desired fifo */
fifo[i].max_size =
(i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN;
fifo[i].last_urblen = 0;
/* set 2 bit for D- & E-channel */
write_reg(hw, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2));
/* enable all fifos */
if (i == HFCUSB_D_TX)
write_reg(hw, HFCUSB_CON_HDLC,
(hw->protocol == ISDN_P_NT_S0) ? 0x08 : 0x09);
else
write_reg(hw, HFCUSB_CON_HDLC, 0x08);
write_reg(hw, HFCUSB_INC_RES_F, 2); /* reset the fifo */
}
write_reg(hw, HFCUSB_SCTRL_R, 0); /* disable both B receivers */
handle_led(hw, LED_POWER_ON);
}
/* start USB data pipes dependand on device's endpoint configuration */
static void
hfcsusb_start_endpoint(struct hfcsusb *hw, int channel)
{
/* quick check if endpoint already running */
if ((channel == HFC_CHAN_D) && (hw->fifos[HFCUSB_D_RX].active))
return;
if ((channel == HFC_CHAN_B1) && (hw->fifos[HFCUSB_B1_RX].active))
return;
if ((channel == HFC_CHAN_B2) && (hw->fifos[HFCUSB_B2_RX].active))
return;
if ((channel == HFC_CHAN_E) && (hw->fifos[HFCUSB_PCM_RX].active))
return;
/* start rx endpoints using USB INT IN method */
if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
start_int_fifo(hw->fifos + channel * 2 + 1);
/* start rx endpoints using USB ISO IN method */
if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) {
switch (channel) {
case HFC_CHAN_D:
start_isoc_chain(hw->fifos + HFCUSB_D_RX,
ISOC_PACKETS_D,
(usb_complete_t)rx_iso_complete,
16);
break;
case HFC_CHAN_E:
start_isoc_chain(hw->fifos + HFCUSB_PCM_RX,
ISOC_PACKETS_D,
(usb_complete_t)rx_iso_complete,
16);
break;
case HFC_CHAN_B1:
start_isoc_chain(hw->fifos + HFCUSB_B1_RX,
ISOC_PACKETS_B,
(usb_complete_t)rx_iso_complete,
16);
break;
case HFC_CHAN_B2:
start_isoc_chain(hw->fifos + HFCUSB_B2_RX,
ISOC_PACKETS_B,
(usb_complete_t)rx_iso_complete,
16);
break;
}
}
/* start tx endpoints using USB ISO OUT method */
switch (channel) {
case HFC_CHAN_D:
start_isoc_chain(hw->fifos + HFCUSB_D_TX,
ISOC_PACKETS_B,
(usb_complete_t)tx_iso_complete, 1);
break;
case HFC_CHAN_B1:
start_isoc_chain(hw->fifos + HFCUSB_B1_TX,
ISOC_PACKETS_D,
(usb_complete_t)tx_iso_complete, 1);
break;
case HFC_CHAN_B2:
start_isoc_chain(hw->fifos + HFCUSB_B2_TX,
ISOC_PACKETS_B,
(usb_complete_t)tx_iso_complete, 1);
break;
}
}
/* stop USB data pipes dependand on device's endpoint configuration */
static void
hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel)
{
/* quick check if endpoint currently running */
if ((channel == HFC_CHAN_D) && (!hw->fifos[HFCUSB_D_RX].active))
return;
if ((channel == HFC_CHAN_B1) && (!hw->fifos[HFCUSB_B1_RX].active))
return;
if ((channel == HFC_CHAN_B2) && (!hw->fifos[HFCUSB_B2_RX].active))
return;
if ((channel == HFC_CHAN_E) && (!hw->fifos[HFCUSB_PCM_RX].active))
return;
/* rx endpoints using USB INT IN method */
if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
stop_int_gracefull(hw->fifos + channel * 2 + 1);
/* rx endpoints using USB ISO IN method */
if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO)
stop_iso_gracefull(hw->fifos + channel * 2 + 1);
/* tx endpoints using USB ISO OUT method */
if (channel != HFC_CHAN_E)
stop_iso_gracefull(hw->fifos + channel * 2);
}
/* Hardware Initialization */
static int
setup_hfcsusb(struct hfcsusb *hw)
{
void *dmabuf = kmalloc(sizeof(u_char), GFP_KERNEL);
u_char b;
int ret;
if (debug & DBG_HFC_CALL_TRACE)
printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
if (!dmabuf)
return -ENOMEM;
ret = read_reg_atomic(hw, HFCUSB_CHIP_ID, dmabuf);
memcpy(&b, dmabuf, sizeof(u_char));
kfree(dmabuf);
/* check the chip id */
if (ret != 1) {
printk(KERN_DEBUG "%s: %s: cannot read chip id\n",
hw->name, __func__);
return 1;
}
if (b != HFCUSB_CHIPID) {
printk(KERN_DEBUG "%s: %s: Invalid chip id 0x%02x\n",
hw->name, __func__, b);
return 1;
}
/* first set the needed config, interface and alternate */
(void) usb_set_interface(hw->dev, hw->if_used, hw->alt_used);
hw->led_state = 0;
/* init the background machinery for control requests */
hw->ctrl_read.bRequestType = 0xc0;
hw->ctrl_read.bRequest = 1;
hw->ctrl_read.wLength = cpu_to_le16(1);
hw->ctrl_write.bRequestType = 0x40;
hw->ctrl_write.bRequest = 0;
hw->ctrl_write.wLength = 0;
usb_fill_control_urb(hw->ctrl_urb, hw->dev, hw->ctrl_out_pipe,
(u_char *)&hw->ctrl_write, NULL, 0,
(usb_complete_t)ctrl_complete, hw);
reset_hfcsusb(hw);
return 0;
}
static void
release_hw(struct hfcsusb *hw)
{
if (debug & DBG_HFC_CALL_TRACE)
printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
/*
* stop all endpoints gracefully
* TODO: mISDN_core should generate CLOSE_CHANNEL
* signals after calling mISDN_unregister_device()
*/
hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
hfcsusb_stop_endpoint(hw, HFC_CHAN_B1);
hfcsusb_stop_endpoint(hw, HFC_CHAN_B2);
if (hw->fifos[HFCUSB_PCM_RX].pipe)
hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
if (hw->protocol == ISDN_P_TE_S0)
l1_event(hw->dch.l1, CLOSE_CHANNEL);
mISDN_unregister_device(&hw->dch.dev);
mISDN_freebchannel(&hw->bch[1]);
mISDN_freebchannel(&hw->bch[0]);
mISDN_freedchannel(&hw->dch);
if (hw->ctrl_urb) {
usb_kill_urb(hw->ctrl_urb);
usb_free_urb(hw->ctrl_urb);
hw->ctrl_urb = NULL;
}
if (hw->intf)
usb_set_intfdata(hw->intf, NULL);
list_del(&hw->list);
kfree(hw);
hw = NULL;
}
static void
deactivate_bchannel(struct bchannel *bch)
{
struct hfcsusb *hw = bch->hw;
u_long flags;
if (bch->debug & DEBUG_HW)
printk(KERN_DEBUG "%s: %s: bch->nr(%i)\n",
hw->name, __func__, bch->nr);
spin_lock_irqsave(&hw->lock, flags);
mISDN_clear_bchannel(bch);
spin_unlock_irqrestore(&hw->lock, flags);
hfcsusb_setup_bch(bch, ISDN_P_NONE);
hfcsusb_stop_endpoint(hw, bch->nr - 1);
}
/*
* Layer 1 B-channel hardware access
*/
static int
hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
{
struct bchannel *bch = container_of(ch, struct bchannel, ch);
int ret = -EINVAL;
if (bch->debug & DEBUG_HW)
printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
switch (cmd) {
case HW_TESTRX_RAW:
case HW_TESTRX_HDLC:
case HW_TESTRX_OFF:
ret = -EINVAL;
break;
case CLOSE_CHANNEL:
test_and_clear_bit(FLG_OPEN, &bch->Flags);
deactivate_bchannel(bch);
ch->protocol = ISDN_P_NONE;
ch->peer = NULL;
module_put(THIS_MODULE);
ret = 0;
break;
case CONTROL_CHANNEL:
ret = channel_bctrl(bch, arg);
break;
default:
printk(KERN_WARNING "%s: unknown prim(%x)\n",
__func__, cmd);
}
return ret;
}
static int
setup_instance(struct hfcsusb *hw, struct device *parent)
{
u_long flags;
int err, i;
if (debug & DBG_HFC_CALL_TRACE)
printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
spin_lock_init(&hw->ctrl_lock);
spin_lock_init(&hw->lock);
mISDN_initdchannel(&hw->dch, MAX_DFRAME_LEN_L1, ph_state);
hw->dch.debug = debug & 0xFFFF;
hw->dch.hw = hw;
hw->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
hw->dch.dev.D.send = hfcusb_l2l1D;
hw->dch.dev.D.ctrl = hfc_dctrl;
/* enable E-Channel logging */
if (hw->fifos[HFCUSB_PCM_RX].pipe)
mISDN_initdchannel(&hw->ech, MAX_DFRAME_LEN_L1, NULL);
hw->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
(1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
hw->dch.dev.nrbchan = 2;
for (i = 0; i < 2; i++) {
hw->bch[i].nr = i + 1;
set_channelmap(i + 1, hw->dch.dev.channelmap);
hw->bch[i].debug = debug;
mISDN_initbchannel(&hw->bch[i], MAX_DATA_MEM, poll >> 1);
hw->bch[i].hw = hw;
hw->bch[i].ch.send = hfcusb_l2l1B;
hw->bch[i].ch.ctrl = hfc_bctrl;
hw->bch[i].ch.nr = i + 1;
list_add(&hw->bch[i].ch.list, &hw->dch.dev.bchannels);
}
hw->fifos[HFCUSB_B1_TX].bch = &hw->bch[0];
hw->fifos[HFCUSB_B1_RX].bch = &hw->bch[0];
hw->fifos[HFCUSB_B2_TX].bch = &hw->bch[1];
hw->fifos[HFCUSB_B2_RX].bch = &hw->bch[1];
hw->fifos[HFCUSB_D_TX].dch = &hw->dch;
hw->fifos[HFCUSB_D_RX].dch = &hw->dch;
hw->fifos[HFCUSB_PCM_RX].ech = &hw->ech;
hw->fifos[HFCUSB_PCM_TX].ech = &hw->ech;
err = setup_hfcsusb(hw);
if (err)
goto out;
snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s.%d", DRIVER_NAME,
hfcsusb_cnt + 1);
printk(KERN_INFO "%s: registered as '%s'\n",
DRIVER_NAME, hw->name);
err = mISDN_register_device(&hw->dch.dev, parent, hw->name);
if (err)
goto out;
hfcsusb_cnt++;
write_lock_irqsave(&HFClock, flags);
list_add_tail(&hw->list, &HFClist);
write_unlock_irqrestore(&HFClock, flags);
return 0;
out:
mISDN_freebchannel(&hw->bch[1]);
mISDN_freebchannel(&hw->bch[0]);
mISDN_freedchannel(&hw->dch);
kfree(hw);
return err;
}
static int
hfcsusb_probe(struct usb_interface *intf, const struct usb_device_id *id)
{
struct hfcsusb *hw;
struct usb_device *dev = interface_to_usbdev(intf);
struct usb_host_interface *iface = intf->cur_altsetting;
struct usb_host_interface *iface_used = NULL;
struct usb_host_endpoint *ep;
struct hfcsusb_vdata *driver_info;
int ifnum = iface->desc.bInterfaceNumber, i, idx, alt_idx,
probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found,
ep_addr, cmptbl[16], small_match, iso_packet_size, packet_size,
alt_used = 0;
vend_idx = 0xffff;
for (i = 0; hfcsusb_idtab[i].idVendor; i++) {
if ((le16_to_cpu(dev->descriptor.idVendor)
== hfcsusb_idtab[i].idVendor) &&
(le16_to_cpu(dev->descriptor.idProduct)
== hfcsusb_idtab[i].idProduct)) {
vend_idx = i;
continue;
}
}
printk(KERN_DEBUG
"%s: interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n",
__func__, ifnum, iface->desc.bAlternateSetting,
intf->minor, vend_idx);
if (vend_idx == 0xffff) {
printk(KERN_WARNING
"%s: no valid vendor found in USB descriptor\n",
__func__);
return -EIO;
}
/* if vendor and product ID is OK, start probing alternate settings */
alt_idx = 0;
small_match = -1;
/* default settings */
iso_packet_size = 16;
packet_size = 64;
while (alt_idx < intf->num_altsetting) {
iface = intf->altsetting + alt_idx;
probe_alt_setting = iface->desc.bAlternateSetting;
cfg_used = 0;
while (validconf[cfg_used][0]) {
cfg_found = 1;
vcf = validconf[cfg_used];
ep = iface->endpoint;
memcpy(cmptbl, vcf, 16 * sizeof(int));
/* check for all endpoints in this alternate setting */
for (i = 0; i < iface->desc.bNumEndpoints; i++) {
ep_addr = ep->desc.bEndpointAddress;
/* get endpoint base */
idx = ((ep_addr & 0x7f) - 1) * 2;
if (idx > 15)
return -EIO;
if (ep_addr & 0x80)
idx++;
attr = ep->desc.bmAttributes;
if (cmptbl[idx] != EP_NOP) {
if (cmptbl[idx] == EP_NUL)
cfg_found = 0;
if (attr == USB_ENDPOINT_XFER_INT
&& cmptbl[idx] == EP_INT)
cmptbl[idx] = EP_NUL;
if (attr == USB_ENDPOINT_XFER_BULK
&& cmptbl[idx] == EP_BLK)
cmptbl[idx] = EP_NUL;
if (attr == USB_ENDPOINT_XFER_ISOC
&& cmptbl[idx] == EP_ISO)
cmptbl[idx] = EP_NUL;
if (attr == USB_ENDPOINT_XFER_INT &&
ep->desc.bInterval < vcf[17]) {
cfg_found = 0;
}
}
ep++;
}
for (i = 0; i < 16; i++)
if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL)
cfg_found = 0;
if (cfg_found) {
if (small_match < cfg_used) {
small_match = cfg_used;
alt_used = probe_alt_setting;
iface_used = iface;
}
}
cfg_used++;
}
alt_idx++;
} /* (alt_idx < intf->num_altsetting) */
/* not found a valid USB Ta Endpoint config */
if (small_match == -1)
return -EIO;
iface = iface_used;
hw = kzalloc(sizeof(struct hfcsusb), GFP_KERNEL);
if (!hw)
return -ENOMEM; /* got no mem */
snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s", DRIVER_NAME);
ep = iface->endpoint;
vcf = validconf[small_match];
for (i = 0; i < iface->desc.bNumEndpoints; i++) {
struct usb_fifo *f;
ep_addr = ep->desc.bEndpointAddress;
/* get endpoint base */
idx = ((ep_addr & 0x7f) - 1) * 2;
if (ep_addr & 0x80)
idx++;
f = &hw->fifos[idx & 7];
/* init Endpoints */
if (vcf[idx] == EP_NOP || vcf[idx] == EP_NUL) {
ep++;
continue;
}
switch (ep->desc.bmAttributes) {
case USB_ENDPOINT_XFER_INT:
f->pipe = usb_rcvintpipe(dev,
ep->desc.bEndpointAddress);
f->usb_transfer_mode = USB_INT;
packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
break;
case USB_ENDPOINT_XFER_BULK:
if (ep_addr & 0x80)
f->pipe = usb_rcvbulkpipe(dev,
ep->desc.bEndpointAddress);
else
f->pipe = usb_sndbulkpipe(dev,
ep->desc.bEndpointAddress);
f->usb_transfer_mode = USB_BULK;
packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
break;
case USB_ENDPOINT_XFER_ISOC:
if (ep_addr & 0x80)
f->pipe = usb_rcvisocpipe(dev,
ep->desc.bEndpointAddress);
else
f->pipe = usb_sndisocpipe(dev,
ep->desc.bEndpointAddress);
f->usb_transfer_mode = USB_ISOC;
iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
break;
default:
f->pipe = 0;
}
if (f->pipe) {
f->fifonum = idx & 7;
f->hw = hw;
f->usb_packet_maxlen =
le16_to_cpu(ep->desc.wMaxPacketSize);
f->intervall = ep->desc.bInterval;
}
ep++;
}
hw->dev = dev; /* save device */
hw->if_used = ifnum; /* save used interface */
hw->alt_used = alt_used; /* and alternate config */
hw->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */
hw->cfg_used = vcf[16]; /* store used config */
hw->vend_idx = vend_idx; /* store found vendor */
hw->packet_size = packet_size;
hw->iso_packet_size = iso_packet_size;
/* create the control pipes needed for register access */
hw->ctrl_in_pipe = usb_rcvctrlpipe(hw->dev, 0);
hw->ctrl_out_pipe = usb_sndctrlpipe(hw->dev, 0);
driver_info = (struct hfcsusb_vdata *)
hfcsusb_idtab[vend_idx].driver_info;
hw->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL);
if (!hw->ctrl_urb) {
pr_warn("%s: No memory for control urb\n",
driver_info->vend_name);
kfree(hw);
return -ENOMEM;
}
pr_info("%s: %s: detected \"%s\" (%s, if=%d alt=%d)\n",
hw->name, __func__, driver_info->vend_name,
conf_str[small_match], ifnum, alt_used);
if (setup_instance(hw, dev->dev.parent))
return -EIO;
hw->intf = intf;
usb_set_intfdata(hw->intf, hw);
return 0;
}
/* function called when an active device is removed */
static void
hfcsusb_disconnect(struct usb_interface *intf)
{
struct hfcsusb *hw = usb_get_intfdata(intf);
struct hfcsusb *next;
int cnt = 0;
printk(KERN_INFO "%s: device disconnected\n", hw->name);
handle_led(hw, LED_POWER_OFF);
release_hw(hw);
list_for_each_entry_safe(hw, next, &HFClist, list)
cnt++;
if (!cnt)
hfcsusb_cnt = 0;
usb_set_intfdata(intf, NULL);
}
static struct usb_driver hfcsusb_drv = {
.name = DRIVER_NAME,
.id_table = hfcsusb_idtab,
.probe = hfcsusb_probe,
.disconnect = hfcsusb_disconnect,
.disable_hub_initiated_lpm = 1,
};
module_usb_driver(hfcsusb_drv);