linux-zen-server/drivers/media/platform/st/sti/hva/hva-h264.c

1064 lines
31 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) STMicroelectronics SA 2015
* Authors: Yannick Fertre <yannick.fertre@st.com>
* Hugues Fruchet <hugues.fruchet@st.com>
*/
#include "hva.h"
#include "hva-hw.h"
#define MAX_SPS_PPS_SIZE 128
#define BITSTREAM_OFFSET_MASK 0x7F
/* video max size*/
#define H264_MAX_SIZE_W 1920
#define H264_MAX_SIZE_H 1920
/* macroBlocs number (width & height) */
#define MB_W(w) ((w + 0xF) / 0x10)
#define MB_H(h) ((h + 0xF) / 0x10)
/* formula to get temporal or spatial data size */
#define DATA_SIZE(w, h) (MB_W(w) * MB_H(h) * 16)
#define SEARCH_WINDOW_BUFFER_MAX_SIZE(w) ((4 * MB_W(w) + 42) * 256 * 3 / 2)
#define CABAC_CONTEXT_BUFFER_MAX_SIZE(w) (MB_W(w) * 16)
#define CTX_MB_BUFFER_MAX_SIZE(w) (MB_W(w) * 16 * 8)
#define SLICE_HEADER_SIZE (4 * 16)
#define BRC_DATA_SIZE (5 * 16)
/* source buffer copy in YUV 420 MB-tiled format with size=16*256*3/2 */
#define CURRENT_WINDOW_BUFFER_MAX_SIZE (16 * 256 * 3 / 2)
/*
* 4 lines of pixels (in Luma, Chroma blue and Chroma red) of top MB
* for deblocking with size=4*16*MBx*2
*/
#define LOCAL_RECONSTRUCTED_BUFFER_MAX_SIZE(w) (4 * 16 * MB_W(w) * 2)
/* factor for bitrate and cpb buffer size max values if profile >= high */
#define H264_FACTOR_HIGH 1200
/* factor for bitrate and cpb buffer size max values if profile < high */
#define H264_FACTOR_BASELINE 1000
/* number of bytes for NALU_TYPE_FILLER_DATA header and footer */
#define H264_FILLER_DATA_SIZE 6
struct h264_profile {
enum v4l2_mpeg_video_h264_level level;
u32 max_mb_per_seconds;
u32 max_frame_size;
u32 max_bitrate;
u32 max_cpb_size;
u32 min_comp_ratio;
};
static const struct h264_profile h264_infos_list[] = {
{V4L2_MPEG_VIDEO_H264_LEVEL_1_0, 1485, 99, 64, 175, 2},
{V4L2_MPEG_VIDEO_H264_LEVEL_1B, 1485, 99, 128, 350, 2},
{V4L2_MPEG_VIDEO_H264_LEVEL_1_1, 3000, 396, 192, 500, 2},
{V4L2_MPEG_VIDEO_H264_LEVEL_1_2, 6000, 396, 384, 1000, 2},
{V4L2_MPEG_VIDEO_H264_LEVEL_1_3, 11880, 396, 768, 2000, 2},
{V4L2_MPEG_VIDEO_H264_LEVEL_2_0, 11880, 396, 2000, 2000, 2},
{V4L2_MPEG_VIDEO_H264_LEVEL_2_1, 19800, 792, 4000, 4000, 2},
{V4L2_MPEG_VIDEO_H264_LEVEL_2_2, 20250, 1620, 4000, 4000, 2},
{V4L2_MPEG_VIDEO_H264_LEVEL_3_0, 40500, 1620, 10000, 10000, 2},
{V4L2_MPEG_VIDEO_H264_LEVEL_3_1, 108000, 3600, 14000, 14000, 4},
{V4L2_MPEG_VIDEO_H264_LEVEL_3_2, 216000, 5120, 20000, 20000, 4},
{V4L2_MPEG_VIDEO_H264_LEVEL_4_0, 245760, 8192, 20000, 25000, 4},
{V4L2_MPEG_VIDEO_H264_LEVEL_4_1, 245760, 8192, 50000, 62500, 2},
{V4L2_MPEG_VIDEO_H264_LEVEL_4_2, 522240, 8704, 50000, 62500, 2},
{V4L2_MPEG_VIDEO_H264_LEVEL_5_0, 589824, 22080, 135000, 135000, 2},
{V4L2_MPEG_VIDEO_H264_LEVEL_5_1, 983040, 36864, 240000, 240000, 2}
};
enum hva_brc_type {
BRC_TYPE_NONE = 0,
BRC_TYPE_CBR = 1,
BRC_TYPE_VBR = 2,
BRC_TYPE_VBR_LOW_DELAY = 3
};
enum hva_entropy_coding_mode {
CAVLC = 0,
CABAC = 1
};
enum hva_picture_coding_type {
PICTURE_CODING_TYPE_I = 0,
PICTURE_CODING_TYPE_P = 1,
PICTURE_CODING_TYPE_B = 2
};
enum hva_h264_sampling_mode {
SAMPLING_MODE_NV12 = 0,
SAMPLING_MODE_UYVY = 1,
SAMPLING_MODE_RGB3 = 3,
SAMPLING_MODE_XRGB4 = 4,
SAMPLING_MODE_NV21 = 8,
SAMPLING_MODE_VYUY = 9,
SAMPLING_MODE_BGR3 = 11,
SAMPLING_MODE_XBGR4 = 12,
SAMPLING_MODE_RGBX4 = 20,
SAMPLING_MODE_BGRX4 = 28
};
enum hva_h264_nalu_type {
NALU_TYPE_UNKNOWN = 0,
NALU_TYPE_SLICE = 1,
NALU_TYPE_SLICE_DPA = 2,
NALU_TYPE_SLICE_DPB = 3,
NALU_TYPE_SLICE_DPC = 4,
NALU_TYPE_SLICE_IDR = 5,
NALU_TYPE_SEI = 6,
NALU_TYPE_SPS = 7,
NALU_TYPE_PPS = 8,
NALU_TYPE_AU_DELIMITER = 9,
NALU_TYPE_SEQ_END = 10,
NALU_TYPE_STREAM_END = 11,
NALU_TYPE_FILLER_DATA = 12,
NALU_TYPE_SPS_EXT = 13,
NALU_TYPE_PREFIX_UNIT = 14,
NALU_TYPE_SUBSET_SPS = 15,
NALU_TYPE_SLICE_AUX = 19,
NALU_TYPE_SLICE_EXT = 20
};
enum hva_h264_sei_payload_type {
SEI_BUFFERING_PERIOD = 0,
SEI_PICTURE_TIMING = 1,
SEI_STEREO_VIDEO_INFO = 21,
SEI_FRAME_PACKING_ARRANGEMENT = 45
};
/*
* stereo Video Info struct
*/
struct hva_h264_stereo_video_sei {
u8 field_views_flag;
u8 top_field_is_left_view_flag;
u8 current_frame_is_left_view_flag;
u8 next_frame_is_second_view_flag;
u8 left_view_self_contained_flag;
u8 right_view_self_contained_flag;
};
/*
* struct hva_h264_td
*
* @frame_width: width in pixels of the buffer containing the input frame
* @frame_height: height in pixels of the buffer containing the input frame
* @frame_num: the parameter to be written in the slice header
* @picture_coding_type: type I, P or B
* @pic_order_cnt_type: POC mode, as defined in H264 std : can be 0,1,2
* @first_picture_in_sequence: flag telling to encoder that this is the
* first picture in a video sequence.
* Used for VBR
* @slice_size_type: 0 = no constraint to close the slice
* 1= a slice is closed as soon as the slice_mb_size limit
* is reached
* 2= a slice is closed as soon as the slice_byte_size limit
* is reached
* 3= a slice is closed as soon as either the slice_byte_size
* limit or the slice_mb_size limit is reached
* @slice_mb_size: defines the slice size in number of macroblocks
* (used when slice_size_type=1 or slice_size_type=3)
* @ir_param_option: defines the number of macroblocks per frame to be
* refreshed by AIR algorithm OR the refresh period
* by CIR algorithm
* @intra_refresh_type: enables the adaptive intra refresh algorithm.
* Disable=0 / Adaptative=1 and Cycle=2 as intra refresh
* @use_constrained_intra_flag: constrained_intra_pred_flag from PPS
* @transform_mode: controls the use of 4x4/8x8 transform mode
* @disable_deblocking_filter_idc:
* 0: specifies that all luma and chroma block edges of
* the slice are filtered.
* 1: specifies that deblocking is disabled for all block
* edges of the slice.
* 2: specifies that all luma and chroma block edges of
* the slice are filtered with exception of the block edges
* that coincide with slice boundaries
* @slice_alpha_c0_offset_div2: to be written in slice header,
* controls deblocking
* @slice_beta_offset_div2: to be written in slice header,
* controls deblocking
* @encoder_complexity: encoder complexity control (IME).
* 0 = I_16x16, P_16x16, Full ME Complexity
* 1 = I_16x16, I_NxN, P_16x16, Full ME Complexity
* 2 = I_16x16, I_NXN, P_16x16, P_WxH, Full ME Complexity
* 4 = I_16x16, P_16x16, Reduced ME Complexity
* 5 = I_16x16, I_NxN, P_16x16, Reduced ME Complexity
* 6 = I_16x16, I_NXN, P_16x16, P_WxH, Reduced ME Complexity
* @chroma_qp_index_offset: coming from picture parameter set
* (PPS see [H.264 STD] 7.4.2.2)
* @entropy_coding_mode: entropy coding mode.
* 0 = CAVLC
* 1 = CABAC
* @brc_type: selects the bit-rate control algorithm
* 0 = constant Qp, (no BRC)
* 1 = CBR
* 2 = VBR
* @quant: Quantization param used in case of fix QP encoding (no BRC)
* @non_VCL_NALU_Size: size of non-VCL NALUs (SPS, PPS, filler),
* used by BRC
* @cpb_buffer_size: size of Coded Picture Buffer, used by BRC
* @bit_rate: target bitrate, for BRC
* @qp_min: min QP threshold
* @qp_max: max QP threshold
* @framerate_num: target framerate numerator , used by BRC
* @framerate_den: target framerate denomurator , used by BRC
* @delay: End-to-End Initial Delay
* @strict_HRD_compliancy: flag for HDR compliancy (1)
* May impact quality encoding
* @addr_source_buffer: address of input frame buffer for current frame
* @addr_fwd_Ref_Buffer: address of reference frame buffer
* @addr_rec_buffer: address of reconstructed frame buffer
* @addr_output_bitstream_start: output bitstream start address
* @addr_output_bitstream_end: output bitstream end address
* @addr_external_sw : address of external search window
* @addr_lctx : address of context picture buffer
* @addr_local_rec_buffer: address of local reconstructed buffer
* @addr_spatial_context: address of spatial context buffer
* @bitstream_offset: offset in bits between aligned bitstream start
* address and first bit to be written by HVA.
* Range value is [0..63]
* @sampling_mode: Input picture format .
* 0: YUV420 semi_planar Interleaved
* 1: YUV422 raster Interleaved
* @addr_param_out: address of output parameters structure
* @addr_scaling_matrix: address to the coefficient of
* the inverse scaling matrix
* @addr_scaling_matrix_dir: address to the coefficient of
* the direct scaling matrix
* @addr_cabac_context_buffer: address of cabac context buffer
* @GmvX: Input information about the horizontal global displacement of
* the encoded frame versus the previous one
* @GmvY: Input information about the vertical global displacement of
* the encoded frame versus the previous one
* @window_width: width in pixels of the window to be encoded inside
* the input frame
* @window_height: width in pixels of the window to be encoded inside
* the input frame
* @window_horizontal_offset: horizontal offset in pels for input window
* within input frame
* @window_vertical_offset: vertical offset in pels for input window
* within input frame
* @addr_roi: Map of QP offset for the Region of Interest algorithm and
* also used for Error map.
* Bit 0-6 used for qp offset (value -64 to 63).
* Bit 7 used to force intra
* @addr_slice_header: address to slice header
* @slice_header_size_in_bits: size in bits of the Slice header
* @slice_header_offset0: Slice header offset where to insert
* first_Mb_in_slice
* @slice_header_offset1: Slice header offset where to insert
* slice_qp_delta
* @slice_header_offset2: Slice header offset where to insert
* num_MBs_in_slice
* @slice_synchro_enable: enable "slice ready" interrupt after each slice
* @max_slice_number: Maximum number of slice in a frame
* (0 is strictly forbidden)
* @rgb2_yuv_y_coeff: Four coefficients (C0C1C2C3) to convert from RGB to
* YUV for the Y component.
* Y = C0*R + C1*G + C2*B + C3 (C0 is on byte 0)
* @rgb2_yuv_u_coeff: four coefficients (C0C1C2C3) to convert from RGB to
* YUV for the Y component.
* Y = C0*R + C1*G + C2*B + C3 (C0 is on byte 0)
* @rgb2_yuv_v_coeff: Four coefficients (C0C1C2C3) to convert from RGB to
* YUV for the U (Cb) component.
* U = C0*R + C1*G + C2*B + C3 (C0 is on byte 0)
* @slice_byte_size: maximum slice size in bytes
* (used when slice_size_type=2 or slice_size_type=3)
* @max_air_intra_mb_nb: Maximum number of intra macroblock in a frame
* for the AIR algorithm
* @brc_no_skip: Disable skipping in the Bitrate Controller
* @addr_brc_in_out_parameter: address of static buffer for BRC parameters
*/
struct hva_h264_td {
u16 frame_width;
u16 frame_height;
u32 frame_num;
u16 picture_coding_type;
u16 reserved1;
u16 pic_order_cnt_type;
u16 first_picture_in_sequence;
u16 slice_size_type;
u16 reserved2;
u32 slice_mb_size;
u16 ir_param_option;
u16 intra_refresh_type;
u16 use_constrained_intra_flag;
u16 transform_mode;
u16 disable_deblocking_filter_idc;
s16 slice_alpha_c0_offset_div2;
s16 slice_beta_offset_div2;
u16 encoder_complexity;
s16 chroma_qp_index_offset;
u16 entropy_coding_mode;
u16 brc_type;
u16 quant;
u32 non_vcl_nalu_size;
u32 cpb_buffer_size;
u32 bit_rate;
u16 qp_min;
u16 qp_max;
u16 framerate_num;
u16 framerate_den;
u16 delay;
u16 strict_hrd_compliancy;
u32 addr_source_buffer;
u32 addr_fwd_ref_buffer;
u32 addr_rec_buffer;
u32 addr_output_bitstream_start;
u32 addr_output_bitstream_end;
u32 addr_external_sw;
u32 addr_lctx;
u32 addr_local_rec_buffer;
u32 addr_spatial_context;
u16 bitstream_offset;
u16 sampling_mode;
u32 addr_param_out;
u32 addr_scaling_matrix;
u32 addr_scaling_matrix_dir;
u32 addr_cabac_context_buffer;
u32 reserved3;
u32 reserved4;
s16 gmv_x;
s16 gmv_y;
u16 window_width;
u16 window_height;
u16 window_horizontal_offset;
u16 window_vertical_offset;
u32 addr_roi;
u32 addr_slice_header;
u16 slice_header_size_in_bits;
u16 slice_header_offset0;
u16 slice_header_offset1;
u16 slice_header_offset2;
u32 reserved5;
u32 reserved6;
u16 reserved7;
u16 reserved8;
u16 slice_synchro_enable;
u16 max_slice_number;
u32 rgb2_yuv_y_coeff;
u32 rgb2_yuv_u_coeff;
u32 rgb2_yuv_v_coeff;
u32 slice_byte_size;
u16 max_air_intra_mb_nb;
u16 brc_no_skip;
u32 addr_temporal_context;
u32 addr_brc_in_out_parameter;
};
/*
* struct hva_h264_slice_po
*
* @ slice_size: slice size
* @ slice_start_time: start time
* @ slice_stop_time: stop time
* @ slice_num: slice number
*/
struct hva_h264_slice_po {
u32 slice_size;
u32 slice_start_time;
u32 slice_end_time;
u32 slice_num;
};
/*
* struct hva_h264_po
*
* @ bitstream_size: bitstream size
* @ dct_bitstream_size: dtc bitstream size
* @ stuffing_bits: number of stuffing bits inserted by the encoder
* @ removal_time: removal time of current frame (nb of ticks 1/framerate)
* @ hvc_start_time: hvc start time
* @ hvc_stop_time: hvc stop time
* @ slice_count: slice count
*/
struct hva_h264_po {
u32 bitstream_size;
u32 dct_bitstream_size;
u32 stuffing_bits;
u32 removal_time;
u32 hvc_start_time;
u32 hvc_stop_time;
u32 slice_count;
u32 reserved0;
struct hva_h264_slice_po slice_params[16];
};
struct hva_h264_task {
struct hva_h264_td td;
struct hva_h264_po po;
};
/*
* struct hva_h264_ctx
*
* @seq_info: sequence information buffer
* @ref_frame: reference frame buffer
* @rec_frame: reconstructed frame buffer
* @task: task descriptor
*/
struct hva_h264_ctx {
struct hva_buffer *seq_info;
struct hva_buffer *ref_frame;
struct hva_buffer *rec_frame;
struct hva_buffer *task;
};
static int hva_h264_fill_slice_header(struct hva_ctx *pctx,
u8 *slice_header_addr,
struct hva_controls *ctrls,
int frame_num,
u16 *header_size,
u16 *header_offset0,
u16 *header_offset1,
u16 *header_offset2)
{
/*
* with this HVA hardware version, part of the slice header is computed
* on host and part by hardware.
* The part of host is precomputed and available through this array.
*/
struct device *dev = ctx_to_dev(pctx);
int cabac = V4L2_MPEG_VIDEO_H264_ENTROPY_MODE_CABAC;
static const unsigned char slice_header[] = {
0x00, 0x00, 0x00, 0x01,
0x41, 0x34, 0x07, 0x00
};
int idr_pic_id = frame_num % 2;
enum hva_picture_coding_type type;
u32 frame_order = frame_num % ctrls->gop_size;
if (!(frame_num % ctrls->gop_size))
type = PICTURE_CODING_TYPE_I;
else
type = PICTURE_CODING_TYPE_P;
memcpy(slice_header_addr, slice_header, sizeof(slice_header));
*header_size = 56;
*header_offset0 = 40;
*header_offset1 = 13;
*header_offset2 = 0;
if (type == PICTURE_CODING_TYPE_I) {
slice_header_addr[4] = 0x65;
slice_header_addr[5] = 0x11;
/* toggle the I frame */
if ((frame_num / ctrls->gop_size) % 2) {
*header_size += 4;
*header_offset1 += 4;
slice_header_addr[6] = 0x04;
slice_header_addr[7] = 0x70;
} else {
*header_size += 2;
*header_offset1 += 2;
slice_header_addr[6] = 0x09;
slice_header_addr[7] = 0xC0;
}
} else {
if (ctrls->entropy_mode == cabac) {
*header_size += 1;
*header_offset1 += 1;
slice_header_addr[7] = 0x80;
}
/*
* update slice header with P frame order
* frame order is limited to 16 (coded on 4bits only)
*/
slice_header_addr[5] += ((frame_order & 0x0C) >> 2);
slice_header_addr[6] += ((frame_order & 0x03) << 6);
}
dev_dbg(dev,
"%s %s slice header order %d idrPicId %d header size %d\n",
pctx->name, __func__, frame_order, idr_pic_id, *header_size);
return 0;
}
static int hva_h264_fill_data_nal(struct hva_ctx *pctx,
unsigned int stuffing_bytes, u8 *addr,
unsigned int stream_size, unsigned int *size)
{
struct device *dev = ctx_to_dev(pctx);
static const u8 start[] = { 0x00, 0x00, 0x00, 0x01 };
dev_dbg(dev, "%s %s stuffing bytes %d\n", pctx->name, __func__,
stuffing_bytes);
if ((*size + stuffing_bytes + H264_FILLER_DATA_SIZE) > stream_size) {
dev_dbg(dev, "%s %s too many stuffing bytes %d\n",
pctx->name, __func__, stuffing_bytes);
return 0;
}
/* start code */
memcpy(addr + *size, start, sizeof(start));
*size += sizeof(start);
/* nal_unit_type */
addr[*size] = NALU_TYPE_FILLER_DATA;
*size += 1;
memset(addr + *size, 0xff, stuffing_bytes);
*size += stuffing_bytes;
addr[*size] = 0x80;
*size += 1;
return 0;
}
static int hva_h264_fill_sei_nal(struct hva_ctx *pctx,
enum hva_h264_sei_payload_type type,
u8 *addr, u32 *size)
{
struct device *dev = ctx_to_dev(pctx);
static const u8 start[] = { 0x00, 0x00, 0x00, 0x01 };
struct hva_h264_stereo_video_sei info;
u8 offset = 7;
u8 msg = 0;
/* start code */
memcpy(addr + *size, start, sizeof(start));
*size += sizeof(start);
/* nal_unit_type */
addr[*size] = NALU_TYPE_SEI;
*size += 1;
/* payload type */
addr[*size] = type;
*size += 1;
switch (type) {
case SEI_STEREO_VIDEO_INFO:
memset(&info, 0, sizeof(info));
/* set to top/bottom frame packing arrangement */
info.field_views_flag = 1;
info.top_field_is_left_view_flag = 1;
/* payload size */
addr[*size] = 1;
*size += 1;
/* payload */
msg = info.field_views_flag << offset--;
if (info.field_views_flag) {
msg |= info.top_field_is_left_view_flag <<
offset--;
} else {
msg |= info.current_frame_is_left_view_flag <<
offset--;
msg |= info.next_frame_is_second_view_flag <<
offset--;
}
msg |= info.left_view_self_contained_flag << offset--;
msg |= info.right_view_self_contained_flag << offset--;
addr[*size] = msg;
*size += 1;
addr[*size] = 0x80;
*size += 1;
return 0;
case SEI_BUFFERING_PERIOD:
case SEI_PICTURE_TIMING:
case SEI_FRAME_PACKING_ARRANGEMENT:
default:
dev_err(dev, "%s sei nal type not supported %d\n",
pctx->name, type);
return -EINVAL;
}
}
static int hva_h264_prepare_task(struct hva_ctx *pctx,
struct hva_h264_task *task,
struct hva_frame *frame,
struct hva_stream *stream)
{
struct hva_dev *hva = ctx_to_hdev(pctx);
struct device *dev = ctx_to_dev(pctx);
struct hva_h264_ctx *ctx = (struct hva_h264_ctx *)pctx->priv;
struct hva_buffer *seq_info = ctx->seq_info;
struct hva_buffer *fwd_ref_frame = ctx->ref_frame;
struct hva_buffer *loc_rec_frame = ctx->rec_frame;
struct hva_h264_td *td = &task->td;
struct hva_controls *ctrls = &pctx->ctrls;
struct v4l2_fract *time_per_frame = &pctx->ctrls.time_per_frame;
int cavlc = V4L2_MPEG_VIDEO_H264_ENTROPY_MODE_CAVLC;
u32 frame_num = pctx->stream_num;
u32 addr_esram = hva->esram_addr;
enum v4l2_mpeg_video_h264_level level;
dma_addr_t paddr = 0;
u8 *slice_header_vaddr;
u32 frame_width = frame->info.aligned_width;
u32 frame_height = frame->info.aligned_height;
u32 max_cpb_buffer_size;
unsigned int payload = stream->bytesused;
u32 max_bitrate;
/* check width and height parameters */
if ((frame_width > max(H264_MAX_SIZE_W, H264_MAX_SIZE_H)) ||
(frame_height > max(H264_MAX_SIZE_W, H264_MAX_SIZE_H))) {
dev_err(dev,
"%s width(%d) or height(%d) exceeds limits (%dx%d)\n",
pctx->name, frame_width, frame_height,
H264_MAX_SIZE_W, H264_MAX_SIZE_H);
pctx->frame_errors++;
return -EINVAL;
}
level = ctrls->level;
memset(td, 0, sizeof(struct hva_h264_td));
td->frame_width = frame_width;
td->frame_height = frame_height;
/* set frame alignment */
td->window_width = frame_width;
td->window_height = frame_height;
td->window_horizontal_offset = 0;
td->window_vertical_offset = 0;
td->first_picture_in_sequence = (!frame_num) ? 1 : 0;
/* pic_order_cnt_type hard coded to '2' as only I & P frames */
td->pic_order_cnt_type = 2;
/* useConstrainedIntraFlag set to false for better coding efficiency */
td->use_constrained_intra_flag = false;
td->brc_type = (ctrls->bitrate_mode == V4L2_MPEG_VIDEO_BITRATE_MODE_CBR)
? BRC_TYPE_CBR : BRC_TYPE_VBR;
td->entropy_coding_mode = (ctrls->entropy_mode == cavlc) ? CAVLC :
CABAC;
td->bit_rate = ctrls->bitrate;
/* set framerate, framerate = 1 n/ time per frame */
if (time_per_frame->numerator >= 536) {
/*
* due to a hardware bug, framerate denominator can't exceed
* 536 (BRC overflow). Compute nearest framerate
*/
td->framerate_den = 1;
td->framerate_num = (time_per_frame->denominator +
(time_per_frame->numerator >> 1) - 1) /
time_per_frame->numerator;
/*
* update bitrate to introduce a correction due to
* the new framerate
* new bitrate = (old bitrate * new framerate) / old framerate
*/
td->bit_rate /= time_per_frame->numerator;
td->bit_rate *= time_per_frame->denominator;
td->bit_rate /= td->framerate_num;
} else {
td->framerate_den = time_per_frame->numerator;
td->framerate_num = time_per_frame->denominator;
}
/* compute maximum bitrate depending on profile */
if (ctrls->profile >= V4L2_MPEG_VIDEO_H264_PROFILE_HIGH)
max_bitrate = h264_infos_list[level].max_bitrate *
H264_FACTOR_HIGH;
else
max_bitrate = h264_infos_list[level].max_bitrate *
H264_FACTOR_BASELINE;
/* check if bitrate doesn't exceed max size */
if (td->bit_rate > max_bitrate) {
dev_dbg(dev,
"%s bitrate (%d) larger than level and profile allow, clip to %d\n",
pctx->name, td->bit_rate, max_bitrate);
td->bit_rate = max_bitrate;
}
/* convert cpb_buffer_size in bits */
td->cpb_buffer_size = ctrls->cpb_size * 8000;
/* compute maximum cpb buffer size depending on profile */
if (ctrls->profile >= V4L2_MPEG_VIDEO_H264_PROFILE_HIGH)
max_cpb_buffer_size =
h264_infos_list[level].max_cpb_size * H264_FACTOR_HIGH;
else
max_cpb_buffer_size =
h264_infos_list[level].max_cpb_size * H264_FACTOR_BASELINE;
/* check if cpb buffer size doesn't exceed max size */
if (td->cpb_buffer_size > max_cpb_buffer_size) {
dev_dbg(dev,
"%s cpb size larger than level %d allows, clip to %d\n",
pctx->name, td->cpb_buffer_size, max_cpb_buffer_size);
td->cpb_buffer_size = max_cpb_buffer_size;
}
/* enable skipping in the Bitrate Controller */
td->brc_no_skip = 0;
/* initial delay */
if ((ctrls->bitrate_mode == V4L2_MPEG_VIDEO_BITRATE_MODE_CBR) &&
td->bit_rate)
td->delay = 1000 * (td->cpb_buffer_size / td->bit_rate);
else
td->delay = 0;
switch (frame->info.pixelformat) {
case V4L2_PIX_FMT_NV12:
td->sampling_mode = SAMPLING_MODE_NV12;
break;
case V4L2_PIX_FMT_NV21:
td->sampling_mode = SAMPLING_MODE_NV21;
break;
default:
dev_err(dev, "%s invalid source pixel format\n",
pctx->name);
pctx->frame_errors++;
return -EINVAL;
}
/*
* fill matrix color converter (RGB to YUV)
* Y = 0,299 R + 0,587 G + 0,114 B
* Cb = -0,1687 R -0,3313 G + 0,5 B + 128
* Cr = 0,5 R - 0,4187 G - 0,0813 B + 128
*/
td->rgb2_yuv_y_coeff = 0x12031008;
td->rgb2_yuv_u_coeff = 0x800EF7FB;
td->rgb2_yuv_v_coeff = 0x80FEF40E;
/* enable/disable transform mode */
td->transform_mode = ctrls->dct8x8;
/* encoder complexity fix to 2, ENCODE_I_16x16_I_NxN_P_16x16_P_WxH */
td->encoder_complexity = 2;
/* quant fix to 28, default VBR value */
td->quant = 28;
if (td->framerate_den == 0) {
dev_err(dev, "%s invalid framerate\n", pctx->name);
pctx->frame_errors++;
return -EINVAL;
}
/* if automatic framerate, deactivate bitrate controller */
if (td->framerate_num == 0)
td->brc_type = 0;
/* compliancy fix to true */
td->strict_hrd_compliancy = 1;
/* set minimum & maximum quantizers */
td->qp_min = clamp_val(ctrls->qpmin, 0, 51);
td->qp_max = clamp_val(ctrls->qpmax, 0, 51);
td->addr_source_buffer = frame->paddr;
td->addr_fwd_ref_buffer = fwd_ref_frame->paddr;
td->addr_rec_buffer = loc_rec_frame->paddr;
td->addr_output_bitstream_end = (u32)stream->paddr + stream->size;
td->addr_output_bitstream_start = (u32)stream->paddr;
td->bitstream_offset = (((u32)stream->paddr & 0xF) << 3) &
BITSTREAM_OFFSET_MASK;
td->addr_param_out = (u32)ctx->task->paddr +
offsetof(struct hva_h264_task, po);
/* swap spatial and temporal context */
if (frame_num % 2) {
paddr = seq_info->paddr;
td->addr_spatial_context = ALIGN(paddr, 0x100);
paddr = seq_info->paddr + DATA_SIZE(frame_width,
frame_height);
td->addr_temporal_context = ALIGN(paddr, 0x100);
} else {
paddr = seq_info->paddr;
td->addr_temporal_context = ALIGN(paddr, 0x100);
paddr = seq_info->paddr + DATA_SIZE(frame_width,
frame_height);
td->addr_spatial_context = ALIGN(paddr, 0x100);
}
paddr = seq_info->paddr + 2 * DATA_SIZE(frame_width, frame_height);
td->addr_brc_in_out_parameter = ALIGN(paddr, 0x100);
paddr = td->addr_brc_in_out_parameter + BRC_DATA_SIZE;
td->addr_slice_header = ALIGN(paddr, 0x100);
td->addr_external_sw = ALIGN(addr_esram, 0x100);
addr_esram += SEARCH_WINDOW_BUFFER_MAX_SIZE(frame_width);
td->addr_local_rec_buffer = ALIGN(addr_esram, 0x100);
addr_esram += LOCAL_RECONSTRUCTED_BUFFER_MAX_SIZE(frame_width);
td->addr_lctx = ALIGN(addr_esram, 0x100);
addr_esram += CTX_MB_BUFFER_MAX_SIZE(max(frame_width, frame_height));
td->addr_cabac_context_buffer = ALIGN(addr_esram, 0x100);
if (!(frame_num % ctrls->gop_size)) {
td->picture_coding_type = PICTURE_CODING_TYPE_I;
stream->vbuf.flags |= V4L2_BUF_FLAG_KEYFRAME;
} else {
td->picture_coding_type = PICTURE_CODING_TYPE_P;
stream->vbuf.flags &= ~V4L2_BUF_FLAG_KEYFRAME;
}
/* fill the slice header part */
slice_header_vaddr = seq_info->vaddr + (td->addr_slice_header -
seq_info->paddr);
hva_h264_fill_slice_header(pctx, slice_header_vaddr, ctrls, frame_num,
&td->slice_header_size_in_bits,
&td->slice_header_offset0,
&td->slice_header_offset1,
&td->slice_header_offset2);
td->chroma_qp_index_offset = 2;
td->slice_synchro_enable = 0;
td->max_slice_number = 1;
/*
* check the sps/pps header size for key frame only
* sps/pps header was previously fill by libv4l
* during qbuf of stream buffer
*/
if ((stream->vbuf.flags == V4L2_BUF_FLAG_KEYFRAME) &&
(payload > MAX_SPS_PPS_SIZE)) {
dev_err(dev, "%s invalid sps/pps size %d\n", pctx->name,
payload);
pctx->frame_errors++;
return -EINVAL;
}
if (stream->vbuf.flags != V4L2_BUF_FLAG_KEYFRAME)
payload = 0;
/* add SEI nal (video stereo info) */
if (ctrls->sei_fp && hva_h264_fill_sei_nal(pctx, SEI_STEREO_VIDEO_INFO,
(u8 *)stream->vaddr,
&payload)) {
dev_err(dev, "%s fail to get SEI nal\n", pctx->name);
pctx->frame_errors++;
return -EINVAL;
}
/* fill size of non-VCL NAL units (SPS, PPS, filler and SEI) */
td->non_vcl_nalu_size = payload * 8;
/* compute bitstream offset & new start address of bitstream */
td->addr_output_bitstream_start += ((payload >> 4) << 4);
td->bitstream_offset += (payload - ((payload >> 4) << 4)) * 8;
stream->bytesused = payload;
return 0;
}
static unsigned int hva_h264_get_stream_size(struct hva_h264_task *task)
{
struct hva_h264_po *po = &task->po;
return po->bitstream_size;
}
static u32 hva_h264_get_stuffing_bytes(struct hva_h264_task *task)
{
struct hva_h264_po *po = &task->po;
return po->stuffing_bits >> 3;
}
static int hva_h264_open(struct hva_ctx *pctx)
{
struct device *dev = ctx_to_dev(pctx);
struct hva_h264_ctx *ctx;
struct hva_dev *hva = ctx_to_hdev(pctx);
u32 frame_width = pctx->frameinfo.aligned_width;
u32 frame_height = pctx->frameinfo.aligned_height;
u32 size;
int ret;
/* check esram size necessary to encode a frame */
size = SEARCH_WINDOW_BUFFER_MAX_SIZE(frame_width) +
LOCAL_RECONSTRUCTED_BUFFER_MAX_SIZE(frame_width) +
CTX_MB_BUFFER_MAX_SIZE(max(frame_width, frame_height)) +
CABAC_CONTEXT_BUFFER_MAX_SIZE(frame_width);
if (hva->esram_size < size) {
dev_err(dev, "%s not enough esram (max:%d request:%d)\n",
pctx->name, hva->esram_size, size);
ret = -EINVAL;
goto err;
}
/* allocate context for codec */
ctx = devm_kzalloc(dev, sizeof(*ctx), GFP_KERNEL);
if (!ctx) {
ret = -ENOMEM;
goto err;
}
/* allocate sequence info buffer */
ret = hva_mem_alloc(pctx,
2 * DATA_SIZE(frame_width, frame_height) +
SLICE_HEADER_SIZE +
BRC_DATA_SIZE,
"hva sequence info",
&ctx->seq_info);
if (ret) {
dev_err(dev,
"%s failed to allocate sequence info buffer\n",
pctx->name);
goto err_ctx;
}
/* allocate reference frame buffer */
ret = hva_mem_alloc(pctx,
frame_width * frame_height * 3 / 2,
"hva reference frame",
&ctx->ref_frame);
if (ret) {
dev_err(dev, "%s failed to allocate reference frame buffer\n",
pctx->name);
goto err_seq_info;
}
/* allocate reconstructed frame buffer */
ret = hva_mem_alloc(pctx,
frame_width * frame_height * 3 / 2,
"hva reconstructed frame",
&ctx->rec_frame);
if (ret) {
dev_err(dev,
"%s failed to allocate reconstructed frame buffer\n",
pctx->name);
goto err_ref_frame;
}
/* allocate task descriptor */
ret = hva_mem_alloc(pctx,
sizeof(struct hva_h264_task),
"hva task descriptor",
&ctx->task);
if (ret) {
dev_err(dev,
"%s failed to allocate task descriptor\n",
pctx->name);
goto err_rec_frame;
}
pctx->priv = (void *)ctx;
return 0;
err_rec_frame:
hva_mem_free(pctx, ctx->rec_frame);
err_ref_frame:
hva_mem_free(pctx, ctx->ref_frame);
err_seq_info:
hva_mem_free(pctx, ctx->seq_info);
err_ctx:
devm_kfree(dev, ctx);
err:
pctx->sys_errors++;
return ret;
}
static int hva_h264_close(struct hva_ctx *pctx)
{
struct hva_h264_ctx *ctx = (struct hva_h264_ctx *)pctx->priv;
struct device *dev = ctx_to_dev(pctx);
if (ctx->seq_info)
hva_mem_free(pctx, ctx->seq_info);
if (ctx->ref_frame)
hva_mem_free(pctx, ctx->ref_frame);
if (ctx->rec_frame)
hva_mem_free(pctx, ctx->rec_frame);
if (ctx->task)
hva_mem_free(pctx, ctx->task);
devm_kfree(dev, ctx);
return 0;
}
static int hva_h264_encode(struct hva_ctx *pctx, struct hva_frame *frame,
struct hva_stream *stream)
{
struct hva_h264_ctx *ctx = (struct hva_h264_ctx *)pctx->priv;
struct hva_h264_task *task = (struct hva_h264_task *)ctx->task->vaddr;
u32 stuffing_bytes = 0;
int ret = 0;
ret = hva_h264_prepare_task(pctx, task, frame, stream);
if (ret)
goto err;
ret = hva_hw_execute_task(pctx, H264_ENC, ctx->task);
if (ret)
goto err;
pctx->stream_num++;
stream->bytesused += hva_h264_get_stream_size(task);
stuffing_bytes = hva_h264_get_stuffing_bytes(task);
if (stuffing_bytes)
hva_h264_fill_data_nal(pctx, stuffing_bytes,
(u8 *)stream->vaddr,
stream->size,
&stream->bytesused);
/* switch reference & reconstructed frame */
swap(ctx->ref_frame, ctx->rec_frame);
return 0;
err:
stream->bytesused = 0;
return ret;
}
const struct hva_enc nv12h264enc = {
.name = "H264(NV12)",
.pixelformat = V4L2_PIX_FMT_NV12,
.streamformat = V4L2_PIX_FMT_H264,
.max_width = H264_MAX_SIZE_W,
.max_height = H264_MAX_SIZE_H,
.open = hva_h264_open,
.close = hva_h264_close,
.encode = hva_h264_encode,
};
const struct hva_enc nv21h264enc = {
.name = "H264(NV21)",
.pixelformat = V4L2_PIX_FMT_NV21,
.streamformat = V4L2_PIX_FMT_H264,
.max_width = H264_MAX_SIZE_W,
.max_height = H264_MAX_SIZE_H,
.open = hva_h264_open,
.close = hva_h264_close,
.encode = hva_h264_encode,
};