linux-zen-server/drivers/media/rc/ir-sanyo-decoder.c

236 lines
6.0 KiB
C

// SPDX-License-Identifier: GPL-2.0
// ir-sanyo-decoder.c - handle SANYO IR Pulse/Space protocol
//
// Copyright (C) 2011 by Mauro Carvalho Chehab
//
// This protocol uses the NEC protocol timings. However, data is formatted as:
// 13 bits Custom Code
// 13 bits NOT(Custom Code)
// 8 bits Key data
// 8 bits NOT(Key data)
//
// According with LIRC, this protocol is used on Sanyo, Aiwa and Chinon
// Information for this protocol is available at the Sanyo LC7461 datasheet.
#include <linux/module.h>
#include <linux/bitrev.h>
#include "rc-core-priv.h"
#define SANYO_NBITS (13+13+8+8)
#define SANYO_UNIT 563 /* us */
#define SANYO_HEADER_PULSE (16 * SANYO_UNIT)
#define SANYO_HEADER_SPACE (8 * SANYO_UNIT)
#define SANYO_BIT_PULSE (1 * SANYO_UNIT)
#define SANYO_BIT_0_SPACE (1 * SANYO_UNIT)
#define SANYO_BIT_1_SPACE (3 * SANYO_UNIT)
#define SANYO_REPEAT_SPACE (150 * SANYO_UNIT)
#define SANYO_TRAILER_PULSE (1 * SANYO_UNIT)
#define SANYO_TRAILER_SPACE (10 * SANYO_UNIT) /* in fact, 42 */
enum sanyo_state {
STATE_INACTIVE,
STATE_HEADER_SPACE,
STATE_BIT_PULSE,
STATE_BIT_SPACE,
STATE_TRAILER_PULSE,
STATE_TRAILER_SPACE,
};
/**
* ir_sanyo_decode() - Decode one SANYO pulse or space
* @dev: the struct rc_dev descriptor of the device
* @ev: the struct ir_raw_event descriptor of the pulse/space
*
* This function returns -EINVAL if the pulse violates the state machine
*/
static int ir_sanyo_decode(struct rc_dev *dev, struct ir_raw_event ev)
{
struct sanyo_dec *data = &dev->raw->sanyo;
u32 scancode;
u16 address;
u8 command, not_command;
if (!is_timing_event(ev)) {
if (ev.overflow) {
dev_dbg(&dev->dev, "SANYO event overflow received. reset to state 0\n");
data->state = STATE_INACTIVE;
}
return 0;
}
dev_dbg(&dev->dev, "SANYO decode started at state %d (%uus %s)\n",
data->state, ev.duration, TO_STR(ev.pulse));
switch (data->state) {
case STATE_INACTIVE:
if (!ev.pulse)
break;
if (eq_margin(ev.duration, SANYO_HEADER_PULSE, SANYO_UNIT / 2)) {
data->count = 0;
data->state = STATE_HEADER_SPACE;
return 0;
}
break;
case STATE_HEADER_SPACE:
if (ev.pulse)
break;
if (eq_margin(ev.duration, SANYO_HEADER_SPACE, SANYO_UNIT / 2)) {
data->state = STATE_BIT_PULSE;
return 0;
}
break;
case STATE_BIT_PULSE:
if (!ev.pulse)
break;
if (!eq_margin(ev.duration, SANYO_BIT_PULSE, SANYO_UNIT / 2))
break;
data->state = STATE_BIT_SPACE;
return 0;
case STATE_BIT_SPACE:
if (ev.pulse)
break;
if (!data->count && geq_margin(ev.duration, SANYO_REPEAT_SPACE, SANYO_UNIT / 2)) {
rc_repeat(dev);
dev_dbg(&dev->dev, "SANYO repeat last key\n");
data->state = STATE_INACTIVE;
return 0;
}
data->bits <<= 1;
if (eq_margin(ev.duration, SANYO_BIT_1_SPACE, SANYO_UNIT / 2))
data->bits |= 1;
else if (!eq_margin(ev.duration, SANYO_BIT_0_SPACE, SANYO_UNIT / 2))
break;
data->count++;
if (data->count == SANYO_NBITS)
data->state = STATE_TRAILER_PULSE;
else
data->state = STATE_BIT_PULSE;
return 0;
case STATE_TRAILER_PULSE:
if (!ev.pulse)
break;
if (!eq_margin(ev.duration, SANYO_TRAILER_PULSE, SANYO_UNIT / 2))
break;
data->state = STATE_TRAILER_SPACE;
return 0;
case STATE_TRAILER_SPACE:
if (ev.pulse)
break;
if (!geq_margin(ev.duration, SANYO_TRAILER_SPACE, SANYO_UNIT / 2))
break;
address = bitrev16((data->bits >> 29) & 0x1fff) >> 3;
/* not_address = bitrev16((data->bits >> 16) & 0x1fff) >> 3; */
command = bitrev8((data->bits >> 8) & 0xff);
not_command = bitrev8((data->bits >> 0) & 0xff);
if ((command ^ not_command) != 0xff) {
dev_dbg(&dev->dev, "SANYO checksum error: received 0x%08llx\n",
data->bits);
data->state = STATE_INACTIVE;
return 0;
}
scancode = address << 8 | command;
dev_dbg(&dev->dev, "SANYO scancode: 0x%06x\n", scancode);
rc_keydown(dev, RC_PROTO_SANYO, scancode, 0);
data->state = STATE_INACTIVE;
return 0;
}
dev_dbg(&dev->dev, "SANYO decode failed at count %d state %d (%uus %s)\n",
data->count, data->state, ev.duration, TO_STR(ev.pulse));
data->state = STATE_INACTIVE;
return -EINVAL;
}
static const struct ir_raw_timings_pd ir_sanyo_timings = {
.header_pulse = SANYO_HEADER_PULSE,
.header_space = SANYO_HEADER_SPACE,
.bit_pulse = SANYO_BIT_PULSE,
.bit_space[0] = SANYO_BIT_0_SPACE,
.bit_space[1] = SANYO_BIT_1_SPACE,
.trailer_pulse = SANYO_TRAILER_PULSE,
.trailer_space = SANYO_TRAILER_SPACE,
.msb_first = 1,
};
/**
* ir_sanyo_encode() - Encode a scancode as a stream of raw events
*
* @protocol: protocol to encode
* @scancode: scancode to encode
* @events: array of raw ir events to write into
* @max: maximum size of @events
*
* Returns: The number of events written.
* -ENOBUFS if there isn't enough space in the array to fit the
* encoding. In this case all @max events will have been written.
*/
static int ir_sanyo_encode(enum rc_proto protocol, u32 scancode,
struct ir_raw_event *events, unsigned int max)
{
struct ir_raw_event *e = events;
int ret;
u64 raw;
raw = ((u64)(bitrev16(scancode >> 8) & 0xfff8) << (8 + 8 + 13 - 3)) |
((u64)(bitrev16(~scancode >> 8) & 0xfff8) << (8 + 8 + 0 - 3)) |
((bitrev8(scancode) & 0xff) << 8) |
(bitrev8(~scancode) & 0xff);
ret = ir_raw_gen_pd(&e, max, &ir_sanyo_timings, SANYO_NBITS, raw);
if (ret < 0)
return ret;
return e - events;
}
static struct ir_raw_handler sanyo_handler = {
.protocols = RC_PROTO_BIT_SANYO,
.decode = ir_sanyo_decode,
.encode = ir_sanyo_encode,
.carrier = 38000,
.min_timeout = SANYO_TRAILER_SPACE,
};
static int __init ir_sanyo_decode_init(void)
{
ir_raw_handler_register(&sanyo_handler);
printk(KERN_INFO "IR SANYO protocol handler initialized\n");
return 0;
}
static void __exit ir_sanyo_decode_exit(void)
{
ir_raw_handler_unregister(&sanyo_handler);
}
module_init(ir_sanyo_decode_init);
module_exit(ir_sanyo_decode_exit);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Mauro Carvalho Chehab");
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
MODULE_DESCRIPTION("SANYO IR protocol decoder");