linux-zen-server/drivers/mfd/db8500-prcmu.c

3093 lines
78 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* DB8500 PRCM Unit driver
*
* Copyright (C) STMicroelectronics 2009
* Copyright (C) ST-Ericsson SA 2010
*
* Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
* Author: Sundar Iyer <sundar.iyer@stericsson.com>
* Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
*
* U8500 PRCM Unit interface driver
*/
#include <linux/init.h>
#include <linux/export.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/spinlock.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/mutex.h>
#include <linux/completion.h>
#include <linux/irq.h>
#include <linux/jiffies.h>
#include <linux/bitops.h>
#include <linux/fs.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/platform_device.h>
#include <linux/uaccess.h>
#include <linux/mfd/core.h>
#include <linux/mfd/dbx500-prcmu.h>
#include <linux/mfd/abx500/ab8500.h>
#include <linux/regulator/db8500-prcmu.h>
#include <linux/regulator/machine.h>
#include "db8500-prcmu-regs.h"
/* Index of different voltages to be used when accessing AVSData */
#define PRCM_AVS_BASE 0x2FC
#define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
#define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
#define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
#define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
#define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
#define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
#define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
#define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
#define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
#define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
#define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
#define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
#define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
#define PRCM_AVS_VOLTAGE 0
#define PRCM_AVS_VOLTAGE_MASK 0x3f
#define PRCM_AVS_ISSLOWSTARTUP 6
#define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
#define PRCM_AVS_ISMODEENABLE 7
#define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
#define PRCM_BOOT_STATUS 0xFFF
#define PRCM_ROMCODE_A2P 0xFFE
#define PRCM_ROMCODE_P2A 0xFFD
#define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
#define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
#define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
#define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
#define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
#define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
#define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
#define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
#define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
#define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
/* Req Mailboxes */
#define PRCM_REQ_MB0 0xFDC /* 12 bytes */
#define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
#define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
#define PRCM_REQ_MB3 0xE4C /* 372 bytes */
#define PRCM_REQ_MB4 0xE48 /* 4 bytes */
#define PRCM_REQ_MB5 0xE44 /* 4 bytes */
/* Ack Mailboxes */
#define PRCM_ACK_MB0 0xE08 /* 52 bytes */
#define PRCM_ACK_MB1 0xE04 /* 4 bytes */
#define PRCM_ACK_MB2 0xE00 /* 4 bytes */
#define PRCM_ACK_MB3 0xDFC /* 4 bytes */
#define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
#define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
/* Mailbox 0 headers */
#define MB0H_POWER_STATE_TRANS 0
#define MB0H_CONFIG_WAKEUPS_EXE 1
#define MB0H_READ_WAKEUP_ACK 3
#define MB0H_CONFIG_WAKEUPS_SLEEP 4
#define MB0H_WAKEUP_EXE 2
#define MB0H_WAKEUP_SLEEP 5
/* Mailbox 0 REQs */
#define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
#define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
#define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
#define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
#define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
#define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
/* Mailbox 0 ACKs */
#define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
#define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
#define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
#define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
#define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
#define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
#define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
/* Mailbox 1 headers */
#define MB1H_ARM_APE_OPP 0x0
#define MB1H_RESET_MODEM 0x2
#define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
#define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
#define MB1H_RELEASE_USB_WAKEUP 0x5
#define MB1H_PLL_ON_OFF 0x6
/* Mailbox 1 Requests */
#define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
#define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
#define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
#define PLL_SOC0_OFF 0x1
#define PLL_SOC0_ON 0x2
#define PLL_SOC1_OFF 0x4
#define PLL_SOC1_ON 0x8
/* Mailbox 1 ACKs */
#define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
#define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
#define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
#define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
/* Mailbox 2 headers */
#define MB2H_DPS 0x0
#define MB2H_AUTO_PWR 0x1
/* Mailbox 2 REQs */
#define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
#define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
#define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
#define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
#define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
#define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
#define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
#define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
#define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
#define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
/* Mailbox 2 ACKs */
#define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
#define HWACC_PWR_ST_OK 0xFE
/* Mailbox 3 headers */
#define MB3H_ANC 0x0
#define MB3H_SIDETONE 0x1
#define MB3H_SYSCLK 0xE
/* Mailbox 3 Requests */
#define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
#define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
#define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
#define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
#define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
#define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
#define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
/* Mailbox 4 headers */
#define MB4H_DDR_INIT 0x0
#define MB4H_MEM_ST 0x1
#define MB4H_HOTDOG 0x12
#define MB4H_HOTMON 0x13
#define MB4H_HOT_PERIOD 0x14
#define MB4H_A9WDOG_CONF 0x16
#define MB4H_A9WDOG_EN 0x17
#define MB4H_A9WDOG_DIS 0x18
#define MB4H_A9WDOG_LOAD 0x19
#define MB4H_A9WDOG_KICK 0x20
/* Mailbox 4 Requests */
#define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
#define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
#define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
#define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
#define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
#define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
#define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
#define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
#define HOTMON_CONFIG_LOW BIT(0)
#define HOTMON_CONFIG_HIGH BIT(1)
#define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
#define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
#define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
#define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
#define A9WDOG_AUTO_OFF_EN BIT(7)
#define A9WDOG_AUTO_OFF_DIS 0
#define A9WDOG_ID_MASK 0xf
/* Mailbox 5 Requests */
#define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
#define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
#define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
#define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
#define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
#define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
#define PRCMU_I2C_STOP_EN BIT(3)
/* Mailbox 5 ACKs */
#define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
#define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
#define I2C_WR_OK 0x1
#define I2C_RD_OK 0x2
#define NUM_MB 8
#define MBOX_BIT BIT
#define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
/*
* Wakeups/IRQs
*/
#define WAKEUP_BIT_RTC BIT(0)
#define WAKEUP_BIT_RTT0 BIT(1)
#define WAKEUP_BIT_RTT1 BIT(2)
#define WAKEUP_BIT_HSI0 BIT(3)
#define WAKEUP_BIT_HSI1 BIT(4)
#define WAKEUP_BIT_CA_WAKE BIT(5)
#define WAKEUP_BIT_USB BIT(6)
#define WAKEUP_BIT_ABB BIT(7)
#define WAKEUP_BIT_ABB_FIFO BIT(8)
#define WAKEUP_BIT_SYSCLK_OK BIT(9)
#define WAKEUP_BIT_CA_SLEEP BIT(10)
#define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
#define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
#define WAKEUP_BIT_ANC_OK BIT(13)
#define WAKEUP_BIT_SW_ERROR BIT(14)
#define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
#define WAKEUP_BIT_ARM BIT(17)
#define WAKEUP_BIT_HOTMON_LOW BIT(18)
#define WAKEUP_BIT_HOTMON_HIGH BIT(19)
#define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
#define WAKEUP_BIT_GPIO0 BIT(23)
#define WAKEUP_BIT_GPIO1 BIT(24)
#define WAKEUP_BIT_GPIO2 BIT(25)
#define WAKEUP_BIT_GPIO3 BIT(26)
#define WAKEUP_BIT_GPIO4 BIT(27)
#define WAKEUP_BIT_GPIO5 BIT(28)
#define WAKEUP_BIT_GPIO6 BIT(29)
#define WAKEUP_BIT_GPIO7 BIT(30)
#define WAKEUP_BIT_GPIO8 BIT(31)
static struct {
bool valid;
struct prcmu_fw_version version;
} fw_info;
static struct irq_domain *db8500_irq_domain;
/*
* This vector maps irq numbers to the bits in the bit field used in
* communication with the PRCMU firmware.
*
* The reason for having this is to keep the irq numbers contiguous even though
* the bits in the bit field are not. (The bits also have a tendency to move
* around, to further complicate matters.)
*/
#define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
#define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
#define IRQ_PRCMU_RTC 0
#define IRQ_PRCMU_RTT0 1
#define IRQ_PRCMU_RTT1 2
#define IRQ_PRCMU_HSI0 3
#define IRQ_PRCMU_HSI1 4
#define IRQ_PRCMU_CA_WAKE 5
#define IRQ_PRCMU_USB 6
#define IRQ_PRCMU_ABB 7
#define IRQ_PRCMU_ABB_FIFO 8
#define IRQ_PRCMU_ARM 9
#define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
#define IRQ_PRCMU_GPIO0 11
#define IRQ_PRCMU_GPIO1 12
#define IRQ_PRCMU_GPIO2 13
#define IRQ_PRCMU_GPIO3 14
#define IRQ_PRCMU_GPIO4 15
#define IRQ_PRCMU_GPIO5 16
#define IRQ_PRCMU_GPIO6 17
#define IRQ_PRCMU_GPIO7 18
#define IRQ_PRCMU_GPIO8 19
#define IRQ_PRCMU_CA_SLEEP 20
#define IRQ_PRCMU_HOTMON_LOW 21
#define IRQ_PRCMU_HOTMON_HIGH 22
#define NUM_PRCMU_WAKEUPS 23
static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
IRQ_ENTRY(RTC),
IRQ_ENTRY(RTT0),
IRQ_ENTRY(RTT1),
IRQ_ENTRY(HSI0),
IRQ_ENTRY(HSI1),
IRQ_ENTRY(CA_WAKE),
IRQ_ENTRY(USB),
IRQ_ENTRY(ABB),
IRQ_ENTRY(ABB_FIFO),
IRQ_ENTRY(CA_SLEEP),
IRQ_ENTRY(ARM),
IRQ_ENTRY(HOTMON_LOW),
IRQ_ENTRY(HOTMON_HIGH),
IRQ_ENTRY(MODEM_SW_RESET_REQ),
IRQ_ENTRY(GPIO0),
IRQ_ENTRY(GPIO1),
IRQ_ENTRY(GPIO2),
IRQ_ENTRY(GPIO3),
IRQ_ENTRY(GPIO4),
IRQ_ENTRY(GPIO5),
IRQ_ENTRY(GPIO6),
IRQ_ENTRY(GPIO7),
IRQ_ENTRY(GPIO8)
};
#define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
#define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
WAKEUP_ENTRY(RTC),
WAKEUP_ENTRY(RTT0),
WAKEUP_ENTRY(RTT1),
WAKEUP_ENTRY(HSI0),
WAKEUP_ENTRY(HSI1),
WAKEUP_ENTRY(USB),
WAKEUP_ENTRY(ABB),
WAKEUP_ENTRY(ABB_FIFO),
WAKEUP_ENTRY(ARM)
};
/*
* mb0_transfer - state needed for mailbox 0 communication.
* @lock: The transaction lock.
* @dbb_events_lock: A lock used to handle concurrent access to (parts of)
* the request data.
* @mask_work: Work structure used for (un)masking wakeup interrupts.
* @req: Request data that need to persist between requests.
*/
static struct {
spinlock_t lock;
spinlock_t dbb_irqs_lock;
struct work_struct mask_work;
struct mutex ac_wake_lock;
struct completion ac_wake_work;
struct {
u32 dbb_irqs;
u32 dbb_wakeups;
u32 abb_events;
} req;
} mb0_transfer;
/*
* mb1_transfer - state needed for mailbox 1 communication.
* @lock: The transaction lock.
* @work: The transaction completion structure.
* @ape_opp: The current APE OPP.
* @ack: Reply ("acknowledge") data.
*/
static struct {
struct mutex lock;
struct completion work;
u8 ape_opp;
struct {
u8 header;
u8 arm_opp;
u8 ape_opp;
u8 ape_voltage_status;
} ack;
} mb1_transfer;
/*
* mb2_transfer - state needed for mailbox 2 communication.
* @lock: The transaction lock.
* @work: The transaction completion structure.
* @auto_pm_lock: The autonomous power management configuration lock.
* @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
* @req: Request data that need to persist between requests.
* @ack: Reply ("acknowledge") data.
*/
static struct {
struct mutex lock;
struct completion work;
spinlock_t auto_pm_lock;
bool auto_pm_enabled;
struct {
u8 status;
} ack;
} mb2_transfer;
/*
* mb3_transfer - state needed for mailbox 3 communication.
* @lock: The request lock.
* @sysclk_lock: A lock used to handle concurrent sysclk requests.
* @sysclk_work: Work structure used for sysclk requests.
*/
static struct {
spinlock_t lock;
struct mutex sysclk_lock;
struct completion sysclk_work;
} mb3_transfer;
/*
* mb4_transfer - state needed for mailbox 4 communication.
* @lock: The transaction lock.
* @work: The transaction completion structure.
*/
static struct {
struct mutex lock;
struct completion work;
} mb4_transfer;
/*
* mb5_transfer - state needed for mailbox 5 communication.
* @lock: The transaction lock.
* @work: The transaction completion structure.
* @ack: Reply ("acknowledge") data.
*/
static struct {
struct mutex lock;
struct completion work;
struct {
u8 status;
u8 value;
} ack;
} mb5_transfer;
static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
/* Spinlocks */
static DEFINE_SPINLOCK(prcmu_lock);
static DEFINE_SPINLOCK(clkout_lock);
/* Global var to runtime determine TCDM base for v2 or v1 */
static __iomem void *tcdm_base;
static __iomem void *prcmu_base;
struct clk_mgt {
u32 offset;
u32 pllsw;
int branch;
bool clk38div;
};
enum {
PLL_RAW,
PLL_FIX,
PLL_DIV
};
static DEFINE_SPINLOCK(clk_mgt_lock);
#define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
{ (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
};
struct dsiclk {
u32 divsel_mask;
u32 divsel_shift;
u32 divsel;
};
static struct dsiclk dsiclk[2] = {
{
.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
},
{
.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
}
};
struct dsiescclk {
u32 en;
u32 div_mask;
u32 div_shift;
};
static struct dsiescclk dsiescclk[3] = {
{
.en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
.div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
.div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
},
{
.en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
.div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
.div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
},
{
.en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
.div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
.div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
}
};
u32 db8500_prcmu_read(unsigned int reg)
{
return readl(prcmu_base + reg);
}
void db8500_prcmu_write(unsigned int reg, u32 value)
{
unsigned long flags;
spin_lock_irqsave(&prcmu_lock, flags);
writel(value, (prcmu_base + reg));
spin_unlock_irqrestore(&prcmu_lock, flags);
}
void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
{
u32 val;
unsigned long flags;
spin_lock_irqsave(&prcmu_lock, flags);
val = readl(prcmu_base + reg);
val = ((val & ~mask) | (value & mask));
writel(val, (prcmu_base + reg));
spin_unlock_irqrestore(&prcmu_lock, flags);
}
struct prcmu_fw_version *prcmu_get_fw_version(void)
{
return fw_info.valid ? &fw_info.version : NULL;
}
static bool prcmu_is_ulppll_disabled(void)
{
struct prcmu_fw_version *ver;
ver = prcmu_get_fw_version();
return ver && ver->project == PRCMU_FW_PROJECT_U8420_SYSCLK;
}
bool prcmu_has_arm_maxopp(void)
{
return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
}
/**
* prcmu_set_rc_a2p - This function is used to run few power state sequences
* @val: Value to be set, i.e. transition requested
* Returns: 0 on success, -EINVAL on invalid argument
*
* This function is used to run the following power state sequences -
* any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
*/
int prcmu_set_rc_a2p(enum romcode_write val)
{
if (val < RDY_2_DS || val > RDY_2_XP70_RST)
return -EINVAL;
writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
return 0;
}
/**
* prcmu_get_rc_p2a - This function is used to get power state sequences
* Returns: the power transition that has last happened
*
* This function can return the following transitions-
* any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
*/
enum romcode_read prcmu_get_rc_p2a(void)
{
return readb(tcdm_base + PRCM_ROMCODE_P2A);
}
/**
* prcmu_get_xp70_current_state - Return the current XP70 power mode
* Returns: Returns the current AP(ARM) power mode: init,
* apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
*/
enum ap_pwrst prcmu_get_xp70_current_state(void)
{
return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
}
/**
* prcmu_config_clkout - Configure one of the programmable clock outputs.
* @clkout: The CLKOUT number (0 or 1).
* @source: The clock to be used (one of the PRCMU_CLKSRC_*).
* @div: The divider to be applied.
*
* Configures one of the programmable clock outputs (CLKOUTs).
* @div should be in the range [1,63] to request a configuration, or 0 to
* inform that the configuration is no longer requested.
*/
int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
{
static int requests[2];
int r = 0;
unsigned long flags;
u32 val;
u32 bits;
u32 mask;
u32 div_mask;
BUG_ON(clkout > 1);
BUG_ON(div > 63);
BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
if (!div && !requests[clkout])
return -EINVAL;
if (clkout == 0) {
div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
(div << PRCM_CLKOCR_CLKODIV0_SHIFT));
} else {
div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
PRCM_CLKOCR_CLK1TYPE);
bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
(div << PRCM_CLKOCR_CLKODIV1_SHIFT));
}
bits &= mask;
spin_lock_irqsave(&clkout_lock, flags);
val = readl(PRCM_CLKOCR);
if (val & div_mask) {
if (div) {
if ((val & mask) != bits) {
r = -EBUSY;
goto unlock_and_return;
}
} else {
if ((val & mask & ~div_mask) != bits) {
r = -EINVAL;
goto unlock_and_return;
}
}
}
writel((bits | (val & ~mask)), PRCM_CLKOCR);
requests[clkout] += (div ? 1 : -1);
unlock_and_return:
spin_unlock_irqrestore(&clkout_lock, flags);
return r;
}
int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
{
unsigned long flags;
BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
spin_lock_irqsave(&mb0_transfer.lock, flags);
while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
cpu_relax();
writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
writeb((keep_ulp_clk ? 1 : 0),
(tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
spin_unlock_irqrestore(&mb0_transfer.lock, flags);
return 0;
}
u8 db8500_prcmu_get_power_state_result(void)
{
return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
}
/* This function should only be called while mb0_transfer.lock is held. */
static void config_wakeups(void)
{
const u8 header[2] = {
MB0H_CONFIG_WAKEUPS_EXE,
MB0H_CONFIG_WAKEUPS_SLEEP
};
static u32 last_dbb_events;
static u32 last_abb_events;
u32 dbb_events;
u32 abb_events;
unsigned int i;
dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
abb_events = mb0_transfer.req.abb_events;
if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
return;
for (i = 0; i < 2; i++) {
while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
cpu_relax();
writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
}
last_dbb_events = dbb_events;
last_abb_events = abb_events;
}
void db8500_prcmu_enable_wakeups(u32 wakeups)
{
unsigned long flags;
u32 bits;
int i;
BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
if (wakeups & BIT(i))
bits |= prcmu_wakeup_bit[i];
}
spin_lock_irqsave(&mb0_transfer.lock, flags);
mb0_transfer.req.dbb_wakeups = bits;
config_wakeups();
spin_unlock_irqrestore(&mb0_transfer.lock, flags);
}
void db8500_prcmu_config_abb_event_readout(u32 abb_events)
{
unsigned long flags;
spin_lock_irqsave(&mb0_transfer.lock, flags);
mb0_transfer.req.abb_events = abb_events;
config_wakeups();
spin_unlock_irqrestore(&mb0_transfer.lock, flags);
}
void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
{
if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
else
*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
}
/**
* db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
* @opp: The new ARM operating point to which transition is to be made
* Returns: 0 on success, non-zero on failure
*
* This function sets the operating point of the ARM.
*/
int db8500_prcmu_set_arm_opp(u8 opp)
{
int r;
if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
return -EINVAL;
r = 0;
mutex_lock(&mb1_transfer.lock);
while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
cpu_relax();
writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
wait_for_completion(&mb1_transfer.work);
if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
(mb1_transfer.ack.arm_opp != opp))
r = -EIO;
mutex_unlock(&mb1_transfer.lock);
return r;
}
/**
* db8500_prcmu_get_arm_opp - get the current ARM OPP
*
* Returns: the current ARM OPP
*/
int db8500_prcmu_get_arm_opp(void)
{
return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
}
/**
* db8500_prcmu_get_ddr_opp - get the current DDR OPP
*
* Returns: the current DDR OPP
*/
int db8500_prcmu_get_ddr_opp(void)
{
return readb(PRCM_DDR_SUBSYS_APE_MINBW);
}
/* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
static void request_even_slower_clocks(bool enable)
{
u32 clock_reg[] = {
PRCM_ACLK_MGT,
PRCM_DMACLK_MGT
};
unsigned long flags;
unsigned int i;
spin_lock_irqsave(&clk_mgt_lock, flags);
/* Grab the HW semaphore. */
while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
cpu_relax();
for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
u32 val;
u32 div;
val = readl(prcmu_base + clock_reg[i]);
div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
if (enable) {
if ((div <= 1) || (div > 15)) {
pr_err("prcmu: Bad clock divider %d in %s\n",
div, __func__);
goto unlock_and_return;
}
div <<= 1;
} else {
if (div <= 2)
goto unlock_and_return;
div >>= 1;
}
val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
(div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
writel(val, prcmu_base + clock_reg[i]);
}
unlock_and_return:
/* Release the HW semaphore. */
writel(0, PRCM_SEM);
spin_unlock_irqrestore(&clk_mgt_lock, flags);
}
/**
* db8500_prcmu_set_ape_opp - set the appropriate APE OPP
* @opp: The new APE operating point to which transition is to be made
* Returns: 0 on success, non-zero on failure
*
* This function sets the operating point of the APE.
*/
int db8500_prcmu_set_ape_opp(u8 opp)
{
int r = 0;
if (opp == mb1_transfer.ape_opp)
return 0;
mutex_lock(&mb1_transfer.lock);
if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
request_even_slower_clocks(false);
if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
goto skip_message;
while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
cpu_relax();
writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
(tcdm_base + PRCM_REQ_MB1_APE_OPP));
writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
wait_for_completion(&mb1_transfer.work);
if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
(mb1_transfer.ack.ape_opp != opp))
r = -EIO;
skip_message:
if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
(r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
request_even_slower_clocks(true);
if (!r)
mb1_transfer.ape_opp = opp;
mutex_unlock(&mb1_transfer.lock);
return r;
}
/**
* db8500_prcmu_get_ape_opp - get the current APE OPP
*
* Returns: the current APE OPP
*/
int db8500_prcmu_get_ape_opp(void)
{
return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
}
/**
* db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
* @enable: true to request the higher voltage, false to drop a request.
*
* Calls to this function to enable and disable requests must be balanced.
*/
int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
{
int r = 0;
u8 header;
static unsigned int requests;
mutex_lock(&mb1_transfer.lock);
if (enable) {
if (0 != requests++)
goto unlock_and_return;
header = MB1H_REQUEST_APE_OPP_100_VOLT;
} else {
if (requests == 0) {
r = -EIO;
goto unlock_and_return;
} else if (1 != requests--) {
goto unlock_and_return;
}
header = MB1H_RELEASE_APE_OPP_100_VOLT;
}
while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
cpu_relax();
writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
wait_for_completion(&mb1_transfer.work);
if ((mb1_transfer.ack.header != header) ||
((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
r = -EIO;
unlock_and_return:
mutex_unlock(&mb1_transfer.lock);
return r;
}
/**
* prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
*
* This function releases the power state requirements of a USB wakeup.
*/
int prcmu_release_usb_wakeup_state(void)
{
int r = 0;
mutex_lock(&mb1_transfer.lock);
while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
cpu_relax();
writeb(MB1H_RELEASE_USB_WAKEUP,
(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
wait_for_completion(&mb1_transfer.work);
if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
r = -EIO;
mutex_unlock(&mb1_transfer.lock);
return r;
}
static int request_pll(u8 clock, bool enable)
{
int r = 0;
if (clock == PRCMU_PLLSOC0)
clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
else if (clock == PRCMU_PLLSOC1)
clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
else
return -EINVAL;
mutex_lock(&mb1_transfer.lock);
while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
cpu_relax();
writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
wait_for_completion(&mb1_transfer.work);
if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
r = -EIO;
mutex_unlock(&mb1_transfer.lock);
return r;
}
/**
* db8500_prcmu_set_epod - set the state of a EPOD (power domain)
* @epod_id: The EPOD to set
* @epod_state: The new EPOD state
*
* This function sets the state of a EPOD (power domain). It may not be called
* from interrupt context.
*/
int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
{
int r = 0;
bool ram_retention = false;
int i;
/* check argument */
BUG_ON(epod_id >= NUM_EPOD_ID);
/* set flag if retention is possible */
switch (epod_id) {
case EPOD_ID_SVAMMDSP:
case EPOD_ID_SIAMMDSP:
case EPOD_ID_ESRAM12:
case EPOD_ID_ESRAM34:
ram_retention = true;
break;
}
/* check argument */
BUG_ON(epod_state > EPOD_STATE_ON);
BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
/* get lock */
mutex_lock(&mb2_transfer.lock);
/* wait for mailbox */
while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
cpu_relax();
/* fill in mailbox */
for (i = 0; i < NUM_EPOD_ID; i++)
writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
/*
* The current firmware version does not handle errors correctly,
* and we cannot recover if there is an error.
* This is expected to change when the firmware is updated.
*/
if (!wait_for_completion_timeout(&mb2_transfer.work,
msecs_to_jiffies(20000))) {
pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
__func__);
r = -EIO;
goto unlock_and_return;
}
if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
r = -EIO;
unlock_and_return:
mutex_unlock(&mb2_transfer.lock);
return r;
}
/**
* prcmu_configure_auto_pm - Configure autonomous power management.
* @sleep: Configuration for ApSleep.
* @idle: Configuration for ApIdle.
*/
void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
struct prcmu_auto_pm_config *idle)
{
u32 sleep_cfg;
u32 idle_cfg;
unsigned long flags;
BUG_ON((sleep == NULL) || (idle == NULL));
sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
idle_cfg = (idle->sva_auto_pm_enable & 0xF);
idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
/*
* The autonomous power management configuration is done through
* fields in mailbox 2, but these fields are only used as shared
* variables - i.e. there is no need to send a message.
*/
writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
mb2_transfer.auto_pm_enabled =
((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
(sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
(idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
(idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
}
EXPORT_SYMBOL(prcmu_configure_auto_pm);
bool prcmu_is_auto_pm_enabled(void)
{
return mb2_transfer.auto_pm_enabled;
}
static int request_sysclk(bool enable)
{
int r;
unsigned long flags;
r = 0;
mutex_lock(&mb3_transfer.sysclk_lock);
spin_lock_irqsave(&mb3_transfer.lock, flags);
while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
cpu_relax();
writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
spin_unlock_irqrestore(&mb3_transfer.lock, flags);
/*
* The firmware only sends an ACK if we want to enable the
* SysClk, and it succeeds.
*/
if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
msecs_to_jiffies(20000))) {
pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
__func__);
r = -EIO;
}
mutex_unlock(&mb3_transfer.sysclk_lock);
return r;
}
static int request_timclk(bool enable)
{
u32 val;
/*
* On the U8420_CLKSEL firmware, the ULP (Ultra Low Power)
* PLL is disabled so we cannot use doze mode, this will
* stop the clock on this firmware.
*/
if (prcmu_is_ulppll_disabled())
val = 0;
else
val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
if (!enable)
val |= PRCM_TCR_STOP_TIMERS |
PRCM_TCR_DOZE_MODE |
PRCM_TCR_TENSEL_MASK;
writel(val, PRCM_TCR);
return 0;
}
static int request_clock(u8 clock, bool enable)
{
u32 val;
unsigned long flags;
spin_lock_irqsave(&clk_mgt_lock, flags);
/* Grab the HW semaphore. */
while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
cpu_relax();
val = readl(prcmu_base + clk_mgt[clock].offset);
if (enable) {
val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
} else {
clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
}
writel(val, prcmu_base + clk_mgt[clock].offset);
/* Release the HW semaphore. */
writel(0, PRCM_SEM);
spin_unlock_irqrestore(&clk_mgt_lock, flags);
return 0;
}
static int request_sga_clock(u8 clock, bool enable)
{
u32 val;
int ret;
if (enable) {
val = readl(PRCM_CGATING_BYPASS);
writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
}
ret = request_clock(clock, enable);
if (!ret && !enable) {
val = readl(PRCM_CGATING_BYPASS);
writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
}
return ret;
}
static inline bool plldsi_locked(void)
{
return (readl(PRCM_PLLDSI_LOCKP) &
(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
}
static int request_plldsi(bool enable)
{
int r = 0;
u32 val;
writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
val = readl(PRCM_PLLDSI_ENABLE);
if (enable)
val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
else
val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
writel(val, PRCM_PLLDSI_ENABLE);
if (enable) {
unsigned int i;
bool locked = plldsi_locked();
for (i = 10; !locked && (i > 0); --i) {
udelay(100);
locked = plldsi_locked();
}
if (locked) {
writel(PRCM_APE_RESETN_DSIPLL_RESETN,
PRCM_APE_RESETN_SET);
} else {
writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
PRCM_MMIP_LS_CLAMP_SET);
val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
writel(val, PRCM_PLLDSI_ENABLE);
r = -EAGAIN;
}
} else {
writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
}
return r;
}
static int request_dsiclk(u8 n, bool enable)
{
u32 val;
val = readl(PRCM_DSI_PLLOUT_SEL);
val &= ~dsiclk[n].divsel_mask;
val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
dsiclk[n].divsel_shift);
writel(val, PRCM_DSI_PLLOUT_SEL);
return 0;
}
static int request_dsiescclk(u8 n, bool enable)
{
u32 val;
val = readl(PRCM_DSITVCLK_DIV);
enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
writel(val, PRCM_DSITVCLK_DIV);
return 0;
}
/**
* db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
* @clock: The clock for which the request is made.
* @enable: Whether the clock should be enabled (true) or disabled (false).
*
* This function should only be used by the clock implementation.
* Do not use it from any other place!
*/
int db8500_prcmu_request_clock(u8 clock, bool enable)
{
if (clock == PRCMU_SGACLK)
return request_sga_clock(clock, enable);
else if (clock < PRCMU_NUM_REG_CLOCKS)
return request_clock(clock, enable);
else if (clock == PRCMU_TIMCLK)
return request_timclk(enable);
else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
else if (clock == PRCMU_PLLDSI)
return request_plldsi(enable);
else if (clock == PRCMU_SYSCLK)
return request_sysclk(enable);
else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
return request_pll(clock, enable);
else
return -EINVAL;
}
static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
int branch)
{
u64 rate;
u32 val;
u32 d;
u32 div = 1;
val = readl(reg);
rate = src_rate;
rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
if (d > 1)
div *= d;
d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
if (d > 1)
div *= d;
if (val & PRCM_PLL_FREQ_SELDIV2)
div *= 2;
if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
(val & PRCM_PLL_FREQ_DIV2EN) &&
((reg == PRCM_PLLSOC0_FREQ) ||
(reg == PRCM_PLLARM_FREQ) ||
(reg == PRCM_PLLDDR_FREQ))))
div *= 2;
(void)do_div(rate, div);
return (unsigned long)rate;
}
#define ROOT_CLOCK_RATE 38400000
static unsigned long clock_rate(u8 clock)
{
u32 val;
u32 pllsw;
unsigned long rate = ROOT_CLOCK_RATE;
val = readl(prcmu_base + clk_mgt[clock].offset);
if (val & PRCM_CLK_MGT_CLK38) {
if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
rate /= 2;
return rate;
}
val |= clk_mgt[clock].pllsw;
pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
else
return 0;
if ((clock == PRCMU_SGACLK) &&
(val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
u64 r = (rate * 10);
(void)do_div(r, 25);
return (unsigned long)r;
}
val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
if (val)
return rate / val;
else
return 0;
}
static unsigned long armss_rate(void)
{
u32 r;
unsigned long rate;
r = readl(PRCM_ARM_CHGCLKREQ);
if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
/* External ARMCLKFIX clock */
rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
/* Check PRCM_ARM_CHGCLKREQ divider */
if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
rate /= 2;
/* Check PRCM_ARMCLKFIX_MGT divider */
r = readl(PRCM_ARMCLKFIX_MGT);
r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
rate /= r;
} else {/* ARM PLL */
rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
}
return rate;
}
static unsigned long dsiclk_rate(u8 n)
{
u32 divsel;
u32 div = 1;
divsel = readl(PRCM_DSI_PLLOUT_SEL);
divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
divsel = dsiclk[n].divsel;
else
dsiclk[n].divsel = divsel;
switch (divsel) {
case PRCM_DSI_PLLOUT_SEL_PHI_4:
div *= 2;
fallthrough;
case PRCM_DSI_PLLOUT_SEL_PHI_2:
div *= 2;
fallthrough;
case PRCM_DSI_PLLOUT_SEL_PHI:
return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
PLL_RAW) / div;
default:
return 0;
}
}
static unsigned long dsiescclk_rate(u8 n)
{
u32 div;
div = readl(PRCM_DSITVCLK_DIV);
div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
}
unsigned long prcmu_clock_rate(u8 clock)
{
if (clock < PRCMU_NUM_REG_CLOCKS)
return clock_rate(clock);
else if (clock == PRCMU_TIMCLK)
return prcmu_is_ulppll_disabled() ?
32768 : ROOT_CLOCK_RATE / 16;
else if (clock == PRCMU_SYSCLK)
return ROOT_CLOCK_RATE;
else if (clock == PRCMU_PLLSOC0)
return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
else if (clock == PRCMU_PLLSOC1)
return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
else if (clock == PRCMU_ARMSS)
return armss_rate();
else if (clock == PRCMU_PLLDDR)
return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
else if (clock == PRCMU_PLLDSI)
return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
PLL_RAW);
else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
return dsiclk_rate(clock - PRCMU_DSI0CLK);
else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
else
return 0;
}
static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
{
if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
return ROOT_CLOCK_RATE;
clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
else
return 0;
}
static u32 clock_divider(unsigned long src_rate, unsigned long rate)
{
u32 div;
div = (src_rate / rate);
if (div == 0)
return 1;
if (rate < (src_rate / div))
div++;
return div;
}
static long round_clock_rate(u8 clock, unsigned long rate)
{
u32 val;
u32 div;
unsigned long src_rate;
long rounded_rate;
val = readl(prcmu_base + clk_mgt[clock].offset);
src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
clk_mgt[clock].branch);
div = clock_divider(src_rate, rate);
if (val & PRCM_CLK_MGT_CLK38) {
if (clk_mgt[clock].clk38div) {
if (div > 2)
div = 2;
} else {
div = 1;
}
} else if ((clock == PRCMU_SGACLK) && (div == 3)) {
u64 r = (src_rate * 10);
(void)do_div(r, 25);
if (r <= rate)
return (unsigned long)r;
}
rounded_rate = (src_rate / min(div, (u32)31));
return rounded_rate;
}
static const unsigned long db8500_armss_freqs[] = {
199680000,
399360000,
798720000,
998400000
};
/* The DB8520 has slightly higher ARMSS max frequency */
static const unsigned long db8520_armss_freqs[] = {
199680000,
399360000,
798720000,
1152000000
};
static long round_armss_rate(unsigned long rate)
{
unsigned long freq = 0;
const unsigned long *freqs;
int nfreqs;
int i;
if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
freqs = db8520_armss_freqs;
nfreqs = ARRAY_SIZE(db8520_armss_freqs);
} else {
freqs = db8500_armss_freqs;
nfreqs = ARRAY_SIZE(db8500_armss_freqs);
}
/* Find the corresponding arm opp from the cpufreq table. */
for (i = 0; i < nfreqs; i++) {
freq = freqs[i];
if (rate <= freq)
break;
}
/* Return the last valid value, even if a match was not found. */
return freq;
}
#define MIN_PLL_VCO_RATE 600000000ULL
#define MAX_PLL_VCO_RATE 1680640000ULL
static long round_plldsi_rate(unsigned long rate)
{
long rounded_rate = 0;
unsigned long src_rate;
unsigned long rem;
u32 r;
src_rate = clock_rate(PRCMU_HDMICLK);
rem = rate;
for (r = 7; (rem > 0) && (r > 0); r--) {
u64 d;
d = (r * rate);
(void)do_div(d, src_rate);
if (d < 6)
d = 6;
else if (d > 255)
d = 255;
d *= src_rate;
if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
((r * MAX_PLL_VCO_RATE) < (2 * d)))
continue;
(void)do_div(d, r);
if (rate < d) {
if (rounded_rate == 0)
rounded_rate = (long)d;
break;
}
if ((rate - d) < rem) {
rem = (rate - d);
rounded_rate = (long)d;
}
}
return rounded_rate;
}
static long round_dsiclk_rate(unsigned long rate)
{
u32 div;
unsigned long src_rate;
long rounded_rate;
src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
PLL_RAW);
div = clock_divider(src_rate, rate);
rounded_rate = (src_rate / ((div > 2) ? 4 : div));
return rounded_rate;
}
static long round_dsiescclk_rate(unsigned long rate)
{
u32 div;
unsigned long src_rate;
long rounded_rate;
src_rate = clock_rate(PRCMU_TVCLK);
div = clock_divider(src_rate, rate);
rounded_rate = (src_rate / min(div, (u32)255));
return rounded_rate;
}
long prcmu_round_clock_rate(u8 clock, unsigned long rate)
{
if (clock < PRCMU_NUM_REG_CLOCKS)
return round_clock_rate(clock, rate);
else if (clock == PRCMU_ARMSS)
return round_armss_rate(rate);
else if (clock == PRCMU_PLLDSI)
return round_plldsi_rate(rate);
else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
return round_dsiclk_rate(rate);
else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
return round_dsiescclk_rate(rate);
else
return (long)prcmu_clock_rate(clock);
}
static void set_clock_rate(u8 clock, unsigned long rate)
{
u32 val;
u32 div;
unsigned long src_rate;
unsigned long flags;
spin_lock_irqsave(&clk_mgt_lock, flags);
/* Grab the HW semaphore. */
while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
cpu_relax();
val = readl(prcmu_base + clk_mgt[clock].offset);
src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
clk_mgt[clock].branch);
div = clock_divider(src_rate, rate);
if (val & PRCM_CLK_MGT_CLK38) {
if (clk_mgt[clock].clk38div) {
if (div > 1)
val |= PRCM_CLK_MGT_CLK38DIV;
else
val &= ~PRCM_CLK_MGT_CLK38DIV;
}
} else if (clock == PRCMU_SGACLK) {
val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
if (div == 3) {
u64 r = (src_rate * 10);
(void)do_div(r, 25);
if (r <= rate) {
val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
div = 0;
}
}
val |= min(div, (u32)31);
} else {
val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
val |= min(div, (u32)31);
}
writel(val, prcmu_base + clk_mgt[clock].offset);
/* Release the HW semaphore. */
writel(0, PRCM_SEM);
spin_unlock_irqrestore(&clk_mgt_lock, flags);
}
static int set_armss_rate(unsigned long rate)
{
unsigned long freq;
u8 opps[] = { ARM_EXTCLK, ARM_50_OPP, ARM_100_OPP, ARM_MAX_OPP };
const unsigned long *freqs;
int nfreqs;
int i;
if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
freqs = db8520_armss_freqs;
nfreqs = ARRAY_SIZE(db8520_armss_freqs);
} else {
freqs = db8500_armss_freqs;
nfreqs = ARRAY_SIZE(db8500_armss_freqs);
}
/* Find the corresponding arm opp from the cpufreq table. */
for (i = 0; i < nfreqs; i++) {
freq = freqs[i];
if (rate == freq)
break;
}
if (rate != freq)
return -EINVAL;
/* Set the new arm opp. */
pr_debug("SET ARM OPP 0x%02x\n", opps[i]);
return db8500_prcmu_set_arm_opp(opps[i]);
}
static int set_plldsi_rate(unsigned long rate)
{
unsigned long src_rate;
unsigned long rem;
u32 pll_freq = 0;
u32 r;
src_rate = clock_rate(PRCMU_HDMICLK);
rem = rate;
for (r = 7; (rem > 0) && (r > 0); r--) {
u64 d;
u64 hwrate;
d = (r * rate);
(void)do_div(d, src_rate);
if (d < 6)
d = 6;
else if (d > 255)
d = 255;
hwrate = (d * src_rate);
if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
continue;
(void)do_div(hwrate, r);
if (rate < hwrate) {
if (pll_freq == 0)
pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
(r << PRCM_PLL_FREQ_R_SHIFT));
break;
}
if ((rate - hwrate) < rem) {
rem = (rate - hwrate);
pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
(r << PRCM_PLL_FREQ_R_SHIFT));
}
}
if (pll_freq == 0)
return -EINVAL;
pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
writel(pll_freq, PRCM_PLLDSI_FREQ);
return 0;
}
static void set_dsiclk_rate(u8 n, unsigned long rate)
{
u32 val;
u32 div;
div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
(div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
/* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
val = readl(PRCM_DSI_PLLOUT_SEL);
val &= ~dsiclk[n].divsel_mask;
val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
writel(val, PRCM_DSI_PLLOUT_SEL);
}
static void set_dsiescclk_rate(u8 n, unsigned long rate)
{
u32 val;
u32 div;
div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
val = readl(PRCM_DSITVCLK_DIV);
val &= ~dsiescclk[n].div_mask;
val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
writel(val, PRCM_DSITVCLK_DIV);
}
int prcmu_set_clock_rate(u8 clock, unsigned long rate)
{
if (clock < PRCMU_NUM_REG_CLOCKS)
set_clock_rate(clock, rate);
else if (clock == PRCMU_ARMSS)
return set_armss_rate(rate);
else if (clock == PRCMU_PLLDSI)
return set_plldsi_rate(rate);
else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
return 0;
}
int db8500_prcmu_config_esram0_deep_sleep(u8 state)
{
if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
(state < ESRAM0_DEEP_SLEEP_STATE_OFF))
return -EINVAL;
mutex_lock(&mb4_transfer.lock);
while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
cpu_relax();
writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
(tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
writeb(DDR_PWR_STATE_ON,
(tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
wait_for_completion(&mb4_transfer.work);
mutex_unlock(&mb4_transfer.lock);
return 0;
}
int db8500_prcmu_config_hotdog(u8 threshold)
{
mutex_lock(&mb4_transfer.lock);
while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
cpu_relax();
writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
wait_for_completion(&mb4_transfer.work);
mutex_unlock(&mb4_transfer.lock);
return 0;
}
int db8500_prcmu_config_hotmon(u8 low, u8 high)
{
mutex_lock(&mb4_transfer.lock);
while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
cpu_relax();
writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
(tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
wait_for_completion(&mb4_transfer.work);
mutex_unlock(&mb4_transfer.lock);
return 0;
}
EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon);
static int config_hot_period(u16 val)
{
mutex_lock(&mb4_transfer.lock);
while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
cpu_relax();
writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
wait_for_completion(&mb4_transfer.work);
mutex_unlock(&mb4_transfer.lock);
return 0;
}
int db8500_prcmu_start_temp_sense(u16 cycles32k)
{
if (cycles32k == 0xFFFF)
return -EINVAL;
return config_hot_period(cycles32k);
}
EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense);
int db8500_prcmu_stop_temp_sense(void)
{
return config_hot_period(0xFFFF);
}
EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense);
static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
{
mutex_lock(&mb4_transfer.lock);
while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
cpu_relax();
writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
wait_for_completion(&mb4_transfer.work);
mutex_unlock(&mb4_transfer.lock);
return 0;
}
int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
{
BUG_ON(num == 0 || num > 0xf);
return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
A9WDOG_AUTO_OFF_DIS);
}
EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
int db8500_prcmu_enable_a9wdog(u8 id)
{
return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
}
EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
int db8500_prcmu_disable_a9wdog(u8 id)
{
return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
}
EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
int db8500_prcmu_kick_a9wdog(u8 id)
{
return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
}
EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
/*
* timeout is 28 bit, in ms.
*/
int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
{
return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
(id & A9WDOG_ID_MASK) |
/*
* Put the lowest 28 bits of timeout at
* offset 4. Four first bits are used for id.
*/
(u8)((timeout << 4) & 0xf0),
(u8)((timeout >> 4) & 0xff),
(u8)((timeout >> 12) & 0xff),
(u8)((timeout >> 20) & 0xff));
}
EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
/**
* prcmu_abb_read() - Read register value(s) from the ABB.
* @slave: The I2C slave address.
* @reg: The (start) register address.
* @value: The read out value(s).
* @size: The number of registers to read.
*
* Reads register value(s) from the ABB.
* @size has to be 1 for the current firmware version.
*/
int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
{
int r;
if (size != 1)
return -EINVAL;
mutex_lock(&mb5_transfer.lock);
while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
cpu_relax();
writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
if (!wait_for_completion_timeout(&mb5_transfer.work,
msecs_to_jiffies(20000))) {
pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
__func__);
r = -EIO;
} else {
r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
}
if (!r)
*value = mb5_transfer.ack.value;
mutex_unlock(&mb5_transfer.lock);
return r;
}
/**
* prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
* @slave: The I2C slave address.
* @reg: The (start) register address.
* @value: The value(s) to write.
* @mask: The mask(s) to use.
* @size: The number of registers to write.
*
* Writes masked register value(s) to the ABB.
* For each @value, only the bits set to 1 in the corresponding @mask
* will be written. The other bits are not changed.
* @size has to be 1 for the current firmware version.
*/
int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
{
int r;
if (size != 1)
return -EINVAL;
mutex_lock(&mb5_transfer.lock);
while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
cpu_relax();
writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
if (!wait_for_completion_timeout(&mb5_transfer.work,
msecs_to_jiffies(20000))) {
pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
__func__);
r = -EIO;
} else {
r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
}
mutex_unlock(&mb5_transfer.lock);
return r;
}
/**
* prcmu_abb_write() - Write register value(s) to the ABB.
* @slave: The I2C slave address.
* @reg: The (start) register address.
* @value: The value(s) to write.
* @size: The number of registers to write.
*
* Writes register value(s) to the ABB.
* @size has to be 1 for the current firmware version.
*/
int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
{
u8 mask = ~0;
return prcmu_abb_write_masked(slave, reg, value, &mask, size);
}
/**
* prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
*/
int prcmu_ac_wake_req(void)
{
u32 val;
int ret = 0;
mutex_lock(&mb0_transfer.ac_wake_lock);
val = readl(PRCM_HOSTACCESS_REQ);
if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
goto unlock_and_return;
atomic_set(&ac_wake_req_state, 1);
/*
* Force Modem Wake-up before hostaccess_req ping-pong.
* It prevents Modem to enter in Sleep while acking the hostaccess
* request. The 31us delay has been calculated by HWI.
*/
val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
writel(val, PRCM_HOSTACCESS_REQ);
udelay(31);
val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
writel(val, PRCM_HOSTACCESS_REQ);
if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
msecs_to_jiffies(5000))) {
pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
__func__);
ret = -EFAULT;
}
unlock_and_return:
mutex_unlock(&mb0_transfer.ac_wake_lock);
return ret;
}
/**
* prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
*/
void prcmu_ac_sleep_req(void)
{
u32 val;
mutex_lock(&mb0_transfer.ac_wake_lock);
val = readl(PRCM_HOSTACCESS_REQ);
if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
goto unlock_and_return;
writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
PRCM_HOSTACCESS_REQ);
if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
msecs_to_jiffies(5000))) {
pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
__func__);
}
atomic_set(&ac_wake_req_state, 0);
unlock_and_return:
mutex_unlock(&mb0_transfer.ac_wake_lock);
}
bool db8500_prcmu_is_ac_wake_requested(void)
{
return (atomic_read(&ac_wake_req_state) != 0);
}
/**
* db8500_prcmu_system_reset - System reset
*
* Saves the reset reason code and then sets the APE_SOFTRST register which
* fires interrupt to fw
*
* @reset_code: The reason for system reset
*/
void db8500_prcmu_system_reset(u16 reset_code)
{
writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
writel(1, PRCM_APE_SOFTRST);
}
/**
* db8500_prcmu_get_reset_code - Retrieve SW reset reason code
*
* Retrieves the reset reason code stored by prcmu_system_reset() before
* last restart.
*/
u16 db8500_prcmu_get_reset_code(void)
{
return readw(tcdm_base + PRCM_SW_RST_REASON);
}
/**
* db8500_prcmu_modem_reset - ask the PRCMU to reset modem
*/
void db8500_prcmu_modem_reset(void)
{
mutex_lock(&mb1_transfer.lock);
while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
cpu_relax();
writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
wait_for_completion(&mb1_transfer.work);
/*
* No need to check return from PRCMU as modem should go in reset state
* This state is already managed by upper layer
*/
mutex_unlock(&mb1_transfer.lock);
}
static void ack_dbb_wakeup(void)
{
unsigned long flags;
spin_lock_irqsave(&mb0_transfer.lock, flags);
while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
cpu_relax();
writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
spin_unlock_irqrestore(&mb0_transfer.lock, flags);
}
static inline void print_unknown_header_warning(u8 n, u8 header)
{
pr_warn("prcmu: Unknown message header (%d) in mailbox %d\n",
header, n);
}
static bool read_mailbox_0(void)
{
bool r;
u32 ev;
unsigned int n;
u8 header;
header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
switch (header) {
case MB0H_WAKEUP_EXE:
case MB0H_WAKEUP_SLEEP:
if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
else
ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
complete(&mb0_transfer.ac_wake_work);
if (ev & WAKEUP_BIT_SYSCLK_OK)
complete(&mb3_transfer.sysclk_work);
ev &= mb0_transfer.req.dbb_irqs;
for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
if (ev & prcmu_irq_bit[n])
generic_handle_domain_irq(db8500_irq_domain, n);
}
r = true;
break;
default:
print_unknown_header_warning(0, header);
r = false;
break;
}
writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
return r;
}
static bool read_mailbox_1(void)
{
mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
mb1_transfer.ack.arm_opp = readb(tcdm_base +
PRCM_ACK_MB1_CURRENT_ARM_OPP);
mb1_transfer.ack.ape_opp = readb(tcdm_base +
PRCM_ACK_MB1_CURRENT_APE_OPP);
mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
complete(&mb1_transfer.work);
return false;
}
static bool read_mailbox_2(void)
{
mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
complete(&mb2_transfer.work);
return false;
}
static bool read_mailbox_3(void)
{
writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
return false;
}
static bool read_mailbox_4(void)
{
u8 header;
bool do_complete = true;
header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
switch (header) {
case MB4H_MEM_ST:
case MB4H_HOTDOG:
case MB4H_HOTMON:
case MB4H_HOT_PERIOD:
case MB4H_A9WDOG_CONF:
case MB4H_A9WDOG_EN:
case MB4H_A9WDOG_DIS:
case MB4H_A9WDOG_LOAD:
case MB4H_A9WDOG_KICK:
break;
default:
print_unknown_header_warning(4, header);
do_complete = false;
break;
}
writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
if (do_complete)
complete(&mb4_transfer.work);
return false;
}
static bool read_mailbox_5(void)
{
mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
complete(&mb5_transfer.work);
return false;
}
static bool read_mailbox_6(void)
{
writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
return false;
}
static bool read_mailbox_7(void)
{
writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
return false;
}
static bool (* const read_mailbox[NUM_MB])(void) = {
read_mailbox_0,
read_mailbox_1,
read_mailbox_2,
read_mailbox_3,
read_mailbox_4,
read_mailbox_5,
read_mailbox_6,
read_mailbox_7
};
static irqreturn_t prcmu_irq_handler(int irq, void *data)
{
u32 bits;
u8 n;
irqreturn_t r;
bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
if (unlikely(!bits))
return IRQ_NONE;
r = IRQ_HANDLED;
for (n = 0; bits; n++) {
if (bits & MBOX_BIT(n)) {
bits -= MBOX_BIT(n);
if (read_mailbox[n]())
r = IRQ_WAKE_THREAD;
}
}
return r;
}
static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
{
ack_dbb_wakeup();
return IRQ_HANDLED;
}
static void prcmu_mask_work(struct work_struct *work)
{
unsigned long flags;
spin_lock_irqsave(&mb0_transfer.lock, flags);
config_wakeups();
spin_unlock_irqrestore(&mb0_transfer.lock, flags);
}
static void prcmu_irq_mask(struct irq_data *d)
{
unsigned long flags;
spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
if (d->irq != IRQ_PRCMU_CA_SLEEP)
schedule_work(&mb0_transfer.mask_work);
}
static void prcmu_irq_unmask(struct irq_data *d)
{
unsigned long flags;
spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
if (d->irq != IRQ_PRCMU_CA_SLEEP)
schedule_work(&mb0_transfer.mask_work);
}
static void noop(struct irq_data *d)
{
}
static struct irq_chip prcmu_irq_chip = {
.name = "prcmu",
.irq_disable = prcmu_irq_mask,
.irq_ack = noop,
.irq_mask = prcmu_irq_mask,
.irq_unmask = prcmu_irq_unmask,
};
static char *fw_project_name(u32 project)
{
switch (project) {
case PRCMU_FW_PROJECT_U8500:
return "U8500";
case PRCMU_FW_PROJECT_U8400:
return "U8400";
case PRCMU_FW_PROJECT_U9500:
return "U9500";
case PRCMU_FW_PROJECT_U8500_MBB:
return "U8500 MBB";
case PRCMU_FW_PROJECT_U8500_C1:
return "U8500 C1";
case PRCMU_FW_PROJECT_U8500_C2:
return "U8500 C2";
case PRCMU_FW_PROJECT_U8500_C3:
return "U8500 C3";
case PRCMU_FW_PROJECT_U8500_C4:
return "U8500 C4";
case PRCMU_FW_PROJECT_U9500_MBL:
return "U9500 MBL";
case PRCMU_FW_PROJECT_U8500_SSG1:
return "U8500 Samsung 1";
case PRCMU_FW_PROJECT_U8500_MBL2:
return "U8500 MBL2";
case PRCMU_FW_PROJECT_U8520:
return "U8520 MBL";
case PRCMU_FW_PROJECT_U8420:
return "U8420";
case PRCMU_FW_PROJECT_U8500_SSG2:
return "U8500 Samsung 2";
case PRCMU_FW_PROJECT_U8420_SYSCLK:
return "U8420-sysclk";
case PRCMU_FW_PROJECT_U9540:
return "U9540";
case PRCMU_FW_PROJECT_A9420:
return "A9420";
case PRCMU_FW_PROJECT_L8540:
return "L8540";
case PRCMU_FW_PROJECT_L8580:
return "L8580";
default:
return "Unknown";
}
}
static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
irq_hw_number_t hwirq)
{
irq_set_chip_and_handler(virq, &prcmu_irq_chip,
handle_simple_irq);
return 0;
}
static const struct irq_domain_ops db8500_irq_ops = {
.map = db8500_irq_map,
.xlate = irq_domain_xlate_twocell,
};
static int db8500_irq_init(struct device_node *np)
{
int i;
db8500_irq_domain = irq_domain_add_simple(
np, NUM_PRCMU_WAKEUPS, 0,
&db8500_irq_ops, NULL);
if (!db8500_irq_domain) {
pr_err("Failed to create irqdomain\n");
return -ENOSYS;
}
/* All wakeups will be used, so create mappings for all */
for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
irq_create_mapping(db8500_irq_domain, i);
return 0;
}
static void dbx500_fw_version_init(struct device_node *np)
{
void __iomem *tcpm_base;
u32 version;
tcpm_base = of_iomap(np, 1);
if (!tcpm_base) {
pr_err("no prcmu tcpm mem region provided\n");
return;
}
version = readl(tcpm_base + DB8500_PRCMU_FW_VERSION_OFFSET);
fw_info.version.project = (version & 0xFF);
fw_info.version.api_version = (version >> 8) & 0xFF;
fw_info.version.func_version = (version >> 16) & 0xFF;
fw_info.version.errata = (version >> 24) & 0xFF;
strncpy(fw_info.version.project_name,
fw_project_name(fw_info.version.project),
PRCMU_FW_PROJECT_NAME_LEN);
fw_info.valid = true;
pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
fw_info.version.project_name,
fw_info.version.project,
fw_info.version.api_version,
fw_info.version.func_version,
fw_info.version.errata);
iounmap(tcpm_base);
}
void __init db8500_prcmu_early_init(void)
{
/*
* This is a temporary remap to bring up the clocks. It is
* subsequently replaces with a real remap. After the merge of
* the mailbox subsystem all of this early code goes away, and the
* clock driver can probe independently. An early initcall will
* still be needed, but it can be diverted into drivers/clk/ux500.
*/
struct device_node *np;
np = of_find_compatible_node(NULL, NULL, "stericsson,db8500-prcmu");
prcmu_base = of_iomap(np, 0);
if (!prcmu_base) {
of_node_put(np);
pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
return;
}
dbx500_fw_version_init(np);
of_node_put(np);
spin_lock_init(&mb0_transfer.lock);
spin_lock_init(&mb0_transfer.dbb_irqs_lock);
mutex_init(&mb0_transfer.ac_wake_lock);
init_completion(&mb0_transfer.ac_wake_work);
mutex_init(&mb1_transfer.lock);
init_completion(&mb1_transfer.work);
mb1_transfer.ape_opp = APE_NO_CHANGE;
mutex_init(&mb2_transfer.lock);
init_completion(&mb2_transfer.work);
spin_lock_init(&mb2_transfer.auto_pm_lock);
spin_lock_init(&mb3_transfer.lock);
mutex_init(&mb3_transfer.sysclk_lock);
init_completion(&mb3_transfer.sysclk_work);
mutex_init(&mb4_transfer.lock);
init_completion(&mb4_transfer.work);
mutex_init(&mb5_transfer.lock);
init_completion(&mb5_transfer.work);
INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
}
static void init_prcm_registers(void)
{
u32 val;
val = readl(PRCM_A9PL_FORCE_CLKEN);
val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
writel(val, (PRCM_A9PL_FORCE_CLKEN));
}
/*
* Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
*/
static struct regulator_consumer_supply db8500_vape_consumers[] = {
REGULATOR_SUPPLY("v-ape", NULL),
REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
/* "v-mmc" changed to "vcore" in the mainline kernel */
REGULATOR_SUPPLY("vcore", "sdi0"),
REGULATOR_SUPPLY("vcore", "sdi1"),
REGULATOR_SUPPLY("vcore", "sdi2"),
REGULATOR_SUPPLY("vcore", "sdi3"),
REGULATOR_SUPPLY("vcore", "sdi4"),
REGULATOR_SUPPLY("v-dma", "dma40.0"),
REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
/* "v-uart" changed to "vcore" in the mainline kernel */
REGULATOR_SUPPLY("vcore", "uart0"),
REGULATOR_SUPPLY("vcore", "uart1"),
REGULATOR_SUPPLY("vcore", "uart2"),
REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
};
static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
/* AV8100 regulator */
REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
};
static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
REGULATOR_SUPPLY("vsupply", "mcde"),
};
/* SVA MMDSP regulator switch */
static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
};
/* SVA pipe regulator switch */
static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
REGULATOR_SUPPLY("sva-pipe", "cm_control"),
};
/* SIA MMDSP regulator switch */
static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
};
/* SIA pipe regulator switch */
static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
REGULATOR_SUPPLY("sia-pipe", "cm_control"),
};
static struct regulator_consumer_supply db8500_sga_consumers[] = {
REGULATOR_SUPPLY("v-mali", NULL),
};
/* ESRAM1 and 2 regulator switch */
static struct regulator_consumer_supply db8500_esram12_consumers[] = {
REGULATOR_SUPPLY("esram12", "cm_control"),
};
/* ESRAM3 and 4 regulator switch */
static struct regulator_consumer_supply db8500_esram34_consumers[] = {
REGULATOR_SUPPLY("v-esram34", "mcde"),
REGULATOR_SUPPLY("esram34", "cm_control"),
REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
};
static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
[DB8500_REGULATOR_VAPE] = {
.constraints = {
.name = "db8500-vape",
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
.always_on = true,
},
.consumer_supplies = db8500_vape_consumers,
.num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
},
[DB8500_REGULATOR_VARM] = {
.constraints = {
.name = "db8500-varm",
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
},
},
[DB8500_REGULATOR_VMODEM] = {
.constraints = {
.name = "db8500-vmodem",
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
},
},
[DB8500_REGULATOR_VPLL] = {
.constraints = {
.name = "db8500-vpll",
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
},
},
[DB8500_REGULATOR_VSMPS1] = {
.constraints = {
.name = "db8500-vsmps1",
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
},
},
[DB8500_REGULATOR_VSMPS2] = {
.constraints = {
.name = "db8500-vsmps2",
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
},
.consumer_supplies = db8500_vsmps2_consumers,
.num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
},
[DB8500_REGULATOR_VSMPS3] = {
.constraints = {
.name = "db8500-vsmps3",
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
},
},
[DB8500_REGULATOR_VRF1] = {
.constraints = {
.name = "db8500-vrf1",
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
},
},
[DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
/* dependency to u8500-vape is handled outside regulator framework */
.constraints = {
.name = "db8500-sva-mmdsp",
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
},
.consumer_supplies = db8500_svammdsp_consumers,
.num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
},
[DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
.constraints = {
/* "ret" means "retention" */
.name = "db8500-sva-mmdsp-ret",
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
},
},
[DB8500_REGULATOR_SWITCH_SVAPIPE] = {
/* dependency to u8500-vape is handled outside regulator framework */
.constraints = {
.name = "db8500-sva-pipe",
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
},
.consumer_supplies = db8500_svapipe_consumers,
.num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
},
[DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
/* dependency to u8500-vape is handled outside regulator framework */
.constraints = {
.name = "db8500-sia-mmdsp",
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
},
.consumer_supplies = db8500_siammdsp_consumers,
.num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
},
[DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
.constraints = {
.name = "db8500-sia-mmdsp-ret",
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
},
},
[DB8500_REGULATOR_SWITCH_SIAPIPE] = {
/* dependency to u8500-vape is handled outside regulator framework */
.constraints = {
.name = "db8500-sia-pipe",
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
},
.consumer_supplies = db8500_siapipe_consumers,
.num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
},
[DB8500_REGULATOR_SWITCH_SGA] = {
.supply_regulator = "db8500-vape",
.constraints = {
.name = "db8500-sga",
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
},
.consumer_supplies = db8500_sga_consumers,
.num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
},
[DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
.supply_regulator = "db8500-vape",
.constraints = {
.name = "db8500-b2r2-mcde",
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
},
.consumer_supplies = db8500_b2r2_mcde_consumers,
.num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
},
[DB8500_REGULATOR_SWITCH_ESRAM12] = {
/*
* esram12 is set in retention and supplied by Vsafe when Vape is off,
* no need to hold Vape
*/
.constraints = {
.name = "db8500-esram12",
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
},
.consumer_supplies = db8500_esram12_consumers,
.num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
},
[DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
.constraints = {
.name = "db8500-esram12-ret",
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
},
},
[DB8500_REGULATOR_SWITCH_ESRAM34] = {
/*
* esram34 is set in retention and supplied by Vsafe when Vape is off,
* no need to hold Vape
*/
.constraints = {
.name = "db8500-esram34",
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
},
.consumer_supplies = db8500_esram34_consumers,
.num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
},
[DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
.constraints = {
.name = "db8500-esram34-ret",
.valid_ops_mask = REGULATOR_CHANGE_STATUS,
},
},
};
static const struct mfd_cell common_prcmu_devs[] = {
MFD_CELL_NAME("db8500_wdt"),
MFD_CELL_NAME("db8500-cpuidle"),
};
static const struct mfd_cell db8500_prcmu_devs[] = {
MFD_CELL_OF("db8500-prcmu-regulators", NULL,
&db8500_regulators, sizeof(db8500_regulators), 0,
"stericsson,db8500-prcmu-regulator"),
MFD_CELL_OF("db8500-thermal",
NULL, NULL, 0, 0, "stericsson,db8500-thermal"),
};
static int db8500_prcmu_register_ab8500(struct device *parent)
{
struct device_node *np;
struct resource ab850x_resource;
const struct mfd_cell ab8500_cell = {
.name = "ab8500-core",
.of_compatible = "stericsson,ab8500",
.id = AB8500_VERSION_AB8500,
.resources = &ab850x_resource,
.num_resources = 1,
};
const struct mfd_cell ab8505_cell = {
.name = "ab8505-core",
.of_compatible = "stericsson,ab8505",
.id = AB8500_VERSION_AB8505,
.resources = &ab850x_resource,
.num_resources = 1,
};
const struct mfd_cell *ab850x_cell;
if (!parent->of_node)
return -ENODEV;
/* Look up the device node, sneak the IRQ out of it */
for_each_child_of_node(parent->of_node, np) {
if (of_device_is_compatible(np, ab8500_cell.of_compatible)) {
ab850x_cell = &ab8500_cell;
break;
}
if (of_device_is_compatible(np, ab8505_cell.of_compatible)) {
ab850x_cell = &ab8505_cell;
break;
}
}
if (!np) {
dev_info(parent, "could not find AB850X node in the device tree\n");
return -ENODEV;
}
of_irq_to_resource_table(np, &ab850x_resource, 1);
return mfd_add_devices(parent, 0, ab850x_cell, 1, NULL, 0, NULL);
}
static int db8500_prcmu_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
int irq = 0, err = 0;
struct resource *res;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
if (!res) {
dev_err(&pdev->dev, "no prcmu memory region provided\n");
return -EINVAL;
}
prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
if (!prcmu_base) {
dev_err(&pdev->dev,
"failed to ioremap prcmu register memory\n");
return -ENOMEM;
}
init_prcm_registers();
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
if (!res) {
dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
return -EINVAL;
}
tcdm_base = devm_ioremap(&pdev->dev, res->start,
resource_size(res));
if (!tcdm_base) {
dev_err(&pdev->dev,
"failed to ioremap prcmu-tcdm register memory\n");
return -ENOMEM;
}
/* Clean up the mailbox interrupts after pre-kernel code. */
writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
irq = platform_get_irq(pdev, 0);
if (irq <= 0)
return irq;
err = request_threaded_irq(irq, prcmu_irq_handler,
prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
if (err < 0) {
pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
return err;
}
db8500_irq_init(np);
prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
if (err) {
pr_err("prcmu: Failed to add subdevices\n");
return err;
}
/* TODO: Remove restriction when clk definitions are available. */
if (!of_machine_is_compatible("st-ericsson,u8540")) {
err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
db8500_irq_domain);
if (err) {
mfd_remove_devices(&pdev->dev);
pr_err("prcmu: Failed to add subdevices\n");
return err;
}
}
err = db8500_prcmu_register_ab8500(&pdev->dev);
if (err) {
mfd_remove_devices(&pdev->dev);
pr_err("prcmu: Failed to add ab8500 subdevice\n");
return err;
}
pr_info("DB8500 PRCMU initialized\n");
return err;
}
static const struct of_device_id db8500_prcmu_match[] = {
{ .compatible = "stericsson,db8500-prcmu"},
{ },
};
static struct platform_driver db8500_prcmu_driver = {
.driver = {
.name = "db8500-prcmu",
.of_match_table = db8500_prcmu_match,
},
.probe = db8500_prcmu_probe,
};
static int __init db8500_prcmu_init(void)
{
return platform_driver_register(&db8500_prcmu_driver);
}
core_initcall(db8500_prcmu_init);